
Received 7 March 2024, accepted 16 April 2024, date of publication 19 April 2024, date of current version 26 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3391408

Feedback-Based Curriculum Learning
for Collision Avoidance
JEONGMIN CHOI 1, GYUYONG HWANG2, AND GYUHO EOH 3
1Department of Mechanical Design Engineering, Tech University of Korea, Siheung-si, Gyeonggi-do 15073, South Korea
2Department of Electronics Engineering, Tech University of Korea, Siheung-si, Gyeonggi-do 15073, South Korea
3Department of Mechatronics Engineering, Tech University of Korea, Siheung-si, Gyeonggi-do 15073, South Korea

Corresponding author: Gyuho Eoh (gyuho.eoh@tukorea.ac.kr)

This work was supported by the GRRC program of Gyeonggi province [GRRC TUKorea2023-B03, Development of an intelligent
inspection system and an autonomous navigation system for the transportation of multi-material parts].

ABSTRACT This paper proposes a novel curriculum learning approach for collision avoidance using
feedback from the deep reinforcement learning (DRL) training process. Previous research on DRL-based
collision avoidance algorithms has encountered challenges such as long training times and difficulty in
convergence due to sparse rewards. To address these issues, curriculum learning has been used to divide
the target task into multiple subtasks for training. However, manual or random curriculum design often
generates unnecessary subtasks that do not improve performance. Furthermore, a standardized curriculum
design method for collision avoidance has not yet been presented. Therefore, this paper introduces a
curriculum-based collision avoidance learning method that utilizes feedback during the training phase. The
proposed method differs from traditional curriculum learning in that the subtask is not predetermined before
training. Instead, the curriculum is modified during training based on feedback obtained from validation
environments. If a robot demonstrates high collision avoidance performance in a validation environment, it is
then validated in more challenging environments for rigorous evaluation. Conversely, if collision avoidance
performance is low in the validation environment, the robot is trained in a new environment to overcome
frequent collision situations. Simulations and practical experiments were conducted for the proposedmethod,
which showed better performance compared to the non-curriculum method.

INDEX TERMS Collision avoidance, curriculum learning, deep reinforcement learning, subtask generation.

I. INTRODUCTION
Recently, autonomous mobile robots (AMRs) have found
extensive applications in various fields, such as logistics [1],
warehousing [2], and service robotics [3]. For the wider use
of AMRs, robots should be able to navigate in unknown and
complex environments by avoiding obstacles and reaching
the target destination. There are several collision avoidance
algorithms for AMRs that can generate suboptimal or
near-optimal paths to the target [4], [5]. However, practical
implementation is challenging because path generation for
collision avoidance can be computationally expensive in
highly complex environments [6], [7].
Deep reinforcement learning (DRL) has shown promise

in addressing these challenges, as it can automatically learn

The associate editor coordinating the review of this manuscript and

approving it for publication was P. Venkata Krishna .

meaningful features and patterns in the various training
environments [8]. Once the training is complete, the robot
is able to determine its actions without excessive computa-
tion [9], [10], [11]. However, DRL-based collision avoidance
methods often suffer from overfitting to specific training
environments and require significant computation in the
training process [12]. Moreover, the sparsity of rewards can
result in long training times or low convergence during
learning [13].

To overcome these drawbacks of DRL, recent devel-
opments in the field of DRL have introduced curriculum
learning to accelerate the training speed and improve
the learning performance [14], [15]. In curriculum learning,
the robot first learns relatively simple tasks and then
builds on the previously acquired knowledge to tackle more
challenging tasks. By focusing on the experiences necessary
to achieve the target performance, curriculum learning

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 56609

https://orcid.org/0009-0002-0841-3187
https://orcid.org/0000-0003-4931-4396
https://orcid.org/0000-0001-8138-5878


J. Choi et al.: Feedback-Based Curriculum Learning for Collision Avoidance

reduces training time and improves performance [16], [17].
However, curriculum learning is particularly useful only
when the learning order of the training data is well organized;
the training difficulty should increase gradually for stable
learning; the curriculum should be carefully designed from
easy to difficult. If a curriculum is not well designed, the
performance is sometimes worse than not using a curriculum
at all. In addition, there is no known standardized way to
design a curriculum [18].
Therefore, we propose a feedback-based curriculum design

method for collision avoidance. The collision avoidance
performance is evaluated in validation environments at each
training phase of the curriculum; the validation environments
are different from the training environments used for learning.
If the collision avoidance performance in the validation
environments is high, i.e., success feedback, the robot is
validated in the next validation environment to find the
shortcomings of the current learning level. On the other
hand, if the collision avoidance performance in the validation
environment is low, i.e., fail feedback, the curriculum
is redesigned by configuring a new subtask aimed at
overcoming situations where collisions frequently occur; a
new training environment is created for training. In other
words, higher performance compared to a fixed curriculum
can be expected by incorporating feedback into the generation
of the training environment.

The contributions of this paper are as follows:

1) We propose a feedback-based curriculum design
method for collision avoidance using DRL.

2) To compensate for the deficiencies found during the
learning phase, we propose an adaptive method for
generating subtasks and training environments.

3) We propose DRL-based collision avoidance that can
operate in a variety of environments using only local
sensing.

4) We verify the collision avoidance performance of the
robot in both simulation and real environments.

This paper is organized as follows: section II presents
the related work on DRL and curriculum learning. Sec-
tion III defines the problem addressed in this study and
highlights its importance. Section IV presents the overall
system architecture, and section V describes the proposed
curriculum design method. Sections VI and VII verify the
proposed method through simulation and real experiments,
respectively. The discussion of the proposed method is
presented in section VIII, and the conclusion is described
in section IX.

II. RELATED WORK
A. DEEP REINFORCEMENT LEARNING-BASED COLLISION
AVOIDANCE
The DRL-based collision avoidance algorithms have been
applied in various applications such as mobile robots,
unmanned aerial vehicles (UAVs), and unmanned surface
vehicles (USVs).

In the field of mobile robotics, Chen et al. [19] proposed
DRL-based multi-agent collision avoidance by using the
positions, velocities, and target locations of all agents.
Multiple robots were shown to use DRL without commu-
nication to reach their destinations by avoiding collisions.
Xin et al. [20] suggested a DRL-based path planning method
using deep Q-network (DQN) for end-to-end path planning
of mobile robots. Xue et al. [21] proposed a double deep
Q-network (DDQN)-based collision avoidance algorithm
using target locations and obstacle size and location infor-
mation as inputs. This showed significant improvements
in training speed compared to traditional methods such as
CADRL and deep deterministic policy gradient (DDPG).
Yao et al. [22] presented multi-robot collision avoidance
using the proximal policy optimization (PPO) algorithm
by mapping egocentric grid map frames to robot control
commands. Srouji et al. [23] presented a collision avoidance
approach that outperforms the dynamic window approach
(DWA) in terms of safety and time efficiency; this was
achieved by integrating autonomous emergency braking
signals into the training process.

