
Received 11 March 2024, accepted 10 April 2024, date of publication 19 April 2024, date of current version 7 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3391371

Economic Fruit Trees Recognition in Hillsides:
A CNN-Based Approach Using Enhanced
UAV Imagery
MARAL HOOSHYAR , YUAN-SHUO LI, WEN CHUN TANG, LING-WEI CHEN,
AND YUEH-MIN HUANG , (Senior Member, IEEE)
Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan

Corresponding author: Yueh-Min Huang (huang@mail.ncku.edu.tw)

This work was supported by National Science and Technology Council under Grant 110-2321-B-067F-001

ABSTRACT Managing sloping terrains worldwide presents a significant challenge due to the lack of
structured management practices, particularly when integrating various fruit trees in irregular arrangements.
This study addresses the complexity arising from mixed cultivation by proposing a solution utilizing
Unmanned Aerial Vehicle (UAV) imagery for tree species recognition and fruit tree classification. Our
approach involves equipping UAVs with multispectral and optical cameras to capture imagery over experi-
mental sloping terrain. The collected data undergoes processing for classifying different types of fruit trees,
roads, and buildings through Orthophoto images. Convolutional Neural Networks (CNN) are employed
for image recognition in challenging hillside terrains, with deep neural network methods, specifically
VGG-16, VGG-19, and ResNet-50, being applied and compared. VGG-16 achieved significant accuracy
in multispectral imagery analysis. Subsequently, various image fusion techniques, including Brovey, Hue-
Saturation-Value, Principal Components Analysis (PCA), and Gram-Schmidt, were explored, with PCA
demonstrating superior performance. The study revealed that image fusion, particularly with near-infrared or
red-edge bands, significantly enhanced prediction accuracy compared to standalone multispectral imagery.
The combination of visible-band fused imagery with additional spectral bands yielded the highest accuracy,
improving overall prediction accuracy from 0.76 to 0.92. This research provides valuable insights applicable
to diverse regions grappling with challenges in managing sloping terrains and mixed fruit tree cultivation.

INDEX TERMS Convolutional neural network, fruit trees classification, image fusion, multispectral
imagery, unmanned aerial vehicle.

I. INTRODUCTION
In recent decades, the utilization of image processing has
expanded its reach into various sectors including educa-
tion [1], healthcare [2], agriculture [3], unmanned aerial
vehicles (UAVs) [4], and numerous other domains. Advance-
ments in technology have helped the agriculture industry
apply a profound transformation to prosper farming and
eliminate challenges and issues [5]. Employing UAVs in agri-
culture has made a revolution because of providing real-time
data for farmers to take action on time with more productivity
(e.g., [6], [7]). UAVs are equipped with various sensors and
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imaging technologies, enabling them to identify and classify
plants features for different aims [8]. For instance, UAVs
have been employed to optimize irrigation with remarkable
precision [9]. Also, UAVs have provided significant oppor-
tunities for farmers to monitor farms in terms of crop health
and detect diseases [10]. Obviously, UAV imagery is capable
of providing vast amounts of effective data to help farmers
enhance productivity and minimize environmental impact.
Notably, many research articles emphasized that using pes-
ticides ends up with environmental pollution in terms of soil
(e.g., [11], [12]) and water (e.g., [13], [14]). Multispectral and
optical cameras mounted on UAVs capture imagery aimed at
detecting crop diseases and pests, ultimately enhancing agri-
cultural productivity by fostering healthier crop growth [15].
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Multispectral imagery excels in capturing specific wave-
length bands, enabling the detection of diseases and irrigation
issues for targeted pest control (e.g., [16], [17]). Mean-
while, optical cameras, based on RGB technology, provide
high-resolution images essential for detailed cropmonitoring,
growth analysis, and identifying visible signs of damage (e.g.,
[18], [19], [20]). The integration of these technologies offers a
synergistic approach to precision agriculture, leveraging the
detailed spatial information from optical cameras alongside
the rich spectral data from multispectral imagery to enhance
the accuracy and efficiency of pest management strategies
(e.g., [21], [22]). Our research aims to leverage UAV imagery,
combining multispectral and optical cameras, to address the
unique agricultural challenges faced by farmers in the hill-
sides of Taiwan. These areas, as highlighted in prior studies
(e.g., [23], [24]), present significant access difficulties for
traditional agricultural machinery due to their rugged terrain
and variability in elevation. Our study’s focus is on a diverse
agricultural field within the Nanhua District of Tainan City,
characterized by its steep hillsides and a variety of fruit
trees, including lychee, longan, plantain, mango, peach, and
bamboo. This diversity, coupled with the visual similarity
between bamboo and lychee trees, complicates pest man-
agement strategies, necessitating precise identification and
treatment methods tailored to each fruit type.

Our approach utilizes UAVs equipped with advanced
imaging technologies, including optical cameras and multi-
channel spectrometers, to navigate the low-altitude environ-
ments unique to our experimental site. By capturing images
across red, green, blue, near-infrared, and red-edge spectral
bands, we aim to compute vegetation indices and texture
features that are indicative of specific crop health and pest
presence. The integration of high-resolution optical images
with multispectral data allows for detailed analysis of tree
and fruit types, enhancing our ability to differentiate between
species with similar appearances, such as bamboo and lychee
trees.

