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ABSTRACT Air traffic controller fatigue has become a significant concern for flight safety. With the sharp
rise in global air traffic, it is imperative to assess controller fatigue, as it directly impacts the safety and
efficiency of air traffic control operations. Our study introduces a non-intrusive method to detect fatigue
by analyzing the facial and vocal characteristics of air traffic controllers. Initially, we developed fast and
accurate schemes for facial feature extraction, which allowed us to measure the ‘‘percentage of eyelid
closures’’ and yawn frequency from video recordings. Subsequently, we extracted several vocal features from
audio recordings, including average fundamental frequency, short-time average magnitude, short-time zero-
crossing rate, harmonic-to-noise ratio, jitter, shimmer, loudness, and Mel-frequency cepstrum coefficient.
We then created temporal sequences of these facial and vocal features to feed into a bi-directional long
short-term memory gated recurrent unit network. This data, combined with the Stanford Sleepiness Scale,
facilitated the identification and precise prediction of controller fatigue levels. Our experimental findings
validate the effectiveness of the proposed detection method, which demonstrated a recognition accuracy rate
of 95.12% on the test audio and video datasets.

INDEX TERMS Air traffic control, artificial intelligence, facial features, fatigue detection, long short-term
memory, vocal features.

I. INTRODUCTION
The civil aviation industry is witnessing rapid growth, leading
to a significant increase in the number of routes and aircraft
operations. This growth has been accompanied by a rise
in the complexity of airspace management, resulting in an
increased workload for air traffic controllers (ATCs). Despite
these challenges, the civil aviation sector continues to uphold
strict safety standards. In response, the International Civil
Aviation Organization (ICAO) has intensified its efforts to
enhance the safety of air navigation systems. One of the
initiatives introduced by the ICAO is the aviation system
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block upgrades framework [1], which aims to improve
the safety and efficiency of air traffic management [2].
Recognizing that human factors play a crucial role in air
transportation, fatigue among ATCs has become a focal point
of attention. According to previous research [3], [4], fatigue
is a major identifiable and preventable cause of accidents,
accounting for 15% to 20% of all accidents. Addressing
fatigue-related issues is essential for the sustainable devel-
opment of the air transportation sector. Consequently, the
ICAO has issued a series of guidelines andmanuals on fatigue
management [5], [6], [7], [8], [9]. The detection of ATC
fatigue during operational duties is increasingly recognized
as critical for maintaining safety and efficiency in air traffic
management.
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Fatigue can lead to changes in human physiological and
psychological processes, resulting in reduced human bodily
functions that can cause diseases and accidents [10]. The
pervasive nature of fatigue has made fully understanding it a
considerable challenge for researchers worldwide [11]. ATCs
are responsible for making critical decisions that can have
an enormous impact on air traffic safety, decisions heavily
influenced by their alertness, which is negatively affected by
fatigue. Consequently, the need for more precise detection of
ATC fatigue has become imperative.

Previous research has identified three main methods for
fatigue detection:

(1) Physiological-indicator-based detection [12] utilizes
methods such as electroencephalography (EEG), electro-
cardiography (ECG), electrooculography (EOG), functional
near-infrared spectroscopy (fNIRS). Reference [13], and
body temperature measurements. These methods employ
sensors to collect signals, typically from the biceps or head
of a subject.

(2) Questionnaire-based detection of personal fatigue
levels. Reference [14] involves the use of common fatigue
assessment scales, including the Karolinska sleepiness scale
(KSS) [15], Stanford sleepiness scale (SSS) [16], Fatigue
Scale-14. Reference [17], and National Aeronautics and
Space Administration task load index [18]. Subjects com-
plete a questionnaire, calculate the score after finishing
it, and gauge their fatigue status based on the obtained
score.

(3) Computer-vision based detection [19] involves captur-
ing videos or images of the subject through computer-vision
analysis, after which the status of the eyes, mouth, and body
posture can be extracted. Indicators such as blinking and
yawning frequency can then be analyzed to establish the level
of fatigue of subject.

The above three methods are compared in Table 1.
With the continued development of machine learning

(ML), numerous models have been developed. Both super-
vised and unsupervised learning models have been proposed
and applied, including the support vector machine (SVM),
convolutional neural network (CNN), recurrent neural net-
work (RNN), dynamic fuzzy neural network (DFNN) [20],
and long short-term memory (LSTM) models [21].

The aim of this study is to develop anATC fatigue detection
method by creating an LSTM-based fatigue detection model.
Consequently, we explored LSTMmodels based on facial and
vocal features to improve ATC fatigue detection accuracy.
The following points summarize the main contributions of
this work:

(1) Extraction of facial and vocal features from video and
audio: We employed ML and voice analysis technology to
simultaneously extract several facial and vocal features to
describe the ATC fatigue states.

(2) LSTM model for ATC fatigue detection: We incorpo-
rated the aforementioned facial and vocal features into a
traditional LSTMmodel to develop a non-intrusive model for
ATC fatigue identification.

(3) Matching the relationship between facial and vocal
features and fatigue state: We utilized the SSS to measure the
ATC fatigue state and established the relationship between
the facial features, voice features, and fatigue levels using the
LSTM model.

In this study, by developing a non-invasive LSTM
fatigue detection model based on facial and vocal features,
we improved the detection accuracy. By using a pre-trained
LSTM fatigue detection model, the real-time performance
could be further enhanced.

II. RELATED WORKS
Current methods for detecting controller fatigue rely on
physiological indicators, behavioral characteristics, or the
voice characteristics of ATCs. There has also been a surge
in proposals for fatigue detection methods based on ML by
various researchers. Currently, fatigue detection research can
be broadly categorized into two main types: subjective and
objective detection methods. Subjective detection typically
involves the use of fatigue scales and questionnaires to assess
fatigue levels.

Conversely, objective fatigue detection uses facial fea-
tures related to the eyes and mouth, based on computer-
vision techniques. The simplest, most commonly used, and
most effective metric is the percentage of eyelid closure
(PERCLOS). Wierwille et al. [22] first employed PERCLOS
to monitor fatigue in drivers. In 2010, Sommer and Golz [23]
evaluated fatigue using PERCLOS, standard deviation of
lateral position in a lane, EEG signals, and EOG signals.
Additionally, they used the KSS to confirm the driver fatigue
status, discovering a strong relationship between PERCLOS
and KSS values. Their experiment revealed that PERCLOS
was the most important indicator in fatigue detection.
However, while the correlation between the EEG/EOG
signal and fatigue was stronger than that of PERCLOS, the
EEG/EOG evaluation was invasive.