In a case study involving UAVs, He et al. [24] developed
a novel learning framework by combining imitation learning
and reinforcement learning to speed up the training process.
Singla et al. [25] addressed the issue of partial observability
in DRL by proposing a method based on recurrent neural
network (RNN) architecture and temporal attention; a robot
could avoid collisions using observations collected over
specific time intervals. Roghair et al. [26] achieved collision
avoidance by combining convolutional neural networks with
the soft actor critic (SAC) algorithm to improve uncertain
image processing.

In the field of USVs, Chun et al. [27] demonstrated the
stability of a DRL-based collision avoidance algorithm in
unexpected situations compared to the A* algorithm, using
ship information such as position, speed, direction, and
collision risk as inputs. Xu et al. [28] proposed a cumulative
priority sampling mechanism to address the training data
inefficiency of the DDPG algorithm. The resulting path
planning and dynamic collision avoidance (PPDC) algorithm
was shown to have superior real-time performance in
collision avoidance.

The above mentioned DRL-based collision avoidance
methods have the advantage of being able to learn to
avoid collisions in complex and unpredictable environments.
However, challenges remain, such as the need for massive
amounts of data for convergence and inefficiencies in the
sampling of experience data. In addition, learning requires a
long training times due to the sparse reward problem, which
can be problematic and requires careful manual tuning of the
reward function [21].

B. CURRICULUM LEARNING
Curriculum learning can be divided into two main categories
based on how a robot determines the order of the experience
samples and tasks.

56610 VOLUME 12, 2024



J. Choi et al.: Feedback-Based Curriculum Learning for Collision Avoidance

FIGURE 1. Overview of the proposed curriculum learning method using feedback. A robot is trained with the training environment Ti
env , and then

a robot is evaluated in the validation environment Vi
env . If the success rate of the validation environment is higher than Psuccess, the robot is

evaluated in the next validation environment Vi+1
env . Conversely, if the success rate is less than Psuccess, a new subtask is generated and the robot

is trained in an environment corresponding to the subtask, Ti+1
env . This process continues until the robot has passed all validation environments.

First, a method was proposed to perform sampling based
on the priority of the experience [29]; they prioritized data
samples using the temporal difference (TD) error in DRL,
resulting in accelerated learning and improved performance.
Niu et al. [30] applied the prioritized experience replay
(PER) algorithm to collision avoidance, improving training
speed. Ren et al. [31] increased the sampling efficiency and
reduced the frequency of excessive transitions by exploiting
the relationship between the difficulty of the current curricu-
lum and the TD error; this approach was found to be more
effective than the PER algorithm.

Second, there is the manual design for determining
the order of tasks. Xiao et al. [32] demonstrated successful
navigation through narrow gaps in a real environment
by manually designing two curricula. The subtasks were
designed incrementally from larger to smaller intervals
to allow the robot to pass through the narrow gaps.
Zhang et al. [33] designed a curriculum for encircling in
a multi-robot system, starting with a small team encir-
cling a target and gradually progressing to a large team.
Chen et al. [15] performed curriculum learning by randomly
generating obstacles and targets in static and dynamic
environments. This method showed superior performance
in terms of success rate, arrival time, and average linear
speed compared to existing algorithms in simulated and real
environments. Narvekar et al. [34] presented a method for
dynamically generating task sets for curriculum learning by
extracting multiple features related to the target task. In an
extended study, the automatic generation methods of easy or
difficult tasks to solve in the next order are proposed [35].
As mentioned above, curriculum learning can be an

alternative to solve problems such as slow training speed

and sparse rewards [36]. However, manual curriculum design
can lead to inappropriate learning due to heuristic design.
Random curriculum design sometimes generates disruptive
or unnecessary tasks, making it difficult to design an
appropriate curriculum [37]. To overcome these problems,
automatic curriculum design methods have been proposed.
The robot can dynamically adjust the task difficulty based on
the robot’s performance, which provides a more appropriate
curriculum design compared to the traditional methods [38].
Eoh and Park [39] proposed an automatic curriculum
method for object transportation by generating the difficulty
map. The curriculum is generated adaptively from easy to
difficult environments for object transportation. However, the
automatic curriculum is a lack of standardized curriculum
design methods, and the curriculum is still highly dependent
on manually specified hyperparameters [40].

III. PROBLEM FORMULATION
The problem formulation of this paper is as follows. The
subtask Ti and the order Oi (i = 1, . . . ,Ntrain

env ) are defined
as χ i = [Ti,Oi], where Ntrain

env is the total number of
training environments. A curriculum C is a set of χ : C =
{χ1, . . . ,χNtrainenv

}. The approach to designing the curriculum C
involves defining the order Oi in which certain subtask Ti
is to be learned in the curriculum. Therefore, the problem is
formulated as follows:

C∗ = argmaxCE
[
pCsuccess|C

]
, (1)

where pCsuccess is the probability that the robot will reach a goal
without collidingwith obstacles if it follows the curriculum C.
The objective of this study is to design a curriculum C∗ that

VOLUME 12, 2024 56611



J. Choi et al.: Feedback-Based Curriculum Learning for Collision Avoidance

maximizes the expected collision avoidance success rate for
the robot when learning the task Ti in its order Oi during the
Ntrain
env training phases.
This paper makes the following four assumptions. First,

we assume the use of a mobile robot in a 2D Euclidean plane.
Second, we assume that the robot has a completely circular
shape. Even if the robot is not circular in shape, the proposed
method can be applied by approximating it as a circular shape.
Third, we assume that the positions of the robot and the target
are known in real time. Finally, we assume that the robot
has the ability to detect obstacles through its own proximity
sensors.

IV. SYSTEM OVERVIEW
The proposed feedback-based curriculum learning consists
of 5 components, as shown in Fig. 1: training, validation,
feedback, task set, and curriculum. Initially, a robot is trained
using DQN in a training environment T1

env by the training
and curriculum components. The initial training environment
T1
env is an obstacle-free environment; the robot learns how

to move to a goal without considering obstacles. After
training in T1

env, the robot’s collision avoidance performance

is evaluated in the validation environments fromV1
env to V

Nvalenv
env

at the validation component. Various validation environments
can be used to validate the current learning model. For
each validation environment, the robot receives feedback
indicating the success rate of collision avoidance; this
feedback is used to generate a new training environment. For
example, if the success rate in the validation environment
Vi
env is higher than Psuccess, i.e. success feedback, the robot

will be validated in the next validation environment Vi+1
env

to evaluate in different obstacle distributions. The Psuccess
indicates a probability that represents the success criteria of
the collision avoidance. We continue in this way until the
collision avoidance success rate is less than Psuccess or the
evaluation is complete in all given validation environments.
Note that validation environments are not used for training,
only for validation. On the other hand, if the collision
avoidance success rate in a particular validation environment
becomes less than Psuccess, i.e., fail feedback, a new subtask
for collision avoidance learning is generated at the task
set component. This new subtask is designed to overcome
the failures of the validation phase, and is inserted into
the curriculum during training. For example, if the robot
receives feedback 1 at the feedback component, which is not
capable of obstacle avoidance at all, we construct subtask T1
for navigating in environments with fewer obstacles; we
then generate a training environment T2

env where there
is a fewer obstacle. During this process, the robot can
use what it learned in the previous step by transferring
the knowledge from the first training environment T1

env
to the next training environment T2

env. As described so
far, the proposed curriculum learning method receives
continuous feedback from the validation environments during
the training process and uses it to design new training
environments.

