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ABSTRACT The advent of Al and 5G technologies has markedly enhanced the intelligence and connectivity
of UAVs, leading to the development of UAV swarms. These swarms not only exhibit superior efficiency
and adaptability in collective tasks but also offer considerable potential in both civilian and military sectors.
However, despite the innovative insights provided by UAV swarm networking in trajectory forecasting,
current approaches face obstacles due to the inherent dynamic complexity of these swarms, often neglecting
the data from inter-swarm interactions. This research begins by defining metrics of link channel capacity to
record the informational exchanges within UAV swarms, thus laying the foundation for a network of UAV
swarms. It then advances a dynamic graph neural network (DynGN) model that utilizes an encoder-decoder
structure combining a graph convolutional network with a gated recurrent unit. This model processes both
the evolving network configuration and trajectory data of UAV swarms simultaneously, enabling more
precise trajectory predictions. Through experiments focusing on prediction accuracy, node number stability,
and noise robustness, the effectiveness of the model is assessed. Results indicate that the DynGN model
outperforms conventional trajectory prediction models, achieving notable improvements in accuracy and fit
quality. Moreover, its robustness against noise in dynamic trajectory data highlights its extensive utility in
practical mission contexts.

INDEX TERMS UAV swarm, trajectory prediction, deep learning, graph neural network.

I. INTRODUCTION from their trajectories and anticipating future movements,

A swarm of unmanned aerial vehicles (UAVs) is composed
of multiple individual units endowed with advanced interac-
tive capabilities [1]. Through their synergistic actions, these
UAVs enhance the swarm’s overall performance in collective
tasks, meeting the demands of intricate future scenarios [2],
[3]. Nevertheless, as UAV swarm intelligence continues to
evolve, the task of analyzing and forecasting situations from
discrete data, such as position and direction obtained from
radar and laser, presents significant challenges. By deducing
the dynamic interactions among the swarm’s internal nodes
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improvements can be made in the positioning and tracking
capabilities of the UAV swarm, thereby boosting its monitor-
ing and control efficacy.

Currently, the field of flight trajectory prediction is divided
into two principal methodologies: traditional dynamic mod-
els and deep learning techniques. Traditional methods rely
on fundamental flight dynamics and enhanced algorithms,
such as the improved Kalman filter to create and refine 4D
flight trajectories [4], [5], [6]. These methods, while based on
detailed analytical modeling, are limited by their simplicity
and the robustness of their models, leading to prediction
inaccuracies. These shortcomings are primarily due to their
limited ability to deal with complex dynamic systems and to
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uncover hidden patterns within historical flight data. On the
other hand, deep learning techniques mark a significant shift
in methodology, utilizing sophisticated computational tools
such as principal component analysis, density-based swarm-
ing, and a variety of neural network architectures (including
convolutional neural networks (CNN), and long short-term
memory (LSTM) models) [7], [8], [9], [10], [11]. These
approaches overcome the limitations of traditional models
by adeptly identifying complex interaction patterns, resulting
in highly accurate predictions. Deep learning methods are
particularly effective in analyzing the spatial and tempo-
ral aspects of flight trajectories, providing a more nuanced
understanding of flight dynamics. However, most research in
this area has focused on the trajectory prediction of individ-
ual unmanned aerial vehicles (UAVs), often overlooking the
complex interactions within UAV swarms.

The UAV swarm system utilizes a distributed architec-
ture that facilitates the exchange of information among
individual UAV nodes, which is characterized by dynamic
evolution. However, the complexity of environments presents
substantial challenges to existing algorithms for UAV swarm
trajectory prediction, such as low accuracy and insuffi-
cient real-time capabilities. Recently, the Graph Neural
Network (GNN) has emerged as a groundbreaking neural
network architecture, that conceptualizes real-world prob-
lems in terms of node connections and message propagation
within a graph [12]. This model effectively captures node
dependencies and surpasses traditional methods by adeptly
learning dynamic patterns in graph structures, thereby signif-
icantly enhancing prediction accuracy [13]. GNN employs
a predefined graph structure that more accurately repre-
sents node interaction patterns and improves interpretability.
The priori graph structure, an essential component in graph
neural networks, denotes a graph configuration established
before model training, typically based on domain-specific
knowledge and assumptions [14]. In this study, the Graph
Neural Network model uses a predefined graph structure,
devised based on domain knowledge, which accounts for
variables such as the physical spatial distance and com-
munication capabilities of UAVs, thus effectively mapping
potential interaction patterns among them. The inherent
mobility and effective transmission range of UAV nodes
result in the frequent emergence and dissolution of inter-node
links, rendering the UAV swarm network dynamically time-
variant. Consequently, this paper enhances the conventional
graph neural network algorithm to accommodate the evolving
nature of UAV swarms and trajectory feature information
through a dynamic graph neural network. Such an adaptation
enables the model to assimilate more comprehensive and
precise data regarding node interactions throughout the train-
ing phase, thereby augmenting the accuracy of UAV swarm
trajectory predictions.

