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ABSTRACT The underwater wireless sensor network (UWSNs) is an important communication facility
supporting underwater monitoring applications. However, the transmission channel has the characteristics
of high bit error rate, strong multipath effect, and many interference factors, and the network node has
the characteristics of high energy consumption, difficult energy supply, and the node position vulnerable
to change, which makes it extremely difficult for UWSNs to realize the reliable and efficient packet
forwarding. To address the problem, we propose the Stackelberg Q-learning based multi-hop cooperative
routing algorithm (SQMCR). The SQMCR builds the transmission routes based on the Q-learning algorithm,
considering factors such as the delay, the remaining energy, and the network topology, which improves
the rationality and adaptability of selecting the next-hop node. By balancing the packet forwarding
benefits and the energy consumption costs based on the Stackelberg Q-learning algorithm, the SQMCR
establishes the cooperative communication policy to ensure both the reliability and efficiency of underwater
communications. It also adopts initializing Q-values and dynamic exploration probabilities optimization
methods to further improve the performance of routing algorithms. Experimental results show that the
SQMCR can help UWSNs increase the packet forwarding reliability and prolong the network lifetime by
17%. It has a better environment and application adaptability and is more suitable for underwater high-
reliability applications.

INDEX TERMS Underwater wireless sensor networks (UWSNs), routing algorithm, cooperative
communication, Q-learning, Stackelberg game.

I. INTRODUCTION
Underwater wireless sensor networks are an important part
of the construction of the marine Internet of Things [1]
and an important part of the underwater direction of the
future 6G network [2]. They are widely used in many
fields, such as disaster early warning, pollutant monitoring,
hydrological data monitoring, marine resource exploration,
auxiliary navigation, and as an important infrastructure for
studying, building, and developing the ocean [3]. Underwater
wireless sensor networks are composed of sensor nodes, com-
munication nodes, and sink nodes [4]. At present, the long
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distance underwater wireless transmission of data mainly
depends on the acoustic channel [5]. The underwater acoustic
channel has many problems, such as large transmission delay,
limited transmission bandwidth, many interference factors,
and serious multipath phenomena [6], [7]. Underwater
communication nodes are affected by water flow, and their
positions and node relationships change dynamically, their
communication energy consumption is high, and the energy
supplies for the nodes are difficult [6], [7], [8]. All the
unfavorable factors make reliable underwater communication
extremely difficult. But the reliable communication is the
base of various applications in underwater networks [9]. The
reliable communication in underwater wireless sensor net-
works is reflected not only in the reliability of single packet
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forwarding but also the persistence of packet forwarding
services [10]. So, it is very important to design the routing
algorithmswhich can not only overcome the influence of time
varying underwater transmission environment and achieve
reliable packet forwarding but also ensure the stability of
packet forwarding services.

The routing algorithms are used to find the optimal
paths from the sensor node to the sink node through the
communication nodes for packet forwarding [4]. A good
transmission route can not only reduce the packet trans-
mission delay and improve the packet delivery rate but
also balance the energy consumption during the underwater
nodes and prolong the lifetime of underwater networks [11],
[12]. Due to the limitation of underwater acoustic channels
and the dynamic change of underwater network topology,
it is difficult for the data source node to get the network
topology in real time and optimize the route globally [13].
It can only select the next-hop node according to the state
information between the local and neighbor nodes to obtain
the approximation of the globally optimal path [14]. A good
next-hop node should be closer to the target node, which
can decrease the number of transmission hops, and reduce
energy consumption [14]. A good next-hop node should
have sufficient remaining energy for continuous forwarding,
and the energy consumption should be close to that of the
neighbor node to ensure the channel durability [15]. A good
next-hop node must have a good channel state with the
source node to make the signal-to-noise of the receiving
node meet the receiving requirements [16], [17]. A good
next-hop node should have sufficient storage capacity to
avoid congestion and reduce the transmission delay [18].
A good next-hop node should also have stable, good, and
sufficient neighbor relationships so that it can further forward
the packet [19]. In underwater wireless sensor networks, the
traditional routing protocols generally select routes based
on the current status between the data source node and the
next-hop node or node cluster, such as location, energy, delay,
number of neighbors, received signal strength, and so on.
Based on the routing protocol implemented by reinforcement
learning, the communication node in the underwater network
is modeled as an agent, the reward function is established
based on domain knowledge, and the policy of forwarding
packets is established through iterative learning [20], [21].
The introduction of reinforcement learning enables routing
algorithms to optimize routes based on the current state and
long-term forwarding experience, improving the rationality
of route selection and the reliability of packet forward-
ing [22], [23].

Cooperative communication is also a typical way to
improve the reliability of packet forwarding [24]. A coop-
erative communication system includes the sending node,
the receiving node, and the cooperative nodes. The sending
node sends the packet to the receiving node by broadcasting,
and the selected cooperative node receives and forwards the
packet. The signals come from different directions, which

can make the receiving node obtain the required signal-to-
noise ratio for the correct reception. Because if there is some
interference or occlusion on the transmission channel, the
signals from the sending node and the cooperative nodes
can be properly superimposed on the receiving node. The
virtual multiple input multiple outputs (MIMO) systems
composed of the sending node, the receiving node, and
the cooperative nodes enable single-hop transmission in
the network to obtain additional spatial diversity benefits
and can improve the ability of single-hop transmission to
combat channel fading [25], [26]. Compared to the single-
hop networks, the multi-hop networks can transmit longer
distances, provide greater bandwidth, and consume lower
communication energy per node [27]. Therefore, a multi-
hop cooperative system can help underwater wireless sensor
networks improve the reliability of packet forwarding.
However, unnecessary cooperative communication will also
cause excessive energy consumption [28]. Therefore, the
cooperative communication system also needs to solve
the problems of ‘‘whether to cooperate’’ and ‘‘who will
cooperate ’’. Cooperative nodes need to balance the benefits
of packet forwarding and the cost of energy consumption.
The Stackelberg game is a two-stage complete information
dynamic game investigated for multi-agent systems [29].
In this game mode, the player who makes the decision first
is called the leader, and the remaining players are called
the followers. The global goal of the game is to maximize
the benefit of the leader. Each of the agents can sense the
environment, learn the policies and assist the leader to achieve
the global goal while making an effort to maximize their
own benefits [29]. The sending node sends the data to the
receiving node by broadcasting, and the cooperative node
selects whether to cooperate and who to cooperate according
to the status of itself, the sending node, the receiving node
and the other neighbor nodes. Due to the full consideration
of the status, the cooperative communication system makes
it easier to balance the data receiving benefits representing
the short-term interests and the energy consumption costs
affecting the long-term interests, which improves the packet
delivery rate, prolongs the network life, and realizes the
overall improvement of network reliability.

II. RELATED WORKS
To overcome the adverse transmission conditions of under-
water wireless sensor networks, researchers have studied the
routing protocols from different perspectives.

