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ABSTRACT Hyperspectral remote sensing image analysis employing deep learning (DL) models has
consistently demonstrated remarkable performance, owing to their robust nonlinear modeling and end-
to-end optimization capabilities. Notably, the capsule neural network (CapsNet) has attracted substantial
attention for its proficient feature extraction capabilities. However, it tends to overlook the inherent spatial
heterogeneity within patch features. In this paper, we introduce a spatial attention-based deep convolutional
capsule network (SA-CapsNet) to enhance CapsNet’s performance in hyperspectral image (HSI) classifica-
tion. The incorporation of a more potent and light-weight spatial attention mechanism introduces diversity
among neighboring pixels. Additionally, we enhance the stability of learned spectral-spatial features by
implementing a convolutional capsule layer that extends dynamic routing with 3D convolution. Experimental
results conducted on three commonly used hyperspectral datasets demonstrate that SA-CapsNet outperforms
conventional and state-of-the-art DL-based HSI classification algorithms in terms of classification accuracy
and computational efficiency.

INDEX TERMS Spatial attention, capsule neural network, deep learning, hyperspectral image classification.

I. INTRODUCTION
Hyperspectral images (HSIs) exhibit an exceptionally high
spectral resolution, comprising hundreds of narrow contin-
uous wavelength bands that encompass the electromagnetic
spectrum. This wealth of spectral data facilitates precise dis-
crimination among similar materials of interest. Thus, the
classification of HSIs has surged in popularity within the
field of remote sensing and has found application in diverse
domains, including scene recognition, precision agriculture,
and land monitoring, among others.

The progress in hyperspectral image (HSI) classifica-
tion has greatly benefited from the application of advanced
machine learning and pattern recognition techniques. Deep
learning (DL), known for its remarkable capacity to represent
spectral-spatial properties, can automatically generate
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data-adaptive high-level features. This approach has been
extensively employed in HSI classification scenarios. Con-
volutional neural networks (CNNs) [1], [2], stacked autoen-
coders (SAEs) [3], [4], deep belief networks (DBNs) [5],
[6], and recurrent neural networks (RNNs) [7], [8] are some
examples of common deep learning models applied to HSI
classification. Among these DL techniques, CNNs stand
out as the most popular architecture for image recognition,
classification, and detection tasks, encompassing 1D CNNs,
2D CNNs, 3D CNNs, and certain hybrid variants [9]. For
instance, to accurately identify hyperspectral images (HSIs)
by capturing spectral properties, the use of 1D CNNs has
been suggested [10]. However, 1D CNNs flatten the spatial
image into a 1D vector, overlooking the spatial distribution
patterns inherent in HSIs. Consequently, 2D CNNs [11],
[12] have been proposed to simultaneously extract spatial
and spectral information and reduce the dimensionality of
original HSI data domain, considering the abundant spectral
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FIGURE 1. Architectural of the proposed SA-CapsNet.

information in HSIs. Nevertheless, it is worth noting that
when employing 2D CNNs, the spectral-spatial integral
features of hyperspectral imaging, which manifest as a
cube of data, may be compromised. To fully exploit the
spectral-spatial information within HSIs, 3D CNNs [13],
[14], [15] have been developed. These networks simul-
taneously extract spectral-spatial features from HSI data,
thereby enhancing classification performance and offering a
promising approach for managing hyperspectral data cubes.
Furthermore, various efficient methods, as documented in
studies such as those by Paoletti et al. [16], Zhong et al. [17],
and Tang et al. [18], have been integrated with CNNs to
enhance the effectiveness of HSI classification.

Despite the impressive effectiveness of the current
CNN-based HSIs classification algorithms, some limitations
may still be witnessed. On the one hand, max pooling is
frequently used by CNNs to lower computation costs and
improve feature invariance, allowing it to collect more dis-
criminative properties while losing the correlations be-tween
the attributes of geographic objects. On the other hand,
the scalar value employed in CNNs to represent features
has inferior representational capacity because of the intri-
cacy of HSIs. CapsNet, a unique deep learning model, that
employs dynamic routing-by-agreement and vector-output
capsules to boost the model’s feature representation capabil-
ity, and encapsulate the correlations between various features,
has previously been suggested to enhance CNN’s perfor-
mance [19]. In the CapsNet, a cluster of neurons serves as
a capsule in place of a neuron in the conventional neural
network. The capsule is a vector that represents internal prop-
erties that can be used to acquire part-to-whole relationships
between distinct objects. It can overcome the issue whereby
fully connected layers in standard neural networks are unable
to accurately capture the hierarchical structure tomaintain the

spatial information. In the previous works, a modified two-
layer CapsNet with few training samples was presented by
Deng et al. [20] for HSIs interpretation. To extract more dis-
criminant information, a five-layer supervised deep CapsNet
architecture was created for HSI classification [21]. Further-
more, a novel and fast D-CapsNet [22] was used to obtain
the richer and more reliable features for scene classifica-
tion. These researches demonstrate that CapsNets have better
representations and improve classification performance.