V. FEEDBACK-BASED CURRICULUM LEARNING DESIGN
This section discusses the details of feedback-based curricu-
lum learning. First, the basic collision avoidance learning
method using DQN is described in section V-A. Next, the
curriculum-based collision avoidance method is described in
section V-B. Finally, a generation method for validation and
training environments is presented in section V-C.

A. COLLISION AVOIDANCE LEARNING USING DQN
We deal with situations where a robot moves towards its goal
while avoiding obstacles. Since the costs and state transitions
caused by collisions depend only on the current state of the
robot and the action taken in that state, it can be defined
as a Markov Decision Process (MDP) problem; this allows
us to apply Q-learning, a standard reinforcement learning
approach for MDPs. In Q-learning, the optimal action-value
function Q∗(s, a) selects actions such that future rewards are
maximized as follows:

Q∗(s, a) = max
π

E[rt + γ rt+1 + · · · + γ∞r∞|

st = s, at = a, π] (2)

where γ and rt are the discount factor and the reward
at time t , respectively. The goal of the Q-learning is to
maximize the expected discounted cumulative reward of
taking action at in state st according to the policyπ . TheDQN
has a large number of weight parameters from Q-learning by
constructing a deep neural network.

The weight parameters of the DQN are denoted θt and the
loss functionLt (θt ) is defined based on the experience sample
(st , at , rt , st+1), as shown in (3). The loss is calculated as the
mean squared difference between the predicted Q-value for
the current state-action pair (st , at ) and the target Q-value.
The target Q-value is the sum of the immediate reward rt and
the discountedmaximumQ-value for the next state st+1 using
the target Q-network with parameters θ−t :

Lt (θt ) = E(st ,at ,rt ,st+1)
[
rt + γ max

a
Q(st+1, a; θt−)

− Q(st , at ; θt )
]2

. (3)

The state of a robot is described as follows:

st = [d r,gt , θ
r,g
t , ps1t , ps

2
t , · · · , ps

Nps
t ], (4)

where st is the state including the relative distance d r,gt and
the relative heading angle θ

r,g
t between the robot and the

goal at time t . The sensor value psit is a measured distance
obtained from the ith proximity sensor; Nps is the number
of proximity sensors attached to the robot. Since proximity
sensors can only detect when the robot is near an obstacle,
the proposedmethod is local planning with local sensing. The
final state used in the DQN is defined by concatenating three
consecutive states: s̃t = [st−2, st−1, st ] for t ≥ 3.
Also, the robot can take 6 actions as follows:

at = [FF,SF,TR,TL,OR,OL], (5)

where the symbols are described in Table 1. For the robot
to move freely, we set forward and backward, right and left

56612 VOLUME 12, 2024



J. Choi et al.: Feedback-Based Curriculum Learning for Collision Avoidance

TABLE 1. The action descriptions in (5).

rotation as actions, and added a rotation motion that keeps
one wheel stationary to reduce the travel time.

The robot is rewarded in four cases. First, the robot receives
a +100 reward for reaching the goal. Second, the robot
receives a reward of −100 if it collides with obstacles.
Third, the robot is rewarded based on its proximity to the
goal, with a reward of ω(d r,gt+1 − d r,gt ) for getting further or
closer, where ω is a weight parameter. Finally, to discourage
aimless wandering, with a time-based reward of −1 for each
timestamp.

B. CURRICULUM LEARNING USING FEEDBACK
Algorithm 1 shows the proposed DQN-based curriculum
learning method using feedback. Before starting DQN
training, we randomly initialize the weights of the active and
target action-value functions (lines 1–2). The training and
validation indices are also initialized, and the replay memory
for DQN is prepared (lines 3–5). There is a maximum number
of training environments, Ntrain

env , which will stop learning
if it is exceeded (lines 7–8). The robot performs an action
at in the training environment Tidtrainenv , receives a reward
rt , and transitions to the next state st+1 according to the
transition probability pt (lines 12–14). The experience data
(st , at , rt , st+1) are stored in the replay memory (line 15).
We perform gradient descent on θ by randomly sampling
experience data from the replay memory (lines 17–23). For
each C-step, we replicate the network θ to the target network
θ− (line 24). After completing the DQN training for the
Mep episodes, we evaluate its performance in the validation
environments Vi

env(i = 1, 2, · · · ,Nval
env) (lines 26–27). If the

evaluation success rate exceeds Psuccess in the validation
environment Vi

env, the robot is evaluated in the next validation
environment Vi+1

env (lines 28–29). On the contrary, if the
success rate does not exceed Psuccess, the training method
is divided into the following two cases. First, the robot
is trained again in the current training environment Tidtrainenv
if the robot shows the low performance in the validation
environment where it performed well before (lines 31–33).
Second, if the robot only performs poorly in validation
environments that were not previously evaluated, create a
new training environment Tidtrain+1env that takes into account
the problematic collision situation (line 35). In this case, the
weight parameters of the Q-network trained in the previous
step are transferred to the next training environment (line 36).
Meanwhile, the values of Mep, Tstep, and Nval

env should
be predetermined for the proposed curriculum learning,
as shown in Algorithm 1. This means that even in the worst

Algorithm 1 Curriculum Learning Using Feedback

1 Initialize active action-value function Q with random
weights θ ;

2 Initialize target action-value function Q̂ with weights
θ−← θ ;

3 Initialize the training index: idtrain← 1;
4 Initialize the validation index: idval ← 1;
5 Initialize replay memory D;
6 while True do
7 if idtrain > Ntrain

env then
8 break;
9 end
10 for ep = 1 to Mep do
11 for t = 1 to Tstep do
12 With probability ϵ ∈ [ϵinit , ϵfinal] selects a

random action at ;
13 otherwise select at ← maxaQ(st , a; θ );
14 Execute action at , observe reward rt and

next state st+1 in the environment Tidtrainenv ;
15 Store transition (st , at , rt , st+1) in D;
16 end
17 Sample random minibatch of transitions

(sm, am, rm, sm+1) in D;
18 if d r,gm ≤ ϵgoal then
19 ym← rm;
20 else
21 ym← rm + γ maxa′ Q(sm+1, a′; θ );
22 end
23 Perform a gradient descent step on

(ym − Q(sm, am; θ ))2 w.r.t the parameter θ ;
24 Every C-steps, copy weights from Q to Q̂;
25 end
26 for i = 1 to Nval

env do
27 Validate the robot with weights θ in Vi

env;
28 if psuccess ≥ Psuccess then
29 idval ← i;
30 else
31 if idval > i then
32 Retrain the robot in the current

training environment Tidtrainenv ;
33 idval ← i;
34 else
35 Create a training environment Tidtrain+1env

that takes into account the failure of
the validation environment Vi

env;
36 Transfer Q with weights θ to the next

training environment Tidtrain+1env ;
37 end
38 break;
39 end
40 end
41 idtrain← idtrain + 1;
42 end

VOLUME 12, 2024 56613



J. Choi et al.: Feedback-Based Curriculum Learning for Collision Avoidance

FIGURE 2. An example of designing a collision avoidance curriculum using feedback from the validation environment. If the robot succeeds
in avoiding collisions in the validation environment, a new validation environment is created and validated again. Conversely, if a robot fails
in a validation environment, a new training environment is created and the robot is trained in the environment to compensate for the
failure. On the other hand, during validation, the robot sometimes fails to avoid collisions in environments where it has previously
completed validation. This means that the robot has not learned enough, so it is retrained in the existing training environment.

case, the final training time is bounded, since we can set the
variables involved in the training to be bounded.