The routing algorithm based on the deterministic rules
generally determines the best relay node according to
the current position, depth, and remaining energy of the
underwater nodes. For example, Xie et al. proposed VBF [30]
to establish a virtual pipe on the vector between the source
node and the destination node. VBF limits the set of the
candidate forwarding nodes by controlling the radius of the
virtual pipeline, and selects the best next-hop node according
to the distance between the node and the vector. Yan et al.
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proposed DBR [31] to select the best relay node according
to the depth of the candidate forwarding nodes. The node
close to the surface will give priority to the forwarding packet.
The routing algorithm based on the deterministic rules, which
fully considers the current state of neighbor nodes, makes the
routing algorithm simple, efficient, and adaptive. However,
due to the lack of a long-term iterative learning process,
it is unable to obtain prior knowledge from the forwarding
experience, which makes the packet forwarding partially
sighted to a certain extent.

The routing algorithm based on reinforcement learning
abstracts the underwater network data forwarding process
as a Markov process. Historical forwarding can be used as
a priori knowledge, which affects the selection of subsequent
forwarding nodes and improves the accuracy of the next-hop
node selection [32]. Hu and Fei proposed QELAR [33] to
select the next-hop node based on Q-learning. QELAR’s
reward function considers not only the packet delivery rate
of the transmission channel but also the remaining energy
and energy consumption balance of the nodes. It makes the
routing policy not only select the shortest transmission path
but also comprehensively consider the remaining energy of
the receiving nodes, to avoid the energy depletion of the
node in the optimal path. Jin et al. proposed RCAR [18]
to take account of the congestion avoidance method of the
relay nodes in the case of heavy traffic and to optimize
the transmission delay and energy consumption distribution
in underwater data communication by the reinforcement
learning algorithm. Wang et al. proposed EP-ADTA [34] to
select the relay nodes and data transmission accuracy based
on the Q-learning. EP-ADTA can optimize the transmission
path and dynamically adjust the transmission data accuracy
according to the change in the transmission environment.
The routing algorithm based on reinforcement learning
can dynamically select routes according to the experience
accumulated by each agent in data forwarding and the current
state of neighbor nodes, thereby improving the reliability of
the transmission routing.

In underwater data transmission, due to the influence of
path loss, shadow fading, and multipath fading, the receiving
node cannot receive the packet whose signal-to-noise ratio
does not meet the receiving requirements. The cooperative
node is used to provide relay assistance to enhance the signal
gain of receiving nodes and achieve reliable communication.
Zhang et al. proposed SA-FRL [35] to realize the cooperative
communication of underwater networks based on Q-learning.
SA-FRL selects cooperative nodes with good link quality and
low access delay to improve the efficiency of cooperative
communication. However, SA-FRL only provides the solu-
tions for single-hop network scenarios and does not involve
multi-hop networks. Chen et al. proposed QMCR [32] to
form the routes in the multi-hop networks and achieves
the gain of underwater communication performance through
cooperative communication based on Q-learning. However,
QMCR only selects the cooperative mode according to the
deterministic rule, without considering the remaining energy

of cooperative nodes and the necessity of cooperative trans-
mission, which may result in the waste of communication
energy consumption. Therefore, it is necessary to further
optimize the cooperative node selection by introducing the
reinforcement learning algorithm and the game theory.

In order to further compare the merits and demerits
of several typical routing algorithms, their strategy and
characteristics are listed in Table 1.

III. UNDERWATER WIRELESS SENSOR NETWORKS
A. UNDERWATER ACOUSTIC TRANSMISSION CHANNEL
In underwater wireless sensor networks, the underwater
acoustic channel is complex, unreliable and time-varying.

1) SIGNAL ATTENUATION
The signal attenuation of underwater acoustic channel
depends not only on the distance between the sending node
and the receiving node, but also on the signal frequency.
According to [36], for the signal with frequency f , the
attenuation generated by the underwater acoustic channel at
distance l is:

A(l, f ) = A0lka(f )l . (1)

In dB form, it can be expressed as:

10log
A (l, f )
A0

= k × 10log l + l × 10log a(f ). (2)

where the first item is expansion loss, and the second item
is absorption loss, A0 is the normalization constant, a(f ) is
the absorption constant, and k is the expansion factor that
describes the transmission geometry. According to [37], when
the spherical expansion occurs in deep water, k is usually set
to 2; when the cylindrical expansion occurs in the shallow
water, k is usually set to 1; and in the actual expansion, k is
set to 1.5.

According to [36], when the unit of a(f ) is dB/km (when
the frequency unit is kHz) and the frequency ranges from
100Hz to 1MHz, the commonly used empirical formula for
estimating the absorption coefficient is the Thorps formula,
as follows:

10 log a(f ) = 0.11
f 2

1 + f 2
+ 44

f 2

4100 + f 2

+ 2.75 × 10−4f 2 + 0.003. (3)

2) MULTIPATH INTERFERENCE
Multipath propagation is caused by the reflection of acoustic
signals on the sea surface, seabed and other objects. The
signal sent by the sending node arrives at the receiving node
through different paths. Assuming that the propagation speed
of the p acoustic signal in the multipath signal is c and the
propagation distance is lp. Routing delay is τp = lp/c, the
cumulative reflection coefficient after multiple reflections is
0p. The propagation loss is A

(
lp, f

)
, and according to [37],
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TABLE 1. Several typical routing algorithms and their characteristics.

the frequency response of the p path is:

Hp(f ) =
0p√

A
(
lp, f

) . (4)

Then, the overall response of the acoustic signal after the
superposition of multiple paths is:

h(t) =

∑
p

hp
(
t − τp

)
. (5)

where hp(t) is the inverse Fourier transform of Hp(f ).

3) NOISE INTERFERENCE
Another factor that affects the quality of underwater acoustic
channels is the presence of a large amount of noise in the
underwater environment, typically including the environmen-
tal noise, the vehicles noise, and the marine organism noise.
According to [37], there are four types of noise sources.
The noise power empirical formula (in dB) as a function of
frequency (in kHz) is:

10 logNt (f ) = 17 − 30log f . (6)

10 logNs(f ) = 40 + 20 (s− 0.5) + 26log f

− 60log (f + 0.03). (7)

10logNw(f ) = 50 + 7.5ω
1
2 + 20log f

− 40log (f + 0.4). (8)

10 logNth(f ) = −15 + 20log f . (9)

where ω is the wind speed, in m/s; Nt (f ) is the turbulent
noise that only affects a very low frequency range of less
than 10Hz; Ns(f ) is the ship noise, dominant between 10 and
100Hz; Nw(f ) is the noise caused by waves and other
surface movements caused by wind and rain in the range of
100Hz to 100kHz; Nth(f ) is the dominant thermal noise with
frequencies exceeding 100kHz.

Then, the overall ambient noise is:

N (f ) = Nt (f ) + Ns(f ) + Nw(f ) + Nth(f ). (10)

4) OCCLUSION INTERFERENCE
The interference caused by the object occlusion often
has a significant impact on the transmission of acoustic
signals, leading to a significant decrease in the amplitude

response hp(t) of the acoustic signal on the transmission path
where the occluded object is located, and even leading to
signal interruption. The frequency of occlusion interference
occurring within a fixed time λblock−out and the transmission
distance lp between communication nodes is in the direct
proportion, namely:

λblock−out ∝ lp. (11)

5) TRANSMISSION CAPACITY
Assuming that the communication node sends the sound
signals with a fixed power (P) and bandwidth (B), and the
signal-to-noise ratio (SNR) of the receiving node is [38]:

SNR =
|hsd (t)|2 × P
N (f ) × B

. (12)

where, hsd (t) is the amplitude value of the channel response
from the sending node to the receiving node, hsd (t) is
determined by transmission loss, multipath interference, and
occlusion interference, and is inversely proportional to the
transmission distance.