As well, the research of HSIs classification has studied
CNN with attention mechanisms extensively, including spa-
tial attention [23], spectral attention [24], and spatial-spectral
joint attention [25], [26]. To capture non-local spectral-spatial
characteristics, Lei et al. [27], developed a non-local CapsNet
coupled attention methodology with CapsNet. Early research
has shown that the attention mechanism might enable deep
models to emphasize more prominent characteristics while
suppressing those that are less beneficial. Despite the great
results obtained by CNN with attention mechanism, these
networks are affected by a major overfitting problem due
to the large number of parameters to be trained and the
cost of resources spent on redundant features. Therefore,
a convolutional capsule network based on a light-weight
spatial attention mechanism (SA-CapsNet) is proposed to
acquire the more robust and useful information for HSIs
classification, improving the data representation by refining
initial convolutional features will produce better features.
First, to model discriminative and representative character-
istics, a lighter spatial attention operator is designed before
the initial convolution. Then, to improve the classification
performance, a dynamic routing based on 3D convolution is
implemented. Finally, with only a small number of training
samples, the proposed model achieves satisfactory classifica-
tion outcomes on several widely-used HSI datasets.
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TABLE 1. Primary architecture of SA-CapsNet.

The rest of this paper is organized as follows. The architec-
ture of the SA-CapsNet is described in Section II, the findings
of the experiments and discussions are presented in Part III,
and the paper is concluded in Section IV.

II. RELATED WORK
Suppose X ∈ RM×B be an HSI with M total pixels, B bands,
and c classes. The proposed framework SA-CapsNet includes
a spatial attention operator, an encoder and a decoder. The
encoder is composed of two convolution operators, a primary
capsule layer, a 3D convolutional capsule layer and an output
layer. The decoder module consists of a full-connected layer
and several deconvolution layers. The simple SA- CapsNet
architecture is shown in Fig. 1. Table 1 displays the primary
architecture of the SA-CapsNet for HSIs classification.

A. SPATIAL ATTENTION
In the field of HSI classification, CNNs with spatial attention
mechanism have been extensively researched and proved to
be effective. For our spatial attention technique, we employ
a correlation matrix and a trainable cosine distance function
to assign varying weights to different pixels. To elaborate,
we initially construct patch features that represent spatial
information using a squared moving window. To mitigate
scale dependence in the input patch features, we apply L2 nor-
malization to obtain X’. Subsequently, we utilize an attention
mask based on the correlation matrix of nearby pixels.

F = X′X′⊤ (1)

where X′ ∈ RM ′×B, M ’ equals p × p, which represents the
number of adjacent pixels, with p signifying the window size.
F represents the correlation matrix of pairwise neighboring
pixels. Subsequently, we establish a trainable cosine distance
function to evaluate the similarity of each surrounding pixel

to the central pixel.

αi =
Fi3F⊤0
∥Fi∥

∥∥F⊤0 ∥∥ (2)

where, i ∈ {1, 2, . . . ,M ′}, the central pixel vector in the
neighborhood is denoted as F0, and Fi represents an arbi-
trary surrounding pixel vector. The learnable parameter α

is obtained by adding the diagonal matrix 3 ∈ RM ′×M ′ .
To ensure improved convergence, the attention weights are
subsequently normalized to have a unit sum through the
application of a softmax function.

wi =
eαi+bi

M∑
j=1

eαj+bj
(3)

where
∑
wi = 1, b represents the bias, and a diagonal

weight matrix W ∈ RM ′×M ′based on wi, can be established.
This lightweight approach incorporates the variability of sur-
rounding pixels when representing features by employing a
data-adaptive and learnable weighting technique. Notably,
pixels with larger weights, in contrast to those with smaller
weights, carry greater importance and exert amore significant
influence.

B. CAPSNET BASED ON 3D CONVOLUTION DYNAMIC
ROUTING
To counteract the adverse consequences of stacking capsule
layers, CapsNet employs an extended form of dynamic rout-
ing founded on 3D convolution. Thismodification enables the
construction of a potent deep convolutional capsule network
for HSI classification. Consequently, the model can generate
more dependable classification outcomes even when faced
with limited training data, thanks to its ability to aggregate
more robust higher-level feature information. The output
8k
∈ R

(
wk ,wk ,ck ,nk

)
from capsule layer k was first trans-

formed into a 3D tensor, followed by reconstruction using 3D
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TABLE 2. Summary of the number of each class on the IP dataset.