Figure 2 shows an example of the curriculum design
process using the Algorithm 1. In the first row, the robot
trained in the obstacle-free training environment T1

env is
evaluated in the validation environment V1

env. Since the
success rate is low, a new training environment T2

env is created
to overcome this challenge. In the second row, the robot
trained in the new training environment T2

env is evaluated
again in the previously evaluated validation environment
V1
env. Since the success rate is high, the next validation

environment V2
env is prepared for additional evaluation. In this

way, each time the collision avoidance performance in the
validation environment Vi

env is sufficiently high, the next
validation environment Vi+1

env is prepared and the performance
in that environment is evaluated. In the fourth row, the
robot fails in a validation environment that it has passed
before. In this case we assume that the robot has forgotten
the knowledge it gained in the training environment T4

env
and the robot is trained again in the existing training
environment T4

env. This training process continues until the
robot has passed all validation environments.

C. THE GENERATION METHOD OF VALIDATION AND
TRAINING ENVIRONMENT
Validation environments are designed according to the
following four principles. First, we create validation

environments with obstacles that vary in number, placement,
size, and spacing. Since the ultimate goal is to perform robot
collision avoidance in various environments, it is important to
set up a variety of possible collision situations for validation.
Second, the validation environments are set up by the user
prior to training. To ensure the above diversity, it is important
for the user to create a variety of validation environments that
consider different collision situations. Third, the validation
order of the validation environments should be such that it
becomes increasingly difficult to avoid collisions. If collision
avoidance fails in a validation environment, this feedback
is used to create a new training environment, so it is
important to organize environments that gradually increase
the difficulty of collision avoidance. Finally, the maximum
number of validation environments that can be created is
theoretically unlimited, but for simplicity we limit the number
of environments in practice.

The training environments are created based on the feed-
back from the validation environments. The robot considers
the situations where it failed in the validation environment
and creates a similar training environment. For example, if the
robot failed to avoid collisions in the validation environment
V1
env with a small number of obstacles, such as the first row in

Fig. 2, the training environment T2
env is created with a slightly

different number of obstacles. In this case, the placement
and size of the obstacles are different from the validation
environment V1

env, and the new training environment T2
env is

56614 VOLUME 12, 2024



J. Choi et al.: Feedback-Based Curriculum Learning for Collision Avoidance

Algorithm 2 The Generation of Training Environ-
ment
1 if idval > idmax

val then
2 Retrain in the previous training environment Tprevenv ;
3 else
4 nobs← nprevobs +

⌈
N (0, σ 2

n )
⌉
;

5 Duplicate or eliminate (nobs − n
prev
obs ) obstacles and

place them randomly;
6 for i = 1 to nobs do

7

[
xi
yi

]
←

[
xi +N (0, σ 2

x )
yi +N (0, σ 2

y )

]
;

8 ri← ri +N (0, σ 2
r );

9 end
10 Validates if there is any overlap between obstacles;
11 Generate the next training environment Tnextenv with

nobs obstacles;
12 end

created by adjusting the placement and size of the obstacles
based on V1

env. Similarly, if collision avoidance fails due to
dense placement in the validation environment V6

env, train in
a new training environment with dense obstacles, T4

env. Thus,
the robot can improve its collision avoidance performance
for situations where it failed in a particular validation
environment by learning in a new training environment.
Meanwhile, the number of training environments is limited
because the training should be completed within a limited
time.

Algorithm 2 shows the method for generating training
environments. This algorithm works only when a robot has
failed to navigate in the validation environment; the only
condition for generating a new training environment is that
the validation environment fails. If the current validation
index idval exceeds the maximum index of the validation
environment, the robot will be trained again in the same
training environment (lines 1–2). If the robot has failed in
a new validation environment that it has not experienced
before, the next training environment is generated based
on the failed validation environment. In this case, we first
scale the number of obstacles with a Gaussian distribution
N (0, σ 2

n ) (line 4), where σ 2
n is the variance of the number

of obstacles. Then the obstacles are duplicated or eliminated,
taking into account the obstacle placement of the failed
validation environment. Also, the positions and radii of
the obstacles are modified using Gaussian distributions
with variances (σ 2

x , σ 2
y , σ 2

r ,) (lines 6–9). After the number,
positions and radii of all obstacles have been adjusted by
Gaussian distributions, the overlap validation is performed
(line 10). If the overlap validation passes, the next training
environment Tnextenv with nobs obstacles is generated (line 11).
On the other hand, the algorithm 2 is executed again if the
overlap between obstacles occurs.

Table 2 shows a comparison of the generation methods
for validation and training environments. The validation

TABLE 2. A comparison of the generation methods for validation and
training environments.

environments are user-designed and fixed to account for
various collision situations. The training environments are
designed by the robot itself in a similar form to the valida-
tion environments, reflecting feedback from the validation
process. The reason why the training environments are not
the same as the validation environments is that if they are
designed the same, the validity of the validation is not
guaranteed.

VI. SIMULATION
A. SIMULATION ENVIRONMENT
To verify the proposed curriculum design method, we used
the Webots simulator to constitute training and testing envi-
ronments [41]. The Webots simulator allows the construction
of environments with obstacles and supports a two-wheeled
mobile robot. We used the e-puck robot as a two-wheeled
differential robot, with a diameter of 7 cm [42]. We trained
a robot on Geforce RTX 3080 and Intel i7-12700 3.6 Ghz.
The duration of a step in an episode is 0.1 seconds. The fast
(FF) and slow (SF) forward velocities are 0.157 m/s and
0.035 m/s, respectively, and the right (TR) and left (TL) in-
place rotations are -0.66 rad/s and 0.66 rad/s, respectively.
The values OR and OL in Table 1 are (0 m/s, 0.035 m/s) and
(0.035 m/s, 0 m/s), respectively. The parameters used in the
training process are summarized in Table 3.

1) TRAINING ENVIRONMENTS
Figure 3 shows four training environments used in the
simulation. All training environments have dimensions of
2 m×2 m, and there are walls along the edges of the map.
The mobile robot navigates through environments with static
obstacles, avoiding all obstacles, to reach the goal of the
map at coordinates (1 m, 1 m). The robot is considered as
to have reached the goal when it is within 10 cm of the
goal. An episode ends when the robot collides with obstacles
or reaches the goal within Tstep steps or exceeds the Tstep
steps, where Tstep is set to 1000. When the episode ends, it is
reset to a random position and heading within the training
environment.

Figure 3(a) shows an initial training environment where
there are no obstacles, only the robot (phase 1). In phase 1,
the robot cannot learn to avoid obstacles. Figure 3(b) shows
both the robot and four circular obstacles with radii of

VOLUME 12, 2024 56615



J. Choi et al.: Feedback-Based Curriculum Learning for Collision Avoidance

TABLE 3. Parameters in the training process.