With regard to the relevant features of the eye, Zhao et al.
[24] proposed a CNN model that monitored the state of
the eyes and mouth (EM-CNN) using region-of-interest
(ROI) images to improve facial-fatigue recognition accuracy.
In their study, when PERCLOS and mouth opening degree
reached 0.25 and 0.5, respectively, the driver was considered
to be in a state of fatigue. However, it must be noted that their
experiments only classified fatigue and non-fatigue states
without refining fatigue levels. Li et al. [25] incorporated a
fatigue scale into the fatigue recognition process, along with
an analysis of the driver’s grip on the steering wheel. This
combination was used to refine the assessment of the driver’s
fatigue level, yielding positive outcomes. Liang et al. [26]
used an ES-DFNN model to detect controller fatigue,
focusing primarily around the eye area.

The use of ML methods in fatigue detection has been gain-
ing traction. In 2020, Zhao et al. [27] used the InceptionV3-
LSTM model with multi-feature fusion to identify fatigue
and sleepiness. They introduced an innovative approach using
LSTM, showcasing the feasibility of utilizing LSTM for
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TABLE 1. Three fatigue methods and their advantages and disadvantages.

fatigue identification. In 2021, Chen et al. [28] used an
LSTM model to detect driver fatigue based on facial key
points and achieved highly accurate results. Their work
underscored the concept that fatigue is a continuous behavior,
suggesting that single-frame images might not yield the
most precise evaluations. They highlighted the importance
of considering fatigue’s continuity and cumulative nature,
issues addressable with LSTM. This challenge, centered on
identifying the presence and degree of fatigue, essentially
constitutes a binary or multi-classification problem. Akrout
and Fakhfakh [29] also adopted an LSTMmodel, affirming its
effectiveness in fatigue detection. Wang et al. [30] explored
the use of the GLU-Oneformer model for fatigue detection,
further contributing to the diverse approaches in this research
area.

Kumar et al. [31] explored the use of image recognition
and voice signals to detect COVID-19 infection in patients,
showcasing the potential of ML techniques in medical
diagnostics. This approach laid the groundwork for applying
ML to identify fatigue levels through facial and vocal feature
analysis. In 2023, Yu et al. [32] proposed a framework called
RecMF for ATC mental fatigue (MF) recognition. RecMF
employed an attention-enabled CNN-LSTM architecture
that simultaneously captured time-series feature represen-
tations of EEG signals and eye movements. By using the
RecMF framework, they found that increased levels of
MF greatly reduced the reaction speed and accuracy of
ATCs.

Milosevic [33] conducted research on bus and truck drivers
and found that speech could reflect their level of fatigue.
In 2014, Li et al. [34] proposed a fuzzy SVM model to
detect driver fatigue based on nonlinear speech processing.

They used the largest Lyapunov exponent, fractal dimension,
and approximate entropy as indicators to judge the driver’s
level of fatigue. Their results confirmed the feasibility and
effectiveness of using voice features for fatigue detection.
Craye et al. [35] combined the PERCLOS andMel-frequency
cepstrum coefficient (MFCC) as inputs, before sending them
to hidden Markov models and an SVM model to identify
the state of driver fatigue. However, this method employed
only a few facial and vocal features to identify fatigue; as
a result, it recognized only whether the driver was fatigued
or not. Using this method to detect controller fatigue would
be insufficient, as it would be unable to identify the distinct
fatigue states of controllers. Shen and Wei [36] proposed a
high-precision feature extraction network to detect controller
fatigue states using improved deep learning techniques.
Gao et al. [37] developed a rapid and non-invasive method
to assess the degree of fatigue based on connections between
voice features and the level of fatigue as determined by the
SSS. Their work highlighted those vocal characteristics could
also reflect the level of fatigue, exhibiting strong correlations
with the scale test values.

In 2022, Hu et al. [38] utilized CNN models to extract
features for the eyes and mouth, added vocal features,
and identified fatigue using the facial and vocal stacking
(FV-stacking) method. The only speech feature used was
the MFCC. The proposed model achieved 97% accuracy,
with the best accuracy achieved by a single model being
92%. Similarly, the best accuracy realized by state-of-the-
art detection methods was 88%. Consequently, driver fatigue
detection and warning based on multi-information fusion
represent a major development trend [39], as it is in the field
of ATC fatigue detection.
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TABLE 2. Advantages and disadvantages of different face recognition methods.

FIGURE 1. Structure of MTCNN model.

Our review of prior studies identified several limitations.
Methods involving EEG, ECG, or EOG indicators necessitate
the attachment of sensor electrodes to the subjects. The
imposition of such electronic sensors on ATCs to monitor
relevant indicators is impractical, as it would encumber them
and potentially cause discomfort, thereby influencing the
outcomes of the experiment. In light of these challenges,
we explored an alternative approach that involves extracting
facial and vocal features from video and audio recordings.
This approach allows a pre-trained ML model to identify the
pertinent descriptors without causing inconvenience to the
ATCs.

Fatigue in the human body is not only manifested in the
face or speech, but these aspects can often reflect a person’s
level of fatigue simultaneously. However, most studies have
only explored the relationships between facial or vocal
features and fatigue independently, with only a few studies
having combined the two.We also found that usingML-based
methods—notably LSTM-based methods with forget gates to
identify fatigue—has yielded satisfactory results.

The following section describes the proposed model,
which includes facial and vocal features combined with a
fatigue assessment scale. This model learns from existing
data using the LSTM model to more accurately identify the
level of fatigue, instead of simply recognizing the two states
of wakefulness and fatigue.

III. METHODOLOGY
A. FACE AND FACIAL KEY-POINT DETECTION
Face and facial key-point detection are among the most
critical steps in the proposed method. However, recognizing
faces and marking key points across different controller
postures and states can be challenging, with subsequent eye
and mouth feature extraction based on the identification of
these key points. To identify the key facial points, the face
area must first be quickly detected. With the development of
ML, various face detection methods have emerged, including
the multi-task CNN (MTCNN) [40], mask R-CNN [41], and
the dlib library (with CNN) [42], [43], [44]. The advantages
and disadvantages of each of these three-face recognition and
key-point labeling schemes are summarized in Table 2. After
comparing the three facial recognition methods, we chose
the MTCNN model to determine the face area of collected
images. The structure of the MTCNNmodel [40] is shown in
Fig. 1.

The MTCNN model comprises three sequential CNNs—
namely, the proposal network (P-Net), refined network
(R-Net), and output network (O-Net). The MTCNN method
is a rough-to-fine process, with the functions of each network
being as follows:

P-Net: A shallow CNN that quickly screens out potential
candidate boxes for faces. Its output comprises three parts:
(1) binary classification results, representing whether a face

56666 VOLUME 12, 2024



Z. Huang et al.: Air Traffic Controller Fatigue Detection Based on Facial and Vocal Features

exists; (2) the position of the detected face frame; and (3) the
position of the key points within the detected face frame.

R-Net: A more complex CNN used to remove the
proposals that do not contain faces, primarily to correct the
results of the P-Net and eliminate errors.