TABLE 3. Summary of the number of each class on the KSC dataset.

convolution kernels. Finally, a reshape operation was applied
to obtain the prediction Y.

Y = Reshape
(
Conv3D

(
Reshape

(
8k

)))
(4)

Each capsule tensor s within layer k generates a pre-
diction denoted as Ys. Consequently, a 3D variant of the
softmax function can be employed to calculate the coupling
coefficients Hs for the predictions for all s.

Hs = soft max (Bs) (5)

TABLE 4. Summary of the number of each class on the PU dataset.

hpqrs =
exp

(
bpqrs

)∑
x

∑
y

∑
z
exp

(
bxyzs

) (6)

At position (p, q, r) within Hs and Bs, hpqrs and bpqrs
represent the coupling coefficient and logit, respectively. The
total input of the capsule, Spqr , in layer (k+1) is computed as
a weighted sum of all prediction vectors Ypqrs. Subsequently,
applying a squash function yields the capsule’s output, Vpqr ,
in layer (k + 1). The logit bpqr is updated by assessing the
compatibility between Vpqr and Ypqr . The output of capsule
layer (k+1), denoted as 8k+1, is generated by utilizing Vpqr .

Spqr =
∑
s

hpqrs · Ypqrs (7)

Vpqr =

∥∥Spqr∥∥2
1+

∥∥Spqr∥∥2 · Spqr∥∥Spqr∥∥ (8)

bpqrs← bpqrs + Vpqr · Ypqrs (9)

Apart from capturing part-to-whole data correlations
within the target geographic object, the 3D convolution-based
extension of dynamic routing also extracts spectral-spatial
features from the input feature maps. The loss function of the
proposed framework is a combination of margin loss Lm and
reconstruction loss Lr .

L = Lm + λLr (10)

Lm = Tcmax
(
0,m+ − ∥vc∥

)2
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FIGURE 2. Classification maps for the IP dataset: (a) false color image, (b) ground truth map,
(c)-(h) corresponding to SVM, 2D-CNN, 3D-CNN, RSSAN, 3D-CapsNet and SA-CapsNet, respectively.

+ λ1 (1− Tc)max
(
0, ∥vc∥ − m−

)2 (11)

Lr = ∥X− Xr∥ (12)

where, λ serves as a balancing coefficient, ensuring proper
control over the reconstruction loss. The variable c denotes
the classification category, and λ1 can be empirically adjusted
to 0.5. When class c is present in the image, Tc is assigned
the value 1; otherwise, it is changed to 0. Furthermore, m+

represents the lower threshold for correct classification, while
m− denotes the upper threshold for misclassification. When
∥vc∥ ∈

[
m+, 1

]
, the current input image is attributed to class

c. Conversely, when ∥vc∥ ∈
[
0,m−

]
, the current input image

is considered non-membership to class c. For this study,
m+ and m− were configured at 0.9 and 0.1, respectively.
Moreover, ∥vc∥ represents the length of the activity vector.

III. EXPERIMENTAL RESULTS
A. HYPERSPECTRAL DATASETS
The first hyperspectral dataset used in our research was
acquired by the Aerial Visible/Infrared Imaging Spectrom-
eter (AVIRIS) sensor above the Indian Pines test site in
northwest Indiana. This image consists of 145 by 145 pixels
and comprises 220 bands within a spectral range of 0.2 to
2.4 m, offering a spatial resolution of 20 m, and it depicts an
agricultural scene. After removing 20water absorption bands,
200 bands were retained for further analysis.

The second hyperspectral dataset was obtained via the
AVIRIS sensor flying over Kennedy Space Center (KSC)
in Florida at an altitude of approximately 20 km, featur-
ing a spatial resolution of 18 m. After filtering out bands
with suboptimal signal-to-noise ratios and water absorp-
tion, the dataset retained 176 bands for the analysis. The
dataset is associated with 13 defined classes used for the site
classification.

The third hyperspectral dataset was gathered by the
AVIRIS sensor above the city of Salinas Valley in California,
USA. The image encompasses dimensions of 512×217 pixels
and exhibits a remarkable spatial resolution of 3.7 m. It con-
tains 224 wavelength bands, with 204 spectral bands reserved
for the experiment after excluding water ab-sorption bands
within the ranges of 108-112, 154-167, and 224.