By leveraging the inherent behavioral and dynamic sim-
ilarities within UAV swarms, this study introduces a mul-
tidimensional trajectory prediction method that accurately
captures the complexities of information exchange and
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dynamic interactions among units through graph network
mapping. The model is structured around two core mod-
ules: the Dynamic Network Generation (DNG) module
and the Node Dynamics Prediction (NDP) module. The
DNG module constructs a dynamic graph network, where
link channel capacities are assigned as weights to the net-
work’s edges, derived from discrete data such as UAV
swarm node positions. This effectively transforms the UAV
swarm’s evolving informational interactions into a temporal
graph network representation. In the NDP module, utiliz-
ing the dynamic graph network developed in the DNG
module and integrating it with dynamic trajectory data,
we implement a parameterized message-passing mechanism.
This mechanism is refined through comparison with actual
network dynamics and parameter adjustment via backprop-
agation algorithms, enabling more precise swarm trajectory
predictions.

The purpose of this study is to propose a multidimen-
sional trajectory prediction method for realizing the trajectory
prediction of UAV swarms. The main contributions and inno-
vations of our work can be summarized as follows:

(a) This model synergizes the capabilities of a graph con-
volutional neural network and a gated recurrent unit, enabling
simultaneous processing of the UAV swarm network structure
and trajectory feature information. This innovation addresses
the dynamic complexities of swarms, significantly enhancing
UAV swarm trajectory prediction performance.

(b) Utilizing link channel capacity as the network edges’
weight, this study introduces a novel approach to depicting
the information exchange state among UAV swarm nodes.
The adoption of this metric not only augments the network
model’s descriptive power but also offers a quantifiable tech-
nique for analyzing UAV swarm interactions.

(c) This paper unveils a groundbreaking multidimensional
trajectory prediction approach for UAV swarms. It incorpo-
rates structural considerations of swarm network interactions
and the network’s temporal evolution. By integrating a graph
neural network with dynamic graph capabilities, this method
achieves heightened accuracy in forecasting UAV swarm tra-
jectories.

The rest of this paper is structured as follows. Section II
presents an overview of the current research status in the field
and the methods employed. Section III introduces a multi-
dimensional trajectory prediction method for predicting the
future motion trajectory of UAV swarms. In Section IV, the
experimental design aimed at showcasing the effectiveness of
our method in predicting UAV swarm trajectories. The main
conclusions are presented in Section V.

Il. RELATED WORKS

Graph Neural Networks (GNNs) constitute an advanced
segment of deep learning designed specifically for process-
ing graph-structured data, covering complex systems such
as knowledge graphs, social networks, and transportation
networks. GNNs adeptly extract features from nodes and
edges, supporting tasks like graph analysis and synthesis. The
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inception of GNNs was marked by Scarselli’s introduction
of a recursive model for learning node representations within
graphs [12]. Subsequently, Bruna introduced the application
of Convolutional Neural Network (CNN) principles to graph
data, leading to the creation of Graph Convolutional Net-
works (GCN) that execute convolutions directly on graphs for
efficient data encoding [15]. Defferrard refined convolutional
filters using k-localized convolution, avoiding the complex
computation of Laplacian eigenvectors [16]. Furthermore,
Kipf streamlined the convolution process to a single layer,
effectively addressing overfitting issues in graphs with var-
ied degree distributions by curbing hierarchical convolution
operations and employing multiple layers to capture k-order
neighbor dependencies, thereby augmenting network effec-
tiveness [17].