Assuming that the noise follows Gaussian distribution,
according to the Shannon-Hartley theorem, the maximum
transmission capacity of the transmission channel between
the sending and receiving nodes is:

Csd (t) = Blog2 (1 + SNR). (13)

When the data transmission rate R(t) satisfies Csd (t) ≥

R(t), the data can be accurately received at the receiving node.
Joining cooperative communication nodes in data for-

warding can effectively improve the signal power and SNR
at the receiving node due to shorter signal transmission
distances or signal superposition. Therefore, the cooperative
communication can increase the maximum transmission
capacity of the underwater transmission channels and further
improve the reliability of data reception.

6) OUTAGE PROBABILITY
The outage probability refers to the ratio of the number
of interruption events to the total number of transmission
times during data transmission. According to the Information
Theory, the outage probability can be expressed as:

Pout−sd (t) = P [Csd (t) < R(t)] . (14)
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The transmission rate is determined by the business
application. When the transmission rate is relatively fixed,
the main factor affecting the outage probability is the varying
transmission capacity. Increasing the transmission capacity
can effectively reduce the outage probability. According
to the Shannon-Hartley theorem, the transmission capacity
depends on the SNR, which is related to signal attenu-
ation, multipath interference, noise interference, occlusion
interference. It is also related to the health status of the
communication node and whether there are enough neighbor-
ing nodes that can participate in cooperative communication.
Therefore, methods to reduce the probability of interruption
include controlling the communication distance between the
transmitting and receiving nodes, and selecting nodes with
sufficient remaining energy and many neighboring nodes as
the next-hop.

B. UNDERWATER WIRELESS SENSOR NETWORKS BASED
ON MULTI-HOP COOPERATIVE COMMUNICATION
Underwater wireless sensor networks provide services for
underwater monitoring applications. The underwater wireless
sensor network (see Figure 1), includes an underwater sensor
node, several underwater communication nodes, and a surface
sink node. The obtained data is transmitted to the surface
sink node hop by hop through the communication nodes.
After the sink node obtains the data, it sends the data to
the shore-based or ship-based data center by radio. In each
hop of the transmission route, the cooperative communication
system is composed of the sending node, the receiving node,
and the candidate cooperative nodes. The transmission path
is the direct packet forwarding path from the sending node
to the receiving node, and the cooperative communication
path is the packet forwarding path through the cooperative
nodes. The packet forwarding channel is divided into a
broadcast channel and a multiaccess channel. The sending
ends (including the sending node and the cooperative nodes)
send packets through multiple independent transmission
channels, and the receiving end (including the receiving node)
appropriately combines multiple copies of signals that carry
the same data but are statistically independent of each other
to combat channel fading. Modeling from the perspective of
minimizing the symbol error rate and using the optimal single
cooperative node, we can get a lower symbol error rate than
multi-node participation in cooperative communication [28].
Therefore, in this paper, only the case of a single cooperative
node is considered, and the receiving node only realizes the
signal synthesis from two directions.

IV. SQMCR ALGORITHM
A. FRAMEWORK OF SQMCR ALGORITHM
Stackelberg game is a tool of dealing with the situation where
the players take actions sequentially [29]. The main agent
is the leader and the subagents are the followers in the modal.
The leader takes actions firstly, considering the policy of the
followers, and the followers make the best response based

FIGURE 1. Underwater wireless sensor network based on multi-hop
cooperative communication.

on the leader’s action [29], [39]. The global goal of the
multi-agent system is to maximize the benefit of the leader.
The goal of the followers is to maximize the leader’s and their
own benefits by sensing the environment [29], [40].

In each hop of packet forwarding in underwater wireless
sensor network based on multi-hop cooperative communica-
tion, it is the cooperative communication system consisting
of the sending nodes, the receiving nodes, and the candidate
cooperative nodes. The global goal of the cooperative
communication system is to improve the success rate of
forwarding packets to the receiving nodes. For the sending
node, blindly forwarding packets without paying attention
to the status of receiving node and candidate cooperative
nodes can reduce the reliability of packet forwarding.
For the candidate cooperative nodes, blindly participating
in cooperative communication without paying attention to
the packet forwarding policy of sending node and the
status of other candidate cooperative nodes can not only
reduce the reliability of packet forwarding, but also causes
unnecessary communication energy consumption. Therefore,
it is necessary to set certain rules to coordinate and control
the relationship between the sending node and the candidate
cooperative nodes, to achieve maximum the global benefits.
The rules in the cooperative communication system can be
defined based on the Stackelberg game and the nodes in the
underwater wireless sensor network can be defined as agents,
as shown in Fig 2. The sending node is the leader agent, and
the candidate cooperative nodes are the follower agents. The
benefit of the leader is to realize the reliable packet reception
of receiving node, reduce the outage probability, and improve
the packet forwarding efficiency as much as possible. The
benefits of the followers is to reduce the communication
energy consumption and prolong the network life based on
achieving reliable packet reception of the receiving node.
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FIGURE 2. Model of Stackelberg game in cooperative communication
system.

B. TRANSMISSION ROUTING SUB-ALGORITHM
The routing process of underwater wireless sensor networks
can be defined as Markov decision processes (MDPs). The
selection of each next hop is not only based on the current
state but also related to the historical packet forwarding
status. Reinforcement learning is often used to solve the
problem of MDPs. It is defined by five tuples (S,A,R,P, γ ).
S represents the environment state, A represents the action
set, R represents the reward, P represents the transition
probability, and γ represents the discount rate. According
to the state and the cumulative reward, the agent updates
the transition probability, action, and new state. The nodes
of the underwater wireless sensor network are defined as
agents based on Q-learning which is a kind of widely
used reinforcement learning algorithms. Through the iterative
training, the Q-learning agents form the optimal transmission
route policy for packet forwarding.

Suppose that the underwater wireless sensor network
consists of m nodes, which can be expressed as:

N = {n1, n2, · · · , ni, · · · , nm} . (15)

where N represents the nodes set, ni represents the current
node. Then, the candidate next-hop nodes set Nrelay(i) of the
current node ni can be expressed as:

Nrelay(i) = {dep(nj) − dep(ni) ≤ 0} ∩ neighbors(ni). (16)

where
{
dep

(
nj

)
− dep (ni) ≤ 0

}
represents the node set with

a shallower depth than the current node. The set of the
candidate next-hop nodes is in the upper hemisphere near
the water surface covered by the current node’s transmitted
signal.
Definition 1: At time slot t , if the packet is located at the

node ni, the state S can be defined as:

S = {ni} ∪ Nrelay(i). (17)

At time slot t, the action A can be defined as:

A =
{
aj

∣∣nj ∈ S
}
. (18)

where nj is the next-hop node to which the action is
forwarding the packet. At time slot t, if the packet is at
the node ni and the node nj is the next-hop, the reward

function is:

R
aj
ninj = −C0 − [ϕe × co(e) + ϕt × co(t) + ϕn × co(n)] .