Recognizing the complementary nature of optical and mul-
tispectral imagery [25], our research employs image fusion
techniques, including Resampling, Brovey, HSV, PCA, and
GS methods, to improve the overall accuracy and resolution
of the images. These enhanced images then serve as the basis
for developing a multispectral image recognition system,
which utilizes CNNs with architectures like VGG-16, VGG-
19, and ResNet-50 for accurate classification and recognition
of the diverse fruit trees present.

Thus, the ultimate goal of our study is to refine the
precision of agricultural practices on hillsides, employing
UAV technology to overcome the limitations imposed by the
terrain. By comparing the efficacy of various CNN mod-
els and image fusion techniques, we aim to identify the
most effective methods for enhancing the quality of UAV
imagery. This will enable targeted pest management strate-
gies, reduce the need for manual labor, and decrease the time
and financial costs associated with traditional pest control
methods.

The contributions of our proposed approach are summa-
rized as follows:

• Innovative approach for pest management: Utilizing
real-time data and UAV technology for precise iden-
tification and targeted pesticide spraying on hillsides,
significantly enhancing pest control efficiency and
reducing pesticide usage.

• Technological advancements in image processing: Inte-
grating CNN with advanced image fusion techniques
(Brovey, HSV, PCA, and GS) and optimizing with
state-of-the-art neural network models (VGG-16, VGG-
19, ResNet-50) for unparalleled accuracy in pest
identification.

• Establishing new standards in precision agriculture: By
developing enhanced channels from standard RGB data
and leveraging the latest in UAV and image process-
ing technologies, our research sets new benchmarks for
accuracy and efficiency in precision agriculture, con-
tributing to sustainable farming practices and improved
crop health on challenging terrains.

The structure of this article is as follows: section two presents
related works, section three describes materials and methods,
section four deals with experimental design and results, and
section five presents discussion and conclusions.

II. RELATED WORKS
The geographical constraints and dense population density
in Taiwan have led farmers to seek alternative means of
maximizing agricultural output, particularly through the uti-
lization of hillside areas. However, the aging demographic of
Taiwanese farmers coupled with the limitations of traditional
agricultural practices have posed significant challenges in
meeting modern productivity demands. In this context, the
integration of UAVs into agriculture emerges as a compelling
solution, offering real-time data that streamlines farming pro-
cesses and enhances overall efficiency [26].

UAVs streamline agricultural production by reducing time,
costs, and labor-intensive tasks [27]. Numerous studies advo-
cate for the use of UAVs in remote sensing, facilitating
the identification and classification of tree species using
real-time data (e.g., [28], [29], [30], [31]). Conventional
methods of interpreting remote sensing imagery for tree
species classification necessitate substantial human resources
and financial investments [28]. Multi-temporal imagery cap-
tures crucial data on vegetation phenology, such as temporal
changes in plant growth stages and stand structure, thereby
improving classification accuracy [29]. In the realm of
multispectral remote sensing, variables such as spectral char-
acteristics, vegetation indices, texture, shape, and structure
are leveraged to construct robust classification models [30].
Machine learning algorithms analyze plant features from cap-
tured images, enabling precise classification [30]. Moreover,
the integration of spectral images with machine learning tech-
niques further refines plant categorization (e.g., [31], [32],
[33]). Traditional aerial photography often faces limitations
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due to weather conditions, notably cloud cover, which can
impede visibility. In contrast, multi-axis rotor UAVs offer
enhanced maneuverability, operational flexibility at low alti-
tudes, reduced costs, and the ability to capture imagery
even in adverse weather conditions such as heavy cloud
cover [34]. The proliferation of high-resolution UAV imagery
has democratized access to agricultural imaging, thereby
amplifying the beneficial applications of UAV technology in
the agricultural sector.

Several studies have employed UAV imagery coupled with
machine learning algorithms to address various agricultural
challenges [35]. Zhou et al. [36] utilized RGB imagery to
classify wetland vegetation using object-based image anal-
ysis scenarios and machine learning algorithms, including
Bayes, KNN, SVM, DT, and RF. Their findings highlighted
RF’s superior performance, achieving an overall accuracy of
89.76%. Similarly, Feng et al. [37] investigated weed pres-
ence in farmland using UAV images, where RF outperformed
SVM, DT, and KNN algorithms after feature extraction and
dimensionality reduction. Ye et al. [38] leveraged SVM,
ANN, and RF algorithms with UAV-based multispectral
imagery for banana Fusarium wilt detection, with SVM
exhibiting the best performance.

With the rise of deep learning, CNNs have gained promi-
nence for crop detection in complex scenarios. Tetila et al.
[39] utilized CNNs for soybean pest detection, with ResNet-
50 achieving the highest accuracy of 93.82%. Li et al. [40]
employed data augmentation techniques and various CNN
architectures, with GoogLeNet demonstrating superior per-
formance for crop pest recognition, albeit with increased
computational requirements. While hyperspectral imagery
is recognized as an advanced tool, its complexity and cost
compared to multispectral imagery are acknowledged (e.g.,
[41], [42]). Multispectral UAV imagery has shown promise in
urgent monitoring tasks such as wheat yellow rust identifica-
tion [42] and sunflower lodging detection using deep learning
and image fusion [43].
Despite the valuable insights provided by existing research,

there remains a gap in leveraging image fusion techniques
to enhance accuracy. Our study seeks to address this gap
by proposing a CNN-based approach that integrates mul-
tispectral and optical cameras. This integration enables us
to capture images across various spectral bands, including
red, green, blue, near-infrared, and red-edge, facilitating
the computation of vegetation indices and texture features
indicative of specific crop health and pest presence. Fur-
thermore, the fusion of high-resolution optical images with
multispectral data enhances our ability to analyze tree and
fruit types in detail, thereby aiding in the differentiation
of species with similar appearances, such as bamboo and
lychee trees. Ultimately, this integration of UAV imagery,
optical cameras, multispectral imagery, and CNN repre-
sents a significant advancement in precision agriculture,
particularly in promoting sustainable practices in hillside
regions.