Time series forecasting is a sequence generation chal-
lenge, where future sequences are predicated on histor-
ical data. Utilizing GNNs, one can adeptly capture the
structure and dynamics of time series for forward-looking
predictions. Recent efforts have demonstrated the adapt-
ability of Graph Convolutional Networks (GCNs) to time
series forecasting. For instance, Yan et al. developed the
Spatial-Temporal Graph Convolutional Network (ST-GCN)
for skeleton-based action recognition, utilizing graph convo-
lution to identify local relationships and temporal dynamics
among joints, thereby extracting advanced features through
hierarchical convolutions [18]. Li et al. created a traffic
forecasting model that integrates dynamic changes in road
networks with static graphs in graph convolutions, enhancing
it further with temporal patterns through recurrent neural
networks [19]. Additionally, Geng et al. introduced a Spatio-
Temporal Multi-Graph Convolutional Network (ST-MGCN)
for demand forecasting in ride-hailing services, which assim-
ilates global contextual data to refine temporal modeling [20].
These initiatives highlight the extensive applicability of
GNNs in time series forecasting.

. METHODS

A. MODELING UAV SWARM DYNAMICS

Models of collective behavior in biological swarms, which
simulate the local interactions among individuals, can nat-
urally lead to organized group movements such as bird
flocking and fish schooling [21], [22], [23]. The core prin-
ciple of these models is to unite solitary individuals into
cohesive units via local interactions, thereby synchroniz-
ing their movement states to manifest organized collective
behaviors. Extensive research has confirmed that the dis-
tributed, adaptive, and robust traits observed in biological
swarms mirror the prerequisites for coordinated autonomous
control in UAV swarms [24], [25]. Consequently, by apply-
ing the principles of biological swarm intelligence to UAV
swarm coordination and control, UAVs can exhibit complex
behavioral patterns. These patterns, rooted in local sensory
perception, emerge from interactions with fellow UAVs and
the surrounding environment.
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In typical models of biological swarm motion, taking the
Couzin model as an example [26]. This model delineates
how simple local interactions among individuals can give
rise to complex group dynamics. It is characterized by the
division of interpersonal interactions into distinct zones, each
governing different behavioral responses based on the prox-
imity of neighboring individuals. These zones are typically
defined as the repulsion zone, orientation zone, and attraction
zone. Additionally, the concept of a field of perception is
introduced, often represented as a sectorial area from which
an individual can sense its surroundings. Let us consider the
position and velocity of each individual to be represented by
vectors r; and v;, respectively. The movement of individual i at
time ¢ is determined based on the following local interaction
rules:

1. Repulsion Rule: To avoid collisions, individuals move
away from neighbors located within a very close, repulsion
zone. If neighbor j is within this zone of individual i, the
individual i moves away from j, which can be represented as:

dij=ri —1j ey

Here, dj; is the displacement vector from j to i. If || d;; | falls
below a repulsion threshold, individual i adjusts its direction
away from j.

2. Orientation Rule: Within the orientation zone, individu-
als tend to align their direction of motion with their neighbors.
This can be quantified as:

Vi = Zvj, J € Orientation Zone 2)

3. Attraction Rule: Beyond the repulsion and orientation
zones lies the attraction zone, where individuals are drawn
towards distant neighbors, aiming to move closer:

7= Z rj, J € Arientation Zone 3)

At each time step, the direction and velocity of individual
i are updated to reflect the cumulative influence of these
rules, often necessitating normalization to maintain a constant
speed.

The model iteratively updates the positions and velocities
of individuals based on the interaction rules. Specifically, the
position of individual i at time ¢ 4 1 is updated as:

P = 0 L0 A )

At is the time step, and ng) is the velocity vector consider-
ing repulsion, orientation, and attraction influences.

The velocity update incorporates the effects of repulsion,
orientation, and attraction, formulated as a function f that
integrates these influences based on the relative positions and
velocities of neighboring individuals:

WD = £ (dy, vi, 7) (5)

Biological swarm movement models simulate the motion
patterns of natural swarms, thereby encapsulating the auton-
omy and cooperation of spatial movement nodes. Under
this model framework, the movement states of UAV nodes
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FIGURE 2. Mapping of UAV swarm network.

exhibit high robustness and autonomous control capabilities,
enabling the swarm movement model to effectively direct
UAV swarms in complex environments. Therefore, we under-
take research employing the biological swarm movement
model as a basis for developing a UAV swarm movement
model.

B. DYNAMIC NETWORK GENERATION FOR UAV SWARM
Utilizing graph theory enables the representation of UAVs
as nodes and their communication transmissions as edges,
effectively creating a network model of the UAV swarm.
This approach allows for the visualization of the swarm’s
dynamics as alterations in the nodes and edges. The network
mapping of the UAV swarm is depicted in Fig. 2.