B. EXPERIMENTAL SETTINGS
Regarding the hyperparameters, the batch size is set as 32.
To avoid overfitting, we employ the early stopping strategy
and dynamic learning rate adjustment. If the validation loss
shows no improvement after 40 epochs, the training process
is terminated, with a maximum limit of 200 training epochs.
The initial learning rate is set at 0.001. If, after 10 epochs, the
validation loss ceases to decline, the learning rate is halved
successively until it reaches zero or the training process is
completed. For the spatial attention, the diagonal matrix ele-
ments are initialized to one, while the bias term b is initialized
to zero. In our experiments, we randomly select 4% of the
training samples from the IP and KSC datasets, and 1% from
the PU dataset. The number of validation samples equals the
size of the training set. The remaining data are reserved for
evaluating the proposed model’s performance. To ensure a
fair comparison, the compared methods adhere to the same
ratio of samples. We consider input patches of a spatial size
of 13× 13 pixels for the proposed method.

C. COMPARISON OF CLASSIFICATION PERFORMANCE
Our first experiment aims to assess the performance of
the proposed method by comparing it with well-established
HSI classification approaches from the existing literature.
Tables 5-7 offer a quantitative evaluation of classification
accuracy by utilizing the IP, KSC, and PU datasets. The
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TABLE 5. Classification results of different models on IP dataset.

TABLE 6. Classification results of different models on the KSC dataset.

assessment encompasses several classifiers, such as SVM,
2D-CNN, 3D-CNN, RSSAN, 3D-CapsNet, and our proposed
approach SA-CapsNet. Rows in Tables 5-7 present classifica-
tion outcomes and overall metrics, while the classes are listed
in columns. Moreover, the classification maps corresponding
to the tests listed in tables are shown in Figs. 2-4 for illustra-
tive purposes. Additionally, each table displays the average
and standard deviation values obtained from three iterations.

To thoroughly assess the superiority of our proposed
method, we present quantitative results for IP, KSC, and
PU datasets, including performance metrics for each class,

Overall Accuracy (OA), Average Accuracy (AA), and
Kappa×100, in Tables 5-7. It is evident that SA-CapsNet
outperforms all other methods, demonstrating the highest
classification accuracy across all three metrics, with the
most notable improvements observed in the IP and PU
datasets. Take Table 5 as an example for analysis. First,
SA-CapsNet achieves a remarkable increase in OA compared
to SVM, 2D-CNN, 3D-CNN, RSSAN, and 3D-CapsNet,
with improvements of 26.49%, 19.07%, 12.53%, 2.89%, and
8.06%, respectively, which are unexpected gains in accuracy.
Second, SA-CapsNet achieves an OA above 90% for all
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FIGURE 3. Classification maps for the KSC dataset: (a) false color image, (b) ground truth map,
(c)-(h) corresponding to SVM, 2D-CNN, 3D-CNN, RSSAN, 3D-CapsNet and SA-CapsNet,
respectively.

TABLE 7. Classification results of different models on the PU dataset.

11 classes in the KSC dataset, especially performing well
in classes with fewer samples, such as ‘‘slash pine’’ and
‘‘hardwood swamp’’, even some classes have a classification
accuracy of more than 99%. As for the IP and KSC datasets in
general, it can be noticed that 2D-CNN and 3D-CNN suffer
from significant accuracy deterioration. The possible reason
is that these methods overly focus on the spatial features,
while the spatial resolution of these datasets is relatively low.
Moreover, our proposed approach consistently demonstrates
superior performance in these two datasets.

When assessing the three metrics applied to the com-
parative approaches, it becomes evident that the two deep
learning methods, 2D-CNN and 3D-CNN, exhibit higher
classification accuracies in comparison to the classical SVM,
primarily attributed to their utilization of spatial context
characteristics. However, it’s worth noting that 2D-CNN
and 3D-CNN may underperform SVM in specific classes
due to an inadequate amount of data for effective network
training. Notably, 3D-CNN, 3D-CapsNet, and SA-CapsNet
outperform 2D-CNN, primarily because they fully exploit
deep spectral-spatial features. Among these, SA-CapsNet
demonstrates the most robust performance across all datasets,

capitalizing on the exploration and utilization of potent 3D
spectral-spatial features.