(19)

(1) C0 is the fixed cost.
(2) co(e) is the energy cost, which can be expressed as:

co(e) = 1 −
ejres∑

k∈Nrelay(i)
ekres

. (20)

where ejres is the remaining energy of the next-hop node,∑
k∈Nrelay(i)

ekres is the total remaining energy of the candidate

next-hop nodes set, ϕe is the sensitivity coefficient of energy
cost.
(3) co(t) is the delay cost, which can be expressed as:

co(t) = 1 −
1

t i→j + 1
. (21)

where t i→j is the average transmission delay from node ni to
node nj, ϕt is the sensitivity coefficient of delay cost.
(4) co(n) is the robustness cost, which can be expressed as:

co(n) =
1
2

× (2 − β1
numjinput∑

k∈Nrelay(i)
numkinput

− β2
numjoutput∑

k∈Nrelay(i)
numkoutput

). (22)

where, numjinput and numjoutput , represent the number of
in-degree and out-degree neighbor nodes of the node nj
respectively, β1 and β2 are the adjustment weight, and ϕn is
the sensitivity coefficient of the robustness cost.

The reward function determines the optimization direction
of the transmission routing policy. To achieve the benefits of
the leader, the reward function is designed in Definition 1.
According to the Q-learning algorithm, the Q-value

iteration as follows.

Qt+1
i

(
sti , a

t
i
)

= (1 − α)Qti
(
sti , a

t
i
)

+ α
{
R
aj
ninj + γ ∗ ω1 ∗ V t

i

(
st+1
j

)}
. (23)

where α is the learning rate, V t
i

(
st+1
j

)
is the historical

forwarding experience from the node ni to the node nj, and
ω1 is the adjustment weight.
In the Stackelberg game modal, the global goal of the

multi-agents system is to maximize the benefits of the
leader, [29], [40], which is consistent with the optimization
direction of the transmission routing sub-algorithm based
on reinforcement learning. So the optimal policy of the
transmission routing sub-algorithm implemented based on
reinforcement learning, that is, the maximum Q value,
is consistent with the Q value selected by Stackelberg game.
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FIGURE 3. Transmission routing sub-algorithm.

And according to the Bellman equation, the value function of
the sending node is:

V t (s) = Stackelbergleader (Q(s, a))

= max
a
Q∗(s, a). (24)

At the beginning of reinforcement learning, the V-value
is given an initial value. With the iteration of learning,
the Q-value and V-value will be continuously updated and
converged by (23) and (24), and a good transmission routing
policy will finally be highlighted. Figure 3 shows how the
policy is generated based on the transmission routing sub-
algorithm. The sending node ni learns the routing policy to
select the next-hop node nj and forwards the packet to it.
The node nj continues to select the optimal next-hop node
based on the routing policy until the packet is forwarded to
the sink node. Due to the comprehensive consideration of the
location, remaining energy, transmission delay, and structural
robustness of neighbor nodes in the routing policy, it can
improve the reliability of packet forwarding.

C. COOPERATIVE COMMUNICATION SUB-ALGORITHM
In the cooperative communication system, whether candidate
cooperative nodes participate in cooperative communication
and who participates in cooperative communication is
determined by the Stackelberg game. The decision-making
process of candidate cooperative nodes participating in
cooperative communication can be described by the partially
observable Markov process (POMDP) which can be solved
based on the Stackelberg Q-learning [29], [40].

Suppose that the cooperative communication system con-
tains p candidate cooperative nodes, which can be expressed
as:

R =

{
nr1 , · · · , nrp

}
(25)

At time slot t , the candidate cooperative node nrx has three
states: state i) the packet is forwarded by the cooperative node
but fails to be received by the receiving node; state ii) the
packet is not forwarded; state iii) the packet is forwarded
by the cooperative node and received successfully by the
receiving node.
Definition 2: The status of the candidate cooperative

nodes nrx can be defined as:

Srx = {relay and without ack,

¬relay, relay and with ack}. (26)

The action Arx of the candidate cooperative node nrx can
be defined as:

Arx = {relay, ¬relay} . (27)

where, relay and ¬relay, represent the actions of to forward
the packet or not to forward the packet respectively, ‘ack’
is the feedback representing the packet has been received
successfully. At time slot t, the reward of the candidate
cooperative node nrx is:

R
arx
rx =



−ϕco × co
(
ρrelay

)
× co

(
erxres

)
,

when relay and without ack.
0,

when ¬relay.
R0 + [ϕcop × re

(
dnrx−nj

)
+

ϕcom × re
(
dni−nj

)
]

− ϕco × co
(
erxres

)
× co

(
ρrelay

)
,

when relay and with ack.

(28)

(1) R0 is the fixed benefit.
(2) re

(
dnrx−nj

)
is the cooperative distance benefit, which

can be expressed as:

re(dnrx−nj ) =
2
π
tan−1(dnrk−nj

− dnrx−nj ), nrk ∈ R. (29)

where dnrx−nj is the distance between the selected candidate
cooperative node and the receiving node, dnrk−nj

is the
average distance between the candidate cooperative nodes
set and the receiving node, and ϕcop is the adjustment
coefficient.
(3) co

(
erxres

)
is the communication distance benefit, which

can be expressed as:

re
(
dni−nj

)
=
dni−nj
dcom

. (30)

where dni−nj is the distance between the sending node ni and
the receiving node nj, dcom is the communication distance,
ϕcom is the adjustment coefficient.
(4) co

(
erxres

)
is the remaining energy cost, which can be

expressed as:

co
(
erxres

)
= β1 ×

(
1 −

erxres
erxini

)
+ β2 ×

2
π
tan−1

(
erkres − erxres

)
, nrk ∈ R. (31)
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where erxres and erxini are the remaining energy and initial
energy of the candidate cooperative node nrx , e

rk
res is the

average remaining energy of all candidate cooperative nodes,(
1 −

erxres
erxini

)
reflects the proportion of the remaining energy of

the candidate cooperative node, β1 and β2 are the adjustment
coefficients.
(5) co

(
ρrelay

)
is the density cost, which can be expressed

as:

co
(
ρrelay

)
= 1 −

1
p
. (32)

where p is the number of nodes in the candidate cooperative
node set, which represents the node density of the candidate
cooperative node set, and ϕco is the adjustment coefficient.
The reward function is designed based on the benefits

of the followers, which not only encourages cooperative
nodes to participate in communication to improve the packet
forwarding reliability and generate the communication bene-
fits but also inhibits the unnecessary communication energy
consumption caused by cooperative nodes’ partially sighted
and frequent participation in cooperative communication.

The Stackelberg game model in the cooperative com-
munication systems belongs to the complete information
gamemodel. Candidate cooperative nodes obtain each other’s
status by overhearing the packets in the underwater network.
According to the multi-agent Q-learning algorithm, the
Q-value iteration formula is:

Qt+1
rx (strx , a

t
rx ) = (1 − αrx )Q

t
rx (s

t
rx , a

t
rx )

+ αrx

{
R
arx
rx + γrx × ω2 × V t

rx (s
t+1
rx )

+ γrx × ω3 × V t
i (s

t+1
j )

− γrx × ω4 ×

∑
i′∈I ,i′ ̸=nrx

V t
i′

(
st+1
i′

) }
,

I = R ∩ neighbors(nrx ). (33)

where αrx is the learning rate, V t
rx

(
st+1
rx

)
represents the

current cooperative node’s historical cooperative commu-
nication experience, V t

i

(
st+1
j

)
represents the historical

forwarding experience from the node ni to the node nj,∑
i′∈I ,i′ ̸=nrx

V t
i′

(
st+1
i′

)
represent the historical cooperative com-

munication experience of the neighbor candidate cooperative
nodes, ω2, ω3, and ω4 are the adjustment coefficients.