During the movement of the UAV swarm, the physical
positions and distances between different UAVs constantly
change, and the capacity of their communication links fluc-
tuates due to path loss, signal fading, and other factors. The
communication capacity is always limited by the capacity of
the communication channels, regardless of their structure or
the nature of information exchange. Channel capacity serves
as a key indicator to quantify the communication capabilities
between UAV nodes within a swarm. Defined as the maxi-
mum quantity of information that can be transmitted through
a channel per time unit, it mirrors the efficiency and quality
of the UAV communication links. Therefore, the channel
capacity can be considered as a physical characteristic of
the link, which is used to determine the state of the edges
in the network. In this section, we describe the interactive
relationships among different nodes in the swarm using the
link channel capacity as a feature, construct a dynamic weight
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NDP )

matrix to reflect the spatiotemporal dynamics of the UAV
swarm nodes, and subsequently build a dynamic graph that
captures the temporal changes in the UAV swarm.

Path loss is a significant factor that impacts the quality of
wireless signal transmission [27], [28]. For time ¢, if there
is information transmission between UAV i and UAV j, the
received signal power is represented by PE;). Let Py represent
the transmitted signal power and u denote the transmission
distance between UAV i and UAV j. The received signal
power can then be calculated as:

—
Py =Py x (uf)) ©)

o is the path loss exponent, usually ranging from
2to 4 [29].

Shannon’s theorem describes the relationship between the
maximum data transmission rate (in bit/s) of a channel and
the channel signal-to-noise ratio and bandwidth. According
to Shannon’s theorem, the data transmission rate of a single
channel can be obtained. B represents the channel bandwidth
(in HZ), and Ny represents the noise intensity at the receiver.
Then the maximum data transmission rate of the channel C
can be expressed as [30]:

Pj
C=Bxlog(1+-L (7
No

The maximum data transmission rate of the channel,
also known as channel capacity, represents the informa-
tion transmission capability of that link. By combining
Equation (6)-(7), the link capacity between UAV i and UAV j

can be obtained as:
o
Poy/ (Mg))

No ®)

C' =B xlog [ 1+

Equation (8) indicates that the distance between nodes is
a crucial factor that influences the information transmission
capability. The farther the distance between nodes, the greater
the path loss, resulting in a decrease in the link capacity
between UAV i and UAV j.

The UAV swarm network at time 7 is denoted by G =
(VO EO W) v = {y;|1 <i<|N|} represents the set
of UAVs and |N| denotes the total number of UAVs in the
network. E = {e;|l <i,j < |N|} represents the set of

VOLUME 12, 2024



Y. An et al.: Multidimensional Trajectory Prediction of UAV Swarms Based on DynGN

IEEE Access

communication links. W represents the symmetric dynamic
adjacency matrix, where w;; is the weighted value on network
edges, represents the link channel capacity between UAV i
and UAV j. When the link channel capacity between UAV i
and UAV j is below a predefined threshold Cy, it indicates that
there is no communication link between them, and the value
wij is set to 0. Therefore, the dynamic weight matrix of the
UAV swarm network at time ¢ can be expressed as:

o
Po/ (Mf;))
Bxlog |1+ —217_

()
, C.">C
ij('l) = NO v 0

0, CISI)SCO
)

C. NODE DYNAMICS PREDICTION FOR UAV
SWARM NETWORKS

Assuming that the UAV swarm network evolves in discrete
time steps, the predicted dynamic model can be described as:

x+D =f(X(t), W(l)) + C(Z) (10)
xO = x x{" ... xP] € RVM represents the

trajectory information of the swarm at time #, N is the number
of nodes, M is the characteristic dimension of each node, and
W® denotes the adjacency matrix representing the interactive
state of the UAV swarm at time ¢. {) € RV *B represents the
noise in the data, as trajectory data collected in real environ-
ments may contain noise due to factors such as weather and
Sensor measurement errors.

The model architecture synergistically integrates Graph
Convolutional Networks (GCN) and Gated Recurrent Units
(GRU) within an encoder-decoder framework [31]. The input
of the model is the trajectory feature information of the UAV
swarm and the dynamic network adjacency matrix at each
time step.

The encoder leverages GCN to process the dynamic adja-
cency matrix, extracting spatial features that encapsulate the
interactions between UAVs. The spatial feature extraction by
the GCN can be formalized as:

_1 1
Hl(.ti_)l =0 ((D(t)) 2 W(t) (D(t)) 2 H[O)@[) (11)

Here, Hl([) denotes the feature matrix at layer /, W& =
W® 4 Iy is the adjacency matrix with added self-connections
represented by Iy. D® is the degree matrix of W®, @ is the
weight matrix for layer /, and o represents ReLU activation
function.