FIGURE 3. Training environments in the simulation. (a) The initial train-
ing environment of the curriculum (phase 1). (b) The second training
environment with four circular obstacles (phase 2). (c) The third training
environment with the addition of circular obstacles with a radius of
4.5 cm (phase 3). (d) The training environment with circular obstacles
of 2.5 cm radius placed at 9 cm intervals (phase 4).

4.5 cm, 5 cm, 7.4 cm, and 10 cm, respectively (phase 2).
The distance between the obstacles is at least 35 cm. In the
phase 2, the robot can move to a goal while avoiding four
circular obstacles of different sizes. Starting with phase 2,
four additional circular obstacles with a radius of 4.5 cm
have been added to the training environment, as shown in
Fig. 3(c) (phase 3). The distance between these obstacles
is at least 13 cm. The objective of phase 3 is that the
robot learns to avoid as many obstacles as possible. Finally,
we construct a training environment with 20 identical circular

FIGURE 4. Validation environments used in the simulation. (a), (b),
(c) Environments designed to evaluate collision avoidance performance
by varying the number of obstacles. (d), (e), (f) Environments designed to
evaluate collision avoidance by varying the distance between obstacles.
(g), (h), (i) Environments designed to evaluate the robot’s performance
in situations not encountered in the training environment.

obstacles, as shown in Fig. 3(d) (phase 4). The robot learns
how to navigate in a complex environment where the distance
between obstacles is small.

2) VALIDATION ENVIRONMENTS
Figure 4 shows 9 validation environments for the simulation.
The size of the environment is 2 m × 2 m the same as
the training environment, and the origin is in the lower
left corner. In the following results, we will omit units,

56616 VOLUME 12, 2024



J. Choi et al.: Feedback-Based Curriculum Learning for Collision Avoidance

i.e., meters, for simplicity. The coordinate of the goal is the
center of the environment: (1, 1). The robot’s start position
varies clockwise around the center, dividing the area between
relative coordinates (0,0), (0,2), (2,2), (2,0) into 100 equal
parts, resulting in a total of 400 start positions. The robot
starts from each position with a random direction and moves
towards the goal without colliding with obstacles. An episode
ends when the collision occurs, when the goal is reached,
or when the robot reaches the immobilized state. After an
episode ends, the next episode starts immediately from the
next start position. If the robot does not reach the goal
within Tstep, we consider this situation as local minima [43];
this case is counted as a failure.

Figure 4(a), (b), and (c) are designed to validate the robot’s
collision avoidance performance by varying the number of
obstacles, with radii of 2.5 cm for static obstacles; the number
of obstacles is 17, 29, and 40, respectively. We tried to place
all obstacles at least 12 cm apart. However, when there are
more than 40 obstacles, it is impossible to place obstacles
more than 12 cm apart in a 2 m × 2 m environment, so we
placed a maximum of 40 obstacles, as shown in Fig. 4(c).
The validation environments of the second row in Fig. 4 are
for varying the distances between obstacles. The distances in
Fig. 4(d), (e), and (f) are 15 cm, 12 cm, and 9 cm respectively;
the distances between obstacles were equally spaced in all
directions. We set the minimum distance between obstacles
to 9 cm because the diameter of the e-puck robot is about
7 cm; the margin for considering sensor error is 2 cm. Finally,
Fig. 4(g), (h), and (i) are validation environments to evaluate
the collision avoidance performance of the robot in situations
with different obstacle sizes, displacements, and shapes. The
radii of the circular obstacles vary from 5 cm to 20 cm,
and the distance between each obstacle is 9 cm or more,
as shown in Fig. 4(g). The environment in Fig. 4(h) has a
variety of sizes of circular obstacles, and it also includes
rectangular obstacles with shapes not experienced in the
training environment, to assess whether the robot can avoid
collisions. The length of one side of the rectangular obstacles
is randomly set between 4 cm and 10 cm, and the obstacles
are placed at least 9 cm apart. The environment in Fig. 4(i) is
set up similar to a warehouse in a logistics center to evaluate
whether the robot can successfully avoid collisions in such an
environment. The distance between each rectangular obstacle
is set to 10 cm.

B. RESULTS
We define TE(n) as the collision avoidance success rate of
a robot trained sequentially from the training environment
T1
env to Tnenv. For example, TE(3) refers to the collision

avoidance performance of a robot trained incrementally in the
environments from T1

env to T3
env.

The TE(1) in the validation environment V1
env is 92.3%,

as shown in Fig. 5(a); the TE(1) is relatively low because the
robot has only learned the simple navigation method in the
training environment without obstacles, i.e. T1

env in Fig. 3(a).

FIGURE 5. The robot’s collision avoidance success rate obtained from the
validation environments. Feedback was obtained from three
environments: one with fewer obstacles (V1

env ), another with many
obstacles (V2

env ), and a third with close spacing between obstacles (V3
env ).

This feedback was then used to generate new subtasks and training
environments.

Therefore, we designed a new training environment T2
env for

learning obstacle avoidance, as shown in Fig. 3(b). A robot
was incrementally trained in two training environments, T1

env
and T2

env, resulting in TE(2). The TE(2) in V
1
env is 7.5% higher

than the TE(1), as shown in Fig. 5(a). The TE(2) performed
well in the environment with fewer obstacles (V1

env), but
performed 2.5% worse in an environment with many
obstacles (V2

env), as shown in Fig. 5(b). To overcome this
obstacle-rich environment, additional training was performed
in an environment with more and different obstacles (T3

env),
as shown in Fig. 3(c): TE(3). As a result, the robot was
able to avoid collisions 99.3% of the time in the validation
environment with 40 obstacles, as shown in Fig. 5(b). As we
can see from the TE(3), the robot was able to learn how
to avoid collisions in an environment with many obstacles.
However, when the obstacles were close together, such as
V3
env, the TE(3) was only 90.0%, as shown in Fig. 5(c).

This is because the robot has no opportunity to learn
collision avoidance in an environment with dense obstacles.
To compensate for this, the robot continues learning in a
new training environment T4

env with obstacles spaced 9 cm
apart, as shown in Fig. 3(d): TE(4). The performance of
TE(4) in Fig. 5(c) shows a 100.0% success rate in avoiding
obstacles and reaching the goal in a narrow-gap environment.
No further training was needed because TE (4) had completed
the training for a variety of obstacle displacements and a large
number of obstacles.

Figure 6 shows the average reward over episodes in each
training environment; the red line represents the moving
average of the robot’s reward, calculated from the last 25 data
points, and the purple area shows the volatility around the
average, representing the standard deviation range. First,
the robot learned collision avoidance in an obstacle-free
environment (T1

env), as shown in Fig. 6(a); the average reward
per episode increases as training progresses. Second, the
robot learned a navigation method in an environment with a
small number of obstacles to avoid collisions and reach the
goal (T2

env), as shown in Fig. 6(b). In this step, the reward
was partially modified to detect collisions; the reward of +5
was given when there were no obstacles around the robot,
indicating a safe state. Finally, Fig. 6(c) and (d) show the
reward results of training in an environment with obstacles

VOLUME 12, 2024 56617



J. Choi et al.: Feedback-Based Curriculum Learning for Collision Avoidance

TABLE 4. Success rates of reaching the goal with collision avoidance. The values in the table represent the following: success rate (# of success/# of
trials).