In the Stackelberg game modal, the relationship between
the followers is competitive, and the followers’ goal is to
maximize the leader and their own benefits [29], [40]. Due
to the fact that the cooperative communication sub-algorithm
implemented based on multi-agent reinforcement learning
comprehensively considers the states of the current node,
the sending node, the receiving node and other candidate
cooperative nodes, the policy of the candidate cooperative
nodewith themaximumQvalue represents the optimal policy
for the candidate cooperative nodes set, that is, the policy
of the followers. Therefore, the candidate cooperative nodes

FIGURE 4. Cooperative communication sub-algorithm.

with the maximum Q value will be selected, and its optimal
policy will be used as the policy in the Stackelberg game. The
optimal policy of the followers can be defined as:

Stackelbergfollower (Q∗
r1 , · · · ,Q∗

rx , · · ·Q
∗
rp )

= max(Q∗
r1 , · · · ,Q∗

rx , · · ·Q
∗
rp ) = Q∗

rx . (34)

So according to the Bellman equation, the V-value of the
selected cooperative node nrx is:

V t
rx (s) = max

a
Q∗
rx (s, a). (35)

The V-value of the not-selected candidate cooperative
node nodes is not updated. With the iteration of training,
the V-value will be continuously updated according to (34)
and (35) and gradually converge, and a good cooperative
communication policy will finally be highlighted. Figure 4
shows how the policy is generated based on the cooperative
communication sub-algorithm.According to the transmission
route formed by the sending node ni and the receiving
node nj, the candidate cooperative node nk is determined to
participate in the cooperative communication based on the
policy, it forwards the packet by the cooperation channel.
Due to the comprehensive consideration of the cooperative
benefits and the energy consumption costs, on the premise
of maximizing the packet delivery rate, the communication
energy consumption can be reduced and balanced as much as
possible.

D. OPTIMIZATION METHODS
1) Q-VALUE INITIALIZATION
The Q table of the sending node in the transmission routing
sub-algorithm can be initialized according to the nodes’
location in the underwater network.
At each status update time, according to the neighbor

relations of the nodes, the Q-value of the sending node ni to
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its non-out-degree node nj is initially set as:

Qinini→nj
= −100, ni, nj ∈ N , nj /∈ Nrelay(i). (36)

At the initial time, a hemisphere with a layered structure
is established with the sink node as the center and the integer
multiple of the communication distance dcom as the radius.
When the distance di−sink between the node ni and the sink
node nsink meets:

(T − 1) × dcom < di−sink ≤ T × dcom, T ∈ {1, 2, · · ·} .

(37)

The initial Q-value of the sending node ni to the out-degree
node nj is set as:

Qinini→nj = −100 ×
T

Tmax
, ni, nj ∈ N , nj ∈ N relay(i). (38)

Tmax =
dsensor−sink

dcom
. (39)

where dsensor−sink is the distance between the sensor node and
the sink node.

Initializing the Q table according to the topology rela-
tionship can shorten the iteration rounds of the Q-learning
algorithm.

2) DYNAMIC EXPLORATION PROBABILITY
The reinforcement learning algorithm adjusts the degree of
‘‘exploration’’ and ‘‘utilization’’ by exploring probability ε

to ensure that it always converges to the optimal result.
Because of the time-varying transmission channel, it is
necessary to dynamically adjust the exploration probability
ε in the transmission routing sub-algorithm, according to the
convergence degree of the algorithm.

At time slot t , the current state value of the current node
is V (t) and the new state action value is Q (t + 1), then ε(t)
should meet:

ε(t) =


ωε × e−1×|V (t)−Q(t+1)|,

0 < V (t) − Q (t + 1) < εthres.

εini, otherwise.

(40)

where ωε is the adjustment coefficient for the dynamic
exploration probability, εthres is the threshold of the variation
range of the V-value.

E. PROCESS OF SQMCR
The SQMCR algorithm process is based on the Stackelberg
game and is divided into two stages. The first is the leader
stage and the second is the follower stage.

1) LEADER STAGE
In this stage, the goal of SQMCR is to select the optimal
next-hop node and improve the reliability of packet forward-
ing, (see Algorithm 1).

where timessend is the number of retransmissions and
timesmax is the retransmission threshold.

Algorithm 1 SQMCR-Leader
Initialize the Qleader by (36) - (39)
While(true)
If (the new packet to send)
While (timessend ≤ timesmax)
Update the Sleader and Aleader by (17) – (18)
Calculate the Rleader by (19) – (22)
Calculate the Qleader by (23)
Calculate the εleader by (40)
Choose the next-hop node
Form the packet and forward it
If (the packet has been received)
Update the Vleader using (24)
Break

Else
Update the Vleader using (24)
timessend + +

End If
Update the εleader using (40)

End While
End If
Update the Qleader by (36)
End While

2) FOLLOWER STAGE
In this stage, the goal of SQMCR is to determine whether
to participate in the communication according to the route
selected by the leader, (see Algorithm 2).

Algorithm 2 SQMCR-Follower
Initialize the Qfollower as 0
While(true)
If (the new packet has been sent from the leader)
If (the destination is the neighbor node)
Update the Sfollower and Afollower by (26) – (27)
Calculate the Rfollower by (28) – (32)
Calculate the Qfollower by (33)
Determine whether to relay or ¬relay
If (the selected action is relay)
Update the packet, and forward it
Update the Vfollower using (35)
End If

End If
End If
End While

F. PACKET OF SQMCR
The SQMCR algorithm defines two types of packets: busi-
ness packets and control packets. The business packets are
forwarded in the business channel, carrying the monitoring
data. The transmission routes for the business packets are
from the underwater sensor node to the surface sink node
through the communication nodes. The control packets
forwarded between neighboring nodes are transmitted in the
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FIGURE 5. Packet of SQMCR algorithm.

control channel, which is used to synchronize the status of
neighbor nodes. Each node updates the status of the current
node, neighbor nodes and the transmission channel in the
database by listening to the business or control packets.

The structure of business packets is shown in Figure 5-a.
Fields 1 to 3 are the ID of the sending node, the receiving
node, and the cooperative node. Field 4 is the Q-value
forwarded by the current node to the receiving node. Fields
5 and 6 are the timestamp of the packet forwarded and the
number of times the packet has been repeatedly forwarded.
Fields 7 to 9 are the number, the average remaining energy
of the candidate cooperative nodes, the average distance
from the receiving node to the candidate cooperative nodes.
Fields 10 to 11 are the sequence number and data content
of the forwarded packet. The business packet is forwarded
by the sending node and the cooperative node. When the
sending node sends out, the third field is empty. When the
cooperative node forwards, the current node ID is filled in.
When the receiving node feeds back the receiving result,
set the field 4 to 255, indicating that the data has been
received successfully, and update the sending timestamp of
the receiving node.

The structure of the control packet is shown in Figure 5-b.
Fields 1 to 3 are the current node’s ID, coordinates, and
remaining energy. Field 4 contains the number and IDs of the
in-degree nodes. Field 5 contains the number and IDs of the
out-degree nodes.