To incorporate the graph-convolved features with the
pre-existing hidden state H, a weighted average approach
is employed to form a dynamic graph convolution layer,
as shown in Fig. 3, to enhance the adaptability and capture
ability of the model to the dynamic changes of the graph
structure:

H)\ = BH + (= py )" (12)
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FIGURE 3. The structure of dynamic graph convolution layer module.

B is a weighting factor between 0 and 1, adjusting the
importance of the graph-convolved features relative to the
original hidden state.

The extracted spatial features from the final GCN layer are
then fed into the GRU to model the temporal dynamics, cap-
turing the evolution of UAV interactions over time. The GRU
updates for each time step can be summarized as follows:

o (@Z ) [h(t—l)’ Hf)] + bz)
0 =o (0, [WD H | +b,)
s = tanh (@h . [r(') Qht=D, Hg)]) + b,

RO — (1 _ z(’)) & KD 4 ;0 g O (13)

H](f> is the input at time step 7, r® and z) represent
the reset and update gate activations respectively. s is the
candidate activation, and /® denotes the hidden state at time
t.

Utilizing the encoder’s output, the decoder employs
another GRU to predict the future trajectories of the UAV
swarm. For prediction step ¢, it updates as follows:

t=T+1,T+2, ..., T+0Q
(14)

WO = GRUR D, 1),

Q is the prediction length, and the outputs X® at future
time steps are generated by a fully connected layer:

20 = Fc (im) (15)

IV. EXPERIMENTS AND RESULTS

In the experiment, UAV swarm trajectory data are generated
by mapping based on a typical biological swarm motion
model. We selected the search and rescue in the disaster area
as the application background and selected the coordinate
points (30, 30) as the regional center where the UAVs need to
search. The swarm of 5 UAVs is initially randomly distributed
in a circular area with a radius of 100 units from the target
position until the UAVs hover above the target area (less than
5 units away). By predicting the trajectory of UAVs in disaster
areas, rescue teams can deploy drones for search and rescue
missions more efficiently. This helps to quickly locate people
in need, especially in hard-to-reach areas. The experiment
is conducted in the environment of Pytorch 1.10. The entire
experimental process is illustrated in Fig. 4.
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FIGURE 4. Experimental flow chart.

TABLE 1. Datasets of UAV swarm motion trajectory.

Datasets Number Length Nodes Dimension
Training 7000 100 5 6
Validation 2000 100 5 6
Test 1000 100 5 6

Firstly, the data are normalized and divided into training,
validation, and test sets in the ratio of 7:2:1. Then, the data
from the training set is input into the model to be used for
training, and the data from the validation set is input into the
model to calculate the loss function mean square error MSE
to iteratively train the model parameters. If the error is within
the specified range, the test set data is input into the trained
model for prediction, and the model performance is evaluated
by comparing the error between the real trajectory and the
predicted value, otherwise, the model continues to be trained
iteratively until it meets the requirements.

To comprehensively evaluate the predictive performance
of our model, we compare the prediction results of our
proposed method with commonly used UAV trajectory pre-
diction models currently available. Furthermore, we conduct
in-depth examinations of the effectiveness and robustness
of our model approach from three aspects: the number of
nodes, the prediction time steps, and the degree of noise
interference.

A. DATA PREPARATION

Each motion trajectory in the datasets consists of six dimen-
sions: x-coordinate, y-coordinate, z-coordinate, velocity in
the x-coordinate, velocity in the y-coordinate, and velocity in
the z-coordinate. Table 1 presents a comprehensive descrip-
tion of the UAV swarm trajectory datasets.

57038

1) DATA NORMALIZATION
Due to the significant differences in dimensional scales
among various features of the trajectory data, it is necessary
to normalize the data before inputting it into the model.
We employ the min-max normalization method to eliminate
the dimensional differences of variables, defined as follows:
, X — min
X=— (16)
max — min
X represents the original sample data, and X’ denotes the
normalized sample. max and min denote the maximum and
the minimum value of the sample.