O-Net: This CNN is similar to the P-Net but has larger
input dimensions and depth, and the ability to output more
accurate results.

After a face image is obtained by the MTCNN model,
landmarks can be extracted from it. Common face feature
point recognition frameworks include the dlib library (with
default face detector) and the MediaPipe framework [45],
with their basic conditions and differences as listed in
Table 3.

TABLE 3. Comparison of DLIB library (with default face detector) and
mediapipe results.

The two toolkits mentioned above were compared.
Because MediaPipe can recognize more landmarks and has a
higher FPS, it could achieve better performance in real-time
detection; consequently, we chose MediaPipe for landmark
marking. We obtained the ith landmark coordinates (xi, yi),
each landmark being as shown in Fig. 2.

FIGURE 2. Visualization of the 468 facial landmark coordinates using
MediaPipe.

B. FACIAL FEATURES
1) EYE FEATURES
Eye blink detection plays a crucial role inmonitoring operator
fatigue, including that of ATCs. To pinpoint the blinking

characteristic, the method involves utilizing numbered land-
marks, which are highlighted in conjunction with facial
key-point marking techniques (as shown in Fig. 3). These
landmarks define the feature points around the eyes. In [47],
only six key points were used to describe the height and
width of the eyes. To more accurately describe their height,
we included two additional key points.

FIGURE 3. Opened (a) and closed (b) left eye with landmarks (pi ).

As shown in Fig. 3, when MediaPipe is used to analyze
the key points of the human eye, the description of the eye
can be divided into inner and outer eye circles. To describe
the eye features more accurately, we used the inner eye circle
for analysis. In the proposed model, the eye aspect ratio
(EAR) [47] between the height and width of the eyes can be
expressed as follows:

EARL =
∥p160 − p144∥ + ∥p158 − p153∥ + 2 ∥p159 − p145∥

4 ∥p33 − p133∥
,

(1)

EARR =
∥p386 − p374∥ + ∥p385 − p380∥ + 2 ∥p387 − p373∥

4 ∥p362 − p263∥
,

(2)

where EARL denotes the EAR of the left eye, EARR denotes
the EAR of the right eye, and pi denotes the two-dimensional
(2D) landmark locations defined in Fig. 3. As is evident,
the EAR is constant when the eye is open and close to
zero when closed. The EAR of the open eye varies slightly
among individuals but is fully invariant to uniform scaling of
the image and in-plane rotation of the face. With increasing
fatigue, the eyes may remain closed for longer time periods;
consequently, the EAR decreases.

Previous studies [23] have shown that the variation of
the PERCLOS over time is a good fatigue indicator; the
PERCLOS is the percentage of eyelid closure over the pupil
over time and reflects slow eyelid closures (‘‘droops’’) rather
than blinks. In real-time feature recognition based on video
signals, this value can be obtained as follows:

PERCLOS =
m
M

× 100%, (3)

where m denotes the total time the eyes are closed during the
statistical time period andM denotes the total time counted.

Threemethods exist for the calculation of the PERCLOS—
namely, the EM, P70, and P80 threshold values. These
methods are compared in Table 4.

By using the EAR method, the ratio of the eyelid to the
eyeball can be calculated. As shown in Fig. 4, the average
value of the EAR for both eyes is approximately 0.25. If EAR
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TABLE 4. Meaning of EM, P70, and P80 threshold values.

FIGURE 4. Example of EAR variation over time.

= 0.25 is taken to be the standard for eye opening, then for
the P80 evaluation method, when EAR < 0.05, the time can
be calculated to obtain the value of m.

2) MOUTH FEATURES
In addition to eye features, we considered mouth features,
which can be used to identify whether a person is yawning.
By using MediaPipe, we were able to obtain the mouth
landmarks, as shown in Fig. 5.

FIGURE 5. Landmarks of the mouth.

MediaPipe employs numerous landmarks for delineating
mouth features, akin to those used for the eyes. In our
analysis, we focus on the innermost point for our calculations.
Consequently, we can define the mouth aspect ratio (MAR)
using the following formula:

MAR =
∥p82 − p87∥ + ∥p312 − p317∥ + 2 ∥p13 − p14∥

4 ∥p78 − p308∥
,

(4)

where pi denotes the 2D landmark locations, as defined in
Fig. 5.

As shown in Fig. 6, the MAR is close to zero when the
subject is silent and approximately 0.2 when the subject is
speaking normally. A yawning behavior is indicated when
the MAR surpasses 0.4. By tracking the MAR fluctuations
in real-time from the source videos, it is possible to detect

yawning. In this study, an MAR value exceeding 0.4 that
persists for at least 2 s is interpreted as a yawning event,
which is a recognized indicator of fatigue. Utilizing this
criterion, we can quantify the total duration of yawning
episodes.

FIGURE 6. Example of MAR.

C. VOICE FEATURES
1) FUNDAMENTAL FREQUENCY
The fundamental frequency (F0) of a speech signal refers to
the approximate frequency of the periodic structure of speech
signals, and it is one of the most commonly used indicators
to describe the sound. Slight differences in the F0 in different
states may exist. Consequently, we used the probabilistic
YIN [40] algorithm to estimate the F0 of a segment of voice.

2) SHORT-TIME AVERAGE MAGNITUDE
The short-time average amplitude can be used to analyze
the energy distribution of a speech signal. By calculating the
average amplitude within a period of time, the overall energy
level of the sound within that period can be obtained. This
information helps us understand the energy characteristics
of the speech signal and to compare changes in the sound
intensity over time.

Here, we use Mn to denote the short-time average
magnitude of the speech signal in the nth frame, which can
be expressed as follows:

Mn =
1
N

N−1∑
m=0

|xn(m)|, (5)

where xn(m) denotes the nth frame of the speech signal, and
N denotes the total number of frames of speech.

3) SHORT-TIME ZERO-CROSSING RATE
A specific relationship exists between the zero-crossing rate
and the clarity and noise components of a sound. A higher
zero-crossing rate generally indicates higher clarity of sound,
while a lower zero-crossing rate suggests noise or muffled
sounds; moreover, zero-crossing rates are possibly connected
to fatigue.

For the speech signal xn(m) of the nth frame, the short-term
zero-crossing rate can be expressed as follows:

Zn =
1
2

N−1∑
m=0

|sgn(xn(m)) − sgn(xn(m− 1))|, (6)
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where sgn(x) denotes a symbolic function:

sgn(x) =

{
1 , x ≥ 0
−1 , x < 0.