III. MATERIALS AND METHODS
A. STUDY AREA
The study area is nestled within the picturesque mountainous
expanse of NanhuaDistrict in Tainan City, pinpointed at coor-
dinates 23◦0′18.2′′ N and 120◦28′15.9′′ E (Figure 1). With an
area of 171.5 square kilometers and 3,602 hectares of arable
land, this area is the largest in Tainan City and is located
between 250 and 900 meters above sea level. It is a very
hilly area with mountains on all sides. The terrain gradually
slopes from the northeast to the west. At 900 meters above
sea level, the highest peak in the area is Guanshan, a branch
of the West Aliguan mountain range. The land in this area is
hilly, and the soil is fertile and suitable for planting fruit trees.
This geographical setting was deliberately chosen to embody
various altitudes across the hillsides of Taiwan. Importantly,
the mountains surrounding the experimental field area are
likely to obscure the signal, resulting in poor signal strength
when measuring the field and increasing the difficulty of this
study. Our research is centered around the implementation of
vertical take-off and landing for a quadrotor UAV, a strategic
choice dictated by the region’s challenging topographical
characteristics. Particularly, the quadrotor UAV in our study
was equipped with a MicaSense Altum multispectral cam-
era and a Zenmuse X4S optical camera. These cutting-edge
technologies empower our investigation, enabling the acqui-
sition of high-quality aerial imagery essential for our research
objectives.

FIGURE 1. Orchard on sloped terrain at the site in Nanhua District, Tainan
City.

In this research, we set up 12 aerial survey points in the
experimental field with regards to the hilly terrain of the site,
there is a vertical difference exceeding 10 meters between the
highest and lowest points. Images reflecting this height dif-
ference impact the accurate representation of fruit trees areas
in subsequent forward projection synthesis. In this study, the
UAV image acquisition method involves ground flight, using
the original ground height from the Digital Elevation Model
(DEM), obtained by eliminating ground objects from the real
ground model. Images are captured from 30 meters above the
original ground height.
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B. DATA COLLECTION AND LAYOUT OF UAV IMAGERY
This study employs aerial photogrammetric targets placed
in an experimental field to enhance the accuracy of UAV
orthophoto images for identification of fruits types. Twelve
rectangular aerial survey points, measuring 33 × 33 cm,
were positioned using a topographic GNSS receiver. Table 1
presents the three-dimensional coordinates measured by the
receiver at 12 aerial survey points; with reference to the
TWD97 geodetic datum as the utilized coordinate system.
The study addresses challenges posed by hilly terrain by
employing a four-rotor UAV with vertical take-off and land-
ing capabilities, equipped with MicaSense Altum multispec-
tral and Zenmuse X4S optical cameras. Images are captured
30 meters above the original ground height, determined
from a digital elevation model. Over three periods (March
2020, July 2020, and April 2021), a total of 21600 UAV
aerial images, including optical and multispectral data, were
acquired and processed to generate orthophotos for the spec-
ified fruits (lychee, longan, plantain, mango, peach, and
bamboo) for subsequent analysis. The study focuses on
differential fruits identification using texture analysis and
emphasizes the impact of image resolution on experimental
results.

TABLE 1. Coordinate information on aerial survey points in the Nanhua
area of Tainan City.

The gathered images not only encapsulate general optical
views but also include multispectral images, categorized into
five distinct types based on differing band information: red,
green, blue, near-infrared, and red edge. This categorization
provides a rich dataset for our investigation, and Figure 2
visually delineates the five spectral bands captured by the
multispectral camera (Altum) alongside the aerial images
taken by the optical camera (X4S).

Knowing the location and coordinates of each measure-
ment, we can calculate where the camera was when capturing

FIGURE 2. Schematic diagram of multi-spectral and high-resolution
optical images captured by UAV.

the images. This calculation is essential for later creating the
orthophoto, topographic map, and numerical terrain model.

The UAV flight mission was specified as follows: the
UAV was assigned to fly over 12 designated points out-
lined in Table 1, encompassing various heights across the
entire experimental site. The optical camera was utilized to
capture visual imagery within the visible spectrum, provid-
ing detailed color images of the entire experimental site,
including fruit trees of varying heights. Concurrently, the
multispectral sensor captured imagery across multiple spec-
tral bands beyond the visible spectrum, such as near-infrared
(NIR) and red-edge, offering valuable insights into vegetation
health and other related parameters.

By combining the capabilities of the optical camera and
multispectral sensor, the UAV facilitated simultaneous cap-
ture of both visual and spectral information. This approach
enabled thorough data collection essential for applications
such as vegetation monitoring, land cover and fruit trees clas-
sification, and fruit trees health assessment. The flight plan
incorporated systematic coverage with overlapping flight
paths to ensure comprehensive photo capture across the
experimental site. This meticulous approach to data collec-
tion facilitated accurate and detailed analysis of the terrain
and vegetation, contributing to the success of the UAV
mission.