2) EVALUATION METRICS

To evaluate the predictive performance of our proposed
DynGN model, we employ three widely used evaluation met-
rics for trajectory prediction: 1) Mean Absolute Error (MAE):
measures the precision of the predictions by averaging the
absolute errors between the predicted values and the observed
values. 2) Root Mean Square Error (RMSE): RMSE quanti-
fies the accuracy of the predictions by taking the square root
of the expected value of the squared difference between the
predicted results and the actual targets. 3) Mean Absolute
Percentage Error (MAPE): assesses the relative error of the
predictions by comparing the ratio between the error and the
actual values. The formulas for calculating these three metrics
are as follows:

oL A
MAE(, ) = 5 > I — &l

teP

1
RMSE(x, &) = /1—3 > (0 — &)
teP

~ 1 Xt — JACt
MAPE(x, ) = - ;

x 100% (17)

Xt

x; represents the ground truth values of the UAV swarm
trajectory data at time #, X; represents the predicted values of
the UAV swarm trajectory data by the model at time ¢, and P
denotes the trajectory time step.

B. EXPERIMENTAL SETTINGS

In this study, we evaluated the predictive performance of
the DynGN model and compared it with the BP model,
CNN model, LSTM model, and CNN-LSTM model [13].
The structures and parameter settings of each model are as
follows:

BP model: This model consists of an input layer, two
hidden layers with 64 nodes each, and a fully connected
output layer. Dropout layers are inserted after each hidden
layer to mitigate overfitting.

CNN model: This model consists of an input layer, two
one-dimensional convolutional layers (convlD) with 64 fil-
ters, and a kernel size of 1 x 3, followed by a fully connected
output layer. The ReLU activation function is applied after
the convolutional layers.
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LSTM model: This model comprises an input layer, two
LSTM hidden layers with 64 nodes each, and a fully con-
nected layer. Dropout layers are incorporated after each
hidden layer to prevent overfitting.

CNN-LSTM model: This model consists of an input layer,
two one-dimensional convolutional layers, two LSTM hidden
layers, and a fully connected layer. The structure of the con-
volutional layers (conv1D) is the same as that in the previous
CNN model [13]. After passing through the two convolu-
tional layers, the data flows through two LSTM hidden layers,
each with 64 nodes.

DynGN model: This model includes a dynamic graph con-
volutional recurrent layer, which consists of two GCN layers
and two GRU layers. Each GCN layer and GRU layer has
64 hidden nodes. The activation function used is ReLU, and
adropout layer is connected after each hidden layer to prevent
overfitting.

In this experiment, the time step for all models is set to 12.
We used the Adam optimizer with an initial learning rate of
0.001. The dropout ratio is set to 0.2. The number of epochs
for training is set to 100, and the mean squared error (MSE)
is used as the loss function. The batch size for each learning
iteration is set to 64.

C. ANALYSIS OF RESULTS

In this experiment, we evaluate the predictive performance
of various models by feeding identical UAV swarm tra-
jectory datasets into each. The comparison and analysis
are conducted across three dimensions: trajectory prediction
accuracy, error metrics utilized for model assessment, and the
robustness of the model predictions.

1) COMPARISON BETWEEN REAL TRAJECTORIES AND
PREDICTED VALUES

Using a set of UAV swarm trajectories with 5 nodes as an
illustration, we examine the single-step prediction outcomes
of various models, as demonstrated in Fig. 5. Fig. 5a displays
the actual three-dimensional trajectories of the UAV swarm,
whereas Fig. 5b contrasts the genuine trajectory of a specific
UAV within the swarm against the predictions from different
models. From Fig. 5b, it is evident that all models follow
the actual trajectory’s direction in terms of XYZ coordinates,
albeit with varying degrees of accuracy. Notably, the BP
and CNN models demonstrate significant deviations from
the actual path. Conversely, the LSTM, CNN-LSTM, and
our DynGN model present smaller discrepancies in their
three-dimensional trajectory predictions. It is significant to
mention that prediction inaccuracies for all models are more
pronounced on the z-axis when compared to the x and y
axes. Specifically, the BP and CNN models show marked
variability in their forecasted points at each position. While
the LSTM and CNN-LSTM models maintain z-axis pre-
diction errors within a tolerable margin, Fig. 5b highlights
that their inaccuracies exceed those of our DynGN model.
The DynGN model emerges as the most accurate, closely
mirroring the actual trajectories with minimal error, followed
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FIGURE 5. Real and predicted trajectories.

by the CNN-LSTM and LSTM models. The CNN and BP
models, however, record larger errors in prediction. There-
fore, overall, the ranking of model prediction accuracy is as
follows: DynGN > CNN-LSTM > LSTM > CNN > BP.