V. PERFORMANCE EVALUATION
A. EXPERIMENTAL ENVIRONMENT AND METHODS
The performance evaluation mainly focuses on the transmis-
sion hops, packet delivery rate, transmission delay, network
lifetime and remaining energy provided by the SQMCR
under different node densities, traffic flow, outage probability,
and node location dynamic ranges. The baseline algorithms
include VBF, QELAR, and QMCR. The simulation environ-
ment is based on the application of underwater temperature
monitoring, and the data are from the KEO station in the
NOAA database. The three dimensional underwater area is
set to 500m × 500m × 500m. The MAC layer protocol
is implemented by S-FAMA. The simulation environment

TABLE 2. Hyper-parameters of SQMCR.

is built based on Python. Table 2 shows the settings of the
hyper-parameters of SQMCR.

The experiment is divided into 9 scenarios. The envi-
ronment parameters of scenario (a) (100-Nodes) are set
as follows: the number of communication nodes Nc =

100, the maximum dynamic range of node position change
Pd = 0 meters/minute, the outage probability Op =

0 times/packet, and the business flow Br = 6 packets/minute.
The environmental parameters of scenario (b) (150-Nodes) is
(Nc = 150,Pd = 0,Op = 0,Br = 6). The environmental
parameters of scenario (c) (200-Nodes) is (Nc = 200,Pd =

0,Op = 0,Br = 6).The environmental parameters of
scenario (d) (DR-5) is (Nc = 100,Pd = 5,Op = 0,Br =

6). The environmental parameters of scenario (e) (IC-0.01)
is (Nc = 100,Pd = 0,Op = 0.01,Br = 6).The
environmental parameters of scenario (f) (TF-2) is (Nc =

100,Pd = 0,Op = 0,Br = 2). The environmental
parameters of scenario (g) (DR-10) is (Nc = 100,Pd =

10,Op = 0,Br = 6).The environmental parameters of
scenario (h) (IC-0.1) is (Nc = 100,Pd = 0,Op = 0.1,
Br = 6). The environmental parameters of scenario (i) (TF-1)
is (Nc = 100,Pd = 0,Op = 0,Br = 1).

B. TRANSMISSION HOPS COMPARISON
The number of transmission hops refers to the number of
nodes experienced by the packets sent from the underwater
sensor nodes to the surface sink nodes.

From the overall view of Figure 6, the shortest path
algorithm corresponds to the least number of transmission
hops and always keeps at 5. However, after less than
50 packets are forwarded, the nodes cannot continue to
forward due to the depletion of the remaining energy of the
nodes on the transmission route. The number of transmission
hops of VBF generally changes dynamically between 5 and 7,
but after less than 70 packets are forwarded, it is also
because the remaining energy of nodes in the transmission
route is exhausted and the node cannot continue to forward.
The number of transmission hops of QELAR, QMCR, and
SQMCR varies dynamically from 5 to 15. With the increase
of the forwarded packets, the number of transmission hops
shows an increasing trend. Among them, the number of
transmission hops required by SQMCR is less than that of
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FIGURE 6. Changes in the number of transmission hops for 100 packets sent. Figure 6-a reflects the change in the number of
transmission hops for 100 packets sent in the scenario (a). The horizontal axis is the sequence number of packets, and the vertical axis
is the number of transmission hops. Figure 6-b reflects the scenario (b), Figure 6-c reflects the scenario (c), Figure 6-d reflects the
scenario (d), Figure 6-e reflects the scenario (e), Figure 6-f reflects the scenario (f), Figure 6-g reflects the scenario (g), Figure 6-h
reflects the scenario (h), and Figure 6-i reflects the scenario (i). The black (□) line represents the shortest path algorithm. The orange
(⃝) line represents the VBF. The blue (

a
) line represents the QELAR. The green (

`
) line represents the QMCR. The red (♢) line

represents the SQMCR.

QELAR and QMCR. The shortest path and VBF based on the
determined rules have the advantages of smaller transmission
hops and smaller dynamic range, but the disadvantage is
that the route is relatively fixed and the distribution of
communication energy consumption is uneven. The routing
algorithm based on reinforcement learning can adaptively
construct and optimize the routes according to the number
of hops, remaining energy, delay, and other factors, and can
provide packet forwarding service for a long time.

Comparing Figures 6-a, 6-b, and 6-c, with the increase
of node density and the change of network topology, the
minimum number of the transmission hops required does
not change, which is 5. The shortest path and VBF have
no obvious packet loss, showing the same change as the
whole. For QELAR, QMCR, and SQMCR, with the increase
in node density, the number of optional transmission paths
increases, and the increased trend in transmission hops
slows down. Comparing Figures 6-a, 6-d, and 6-g, as the

dynamic range of the node location increases, the shortest
path, and VBF have a certain number of packet losses, the
dynamic range of transmission hops of QELAR, QMCR,
and SQMCR increases, and the overall transmission hops
show an increasing trend. The QMCR and SQMCR can
reduce the impact of increasing the dynamic range of the
node position and maintain a relatively stable change in the
number of transmission hops due to the use of cooperative
communication. Comparing Figures 6-a, 6-e, and 6-h, with
the increase of the outage probability, the shortest path
and VBF have a certain number of packet losses, and the
dynamic range of transmission hops of QELAR, QMCR, and
SQMCR increases. Because the small movements of the node
positions will not cause the change in node communication,
the influence of the increasing dynamic range of node
position has a certain cumulative effect. However, the impact
of the increase in the outage probability is rapid, there
have been significant changes in the number of transmission
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FIGURE 7. Change in the average transmission hops number for
100 packets sent.

hops for QELAR, QMCR, and SQMCR since the initial
stage. SQMCR relies on the cooperative communication,
the retransmission mechanism and the optimization methods,
so the number of transmission hops of SQMCR is still the
minimum compared with QELAR and QMCR. Comparing
Figures 6-a, 6-f, and 6-i, with the change of packet traffic
demand, the number of transmission hops of the shortest path,
VBF, QELAR, QMCR, and SQMCR is consistent with the
overall trend.

From the overall view of Figure 7, when 100 packets
sent, the average transmission hops number of SQMCR is
smaller than that of VBF, QELAR, and QMCR in most
scenarios, and is close to that of the shortest path algorithm.
As different scenarios switched, the change in the average
transmission hop number of SQMCR is relatively moderate,
which indicates that SQMCR has better robustness. When the
dynamic range of node location changes further increases,
the average transmission hop number of SQMCR increases
slightly, mainly due to the increase in dynamic range of node
position change, which leads to the changes of the neighbor
relationships and thus affects the transmission hop number.

C. PACKET DELIVERY RATE COMPARISON
Packet delivery rate refers to the ratio of the number of
packets received by the sink node to the number of packets
sent by the sensor node.

From the overall view of Figure 8, regardless of changes
in node density, network topology, node position dynamic
range, outage probability and data transmission flow, the
SQMCR maintains the highest packet delivery rate, followed
by the QMCR, and the QELAR has the lowest packet
delivery rate. This shows that the SQMCR can provide higher
reliability for packet forwarding in underwater wireless
sensor networks.