Figures 2-4 depict the classification maps generated by the
algorithms across the three datasets, as well as false color
images and ground truth maps. As illustrated in Figs. 2-4,
SVM and 2D-CNN exhibit noticeable classification noise
within the land covers. While RSSAN and 3D-CapsNet can
reduce spot-like misclassification, they cannot differentiate
feature boundaries and disregard some smaller features, such
as ‘‘soy-bean-mintill’’ and ‘‘grass-pasture-mowed’’ in Fig. 2.
As for 3D-CNN, it also exhibits significant misclassification
at the edges and fails to capture numerous morphological
characteristics of ground features. In contrast, our proposed
SA-CapsNet minimizes internal noise while preserving intri-
cate details of ground objects, including ‘‘cattail marsh’’ and
‘‘water’’ that are difficult to identify in Fig. 3. By exam-
ining these images, SA-CapsNet can extract class-oriented
information for the image patch. This yields lower atten-
tion weights for pixels whose class labels differ from the
central pixels and higher attention weights for neighboring
pixels that belong to the central pixel. SA-CapsNet represents
class-based discriminatory information in this circumstance,
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TABLE 8. Computation efficiency for different models on the three datasets.

TABLE 9. Overall accuracy (%) for the contrast model on the three datasets.

FIGURE 4. Classification maps for the PU dataset: (a) false color image,
(b) ground truth map, (c)-(h) corresponding to SVM, 2D-CNN, 3D-CNN,
RSSAN, 3D-CapsNet and SA-CapsNet, respectively.

thus consistently producing classification maps that closely
resemble the distribution of actual ground objects.

D. COMPARISON OF COMPUTATION EFFICIENCY
We further assess the computational complexity of vari-
ous methods in terms of their running time (in seconds)
and parameter size. As presented in Table 8, in com-
parison to other deep learning approaches like RSSAN
and 3D-CapsNet, SA-CapsNet exhibits a substantial
enhancement in training time.

For evaluating the efficiency of the proposed method,
we count the execution time and parameters for the proposed
method and other comparison methods on the three datasets.
It could be seen that the computation cost of SVM is far
less than that of deep learning models. There are too many
parameters of 3D-CapsNet, so it has the longest training time
for almost all three datasets. Among all the state-of-the-art

CNN-based methods, SA-CapsNet works well with fewer
parameters than 3D-CNN and 2D-CNN on the PU dataset.
Furthermore, the number of parameters of the proposed
method is more than RSSAN. However, the execution time of
SA-CapsNet is not as high as RSSAN’s on the three datasets.
The efficiency of SA-CapsNet outperforms 3D-CapsNet and
RSSAN, owing to the highly efficient straightforward spatial
attention and some normalization mechanisms, which can
effectively improve the convergence level. Compared with
3D-CNN, SA-CapsNet converges fast on the PU dataset, but
not on the IP and KSC dataset. It may attribute to the fact that
some classes in IP and KSC images have similar property,
which may cause the model to need more training time to
learn the differences between these classes.

E. EFFECTIVENESS OF SPATIAL ATTENTION
In the design of the proposed architecture, the spatial attention
is employed to promote themodel to emphasizemore relevant
features but suppress less informative ones. To validate of
the positive impact on classification results, we conducted
a comparative experiment. Specifically, we introduced a
new architecture by removing the attention mechanism from
SA-CapsNet. To ensure a fair comparison, we utilized input
HSI patches with a spatial size of 13 × 13, and maintained
the same training ratio as in the previous experiments. The
results of the comparison between adopting the proposed
spatial attention and not using spatial attention are presented
in Table 9.
Obviously, the proposed network SA-CapsNet signif-

icantly enhances classification accuracy, with noticeable
improvements even when dealing with limited training sam-
ples. In detail, with training sets comprising only 4%, 4%,
and 1% for the IP, KSC, and PU datasets, respectively,
the accuracy of the proposed network with spatial attention
reached 97.49%, 97.10%, and 98.18%, receptively, marking
an improvement of 2.15 %, 0.92 %, and 1.91% compared
to the model without spatial attention. This phenomenon is
more evident regarding to the India pines dataset. Accord-
ingly, with the attention mechanism, SA-CapsNet is superior
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over the model without spatial attention. This improve-
ment stems from the network’s ability to efficiently learn
spectral-spatial features while taking into account the spatial
pixel relationships.

IV. CONCLUSION
In this study, we introduce SA-CapsNet, a novel approach for
HSI classification. The key innovation of SA-CapsNet lies
in its lightweight spatial attention operator, which harnesses
data-adaptive attention weights to model discriminative and
representative features effectively. To enhance the robust-
ness of CapsNet, we employ dynamic routing based on
3D convolution. Our experimental results, conducted on
three HSI datasets, establish the superior performance of
SA-CapsNet compared to conventional and state-of-the-art
deep learning-basedHSI classificationmethods. These exper-
iments reveal that SA-CapsNet not only offers a smaller
quantity of parameters but also achieves higher accuracy,
particularly when dealing with limited training samples, out-
performing its counterparts. While our experimental findings
have yielded positive results, our intention is to further
enhance the proposed approach by incorporating a spectral
attention mechanism.
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