(7)

4) HARMONIC-TO-NOISE RATIO (HNR)
The purpose of the harmonic-to-noise ratio (HNR) is to
quantify the relative proportion of harmonic and noise
components in a speech signal, with the aim of assessing
speech clarity and the level of noise interference. The HNR
can quantitatively capture changes between the harmonic
and noise components in sound characteristics, providing
an objective indicator to quantify the impact of fatigue on
them. For example, fatigue can lead to a decrease in speech
quality, and the HNR can be used to evaluate the proportional
change of harmonic and noise components in speech signals,
providing a quantitative index to measure speech quality.
Notably, the HNR value may decline under fatigue.

The HNR is a logarithmic measure of the energy ratio
associated with the harmonic and noise components and can
be defined as follows:

HNR = 10 lg

∫
w |H (w)|2∫
w |N (w)|2

, (8)

where H (m) denotes the harmonic component, and N (m)

denotes the noise component.

5) JITTER
Jitter is a measure used to describe the irregularity and
instability of changes in the F0 [48]. Fatigue can affect the
function of the vocal cords and speech system, leading to
abnormal changes in F0. By calculating the jitter, the fatigue
state of the sound can be characterized. Jitter [49] can be
defined as follows:

j =

1
n−1

N−1∑
i=1

|Ti − Ti+1|

1
N

N∑
i=1

Ti

, (9)

where J denotes the jitter, Ti denotes the extracted period
lengths, and N denotes the number of extracted periods.

6) SHIMMER
Shimmer is an index used to quantify irregular changes
and the instability of sound amplitude. By calculating the
shimmer value, the sound amplitude changes can be assessed.
A higher shimmer value generally indicates that the sound is
more unstable, whereas a lower shimmer [49] value indicates
that the sound is more stable. Shimmer can be defined as
follows:

S =

1
n−1

N−1∑
i=1

|Ai − Ai+1|

1
N

N∑
i=1

Ai

, (10)

where S denotes the shimmer, Ai denotes the extracted
peak-to-peak amplitude data, and N denotes the number of
extracted F0 periods.

7) LOUDNESS
Loudness is an indicator used to quantify sound intensity
or volume. Correspondingly, fatigue can cause changes in
sound intensity. By observing changes in sound loudness,
the characteristics of sound under fatigue can be captured.
Loudness can be defined as follows:

L = 10 lg
I
I0

, (11)

where L denotes the loudness of the sound (in decibels), I
denotes the sound pressure level, and I0 denotes the reference
sound pressure level (usually 20µPa).

8) MFCC
The MFCC is a cepstral parameter extracted from the Mel
scale frequency domain, which can be used to describe
nonlinear characteristics related to the frequencies of the
human ear [50]. Generally, in speech recognition tasks,
the MFCC is considered a feature vector describing the
sound signal of each frame—that is, the MFCC is a feature
processing index that simulates the way in which the
human auditory system processes sound and can be used to
distinguish between different speakers and speech states [51],
[52], [53].

MFCC analysis focuses on the auditory characteristics of
the human ear, noting that the level of sound heard by the
human ear is not linearly proportional to its frequency. Incor-
porating this frequency enables the features to match more
closely the sounds humans hear. The formula for converting
from the actual voice frequency to the Mel-frequency is as
follows:

fmel = 2595 lg(1 +
f

700
). (12)

Fig. 7 depicts a flow chart of the process to obtain the
MFCC.

FIGURE 7. Flow chart of the MFCC extraction process.

To extract the MFCC, the speech signal needs to be
pre-processed first to ensure that high-frequency components
are not distorted. The skipped signal can then be smoothed
by the sub-frame plus windows [54] to decompose the sound
signal into a series of overlapping time windows, with a
window function (Hamming window) being applied to each
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time window. A fast Fourier transform can be performed to
obtain the speech signal spectrum. The specific spectrum,
Mel filter bank, and spectrum envelope can be extracted
using a Mel-frequency filter. Subsequently, a logarithmic
transformation can be applied to the signal to obtain the
logarithmic spectrum. Finally, the MFCC feature can be
acquired by applying the discrete cosine transform.

The MFCC can access relevant dimensions depending
on the requirements. In this study, based on a previous
study [37], we considered using 12 MFCCs (1)–(12) as a part
of the speech features.

D. FATIGUE DETECTION NETWORK BASED ON LSTM
The LSTM [55] is a time-recurrent neural network designed
to solve the long-term dependence problem of general RNNs.
The LSTM network is suitable for processing and predicting
important events with very long intervals and delays in time-
series. While it possesses a chain structure similar to that of
the RNN, as shown in Fig. 8, it differs from an RNN cell;
a detailed introduction to the LSTM model can be found in
Appendix.

FIGURE 8. General LSTM structure.

By using facial and vocal feature extraction, we set the
feature vector to 21. Consequently, the controller fatigue
detection feature vector can be expressed as follows:

Fn =
[
fn,1 · · · fn,21

]
, (13)

where the corresponding relationship of each value in the
eigenvector is shown in Table 4, and Fn is used as an input
into the LSTM.

Using the steps presented in Fig. 10, we first obtained
several video samples; here, we use one video as an example.
Next, we divided the video sample into several video
segments of equal length, extracted facial and vocal features
using the proposed method, formed a feature matrix of the
video segments, input it into the LSTM network for training,
performed multi-classification using the SoftMax function,
and finally determined the fatigue level. The feature matrix
can be expressed as follows:

F =

 f11 · · · f1m
...

. . .
...

fn1 · · · fnm

 , (14)

where the vertical direction represents the length of the time-
series, which is equal to the number of video clips, and the

horizontal direction represents the number of features—that
is, m = 21 as per Table 5.

In this process, video segments are used as inputs,
so the segment lengths need to be carefully considered.
If the length of the segment is too long, the recognition
may be insufficient, resulting in low accuracy in practical
applications. If the length of the segment is too short, the
feature value error may be too large, affecting the operation
of the LSTM model. To capture key yawning information in
video segments, and consistent with existing research [56],
the average duration of human yawning is assumed to be 6.5 s.
Therefore, a video segment should be at least 6.5 s in duration
to provide sufficiently complete information. Moreover, the
normal speaking speed of a person is between 160 and 180
Chinese characters per minute.

Consequently, to achieve better results, we considered
setting each video segment to 20 s. For the LSTM network,
to obtain more samples and ensure the continuity of samples,
we utilized the sliding window concept, as shown in Fig. 10,
to acquire video clips. Thus, based on a comprehensive
analysis of Fig. 9, and combined with the segmentation
scheme shown in Fig. 10, Table 4, and (13), if the duration
of a video sample is 5 min, then the dimensions of its feature
matrix should be 280 × 21.

In the proposed fatigue recognition model, for the LSTM
model, the degree of fatigue evident in a video sample should
be marked. Therefore, we chose the SSS to delineate the
fatigue values, the corresponding SSS values of which are
shown in Table 6.