FIGURE 6. The average reward per episode received by the robot at each
training step in the training environments. (a) obstacle-free environment
(T1

env in Fig. 3). (b) the training environment with the small number of
obstacles (T2

env in Fig. 3). (c) the training environment with many
obstacles (T3

env in Fig. 3). (d) narrow-gap environment (T4
env in Fig. 3).

of different sizes and spacing (T3
env and T4

env). The gradual
increase of the reward in all p hases confirmed that the
training was normal.

In Table. 4, we compared the proposed method with other
collision avoidance methods, including a traditional method
such as artificial potential field (APF) [44] and DQN-based
methods in trained Tienv (i = 1, . . . , 4) environments without
curriculum learning. Using APF, a robot was mostly success-
ful in the simple validation environments such as V1

env,V
2
env,

and V4
env where the obstacles are scattered. However, the

success rate of reaching the goal drops dramatically when the
obstacles are densely packed as in V5

env,V
6
env,V

8
env, and V

9
env.

This is due to the typical drawback of APF, local minima,
which makes the robot unable to move in the crowded
environment. In the DQN-based collision avoidance methods
without curriculum learning, we found that the performance
is worse than the proposed method in most of the validation
environments. Although the model trained in T2

env generally
shows high generalization performance, but it shows a
slight decrease in the validation environments with shape
heterogeneity of obstacles, such as V8

env and V
9
env. The results

of the model trained in T3
env show that the advantages of the

proposed method are obvious. The significantly low success
rates for T3

env indicate that it may not converge to the desired
performance in challenging environments without curriculum
learning. The model trained in T4

env shows lower success rates

FIGURE 7. Trajectory results in validation environments with different
training methods (a) Robot trajectory within the validation environment
V5,8,9

env trained only in the training environment T1
env without curriculum

learning (b) Robot trajectory in the validation environment V5,8,9
env trained

only in the training environment T2
env without curriculum learning

(c) Robot trajectory in the validation environment V5,8,9
env trained only in

the training environment T3
env without curriculum learning (d) Robot

trajectory in the validation environment V5,8,9
env trained with the proposed

curriculum learning.

than T2
env in validation environments not experienced during

training. Meanwhile, it can be observed that the proposed
method achieves a collision avoidance performance close
to 100% in all validation environments. This result shows
that the proposed method can continuously compensate
the robot’s shortcomings of the robot without losing the
knowledge learned in previous training environments. This
also suggests that the proposed method can maximize the
generalization performance.

To get a qualitative analysis of how the robot gets to
its goal, we looked at the trajectories for a few cases.
Figure 7 shows the trajectories of each robot in the validation
environments V5

env, V
8
env, and V

9
env for different trainingmeth-

ods, i.e. DQN-based methods without curriculum learning
in the T1

env, T
2
env, and T4

env, and the proposed method; the
colors represent the trajectories of the robot starting from a
coordinate and reaching the goal. In a validation environment,
400 starting positions were specified, and only the trajectories
that reached the goal among the 400 episodes are shown. The

56618 VOLUME 12, 2024



J. Choi et al.: Feedback-Based Curriculum Learning for Collision Avoidance

FIGURE 8. Configuration of real experiments. (a) The e-puck robot is
equipped with 8 IR sensors with a maximum sensing distance of 4 cm.
(b) The real environment shows circular obstacles with a radius of 2.5 cm
and a distance of 9 cm between them.

performance trained in T3
env has been excluded from Fig. 7

due to its low success rate. From Fig. 7 it can be seen that
models without curriculum learning tend to take longer paths
instead of going straight to the goal. This is because the robot
adapts to specific environments that it has learned. However,
the proposed curriculum learning tends to take the shorter
path to the goal in various environments, even if it does
not go straight to the goal; the proposed method has a high
generalization performance in collision avoidance.

VII. PRACTICAL EXPERIMENT
A. EXPERIMENTAL ENVIRONMENT
To validate the proposed method, real experiments were
conducted.We used an e-puck robot with a diameter of 7.0 cm
and equipped with 8 IR sensors (Nps = 8 in Eq. (4)),
with a maximum sensing distance of 4 cm, as shown in
Fig. 8(a). We used Vicon system for robot localization [45];
the Vicon can measure the absolute coordinate of the robot
under 2 mm error. The relative distance and angle between
the robot and the goal, which are needed for validation,
can be calculated from the absolute coordinate of the robot.
The experimental configuration was similar to the validation
environment V6

env, as shown in Fig. 8(b). Circular obstacles
with a diameter of 5 cm were covered with paper material to
facilitate IR detection. The evaluation procedure was similar
to the simulations described in section VI-B, with a total
of 32 start positions along the perimeter. The goal position
is the center of the environment. Similar to the simulation,
the radius of the goal ϵgoal is set within 10 cm from the
center of the environment. The training of the robot is already
done in the simulation, and we only did real experiments for
validation.

B. RESULTS
The success rates of each model in the practical experiments
are generally lower than in the simulation, as shown in Fig. 9.
The result of training only on T3

env did not perform well in
both the simulation and the real environment, resulting in a
significantly lower success rate (9.4%). The proposedmethod
showed that the success rate of the practical experiment
(63.0%) was lower than that of the simulation (99.8%),

FIGURE 9. The collision avoidance success rates in the practical
environment for different training methods. The proposed method shows
the highest collision avoidance performance (63.0%) compared to the
one trained on a single training environment without curriculum learning,
such as T1

env , T2
env , T3

env , or T4
env .

FIGURE 10. The trajectory in the validation environment V6
env for the

proposed method. The e-puck robot starts at 32 peripheral points in the
environment and moves to the goal in the center, avoiding obstacles
along the way. If the robot gets within 10 cm of the goal without colliding,
it is considered successful.

but still outperformed the models without curriculum. This
means that the proposed method shows high generalization
performance in real environments as well as in the simulation.

Figure 10 shows the robot trajectories of the proposed
method. Although there are some unnecessary movements in
the process of avoiding the obstacles, we can see that the robot
avoids them and successfully reaches the goal.

VIII. DISCUSSION
In this study, we propose a novel curriculum design approach
for DRL-based collision avoidance. Unlike the traditional
fixed curriculum approach, our approach receives feedback
on the robot’s collision avoidance performance at each
training phase and uses it tomodify the curriculum to improve
performance. By receiving feedback from various validation

VOLUME 12, 2024 56619



J. Choi et al.: Feedback-Based Curriculum Learning for Collision Avoidance

environments and modifying the curriculum accordingly,
we were able to generate the subtasks and training environ-
ments needed to succeed in various environments, resulting
in a model with generalized performance.

In addition, given the lack of standardized obstacle
avoidance curriculum design methods in previous studies,
the proposed approach can provide a standardized curriculum
design method. In the proposed method, multiple validation
environments considering different obstacle avoidance situ-
ations are determined in advance, and each environment is
validated to find the current level of vulnerability. Based on
this, we modify the curriculum to improve collision avoid-
ance performance; a new training environment is prepared
for efficient learning, which is the modified version of the
validation environment. This approach has the advantage of
being more intuitive, similar to how humans learn through
feedback, and can be applied to a wide variety of collision
situations.