Comparing the histogram of ‘‘100-Nodes’’, ‘‘150-Nodes’’
and ‘‘200-Nodes’’ data sub-groups, the packet delivery rates
of QELAR, QMCR, and SQMCR all change with the
overall trend as the node density and network topology
change. Although in the ‘‘150-Nodes’’ and ‘‘200-Nodes’’
data subgroups, the optional transmission routes increase
with the increase of node density, due to the change of
network topology, the packet delivery rates of QELAR,
QMCR, and SQMCR do not increase. The packet delivery
rates of QELAR, QMCR, and SQMCR in the ‘‘150-Nodes’’

data subgroup decrease compared with the other two scenar-
ios. Compared with the histogram of ‘‘100-Nodes’’, ‘‘DR-5’’
and ‘‘DR-10’’ data subgroups, the packet delivery rate of
QELAR, QMCR, and SQMCR showed a downward trend as
the dynamic range of the node location increased. Compared
with QELAR and QMCR, SQMCR has the smallest drop and
can always achieve reliable packet forwarding in the case of
large changes in network topology. Comparing the histogram
of ‘‘100-Nodes’’, ‘‘IC-0.01’’ and ‘‘IC-0.1’’ data subgroups,
with the increase of the outage probability, the packet
delivery rate of QELAR, QMCR, and SQMCR showed
a downward trend. Compared with QELAR and QMCR,
SQMCR has the smallest decrease. Comparing the histogram
of ‘‘100-Nodes’’, ‘‘TF-2’’ and ‘‘TF-1’’ data subgroups, with
the reduction of packet traffic, the packet loss caused by
congestion is further avoided, and the packet delivery rate
of QELAR, QMCR, and SQMCR shows an overall upward
trend.

D. TRANSMISSION DELAY COMPARISON
Transmission delay refers to the time from the packet left
from the sensor node to the arrival at the sink node.

From the overall view of Figure 9, in most cases, the
SQMCR maintains the minimum transmission delay, the
QMCR takes the second place, and the QELAR has
the maximum transmission delay. Only in the ‘‘IC-0.01’’ and
‘‘DR-10’’ data subgroups, the transmission delay of SQMCR
is slightly higher than that of QMCR. SQMCR uses the
optimization method based on Q-value initialization, which
shortens the training time and reduces the transmission delay.
In addition, the consideration of the transmission delay in
the SQMCR’s reward function further avoids the possibility
of congestion. It shows that SQMCR has high transmission
efficiency.

Comparing the histogram of ‘‘100-Nodes’’, ‘‘150-Nodes’’
and ‘‘200-Nodes’’ data sub-groups, with the increase of node
density, the transmission delay of QELAR and SQMCR
decreased, while the transmission delay of QMCR fluctuated
slightly. As the node density decreases, more and better
transmission routes will be generated, which is conducive to
the reduction of transmission delay. Comparing the histogram
of ‘‘100-Nodes’’, ‘‘DR-5’’ and ‘‘DR-10’’ data subgroups,
with the increase of the dynamic range of node location, the
transmission delay of QMCR and SQMCR shows an upward
trend, while the transmission delay of QELAR fluctuates
slightly. As the dynamic range of node position increases and
the transmission route changes, the number of transmission
hops increases, the packet loss is serious, the probability
of packet retransmission increases, and the transmission
delay increases. Comparing the histogram of ‘‘100-Nodes’’,
‘‘IC-0.01’’ and ‘‘IC-0.1’’ data subgroups, with the increase
of the outage probability, the transmission delay of QMCR
and SQMCR shows an upward trend, while the transmission
delay of QELARfluctuates slightly. As the outage probability
increases, the packet loss is serious, which increases the
probability of packet retransmission, and the transmission
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FIGURE 8. Change in the packet delivery rate of 100 packets sent.

FIGURE 9. Change in the transmission delay of 100 packets sent.

delay increases. Among them, the outage probability of
0.1 times/packet has the greatest impact on the transmission
delay. Compared with the histogram of ‘‘100-Nodes’’,
‘‘TF-2’’ and ‘‘TF-1’’ data subgroups, the overall transmission
delay of QELAR, QMCR, and SQMCR changes little with
the reduction of packet traffic.

E. NETWORK LIFETIME COMPARISON
Network lifetime refers to the time from the first packet sent
by the sensor node to the last packet received by the sink
node. The network lifetime is determined by the maximum
sequence number of the packets that can be received by
the sink node. The maximum packet forwarding capacity
of the network refers to the number of packets forwarded
by the underwater networkwithin the network lifetime, which
represents the actual ability of the underwater network to
provide packet forwarding services.

In Figure 10, compared with QELAR and QMCR, overall,
SQMCR has the largest number of received packets, the
highest packet delivery rate, and the highest maximum
sequence number of received packets. It shows that SQMCR
maximizes the efficiency of the communication energy
utilization among the nodes and can provide reliable packet
transmission services over a longer time range. Only in some
cases, the highest maximum sequence number of SQMCR

is slightly inferior to that of QELAR. Because QELAR
does not adopt cooperative communication, it can save a
certain of communication energy and prolong the network
life, but it cannot achieve more reliable packets forwarding.
QMCR uses the determined rules to implement cooperative
communication. Although it will improve the packet delivery
rate, it wastes the remaining energy of nodes and reduces
the network lifetime when cooperative communication is
not required. SQMCR controls cooperative communication
based on Q-learning, which not only achieves better packet
forwarding benefits but also avoids unnecessary communica-
tion energy consumption and prolongs the network lifetime.

Comparing Figures 10-a, 10-b, and 10-c, with the increase
of node density, the maximum sequence number of received
packets and the number of received packets in the underwater
networks using QELAR, QMCR, and SQMCR increases,
but the packet delivery rate decreases. This is because the
node density increases, the available transmission routes
increase, and the network life is extended. With the easy-
to-use transmission routes gradually consumed, the packet
delivery rate is reduced. Compared with Figures 10-a, 10-d,
and 10-g, as the dynamic range of node location increases,
the maximum sequence number of received packets in
underwater networks using QELAR, QMCR, and SQMCR is
not significantly affected, but the number of received packets
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FIGURE 10. Changes in the number of received packets, maximum sequence number of received packets, and packet delivery rate
within the network lifetime. Figure 10-a shows the number of received packets, the maximum sequence number of received packets,
and the change of packet delivery rate, within the network lifetime in the scenario (a). The lower edge of the box is the number of
received packets, and the upper edge of the box is the maximum sequence number of received packets, identified by the left vertical
axis. The black dotted line reflects the change in packet delivery rate for different routing algorithms and is identified by the right
vertical axis. The Figure 10-b reflects the scenario (b), Figure 10-c reflects the scenario (c), Figure 10-d reflects the scenario (d),
Figure 10-e reflects the scenario (e), Figure 10-f reflects f, Figure 10-g reflects the scenario (g), Figure 10-h reflects the scenario (h), and
Figure 10-i reflects the scenario (i). The blue box reflects QELAR, the green box reflects QMCR, the red box reflects SQMCR and the
three identification points in the black line reflect QELAR, QMCR, and SQMCR respectively.

and the packet delivery rate are reduced. Compared with
Figures 10-a, 10-e, and 10-h, with the increase of outage
probability, the maximum sequence number of received
packets, the number of received packets, and the packet
delivery rate are all reduced in underwater networks using
QELAR, QMCR, and SQMCR. Comparing Figures 10-a,
10-f, and 10-i, with the change of packet traffic demand,
the maximum sequence number of received packets, the
number of received packets, and the packet delivery rate in
the underwater network using QELAR, QMCR, and SQMCR
are not significantly affected.