When filling in the SSS, the scale rating X will not appear.
Additionally, two marks for the video clips were made:
one based on the scale rating of the subject according to
the SSS, and the other on the scale rating to categorize
the video segments into ‘‘awake’’ or ‘‘sleepy’’ depending
on the amount of work completed by the controller in the real
world. This corresponds to the scale ratings and relationships
shown in Table 7.

IV. EXPERIMENTAL RESULTS
A. PARTICIPANTS
In this study, we recruited 40 active ATCs. The participants
included both men and women, all aged between 25 and 35.
Moreover, to ensure the accuracy of the experiment, they
had all been engaged in regulatory work for at least 2 years
(inclusive). Their basic characteristics are shown in Table 8.

B. EXPERIMENTAL DATASET
1) SELF-BUILT DATASET
During this study, we deprived all participants of sleep for
48 h without limiting their participation in other activities
to obtain a diverse sample dataset. During the experiment,
we asked them to fill in the SSS questionnaire every hour
to collect their feedback; after filling out the questionnaire,
we let them work in a simulated supervisory position for
5 min to collect their facial and vocal data.
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FIGURE 9. Flow of the proposed fatigue detection method for a sample.

TABLE 5. Relationship between each value in the feature vector and facial or vocal features.

FIGURE 10. Schematic of video segment acquisition from a video sample.

We then trimmed the collected video and audio data based
on the proposed 20-s standard, obtaining a total of 1,920

samples of audio and video data with corresponding fatigue
values from 1 to 7. Some of the images in the dataset are
shown in Fig. 11.

FIGURE 11. Sample images in dataset.
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TABLE 6. SSS.

TABLE 7. Relationship between scale ratings and wakefulness and
sleepiness.

TABLE 8. Participant characteristics.

2) UNIVERSITY OF TEXAS AT ARLINGTON REAL-LIFE
DROWSINESS DATASET (UTA-RLDD)
The University of Texas at Arlington real-life drowsiness
dataset (UTA-RLDD) [57] was created for multi-stage
drowsiness detection, targeting not only extreme and easily
visible cases, but also cases when subtle micro-expressions
were the discriminative factors. The dataset contains
60 frontal videos of different people performing a simple
task (reading or watching something on a computer), each
recorded for 10 min. Three categories of videos are provided
in the UTA-RLDD—namely, awake, low-vigilance, and
drowsy—similar to the dataset we built ourselves. Both
datasets involve situations in which the subjects face a
computer screen and are related to control work. It is
worth noting that the videos in this dataset do not contain
sound, so there are certain differences from our self-built
dataset. An example of the UTA-RLDD dataset is shown in
Fig. 12.

C. EXPERIMENTAL ENVIRONMENT
The experimental platform used in this study included the
following: (1) a Windows 11 operating system running on

FIGURE 12. Sample images in the UTA-RLDD.

an Intel Core i7-9700K CPU, with an NVIDIA GeForce
GTX 1050 18 GB independent graphics card, and 16 GB of
memory; (2) a 1080p resolution camera and microphone with
a 768 kbps bitrate; and (3) PyTorch, which was used to build
the ATC fatigue detection network.

D. STATISTICAL ANALYSIS
First, we analyzed the scale ratings, the results of which are
shown in Fig. 14.

FIGURE 13. SSS scores under different sleep deprivation times.

FIGURE 14. PERCLOS and number of yawns.

InFig. 13, the blue shaded part represents the occupied area
corresponding to the scale score. It demonstrates that the SSS
better represents degree of fatigue of individuals; moreover,
when the sample size is large, it satisfactorily explains
the changing fatigue trends. Clearly, as the experiment
progresses, the average score value of the scale, illustrated
by the orange line, increases considerably, and the average
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FIGURE 15. Voice features after 48 h of sleep deprivation: (a) Average F0; (b) (Mn); (c) (Zn); (d) HNR; (e) Jitter;
(f) Shimmer; (g) Loudness.

fatigue level of all participants increases. Further, the samples
collected occupy each scoring interval.

With reference to previous research, we then analyzed the
PERCLOS and number of yawns per hour, the statistical
results of which are shown in Fig. 14.
Figs. 13 and 14 together reveal that with the increasing

average fatigue levels during the experiment, the average
PERCLOS value and number of hourly yawns generally trend
upward.

Here, for two sequences of equal length, the Pearson
correlation coefficient can be used to calculate the degree of
correlation between two variables and can be expressed as
follows:

r =

n∑
i=1

(Xi − X̄ )(Yi − Ȳ )√
n∑
i=1

(Xi − X̄ )2
√

n∑
i=1

(Yi − Ȳ )2
, (15)

where X and Y denote two sequences.
The correlation coefficient between the PERCLOS and

yawn values is 93.55% based on (15). Consequently, a strong
correlation exists between the PERCLOS and yawn count.
Moreover, the hourly PERCLOS and mean scale scores
and the hourly number of yawns and mean scale scores
can be calculated using the Pearson correlation coefficients,
the correlations being 96.86% and 90.04%, respectively.
The above data prove that a strong correlation exists

between the three aforementioned quantities and that using
the PERCLOS and yawn count as inputs to the fatigue rating
network is reasonable.

For the vocal features, variations are shown in Fig. 15.
It is evident that the sound feature values all exhibit regular
changes as the experiment proceeds. As speech also exhibits
regularized variation, adding speech features to the LSTM
network can improve the prediction accuracy of this network.

E. ANALYSIS OF RESULTS
To clearly describe the effectiveness of the proposed
algorithm, ablation and comparison experiments were con-
ducted on fatigue detection, and predictions of different
networks were compared, the results of which are discussed
below.

1) RESULTS OF USING OUR NETWORK ON THE SELF-BUILT
DATASET
In this study, we used accuracy, precision, recall, and F1-score
values to assess the model classification effectiveness. These
quantities can be expressed as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (16)

Precision =
TP

TP + FP
, (17)

Recall =
TP

TP + FN
, (18)
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F1-Score =
2 × Precision × Recall
Precision + Recall

, (19)

where the meanings of TP, FP, TN, and FN are shown in
Table 9.

TABLE 9. Meanings of TP, FP, FN, AND TN.

The network outlined in Fig. 9 was utilized, allocating
70% of the amassed 1,920 data samples for training and
the remaining 30% for testing. Initially, we categorized
the scale outcomes into two groups as per the criteria
set forth in Table 7. These categorized results were then
fed into the proposed network for predictive analysis. The
outcomes of this analysis are presented in Table 10, with the
corresponding confusion matrix depicted in Fig. 16.

TABLE 10. Model evaluation metrics in binary classification on self-built
test dataset.

FIGURE 16. Confusion matrix under binary classification conditions.

Based on Table 9 and Fig. 16, using the proposed ATC
fatigue network to predict whether controllers were awake
or fatigued proved to be effective—that is, this prediction
network was accurate when conducting binary classification.
We then used it for multi-classification prediction, the results
of which are presented in Table 11 and Fig. 17.