C. THE WORKFLOW OF CNN
The analysis was developed and tested using a 64-bit
operating system with the following specifications: an
Intel® Core™ i7-8700 CPU, a GTX1080Ti graphics card,
and 64GB of RAM. In addition, our research incorporated the
use of two cameras for identification purposes: MicaSense’s
multispectral camera Altum, capable of receiving 5 different
spectral bands, and Zenmuse’s optical camera X4S with a
20-megapixel sensor. Table 2 presents all the specifications
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TABLE 2. Specifications of multispectral camera Altum and Zenmuse’s
optical camera X4.

of both multispectral camera Altum and Zenmuse’s optical
camera X4S.

We implemented the CNNs workflow by a comprehensive
set of software tools and technologies. Our software stack

included Windows, Anaconda, and Python 3.6, along with
key libraries such as TensorFlow_gpu-1.12.0, Keras-2.2.4,
CUDA9.0, cuDNNv7.6.5, python-opencv, Scikit-Learn, and
Pix4Dmapper. This robust ensemble enabled seamless inte-
gration and efficient execution of our CNN-based analysis
for extracting valuable insights from our data. The synergy
of these tools not only streamlined our workflow but also
enhanced the precision and resolution of our image process-
ing and analysis.

Our research aims to explore three different scales for CNN
workflow, namely: 100×100, 150×150, and 200×200 pix-
els, for CNN training. Importantly, as the 150 × 150 and
200 × 200 boxes may encompass various types of plants or
targets, we utilized the smaller 100×100 pixel box to capture
‘‘partial’’ features as training data for the prediction model.
This smaller window size filters out unnecessary information
during training, allowing a focus on recognizing various types
of fruits.

D. ORTHOPHOTO PRODUCTION
Orthophoto production for UAV imagery involves correcting
distortions caused by various factors such as sensor geometry,
terrain relief, and atmospheric conditions. Thus, the process
of obtaining orthophotos via multispectral images includes
the below key steps:
Initial Image Capture:

• UAVs capture images of the target area using optical
camera and multispectral UAV images.

Atmospheric Scattering Correction:
• Grayscale values of pixels in the images are affected by
both the reflection from surface objects and atmospheric
scattering.

• Dark Object Subtraction (DOS) is applied to remove the
influence of atmospheric scattering.

• Pixels in areas assumed to be completely dark
(e.g., shadows, clear water bodies) are considered to
absorb radiation and should ideally have a grayscale
value of 0.

• Due to atmospheric scattering, the actual values of these
dark pixels received by the sensor are not 0.

• The minimum value among the grayscale values of dark
pixels is identified and subtracted from all pixels in the
entire image, effectively removing atmospheric interfer-
ence.

Wavelength-Dependent Processing:
• Recognizing that the degree of scattering is wavelength-
dependent, each band of the multispectral image is
processed individually to account for variations in atmo-
spheric effects.

Incident Light Sensor Integration:
• An incident light sensor (DLS 2) directly connected to
the Altum camera measures ambient light and sun angle
during the task execution.

• This information is recorded in the data of TIFF images
captured by the camera.
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TABLE 3. UAV image collection and orthophoto production.

• Specialized processing tools, such as Pix4Dmapper, uti-
lize this information to correct global lighting changes,
particularly those caused by factors like cloud coverage.

GPS Data Integration:
• DLS 2 provides GPS data to the Altum camera, which is
recorded in the photo data.

• The GPS receiver is designed to maintain low power
consumption to reduce overall power usage.

Orthophoto Production with Pix4DMapper:
• Pix4DMapper, an aerial survey program, is employed
to stitch UAV images together quickly and convert the
aerial plan into a 3D model.

• Outputs include ortho-mosaic images, 3D point clouds,
and digital surface models (DSM).

• Orthophoto images provide an accurate surface descrip-
tion, and the actual coordinate information can be
extracted from the image content.

In summary, the described process involves mitigating atmo-
spheric effects, utilizing incident light and GPS data for
accurate corrections, and using specialized software for effi-
cient orthophoto production from high-altitude optical and
multispectral UAV images. This allows for detailed and accu-
rate representation of the target area for further research
and analysis. In this regard, Table 3 represents UAV image
collection and orthophoto production of our research.

E. IMAGE COINCIDENCE MATCHING OF MULTISPECTRAL
AND OPTICAL IMAGES
After testing and verifying during the development process
of this research, we discovered slight errors in the spa-
tial coordinate information attached to the multispectral and
optical orthophotos. The points are slightly shifted on both
the multispectral and optical images. Figure 3(a) illustrates

FIGURE 3. Schematic diagrams of optical and multispectral orthophoto
images before and after coincidence and matching.

the result when overlapping the optical and multispectral
orthophotos based on their coordinate information. In three
positions, zooming in clearly shows that the two orthophotos
are not completely superimposed; the roads in the images
are also slightly offset (see Figure 3(b)). Such offset between
orthophoto images leads to information asymmetry in subse-
quent multispectral image fusion. Therefore, it is necessary
to correct this offset so that the two images can be aligned
through the coordinates. Corrected orthophoto images will
thus not introduce errors in subsequent image fusion (see
Figure 3(c)). Also, Figure 3 (d) represents the corrected par-
tial enlarged views.