A limitation of our study is that the collision avoid-
ance performance is highly dependent on the validation
environments. Since the diversity of feedback is highly
dependent on the validation environments, it is necessary
to generate validation environments that consider various
obstacle avoidance situations. Moreover, the number of
validation environments and the order of validation may also
affect each other, so it is necessary to carefully consider how
to organize the validation environments appropriately.

The other limitation is how much we modify the training
environment that is built based on the validation environment,
i.e., when generating a training environment, how much
variance in the Gaussian distribution related to the number
of obstacles, positions, and radii should be adjusted? Recent
research has proposed to automatically adjust the difficulty
of curriculum environments based on the robot’s learning
performance in the training environment [39]. Integrating
such advances into our study by combining methods for
generating appropriate subtasks and automatically generating
curriculum environments for each task could address the
limitations of our approach. This integration could potentially
lead to a standardized curriculum design method for collision
avoidance.

Another limitation is that the proposed method implies
a potential overfitting problem. The proposed method
determines whether enough training has been done only
in the validation environment, which means that there is
a possibility that the overfitting problem may occur due
to certain validation environments. If the collision avoid-
ance performance remains low in the particular validation
environment, the training environment will be configured
to continuously resemble that environment, increasing the
likelihood of overfitting. To solve this problem, we need an
adaptive design method for both the validation environment
and the training environment. Therefore, future research
is needed on how to design both validation and training
environments to be adaptive, which can be called fully
automatic curriculum learning.

IX. CONCLUSION
This paper proposes a feedback-based curriculum design
method using DRL. Collision avoidance performance is
evaluated in various validation environments for each training
phase, which provide feedback of success or failure. This
feedback provides the collision avoidance performance of
the current DRL model and helps to create adaptive training
environments that are well designed for incremental learning;
the feedback allows the robot to identify deficiencies in
its current level of collision avoidance. Simulation and
real-world experiments comparing models without curricu-
lum learning show that the proposedmethod has an advantage
in terms of generalization performance and collision avoid-
ance performance. Although the proposed method is limited
to the collision avoidance domain, the proposed design
method of curriculum learning using validation results can be
applied to various navigation domains such as exploration,
target capturing, and formation control, which we leave as
future work.

ACKNOWLEDGMENT
The authors would like to thank Jongwon Won for his help
and valuable suggestions.

REFERENCES
[1] R. Bernardo, J. M. C. Sousa, and P. J. S. Gonçalves, ‘‘Survey on robotic

systems for internal logistics,’’ J. Manuf. Syst., vol. 65, pp. 339–350,
Oct. 2022.

[2] N. V. Kumar and C. S. Kumar, ‘‘Development of collision free path
planning algorithm for warehouse mobile robot,’’ Proc. Comput. Sci.,
vol. 133, pp. 456–463, Jan. 2018.

[3] M. B. Alatise and G. P. Hancke, ‘‘A review on challenges of autonomous
mobile robot and sensor fusion methods,’’ IEEE Access, vol. 8,
pp. 39830–39846, 2020.

[4] J. D. Gammell and M. P. Strub, ‘‘Asymptotically optimal sampling-based
motion planning methods,’’ Annu. Rev. Control, Robot., Auto. Syst., vol. 4,
no. 1, pp. 295–318, May 2021.

[5] J. Guo, C. Li, and S. Guo, ‘‘A novel step optimal path planning algorithm
for the spherical mobile robot based on fuzzy control,’’ IEEEAccess, vol. 8,
pp. 1394–1405, 2020.

[6] B. K. Patle, G. Babu L, A. Pandey, D. R. K. Parhi, and A. Jagadeesh,
‘‘A review: On path planning strategies for navigation of mobile robot,’’
Defence Technol., vol. 15, no. 4, pp. 582–606, Aug. 2019.

[7] D. Fox, W. Burgard, and S. Thrun, ‘‘The dynamic window approach to
collision avoidance,’’ IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23–33,
Mar. 1997.

[8] E. S. Low, P. Ong, and K. C. Cheah, ‘‘Solving the optimal path planning of
a mobile robot using improved Q-learning,’’ Robot. Auto. Syst., vol. 115,
pp. 143–161, May 2019.

[9] V. Mnih, ‘‘Human-level control through deep reinforcement learning,’’
Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
‘‘Proximal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[11] P. Long, T. Fan, X. Liao,W. Liu, H. Zhang, and J. Pan, ‘‘Towards optimally
decentralized multi-robot collision avoidance via deep reinforcement
learning,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018,
pp. 6252–6259.

[12] Y. Li, ‘‘Deep reinforcement learning: An overview,’’ 2017,
arXiv:1701.07274.

[13] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
‘‘Deep reinforcement learning that matters,’’ in Proc. AAAI Conf. Artif.
Intell., 2018, vol. 32, no. 1, pp. 3207–3214.

[14] G. Chen, L. Pan, Y. Chen, P. Xu, Z.Wang, P.Wu, J. Ji, and X. Chen, ‘‘Deep
reinforcement learning of map-based obstacle avoidance for mobile robot
navigation,’’ Social Netw. Comput. Sci., vol. 2, no. 6, pp. 1–14, Nov. 2021.

56620 VOLUME 12, 2024



J. Choi et al.: Feedback-Based Curriculum Learning for Collision Avoidance

[15] G. Chen, S. Yao, J. Ma, L. Pan, Y. Chen, P. Xu, J. Ji, and X. Chen,
‘‘Distributed non-communicatingmulti-robot collision avoidance viamap-
based deep reinforcement learning,’’ Sensors, vol. 20, no. 17, p. 4836,
Aug. 2020.

[16] K. Li, Y. Lu, and M. Q.-H. Meng, ‘‘Human-aware robot navigation via
reinforcement learning with hindsight experience replay and curriculum
learning,’’ in Proc. IEEE Int. Conf. Robot. Biomimetics (ROBIO),
Dec. 2021, pp. 346–351.

[17] H. Xue, B. Hein, M. Bakr, G. Schildbach, B. Abel, and E. Rueckert,
‘‘Using deep reinforcement learning with automatic curriculum learning
for mapless navigation in intralogistics,’’ Appl. Sci., vol. 12, no. 6, p. 3153,
Mar. 2022.

[18] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone,
‘‘Curriculum learning for reinforcement learning domains: A framework
and survey,’’ J. Mach. Learn. Res., vol. 21, no. 1, pp. 7382–7431, 2020.

[19] Y. F. Chen, M. Liu, M. Everett, and J. P. How, ‘‘Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017,
pp. 285–292.

[20] J. Xin, H. Zhao, D. Liu, and M. Li, ‘‘Application of deep reinforcement
learning in mobile robot path planning,’’ in Proc. Chin. Autom. Congr.
(CAC), Oct. 2017, pp. 7112–7116.

[21] X. Xue, Z. Li, D. Zhang, and Y. Yan, ‘‘A deep reinforcement learning
method for mobile robot collision avoidance based on double DQN,’’
in Proc. IEEE 28th Int. Symp. Ind. Electron. (ISIE), Jun. 2019,
pp. 2131–2136.