F. REMAINING ENERGY COMPARISON
When the remaining energy of a node exceeds the energy
required for transmission, the node can participate in packet
forwarding and is called an alive node. When the remaining
energy of a node is lower than the energy required for trans-
mission, the node cannot participate in packet forwarding and
is called a dead node. When there are dead nodes in each
transmission route of the network, the network lifetime ends.

Energy tax refers to the average of energy required for each
packet forwarded over the network lifetime relative to all
nodes.

In Figure 11, compared with QELAR and QMCR,
overall, SQMCR has the lowest energy tax. It shows that
SQMCR requires less energy consumption for forwarding
each packet and has higher forwarding efficiency. Effective
cooperative communication control not only reduces the
energy consumption generated by unnecessary cooperative
communication, but also reduces the energy consumption
caused by packet retransmission. The energy consumption
generated by unnecessary cooperative communication makes
the energy tax of QMCR the highest, greatly reducing the
forwarding efficiency of QMCR. At lifetime end of the
networks configured by QELAR, QMCR, and SQMCR
separately, the number of alive and dead nodes is similar.
It indicates that the three routing algorithms based on
reinforcement learning use the similar key-nodes in the
transmission routes. As the number of packets forwarding
increases, some nodes on the transmission route become
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FIGURE 11. Changes in the number of dead/alive nodes and the energy tax. Figure 11-a shows the number of dead/alive nodes and the
energy tax in the scenario (a). The lower edge of the box is the number of dead nodes, and the upper edge of the box is the number of
alive nodes, identified by the left vertical axis. The black dotted line reflects the change in energy tax for different routing algorithms and
is identified by the right vertical axis. The Figure 11-b reflects the scenario (b), Figure 11-c reflects the scenario (c), Figure 11-d reflects the
scenario (d), Figure 11-e reflects the scenario (e), Figure 11-f reflects the scenario (f), Figure 11-g reflects the scenario (g), Figure 11-h
reflects the scenario (h), and Figure 11-i reflects the scenario (i). The blue box reflects QELAR, the green box reflects QMCR, the red box
reflects SQMCR and the three identification points in the black line reflect QELAR, QMCR, and SQMCR respectively.

dead nodes. The number of alive nodes for the QMCR is
relatively lower, while the number of dead nodes is relatively
higher, which is because some nodes frequently participate in
cooperative communication, leading to the energy depletion.

Comparing Figures 11-a, 11-b, and 11-c, with the increase
of node density, the number of dead and alive nodes
in the underwater networks using QELAR, QMCR, and
SQMCR increase, but the energy tax dynamically change
with the changes in network topology. It is because with
the node density increases, more nodes participate in packet
forwarding, resulting in the increase of the number of
alive and dead nodes. As the node density and the packet
delivery rate increases, the energy consumption caused by the
unnecessary cooperative communication of QMCR becomes
more significant which make the energy tax for QMCR the
highest. Compared with Figures 11-a, 11-d, and 11-g, as the
dynamic range of node location increases, the number of
dead and alive nodes in underwater networks using QELAR,
QMCR, and SQMCR are not significantly affected, but the
overall of energy tax has been improved to a certain extent.
Retransmission results in the significant energy consumption,

especially for QELAR. Compared with Figures 11-a,
11-e, and 11-h, in the underwater networks using SQMCR,
with the increase of outage probability, the number of dead
nodes has slightly increased, while the number of alive
nodes has slightly decreased, indicating that more nodes are
participating in the packet forwarding. And with the increase
of outage probability, the energy tax for SQMCR is still the
lowest compared to QELAR and QMCR, and the energy tax
for QELAR has significantly increased, due to the increase in
retransmission times. Comparing Figures 11-a, 11-f, and 11-i,
with the change of packet traffic demand, the number of dead
and alive nodes in the underwater network using QELAR,
QMCR, and SQMCR vary very little, the energy tax for
QELAR, QMCR, and SQMCR have slightly increased as the
interval of packet forwarding increases.

VI. DISCUSSION
SQMCR uses multi-hop cooperative communication to
improve the reliability of underwater packet forwarding.
Compared with the single-hop communication, the multi-hop
communication can provide a larger transmission bandwidth
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and longer transmission distance. Compared with point-to-
point communication, cooperative communication can avoid
packet forwarding outages caused by fading, multipath,
occlusion, and the Doppler effect. The simulation results
show that it is not difficult to find that the underwater wireless
sensor network configuredwith SQMCRcan provide a higher
packet delivery rate, regardless of the conditions of different
node densities, different maximum dynamic ranges of node
positions, different outage probability and different packet
traffic. Compared with the baseline algorithms, the packet
delivery rate provided by SQMCR is more than 17% higher.

SQMCR uses the Stackelberg game to coordinate the
relationship among the sending node, the receiving node,
and the candidate cooperative nodes. The goal is to achieve
reliable packet forwarding, reduce and balance the commu-
nication energy consumption, and extend the lifetime of the
underwater networks. When selecting the transmission route,
the sending node will comprehensively consider the location,
remaining energy, transmission delay, historical forwarding
experiences of the candidate receiving node, and whether the
candidate receiving node has enough suitable neighbor nodes
to act as the cooperative nodes, to improve the reliability of
packet forwarding. When selecting whether to participate in
cooperative forwarding, the candidate cooperative nodes will
comprehensively consider the distance to the receiving node,
the historical forwarding status between the sending node
and the receiving node, the number of candidate cooperative
nodes, as well as its remaining energy and its advantages
in the candidate cooperative nodes set, to ensure reliable
packet forwarding and minimize communication energy
consumption. As the leader, the sending node considers the
followers before making the transmission routing decisions.
The candidate cooperative nodes, as the followers, choose
whether to participate in the cooperative communication
according to the leader’s decision and its conditions. There-
fore, compared with the cooperative communication method
based on the determined rule, the cooperative communication
decision making method based on the Stackelberg Q-learning
can further improve the rationality of the cooperative routing
selection, and further approach the Nash equilibrium point of
the communication benefits and energy consumption costs.
The simulation results show that it is also not difficult
to find that the underwater wireless sensor network with
SQMCR can provide more durable and reliable packet
forwarding services compared with the baseline algorithms
under different conditions. The SQMCR can reduce the
energy tax by 23% and increase the number of received
packets by 17%, during the network lifetime.

SQMCR also adopts the method of Q-value initialization
and dynamic exploration probability, which further improves
the convergence speed and stability of the routing algorithm.

VII. CONCLUSION
The underwater wireless sensor network based on SQMCR
can providemore reliable packet forwarding services asmuch
as possible based on ensuring efficient packet forwarding

services. The SQMCR realizes the long-distance and broad-
band packet forwarding in the underwater network based
on multi-hop cooperative communication. By coordinating
the relationships between the sending node, the receiving
node, and the candidate cooperative nodes based on the
Stackelberg game, the SQMCR learns the best routing policy
and cooperative communication policy with the optimized
Q-learning. The simulation results show that the SQMCR
can help the underwater wireless sensor network increase
the packet delivery rate and the maximum packet forwarding
capacity of the network by 17%, with better environment and
application adaptability. Therefore, SQMCR is more suitable
for underwater high-reliability applications.
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