This study employs the coordinate space information
calculated from orthophoto images to extract two regions
with the same coordinate range. Subsequently, SIFT feature
matching is utilized to match the feature points. Figure 4
displays the same coordinate range. From the spectral and
optical images, it is evident that the two images are slightly
offset. By matching the feature points in the images, yellow
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FIGURE 4. Schematic diagram of multispectral and optical image feature
point matching.

line segments are used to connect the corresponding points,
revealing the coordinate offset clearly. Therefore, the differ-
ence between the pixel positions of the feature points in the
two images is calculated to determine the horizontal and ver-
tical offsets. These values are then multiplied by the Ground
Sampling Distance (GSD) to obtain the actual coordinate
offset of the two orthophotos. By adding the offset to the
orthophoto coordinate system preset as the reference point,
we obtain coordinate information that is consistent with both
orthophotos.

F. IMAGE FUSION OF MULTISPECTRAL
AND OPTICAL IMAGES
Image fusion serves to enhance information from the same
scene captured by diverse sensors, thereby improving image
visibility, resolution, and the characteristic details of the ana-
lyzed object. This study focuses on UAV-captured images,
categorized into two types: multi-spectral and optical images.
Multi-spectral images, while having lower resolution, pro-
vide richer spectral information (e.g., [44], [45]), whereas
optical images offer higher resolution with fewer band details
(e.g., [46], [47]).

To enhance our analysis and elevate the precision of
our results, we meticulously align optical and multispec-
tral images before applying a suite of sophisticated image
fusion techniques. These include PCA, Brovey, HSV, and the
GS process. It is essential to acknowledge the robust sup-
port from the academic community for these methods, with
numerous publications validating the effectiveness of Brovey
image fusion (e.g., [48], [49]), HSV image fusion (e.g., [50],
[51]), PCA image fusion (e.g., [52], [53]), and GS image
fusion (e.g., [54], [55]) in improving image resolution and
clarity. Unlike the conventional approach of accessing these
advanced fusion methods through commercial GIS software
at an additional cost, our strategy is to directly incorpo-
rate these techniques into our Python-based framework. This
approach not only aims to bolster the integrity and efficiency

of our proposed recognition system but also enhances our
ability to precisely interpret and utilize the environmental
data captured in our study.

1) BROVEY IMAGE FUSION
In this investigation, we adapt the Brovey image fusion
technique [56] by implementing adjustments. Grayscale
processing is applied to the optical image, resulting in a
single-band image that replaces the panchromatic image.
Concurrently, the multispectral image undergoes resampling
to align with the dimensions of the optical image, producing
a high-resolution multispectral image. Notably, the optical
image is represented numerically in three channels: R, G, and
B. Grayscale processing transforms this into a single-band
grayscale image. The multispectral image is further resam-
pled to match the resolution of the optical image. We then
calculate the average of the corresponding resampled multi-
spectral image bands to generate a single-band image result.
The next steps involve dividing the two single-band images
to produce a new ratio result. Finally, the resampled multi-
spectral image is multiplied by the corresponding ratio value
within the image, facilitating the fusion of high-resolution
multispectral imagery results. This study employs a modified
Brovey image fusion approach for both optical andmultispec-
tral images (R, G, B). Figure 5 illustrates three perspectives
of the site, corresponding to the optical, multispectral, and
fusion images.

FIGURE 5. Optical and multispectral orthophoto images before and after
Brovey fusion.

2) HSV IMAGE FUSION
Hue-saturation-value (HSV) fusion capitalizes on the high
spatial resolution features of panchromatic or optical images
along with the rich spectral information of multispectral
images, creating a synergy that complements the overall
information [57].

The process involves resampling low-resolution multi-
spectral images to a higher resolution. Subsequently, the
brightness (value) of the multispectral image is replaced with
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the brightness of the optical image following HSV format
conversion. This step aims to restore image detail after the
multispectral image has been resampled. The hue and satura-
tion of the multispectral image are then applied.

The resulting image, as illustrated in Figure 6, not only
preserves the spectral characteristics of the original channels
but also exhibits a notable enhancement in image detail.

FIGURE 6. Optical and multispectral orthophotos before and after HSV
fusion.

3) PCA IMAGE FUSION
This method identifies a set of comprehensive variables to
substitute the original variables, aiming to capture the max-
imum information from the original variables (e.g., [58],
[59], [60]). This set of variables is referred to as the first
principal component. In the context of image fusion, the first
principal component of a high-resolution image takes the
place of the first principal component of the low-resolution
multispectral image. Employing this new set of variables,
the data undergo an inverse transformation through PCA to
recover the high-resolution multispectral image. The restored
image, depicted in Figure 7 as the outcome of the PCA fusion
process.

FIGURE 7. Optical and multispectral orthophotos before and after PCA
image fusion.

4) GS IMAGE FUSION
To make a multispectral digital image clearer, we use the GS
method. This process involves combining lower-quality color
images to create a sharpener and more detailed images [61].

Represents a widely employed multi-dimensional lin-
ear orthogonal transformation in statistics, particularly for
orthogonalizing multi-dimensional data in remote sensing
images. Beyond the reduction of redundant information
within the image, it effectively eliminates strong correlations
between adjacent bands. In this transformative process, the
multispectral low spatial resolution image serves to simu-
late the single-band low-resolution image. Subsequently, the
simulated single-band image is incorporated as the initial
component prior to the GS transformation, applied to the low-
resolution multi-dimensional image.