[22] S. Yao, G. Chen, L. Pan, J. Ma, J. Ji, and X. Chen, ‘‘Multi-robot collision
avoidance with map-based deep reinforcement learning,’’ in Proc. IEEE
32nd Int. Conf. Tools Artif. Intell. (ICTAI), Nov. 2020, pp. 532–539.

[23] M. Srouji, H. Thomas, Y.-H.-H. Tsai, A. Farhadi, and J. Zhang, ‘‘SAFER:
Safe collision avoidance using focused and efficient trajectory search with
reinforcement learning,’’ in Proc. IEEE 19th Int. Conf. Autom. Sci. Eng.
(CASE), Aug. 2023, pp. 1–8.

[24] L. He, N. Aouf, J. F. Whidborne, and B. Song, ‘‘Deep reinforcement learn-
ing based local planner for UAV obstacle avoidance using demonstration
data,’’ 2020, arXiv:2008.02521.

[25] A. Singla, S. Padakandla, and S. Bhatnagar, ‘‘Memory-based deep
reinforcement learning for obstacle avoidance in UAV with limited
environment knowledge,’’ IEEE Trans. Intell. Transp. Syst., vol. 22, no. 1,
pp. 107–118, Jan. 2021.

[26] J. Roghair, A. Niaraki, K. Ko, and A. Jannesari, ‘‘A vision based deep
reinforcement learning algorithm for UAV obstacle avoidance,’’ in Proc.
Intell. Syst. Appl. (IntelliSys), vol. 1. Amsterdam, The Netherlands:
Springer, 2021, pp. 115–128.

[27] D.-H. Chun, M.-I. Roh, H.-W. Lee, J. Ha, and D. Yu, ‘‘Deep reinforcement
learning-based collision avoidance for an autonomous ship,’’ Ocean Eng.,
vol. 234, Aug. 2021, Art. no. 109216.

[28] X. Xu, P. Cai, Z. Ahmed, V. S. Yellapu, and W. Zhang, ‘‘Path
planning and dynamic collision avoidance algorithm under COLREGs via
deep reinforcement learning,’’ Neurocomputing, vol. 468, pp. 181–197,
Jan. 2022.

[29] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experience
replay,’’ 2015, arXiv:1511.05952.

[30] H. Niu, Z. Ji, F. Arvin, B. Lennox, H. Yin, and J. Carrasco, ‘‘Accelerated
sim-to-real deep reinforcement learning: Learning collision avoidance
from human player,’’ in Proc. IEEE/SICE Int. Symp. Syst. Integr. (SII),
Jan. 2021, pp. 144–149.

[31] Z. Ren, D. Dong, H. Li, and C. Chen, ‘‘Self-paced prioritized curriculum
learning with coverage penalty in deep reinforcement learning,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2216–2226, Jun. 2018.

[32] C. Xiao, P. Lu, and Q. He, ‘‘Flying through a narrow gap using end-
to-end deep reinforcement learning augmented with curriculum learning
and Sim2Real,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 5,
pp. 2701–2708, May 2023.

[33] T. Zhang, Z. Liu, S. Wu, Z. Pu, and J. Yi, ‘‘Multi-robot cooperative target
encirclement through learning distributed transferable policy,’’ in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–8.

[34] S. Narvekar, J. Sinapov, and M. Leonetti, ‘‘Source task creation for
curriculum learning,’’ in Proc. Int. Conf. Auton. Agents Multiagent Syst.,
May 2016, pp. 566–574.

[35] S. Narvekar, J. Sinapov, and P. Stone, ‘‘Autonomous task sequencing for
customized curriculum design in reinforcement learning,’’ in Proc. 26th
Int. Joint Conf. Artif. Intell., Aug. 2017, pp. 2536–2542.

[36] A. Karpathy andM.VanDe Panne, ‘‘Curriculum learning formotor skills,’’
in Proc. Intell. Syst. Appl. (IntelliSys). Toronto, ON, Canada: Springer,
2012, pp. 325–330.

[37] Y. Bengio, J. Louradour, and R. Collobert, ‘‘Curriculum learning,’’ in Proc.
Int. Conf. Mach. Learn., Aug. 2009, pp. 41–48.

[38] J. Kang, M. Liu, A. Gupta, C. Pal, X. Liu, and J. Fu, ‘‘Learning multi-
objective curricula for robotic policy learning,’’ in Proc. Conf. Robot
Learn., 2023, pp. 847–858.

[39] G. Eoh and T.-H. Park, ‘‘Automatic curriculum design for object
transportation based on deep reinforcement learning,’’ IEEE Access, vol. 9,
pp. 137281–137294, 2021.

[40] F. L. D. Silva and A. H. R. Costa, ‘‘Object-oriented curriculum generation
for reinforcement learning,’’ in Proc. Int. Conf. Auto. Agents MultiAgent
Syst., 2018, pp. 1026–1034.

[41] O. Michel, ‘‘Cyberbotics Ltd. WebotTM : professional mobile robot
simulation,’’ Int. J. Adv. Robotic Syst., vol. 1, no. 1, p. 5, Mar. 2004.

[42] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, ‘‘The e-
puck, a robot designed for education in engineering,’’ in Proc. 9th Conf.
Auton. Robot Syst. Competitions, vol. 1. Castelo Branco, Portugal: Instituto
Politécnico de Castelo Branco, 2009, pp. 59–65.

[43] A. Orthey, B. Frész, and M. Toussaint, ‘‘Motion planning explorer:
Visualizing local minima using a local-minima tree,’’ IEEE Robot. Autom.
Lett., vol. 5, no. 2, pp. 346–353, Apr. 2020.

[44] H. Sang, Y. You, X. Sun, Y. Zhou, and F. Liu, ‘‘The hybrid path
planning algorithm based on improved A* and artificial potential field for
unmanned surface vehicle formations,’’ Ocean Eng., vol. 223, Mar. 2021,
Art. no. 108709.

[45] P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur, and X. Savatier, ‘‘A study
of vicon system positioning performance,’’ Sensors, vol. 17, no. 7, p. 1591,
Jul. 2017.

JEONGMIN CHOI is currently pursuing the bach-
elor’s degree in mechanical design engineering
with the Tech University of Korea, South Korea.
His current research interest includes deep rein-
forcement learning-based robotics.

GYUYONG HWANG is currently pursuing the
bachelor’s degree in electronic engineering with
the Tech University of Korea, South Korea. His
current research interests include multi-robot,
collision avoidance, and sim-to-real.

GYUHO EOH received the B.S., M.S., and Ph.D.
degrees in electrical engineering and computer sci-
ence from Seoul National University, South Korea,
in 2009, 2011, and 2016, respectively. FromMarch
2016 to December 2020, he was a Senior Engineer
with the LG Electronics CTO Division (Advanced
Robotics Laboratory), where his research focused
on fusion SLAM. From January 2021 to January
2022, he was a Research Professor with Chungbuk
National University. He is currently an Assistant

Professor with the Tech University of Korea. His current research interests
include deep reinforcement learning-based robotics, multi-robot systems,
and sensor fusion-based SLAM.

VOLUME 12, 2024 56621