Fig. 18 demonstrates how the scale rating values evaluate
the indicators in the model.

A considerable decrease in accuracy occurs when using
the proposed model for specific fatigue prediction compared
to predicting only fatigue or wakefulness. However, the

TABLE 11. Model evaluation metrics in multi-classification on self-built
test dataset.

FIGURE 17. Confusion matrix under multi-classification conditions.

overall accuracy is maintained at 91.84%, which is effective
for fine-grained assessment of ATC fatigue. Moreover,
high accuracy, recall, and F1-score values were obtained,
indicating the superior performance of the model in all
respects. As is evident from Fig. 18, for the prediction of the
four values of 1, 4, 5, and 7 scale ratings, the model performs
well on each index, with these values being concentrated in
the awake state, general fatigue state, and extreme fatigue
state. The predictions corresponding to the 2 and 6 scale
ratings are less accurate and precise in terms of prediction,
as these states are transition states.

FIGURE 18. Metrics in the proposed model (accuracy is same as recall).

2) USE OF VARIANT LSTM NETWORKS
We employed the traditional LSTM network for ATC fatigue
prediction, given its superior ability to process temporal
data compared to other methodologies. This approach
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TABLE 12. Model evaluation metrics in multi-classification on self-built test dataset.

yielded a notably high accuracy. Motivated by these results,
we explored a variant of the LSTM network to assess the
potential for further enhancing the prediction accuracy. The
accuracy achieved with this modified LSTM method is
detailed in Table 12.

As is evident from Table 12, the use of a variant
LSTM network improves the prediction accuracy. Using a
combination of the Bi-LSTM network and gated recurrent
unit (GRU) results in an accuracy improvement of 1.49%
compared to the traditional LSTM network. The variant
networks tend to focus more on the processing of the
time-series data and the updating of the cell states, usually
improving the performance of the model. Consequently, the
use of variant LSTM networks to identify and predict the
exact fatigue level of controllers is appropriate; in this study,
the combined Bi-LSTM and GRU model was selected for
further optimization.

3) HYPERPARAMETER OPTIMIZATION OF BI-LSTM AND GRU
MODELS
After comparing four LSTM models and variants, the accu-
racy obtained by the Bi-LSTM+GRU model was found to
be the most accurate. In previous experiments, the parameter
values used were all default hyperparameter values, which
achieved an accuracy of approximately 94%. The training and
test datasets in the previous experiments had only one time
division, meaning the test dataset was fixed.

Assessing the performance of onemodel on one test dataset
does not provide the best indication of how the model will
perform over a wide variety of test data.

To further improve model performance, we implemented
K-fold cross-validation. References [61] and [62] in com-
bination with grid search [63], [64] to hyperparameter
tuning [65]. The outcomes of this process are shown in
Table 13. Additionally, we compared the results achieved
with the Bi-LSTM+GRU network before and after applying
the optimized combination of hyperparameters, with this
comparison detailed in Table 14.

As is evident from Table 14, the accuracy of the optimized
model reaches 95.12%, which is 1.29% higher than that of
the model before optimization.

Although the proposed LSTM model can predict ATC
fatigue levels well, it cannot provide prediction confidence.
To solve this problem and to determine and verify the

TABLE 13. Optimal combination of hyperparameters using K-fold
cross-validation and grid search.

TABLE 14. Comparison of network accuracy before and after
optimization.

credibility of the proposedmodel in the case of small samples,
the Monte Carlo simulation method [66], [67], [68] was used
to conduct confidence testing. We conducted 1,000 Monte
Carlo simulation trials, incorporating random noise into
each. The model’s accuracy, optimized to 95.12% through
hyperparameter tuning as shown in Table 14, surpassed the
95% confidence threshold, affirming the model’s reliability
for this specific dataset. The optimal hyperparameter set
was identified using K-fold cross-validation, which involves
segmenting the dataset into multiple parts and iteratively
training and evaluating the model across these segments. This
approach confirmed the model’s robust performance across
different data subsets. The combination of these rigorous
methodologies and the positive outcomes from the Monte
Carlo simulations underlines the model’s credibility and
efficacy.

4) COMPARISON WITH DIFFERENT NETWORKS ON
SELF-BUILT DATASET
A comparison with different networks proposed for fatigue
detection is shown in Table 15. In this study, we used the
LSTMnetwork to accurately detect ATC fatigue and obtained
a higher accuracy than those for the other models.
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TABLE 15. Comparison of results obtained using self-built dataset.

As shown in Table 15, we conducted a comparative
analysis of the available fatigue detection methods using
a custom dataset. This comparison focused on several key
aspects, including accuracy, the number of classification
categories, and the specific features selected for each method.

By applying the FV-stacking network proposed by
Hu et al. [38] on a self-constructed dataset, an accuracy of
only 89% was obtained. Relative to the proposed recognition
algorithm, the accuracy was 7% lower than that of our
proposed method. This discrepancy may be due to the low
dimension of the selected features.

In [26], Liang et al. proposed the ES-DFNN network to
detect ATC fatigue. Using this network for the self-built
dataset and employing P80 as a determinant of fatigue yielded
only 89% accuracy. In contrast to our proposed network, this
network only considers eye features and neglects mouth and
speech features, resulting in lower accuracy.

In [36] and [69], vocal features were used as inputs to
the network, achieving high accuracy by responding to the
level of fatigue through speech features. Unlike the proposed
networks, these networks only consider speech features and

overlook facial features. Thus, the association between vocal
and facial features is not considered in speech recognition,
which leads to a lower accuracy. In addition, the dimension of
speech features is smaller in the proposed networks, enabling
faster feature extraction and recognition.

In [70] and [71], the inclusion of mouth features, in addi-
tion to eye features, marked a departure from the approach
in [26], where both eye and mouth features served as inputs
for the network. The use of sequential images in [70], enabled
the network to assimilate contextual information, thereby
enhancing accuracy. However, it’s noteworthy that these
networks focused exclusively on facial features, omitting
vocal features from their analysis.

In [72], the incorporation of facial features into the
Vision Transformers and YoloV5 network resulted in an
accuracy of 93%. This outcome might stem from the fact that
Vision Transformers are designed to process image inputs
exclusively. Our proposed model, on the other hand, assesses
fatigue levels by analyzing both image and speech features,
offering a more comprehensive evaluation. Furthermore, the
lower accuracy observed could also be due to a limited
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TABLE 16. Comparison of results obtained using UTA-RLDD.

sample size, which may not provide enough data for adequate
regularization of the bias term in the Transformer model.
Unlike this, our model does not encounter such limitations,
demonstrating robust adaptability.