Following the GS transformation, the average and standard
deviation of the high-resolution single-band image and the
first component are computed. This calculation results in a
modified high-resolution single-band image. Subsequently,
a new cube is generated by substituting the first component
after the GS transform with the modified high-resolution
single-band image. In the final step, the dataset undergoes
an inverse transformation by GS, culminating in a multi-
spectral image featuring enhanced spatial resolution. This
algorithm accommodates images with any number of bands,
ensuring that the resulting fused image preserves the spectral
characteristics of low spatial resolution bands, minimizing
information distortion, as illustrated in Figure 8.

FIGURE 8. Optical and multispectral orthophotos before and after GS
fusion.

G. TRAINING DATA SAMPLES
The study area, illustrated in Figure 9, is partitioned into four
equal sections. Considering the challenging topography and
limited manpower, our focus narrowed to the fruits species
situated in the lower right corner of the site. On-site investiga-
tions were conducted to support the manual labeling of image
data and the creation of the UAV high-altitude image dataset.
A total of 1,693 data samples were meticulously labeled,
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FIGURE 9. Area of interest for dataset production and capture.

comprising both fused and cropped multispectral and optical
images.

Due to the uneven distribution of fruits across the region,
certain categories had limited labels. To address this, data
enhancement techniques were applied to augment the number
of samples in specific categories to 350, mitigating data
imbalance during model training. Subsequently, 80% of the
labeled data was allocated for model training, with 20%
reserved for both validation and testing post-model training.

The area exhibits hybrid planting, with lychee and longan
trees intermixed and cultivated over a larger expanse, along
with diverse fruits dispersed throughout. The field encom-
passes six different fruits: mango, plantain, bamboo, peach,
lychee, and logan. Given the utilization of the sliding window
method for large-scale orthophoto image recognition, deter-
mining an appropriate window size is crucial. However, since
various fruits occupy differently sized areas based on vertical
ground observation, a one-size-fits-all window is impractical.
The GSD for the orthoimage in this study is 0.865 cm/pixel,
resulting in orthophoto divisions into three boxes sized 100×

100, 150 × 150, and 200 × 200 pixels.
Recognizing that the larger 150×150 and 200×200 boxes

may encompass different fruit types or targets, we opted for
the smaller 100× 100 pixel box to capture ‘‘partial’’ features
as training data for the prediction model. This choice helps
filter out unnecessary information during training, as not all
fruits align with the same-sized window. Training exclusively
involved small-scale texture extraction from fruits, contribut-
ing to a reduction in the model’s overall size. Fig. 10 displays
images from the dataset employing a window size of 100 ×

100 pixels.

IV. EXPERIMENTAL DESIGN AND RESULTS
The UAV was outfitted with dedicated multispectral and
optical cameras, each undertaking scanning flights over the
research site to capture vertical ground photos. Rigorous
correction of the geometry and optics of the radiation image
was performed to obtain a comprehensive image of the entire

FIGURE 10. Preview of dataset cut from optical image dataset.

research area. Subsequently, with the orthophoto image in
hand, a thorough examination and analysis of both optical and
multispectral images were conducted.

The experimental phase of this study encompassed distinct
stages: data collection and compilation, multispectral image
fusion, network model training, and orthophoto image pro-
cessing. In the preceding section, we elucidated the training
steps involved in prior work, with a detailed introduction
to the dataset displayed after. The lower limit of the train-
ing steps is outlined, providing a comprehensive overview.
Appendix A and Figure 11 provide the pseudocode of our
proposed approach, and a visual representation of the data
processing procedures essential for training.

FIGURE 11. UAV image preprocessing and model training.

A. NETWORK MODEL TRAINING
CNNs have demonstrated remarkable success in image
classification, with structures like VGG and ResNet
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achieving notable results in the ImageNet competition [62].
CNN’s strength lies in its multi-layered architecture that
autonomously learns features, encompassing various content
at different levels. For instance, deeper convolutional layers
possess a broader receptive field, facilitating the assimilation
of more abstract feature content. Conversely, shallower layers
focus on local area features due to their smaller receptive
fields. The abstraction of features at different levels enhances
the network’s ability to handle variations in object direction,
size, and position, thereby contributing to improved classifi-
cation performance.

The primary goal of image classification is to categorize
different images into distinct classes and minimize classifi-
cation errors. Our emphasis is on single-label classification,
where each image is assigned to a sole category. Accuracy
serves as the evaluation metric for single-label classification,
with positive sample data determined based on a probabil-
ity threshold. If the probability exceeds the threshold, it is
considered positive; otherwise, it is negative, with the default
threshold set at 0.5. Adjusting the threshold produces varying
statistical outcomes.

In single-label classification, each sample pertains to only
one definite category. Correct prediction of the category
results in accurate classification, while an incorrect predic-
tion indicates a classification error. Accuracy, quantified as
Accuracy = (TP + TN) / (TP + FP + TN + FN), serves
as the most intuitive indicator. Here, TP and TN denote
true positives and true negatives, respectively, while FP and
FN represent false positives and false negatives. Accuracy
reflects the probability of correctly classifying all samples,
and different thresholds yield distinct accuracy values.

The hyperparameters for the VGG-16, VGG-19, and
ResNet-50 model architectures are configured for classifi-
cation tasks involving seven classes. Each model consists of
two dense layers, with 4096 nodes each, and concludes with
an output layer comprising seven nodes to match the number
of classes. These models process images with dimensions of
100×100 pixels, encompassing three color channels (RGB),
resulting in an input size of (100, 100, 3). They are trained
for 100 epochs with a batch size of 64. For training, the Adam
optimizer is employed with a learning rate of 0.00001, beta_1
of 0.9, beta_2 of 0.999, and an epsilon value of 1e-08. This
setup aims to optimize the models by minimizing the loss,
measured by the categorical crossentropy function, and to
enhance performance as assessed by accuracy metrics.