2) COMPARISON OF EVALUATION METRICS

Fig. 6 illustrates the variations in the Mean Squared Error
(MSE) loss function for different models on both train-
ing and validation datasets. With the exception of the
BP model—which exhibits a slower rate of decrease in
loss values and minor fluctuations in the later stages of
training—the loss function curves of the other four mod-
els rapidly decline and reach a state of stability. Notably,
the DynGN model demonstrates the lowest loss values
on both the training and validation datasets when com-
pared to other models. This superior performance can be
attributed to its more intricate network architecture and
optimized regularization techniques, which effectively mit-
igate overfitting and enhance the model’s generalization
capabilities.

Except for the DynGN model, the other four models (BP
model, CNN model, LSTM model, and CNN-LSTM model)
can only predict individual UAV trajectories. Therefore,
we computed the evaluation metrics for each UAV trajectory
within the swarm and took the average as the final evaluation
result. Runtime is the time spent per each epoch in seconds.
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TABLE 2. Performance of trajectory prediction models.

BP CNN LSTM CNN-LSTM DynGN
Datasetl MAE 0.0728£0.0022 0.0672+0.0015 0.0383+0.0008 0.0109£0.0012 0.0061+0.0003
RMSE 0.1072£0.0034 0.0792£0.0021 0.0474+0.0026 0.0307£0.0019 0.0091£0.0011
MAPE 12.5%+1.08% 10.1%+0.67% 10.9%10.73% 7.75%+0.86% 4.65% £ 0.4%
Dataset2 MAE 0.0904 £0.0085 0.0703 £0.0024 0.0142+0.0027 0.0119£0.0016 0.0079+0.0008
RMSE 0.1173£0.0112 0.0864 £0.0037 0.0361£0.0048 0.0143£0.0023 0.0105+0.0013
MAPE 15.98%+0.41% 13.46%+0.32% 10.24%+0.41% 10.71%+0.37% 8.87% 1 0.28%
Dataset3 MAE 0.1091£0.0082 0.0726 +0.0039 0.0275+0.0052 0.0104+0.0015 0.0068+0.0007
RMSE 0.1203+0.0125 0.0946 +0.0059 0.0376 +0.0063 0.0152+0.0054 0.0083+0.0016
MAPE 18.95%10.94% 15.26%+0.43% 12.09%+0.49% 10.08%+0.58% 7.13%10.62%
Average Runtime (s) 26 48 62 85 102
o 28.01% relative to the CNN-LSTM model, 41.15% in com-
4 ) ——— ONN parison to the LSTM model, 52.65% against the CNN model,
il LSTM and 57.46% when juxtaposed with the BP model. These find-
w3 \\ - gNNghSTM ings affirm the DynGN model’s superior predictive capability
k! " across datasets, further validating the dynamic graph network
@2 generation and node dynamics modeling’s utility in drone
swarm trajectory forecasting. While the BP and CNN models
! are adept at learning data’s temporal dependencies, CNN’s
. ability to grasp these dependencies wanes with longer input
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FIGURE 6. MSE loss function for different models.

The results in Table 2 indicate that the DynGN model
outperforms the other four models in all evaluation metrics,
exhibiting significantly lower prediction errors in the task of
UAV swarm trajectory prediction. DynGN model, although
20% lower in efficiency than the CNN-LSTM model, is also
in the higher category, and 28.01% higher in accuracy than
the CNN-LSTM model. Furthermore, the CNN-LSTM and
LSTM models exhibit prediction errors markedly lower than
those observed in the BP and CNN models. Utilizing the
Mean Absolute Percentage Error (MAPE) as a metric, the
DynGN model showcases an accuracy (1-MAPE) ranging
between 92% and 96% across various prediction tasks, under-
scoring its consistent predictive prowess. A detailed error
analysis across all prediction endeavors reveals that the
DynGN model diminishes the average prediction error by
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sequences, affecting prediction accuracy adversely. Though
the LSTM and CNN-LSTM models proficiently capture
long-term sequence dependencies, the DynGN model excels
by dynamically modeling the UAV swarm network and cap-
italizing on the inter-node information exchange within the
swarm. This approach not only boosts prediction precision
but also better caters to the requirements of UAV swarm
trajectory tracking.

3) MODEL ROBUSTNESS TESTING

Fig. 7a depicts the predictive capabilities of the DynGN
model across UAV swarm trajectories featuring varying node
counts. The model’s performance diminishes with an increase
in nodes, achieving optimal results when the node count
remains under 50. Conversely, Fig. 6b reveals how enlarging
the prediction time step size negatively affects the DynGN
model’s accuracy in forecasting UAV swarm trajectories, with
performance declining as the time step size expands.