In [73], FaceNet was mainly used for recognizing facial
feature points, with the main classification tasks being
performed by KNN and SVM. KNN and SVM, unlike LSTM
networks, are unable to process sequential or forward-looking
information inputs, which may contribute to their relatively
lower accuracy in certain applications.

In [74] and [75], the primary technique employed was
CNN, with the accuracy of these methods being over 10%
lower than that achieved by our proposed fatigue identi-
fication method. This lower accuracy might be attributed
to the fact that the inputs were limited to facial image
features, without a detailed analysis of the underlying
fatigue-related digital indicators. In contrast, our proposed
network delves into the fatigue-related information contained
within the images and leverages the capabilities of LSTM
for classification and identification, leading to improved
accuracy.

Our study therefore underscores the significance of both
facial and vocal features in fatigue detection. Our pro-
posed network demonstrates superior accuracy in identifying
fatigue from the same dataset compared to other models.
Furthermore, we achieved a remarkable 95% accuracy in
multi-category fatigue detection tasks, surpassing the perfor-
mance of other networks in binary and ternary classification
scenarios.

5) COMPARISON WITH DIFFERENT MULTI-CLASSIFICATION
NETWORKS ON UTA-RLDD
There has been limited verification work conducted on
the UTA-RLDD dataset, leading to a lack of standardized
criteria, which poses some challenges. Unlike this study,
most similar research projects extract different key indicators.
Furthermore, while this study considers both facial and vocal
features, the dataset lacks audio data. Therefore, we modified
our model to exclude vocal features, focusing solely on
facial features as inputs. As a result, direct comparisons
with some studies may not be entirely feasible, yet such
comparisons still hold interest and value. The work related
to the UTA-RLDD and the findings from these analyses are
summarized in Table 16
In [57], Ghoddoosian et al. proposed four methods to

classify videos into three categories, with accuracies ranging
from 58% to 65%, which are relatively low. However, the
utilization of the HM-LSTM network, particularly because
the inclusion of a low-vigilance category tends to diminish
the overall accuracy, shows a different outcome. According to
Table 16, the detection probabilities for both the awake and
drowsy states exceed 80% when employing the HM-LSTM
network. Furthermore, the introduction of additional features
into the foundational LSTM network resulted in an approxi-
mate 4% improvement in the recognition rate.

Magán et al. [76] developed two models aimed at fatigue
detection: one based on region-CNN and the other a combi-
nation of deep learning techniques with fuzzy logic. These
models achieved accuracies of 55% and 63%, respectively.
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While these accuracy levels may not seem particularly high,
it is noteworthy that the prediction accuracy for identifying
the awake state reached 93% with the use of the second
model. The authors also highlighted the potential of deep
learning methodologies for fatigue detection as a promising
avenue for future research.

In [72], Krishna et al. proposed a framework using vision
transformers and YoloV5 for fatigue detection, achieving a
combined accuracy of 97% on UTA-RLDD. This framework
also demonstrated high recognition accuracies of 98%
and 97% for the awake and drowsy states, respectively.
In comparison to our method, their approach achieved a
1% higher overall accuracy and a similar accuracy rate for
detecting the awake state, but a 2% higher accuracy in
identifying the drowsy state. These results are closely aligned
with the performance of our proposedmethod, showcasing its
strong capacity for generalization. In their model, YoloV5 is
primarily employed for precise face localization, capturing
facial images to feed into the Vision Transformer for
subsequent learning processes. This use of YoloV5 mirrors
the extraction of facial and mouth features in our method,
while the Vision Transformer plays a role akin to that of
the LSTM in our approach. Training the Vision Transformer
with an ample dataset can mitigate the bias limitations
intrinsic to the Transformer model. This process enables
the model to efficiently learn and adapt to the underlying
rules of bias, resulting in improved accuracy during testing
phases [78]. Specifically, the extensive dataset provided by
the UTA-RLDD allows the Vision Transformer to accurately
discern and internalize the rules associated with the bias term,
consequently achieving a remarkable accuracy rate of 97%.

In [77], Liu et al. integrated a CNN with an LSTM
network for fatigue identification, utilizing the CNN for
image parsing and the LSTM for time-series analysis. They
developed two networks: a frame-level and a minute-level
combined network, achieving accuracy rates of 43.05%
and 54.71% on the UTA-RLDD, respectively. The authors
noted that certain dataset features posed challenges for
training, impacting model accuracy. They employed the
KSS value for minute-level identification, analogous to
our use of the SSS value. Contrary to their methodology,
our approach did not utilize a CNN for facial feature
extraction but instead used an MTCNN to analyze facial key
points for fatigue feature detection. This distinction could
contribute to the higher accuracy observed in our proposed
model.

Adhinata et al. [73] used a CNN to extract facial features
from images, employing either a multi-class SVM or a
K-nearest neighbor classifier for classification. Using the
multi-class SVM algorithm, they obtained an accuracy of
90%, while the K-nearest neighbor classifier reached an even
higher accuracy of 95%.

In [77] and [78], the authors demonstrated that a processed
CNN could adequately classify the awake and drowsy states
using the UTA-RLDD, obtaining minimum accuracies of
96% and 97%, respectively.

According to Table 16, the accuracy of our proposed
network is approximately 96%, the highest among the models
listed. This accuracy is close to those of the models proposed
in [73], [76], and [77]. Moreover, using the UTA-RLDD
to identify and classify awake and drowsy states yielded
satisfactory results, with recognition accuracies of 96% in
the awake state and 95% in the drowsy state. Due to the
limitations of the dataset, we could not test the performance of
the vocal features part of our proposed model on this dataset;
however, the results confirmed that our method exhibits high
generalization capacity and accuracy based on facial features.

6) VALIDATED IN ACTUAL WORKING ENVIRONMENT
The self-built dataset was collected based on the experimental
environment, which might differ from the actual working
environment of controllers. To further verify the validity,
practicality, and acceptability of the proposed model in the
actual working environment and to confirm its generalization
capacity, we collected audio and video recordings of 20 peo-
ple working in their actual work environment 5 min after
completing the SSS, resulting in 40 records.

FIGURE 19. Confusion matrix for fatigue recognition in actual work
environments.

A confusion matrix of 40 records of fatigue recognition
in actual work environments is shown in Fig. 19. These
40 records were not used in the training of the proposed
model. As seen in Fig. 19, the model correctly recognized
fatigue in most cases, with only five records recognized
incorrectly, resulting in an accuracy of 87.5%, which is
considered adequate. In addition, it can be observed that
the bias in recognition errors is small, with a variance of
only 1.86.

V. DISCUSSION
The study demonstrated that all the features summarized
in Table 5 are reliable factors for detecting ATC fatigue.
The most important aspect of this method is the ease of
data acquisition without disturbing the controllers while they
work, as we were able to simply obtain video and voice
recordings.