B. ORTHOPHOTO RECOGNITION
Our approach involves training an identification model
specifically designed to recognize orthophoto images of the
site. The model is configured to assign distinctive colors to
each type of fruit based on identification outcomes, facilitat-
ing the differentiation of various fruits within the images.

Upon completing the model training, the orthophoto
image undergoes classification, and corresponding colors are
applied to the identified fruits. In this experimental context,
the colored results are visualized to showcase the diverse

FIGURE 12. Classification results of fruits in orthophoto image of site.

categories of fruits, as illustrated in Figure 12: lychees are
depicted in brown, longans in blue, plantains in green, soil
and roads in gray, buildings or roofs in pink, and other
fruit categories are represented in red. This color-coded rep-
resentation enhances the interpretability and clarity of the
orthophoto image, aiding in the effective distinction of dif-
ferent fruits types.

C. DIFFERENT CHANNEL IMAGE COMBINES OF
MULTISPECTRAL IMAGES
This section outlines various comparison processes employed
in our study. Initially, we utilized optical images with three
distinct neural network models (VGG-16, VGG-19, ResNet-
50) for training, aiming to identify themost suitablemodel for
our specific objectives. Subsequently, the selected model was
employed to assess and compare the outcomes of different
multispectral image fusion methods, enabling the determi-
nation of the most effective fusion technique. Finally, the
fusion result was utilized to incorporate additional band
information frommultispectral images, where single-channel
near-infrared, red edge, and NDVI (Normalized Difference
Vegetation Index) images served as supplementary channel
images for further training. This comprehensive approach
allows for an in-depth exploration and comparison of
diverse processes to enhance the overall performance of our
study.

1) OPTICAL IMAGE DATASET TRAINING
Following the augmentation of optical images, we employed
three distinct neural network models for dataset training.
VGG-16, VGG-19, and ResNet-50, known for their effective-
ness in CNNs, were selected to achieve exceptional results.
To further enhance identification accuracy, we engaged in
deeper network model training.

The training dataset comprised a total of 1,760 images,
with an additional 440 images allocated for the testing
set. Employing 100 training epochs ensured a compre-
hensive training process. The accuracy of various models
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TABLE 4. UAV image collection and orthophoto production.

TABLE 5. Confusion matrixes for optical image dataset using VGG-16.

was assessed, and as shown in Table 4, the VGG-16 net-
work emerged as the top performer on this specific dataset,
showcasing the highest accuracy among the considered
models.

In this study, the target objects in the field were categorized
into seven classes: 0: lychee, 1: longan, 2: plantain, 3: road, 4:
building, 5: other fruits, and 6: black landscape. The confu-
sion matrix in Table 5-7 illustrates each model’s predictions
on the expanded test dataset, revealing that different models
exhibit strong prediction capabilities in distinct categories.
Specifically, VGG-16 demonstrates superior identification
performance in categories 1, 2, 4, 5, and 6, remaining accept-
able in other categories. On the contrary, the VGG-19 model,
prone to gradient loss due to its deep neural network structure,
results in excessive information loss during down sampling.
Consequently, the results obtained with VGG-16 are deemed
more suitable for our requirements. Our evaluation was
based on the combination of multispectral image fusion with
various RGB imagery channels, all utilizing the VGG-16
model.

2) MULTISPECTRAL IMAGE FUSION DATASET TRAINING
We conducted a comparative analysis of model training accu-
racy before and after image fusion for the R, G, and B
channels of multispectral images. The original multispec-
tral image, when trained directly without preprocessing,
yielded the lowest accuracy. Even after applying bicubic
interpolation to the original multispectral image, there was

TABLE 6. Confusion matrixes for optical image dataset using VGG-19.

TABLE 7. Confusion matrixes for optical image dataset using ResNet-50.

TABLE 8. The accuracy results for each fusion method.

no significant improvement in accuracy. The Brovey, HSV,
PCA, and GS image fusion methods were employed to
enhance the quality of the original dataset. The accuracy
results for each fusion method are presented in Table 8
(for the VGG-16 model as it was found to be the best
performing model; see Table 3), indicating that the latter
three fusion methods contribute to improved accuracy com-
pared to the original Multispectral image. Among these,
PCA image fusion demonstrated the highest accuracy, fol-
lowed by GS and then Brovey fusion. Concerning spectral
characteristics, Brovey resulted in severely distorted images
leading to identification errors, while HSV, PCA, and GS
effectively retained spectral information. However, HSV
and GS exhibited slight color distortion, resulting in lower
accuracy.

VOLUME 12, 2024 62001



M. Hooshyar et al.: Economic Fruit Trees Recognition in Hillsides

TABLE 9. Comparative accuracy of PCA image fusion on different channel.