In addition, in the real environment where UAV swarms
perform missions, swarm trajectory data collected due to var-
ious internal and external factors usually contain a lot of noise
and uncertainty. In UAV swarm trajectory data, it is usually
easy to be disturbed by the coordinate positions and velocity
characteristics of nodes. To demonstrate the robustness of
our model’s prediction in the presence of different degrees
of noise in the data, the experiment adds different degrees of
noise to the position and velocity features in the simulated
generated clean trajectory data. The evaluation results of the
model’s prediction performance are shown in Fig. 6¢. It can
be observed that the model performs well when the level of
noise interference does not exceed 0.05, but its superiority
in predictive performance significantly declines beyond that
threshold.
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FIGURE 7. Performance of DynGN model prediction.
V. CONCLUSION [2] A. Tahir, J. Boling, M.-H. Haghbayan, H. T. Toivonen, and J. Plosila,
We have proposed a multidimensional trajectory prediction “Slwi‘gm]s) of ;gi’;algled aerizgo‘l’glé”les A survey,” J. Ind. Inf. Integr,
. . . . . vol. , DecC. , Art. no. .
method that capitalizes On. dynaml_c flight trajector.y data [3] O. Tutsoy, D. Asadi, K. Ahmadi, and S.-Y. Nabavi-Chasmi, ‘‘Robust
to extract complex pattern information, thus enhancing the reduced order Thau observer with the adaptive fault estimator for the
prediction of UAV swarm trajectories. The innovation of our unmanned air vehicles,” IEEE Trans. Veh. Technol., vol. 72, no. 2,
approach lies in utilizing link channel capacity attributes pp- 16011610, Feb. 2023.
pp, K g P y [4] C. Wang, J. Guo, and Z. Shen, “Prediction of 4D trajectory based on basic
derived from this data to construct a temporal graph net- flight models,” J. Southwest Jiaotong Univ., vol. 44, no. 2, pp. 295-300,
work representation of the UAV swarm. This allows for the 2009.
dynamic generation of the UAV swarm network graph. Fur- (5] T. Wang, ©4D  flight = trajectory - prediction - model = based on
thermore, our DynGN model, anchored in the Graph Neural improved Kalman filter,” J. Comput. Appl., vol. 34, no. 6. p. 1812,
> ’ Jun. 2014.
Network (GNN) framework, integrates dynamic trajectory [6] Y. Lin, J. Zhang, X. Wu, and Y. Liu, “Study on algorithm for flight
data with the dynamic UAV swarm graph network, enabling ;f’leeg(t)C;fg prediction based on GMM,” Adv. Eng. Sci., vol. 50, pp. 104-109,
. o e . . ul. .
effective pred}ctlon of UAV swarm trajectories. [71 Z. Wang, M. Liang, and D. Delahaye, “A hybrid machine learning model
The model’s performance was evaluated based on accu- for short-term estimated time of arrival prediction in terminal manoeu-
racy, stability concerning node quantity, and resilience vring area,” Transp. Res. Part C, Emerg. Technol., vol. 95, pp. 280-294,
. . . . . Oct. 2018.
to noise interference. The empirical results highlight our
X . . ,p ,g g [8] H.Zhang, C. Huang, S. Tang, and Y. Xuan, “CNN-based real-time predic-
method’s proflclency n dynamlc network modehng for UAV tion method of flight trajectory of unmanned combat aerial vehicle,” Acta
swarm trajectory prediction. Demonstrating superior pre- Armamentarii, vol. 41, pp. 1894-1903, Sep. 2020.
dictive accuracy compared to existing models, our method [9] B. Quan and B. Yang, “Prediction model of ship trajectory based on

excelled in predicting UAV swarm trajectories in conditions
where the node count does not exceed 50 and the noise level
is maintained below 0.05. This emphasizes our method’s
robustness and confirms its suitability for real-world appli-
cations where UAV swarms are deployed in mission-critical
scenarios.

However, this study highlights several critical areas that
warrant further investigation, particularly the need for more
comprehensive approaches to obstacle detection and colli-
sion avoidance management. Future work will concentrate
on exploring these domains, developing UAV swarm control
algorithms that integrate advanced obstacle sensing and colli-
sion avoidance strategies, and enhancing tracking algorithms
to reduce prediction errors. Additionally, we aim to assess
the adaptability and robustness of UAV swarms in complex
environments, to improve both the overall performance and
safety of the system.
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