We used the PERCLOS, number of yawns, average F0,
short-time average amplitude, short-time zero-crossing rate,
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HNR, jitter, shimmer, loudness, and MFCC as indicators of
ATC fatigue status. Traditional fatigue prediction has often
focused on one-sided feature extraction, analyzing only facial
or vocal features, without effectively integrating the two.
Additionally, fatigue detection has generally been limited
to identifying wakefulness or fatigue without elucidating
the specific degree of fatigue or classifying, recognizing,
or predicting it accurately. In this study, we attempted
to recognize both facial and vocal features to establish
their relationships with the SSS using an LSTM network.
We improved the feature dimension of fatigue by using both
facial and vocal features as data for LSTM network learning
and introduced the SSS to quantify fatigue levels. The results
were significant, with the proposed method achieving an
accuracy of 95.12%.

Using the proposed model, 21-dimensional feature vectors
were extracted from the facial and vocal features and then
input into the Bi-LSTM+GRUmodel. In the aforementioned
experiments, a self-built dataset for training and testing was
selected, yielding relatively accurate results. However, the
dataset was relatively small. To ensure the credibility of the
model, we performed five-fold cross-validation and Monte
Carlo simulation testing to confirm the accuracy of the model
was significant (with a 95% probability). Similar to the
models described in [27], [28], [29], [57], and [70], the
proposed model was developed based on the LSTM model.
The difference between the proposed model and previous
models lies in the increased number of extracted features.
While most methods extract features of the eyes and mouth—
that is, facial features—we included vocal features to obtain
a more comprehensive set of features. The accuracy of most
previously developed models was relatively high, especially
when detecting wakefulness and drowsiness. The proposed
model could also achieve an accuracy of approximately
98% when performing the above classification. However, the
classification of the proposed model was not confined to just
two classes.

We introduced the SSS to annotate videos. The pro-
posed model achieved a 95% accuracy rate under multi-
classification conditions, indicating some improvement
compared to the previously proposed version. Similar to the
research presented in [34], [35], [70], and [71], we used
the LSTM network as the classification model. Moreover,
as shown in Table 15, when comparing several fatigue
detection networks, our proposed model exhibited the highest
accuracy and outperformed other centralized methods. This
superiority may stem from the LSTM better performance of
the network on data with time-series characteristics and the
utilization of both facial and voice features as inputs to the
network.Moreover, we tested the proposedmodel in an actual
working environment to assess its validity, practicability, and
acceptability. We verified that despite differences between
the dataset and the actual working environment, the proposed
model could identify the fatigue level of the controller more
accurately, demonstrating the high generalization capacity of
the model.

Additionally, in this study, similar to the studies reported
in [23], [37], and [70], the fatigue scale was introduced as
a label value for model learning. Previous authors divided
the test values of the scale into intervals to form fatigue and
wakefulness intervals before inputting this information into
their proposed models. In contrast, in this study, we manually
divided the scale values of fatigue and wakefulness first,
then directly performed model training and testing without
dividing the scale values. Both of these approaches achieved
good results, which holds specific significance for further
determining the level of ATC fatigue. In summary, the
proposed model combined facial and vocal features, used
the SSS to evaluate the ATC fatigue level, and inputted the
combined features into the LSTMmodel to predict the refined
ATC fatigue level.

However, this experiment had several limitations.
(1) The sample size used to obtain the data was too small,

which could have led to poor generalization of the model and
less comprehensive learning of the LSTM network, resulting
in low prediction accuracy.

(2) The clarity of the video capture, the angle and distance
of the camera, and equipment errors were not considered.
Consequently, the collected data may have been inaccurate,
leading the model to be imperfect.

(3) Differences existed among the individual subjects,
such as gender and phonetic differences, which were not
considered in this experiment.

(4) The sample data collection was conducted in an
experimental environment, which may differ from the actual
work environment of the controller, potentially leading to
inaccurate identification of fatigue levels.

VI. CONCLUSION
In this study, we proposed a fatigue detection method
that leverages facial and vocal features. We chose an
LSTM-based model because both face and voice tones
convey significant information about fatigue levels. The
aim of our study was to explore the link between ATC
fatigue and these facial-vocal features. We synchronously
collected self-fatigue assessment information using the
SSS, PERCLOS, number of yawns, average F0, short-
time average amplitude, short-time zero-crossing rate, HNR,
jitter, shimmer, loudness, and MFCC. Training the LSTM
(Bi-LSTM+GRU) network enabled us to predict ATC fatigue
states, demonstrating that combining facial and vocal features
enhances fatigue identification. We obtained a maximum
accuracy rate of 95.12%, providing a theoretical basis for
the use of combined facial and vocal features in detecting
fatigue.

The proposed method can be applied for real-time
applications in preventing air traffic incidents caused by ATC
fatigue. This method stands out for its straightforward data
collection, minimal interference with ATC operations, and
cost-effectiveness. Furthermore, our research showcases the
efficiency of a non-invasive approach to fatigue detection,
which has substantial practical implications.
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FIGURE 20. LSTM steps: (a) Oblivion, (b) previous input, (c) update cell
status, and (d) output.

APPENDIX
LSTM INTRODUCTION
The structure of LSTM cells is more complex than that of
RNN cells. Each LSTM cell comprises three sigmoid layers
and one tanh layer, facilitating the updating or forgetting
of relevant information—a primary innovation of the LSTM
network. The traditional LSTM network can be divided into
four steps, as shown in Fig. 20.
During information processing, LSTM cells discard some

information in the first step to simulate the human tendency
to forget and disregard certain information during cognitive
processes (Fig. 20(a)). In this process, the output (ht−1) from
the previous step and the input (xt ) at the current time are
nonlinearly mapped through the sigmoid layer, resulting in
the output ft , as follows:

ft = σ (Wf · [ht−1, xt ] + bf ). (A1)

Simultaneously, the input undergoes processing through
the input gate (Fig. 20(b)):

• A part of the input value is updated through the sigmoid
layer to obtain the output it ;

• The remaining part is inputted into the tanh layer
to create a new candidate vector (C̃t ) for subsequent
calculations.

The above steps can be expressed as follows:

it = σ (Wi · [ht−1, xt ] + bi) (A2)

and

C̃t = tanh(WC · [ht−1, xt ] + bC ). (A3)

By incorporating forgetting and input mechanisms, the
updated data (as shown in Fig. 20(c)) can be expressed as
follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t . (A4)

Finally, the filtered output is determined by the process
shown in Fig. 20(d), which can be expressed as follows:

ot = σ (Wo · [ht−1, xt ] + bo) (A5)

ht = ot ∗ tanh(Ct ). (A6)

Based on this concept and leveraging the advantages
of LSTM networks, we propose an LSTM-based fatigue
detection method in this paper. The flowchart of the ATC
fatigue detection method is shown in Fig. 20.
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