3) DIFFERENT CHANNEL IMAGE COMBINES OF
MULTISPECTRAL IMAGES
Our research intended to develop RGB channels to find out
which channel has the capability to create high-resolution
imagery with greater accuracy. Indeed, various image chan-
nels were amalgamated from multispectral images through
the utilization of a multispectral camera and optical images
that are based on RGB. As it can be seen in Table 9, the
extracted channels encompassed red, green, blue, red edge,
near-infrared (NIR), and the NDVI images, the latter being
computed from red and near-infrared light. The process
involved employing PCA image fusion, with the VGG-16
model serving as the training model. The comparison of
results was conducted post-training on the fused images
derived from different channels. In the course of this exper-
iment, the foundational channels consisted of multispectral
red, green, and blue bands, while the supplementary chan-
nels comprised red edge, near-infrared light, and NDVI. The
ensuing accuracy outcomes are presented in Table 9.
Analysis of the results indicates a marginal reduction

in prediction accuracy when incorporating the NDVI band
into the data fused by the PCA image. This could poten-
tially be attributed to the diverse representation of objects
in NDVI images. Specifically, NDVI images delineate dis-
tinctions between green fruits and man-made structures such
as buildings and roads (based on light and dark intensities).
Nevertheless, they may concurrently obscure texture features
among green plants. Given that the identificationmodel in use
relies on texture features for object recognition, the incorpo-
ration of NDVI images resulted in diminished accuracy.

Conversely, the inclusion of NIR or red edge individu-
ally demonstrated an enhancement in model accuracy. This

improvement is likely due to the augmented channel infor-
mation, which positively influences overall accuracy.

V. DISCUSSION AND CONCLUSION
Our study delves into the intricate challenges prevalent in
hillside agriculture, particularly concerning pest management
across diverse fruit tree varieties. With traditional agricultural
lands becoming increasingly scarce, the utilization of hill-
side areas for farming has gained prominence. Our research
identified three primary challenges: the limited availability
of arable land conducive to traditional farming practices,
concerns regarding pesticide pollution, and the impracti-
cality of employing ground-based agricultural machinery
on sloping terrains. To address these challenges, we pro-
posed an innovative solution in the form of an intelligent
UAV imagery system, representing a cutting-edge machin-
ery generation designed to efficiently identify various fruit
types and enhance pest control measures. By leveraging
CNNs and advanced image processing techniques, we devel-
oped a robust classification model capable of extracting
distinctive features from economically significant fruit types,
thus advancing agricultural applications. Our approach uti-
lizes UAVs equipped with advanced imaging technologies,
including optical cameras and multi-channel spectrometers,
to navigate the low-altitude environments unique to our
experimental site. By capturing images across red, green,
blue, near-infrared, and red-edge spectral bands, we aim
to compute vegetation indices and texture features that are
indicative of specific crop health and pest presence. The
integration of high-resolution optical images with multispec-
tral data allows for detailed analysis of tree and fruit types,
enhancing our ability to differentiate between species with
similar appearances, such as bamboo and lychee trees. Ini-
tially, our approach employed a CNN-based strategy, utilizing
architectures such as VGG-16, VGG-19, and ResNet-50.
Based on our results, VGG-16 emerged as the superior model
due to its simplicity and uniformity, particularly in the context
of multispectral imagery analysis. Contrary to prior findings,
our investigation demonstrated VGG-1’s seamless integra-
tion with RGB image classification, making it adaptable
for multispectral imagery analysis through fine-tuning on
multispectral datasets. Moreover, VGG-16’s convolutional
layers efficiently captured both spatial and spectral fea-
tures across all bands, outperforming alternative architectures
(e.g., [39], [40]).

Subsequently, we utilized PCA, GS, HSV, and Brovey
fusion techniques, with PCA yielding the highest accuracy.
PCA proved superior for multispectral image fusion, cap-
turing significant data variability effectively and leading to
enhanced spatial resolution, improved spectral fidelity, and
robust feature extraction. Our findings contradict previous
studies, demonstrating the outperformance of PCA over alter-
native fusion methods [54] indicating that the GSmethod had
been known to be superior in terms of accuracy.

In the final phase, our methodology integrating multispec-
tral imagery, optical camera data, and eight newly developed

62002 VOLUME 12, 2024



M. Hooshyar et al.: Economic Fruit Trees Recognition in Hillsides

RGB channels achieved a high accuracy of 92 percent. This
surpasses the accuracy achieved by prior studies [43], which
utilized similar data but fell short of the 90 percent threshold.
Our research underscores the efficacy of CNN-based models
incorporating both RGB and multispectral imagery, offer-
ing superior capabilities in discerning intricate patterns and
features.

Accordingly, our study introduced the innovative concept
of generating eight developed RGB channels to enhance
accuracy and identify feature patterns more effectively.
By incorporating multispectral image fusion techniques,
we succeeded in matching the ground sample distance of
multispectral images with that of optical images, resulting in
enhanced image resolution and texture characteristics. This
optimization, coupled with the integration of promoted RGB
channel information, significantly improved accuracy from
0.76 to 0.92 percent.

In addressing the evolving landscape of agricultural tech-
nology and responding to the existing complexities, our
future workwill concentrate on expanding the analytical hori-
zon of UAV imagery. This will involve exploring a broader
spectrum of vegetation indices and advancing model training
methodologies to accurately tailor channel inputs for diverse
fruit types and agricultural scenarios. Emphasizing adapt-
ability, we aim to refine our approach to image fusion and
channel optimization, ensuring it remains effective amidst
the rapid advancements in dataset complexity and neural
network architectures. This forward-looking strategy is not
only poised to enhance the accuracy and applicability of UAV
imagery in mixed-agriculture terrains but also holds promise
for addressing the unique challenges faced by regions with
limited arable land, offering a scalable solution to improve
pest control and crop monitoring across different geographi-
cal and environmental contexts.
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