
Received 24 March 2024, accepted 9 April 2024, date of publication 18 April 2024, date of current version 26 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3390796

Incorporating Online Learning Into MCTS-Based
Intention Progression
CHENGCHENG SONG 1, YUAN YAO 2, (Member, IEEE), AND SIXIAN CHAN 1
1School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
2School of Computer Science, University of Nottingham Ningbo China, Ningbo 315100, China

Corresponding author: Yuan Yao (Yuan.Yao@nottingham.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61906168, in part by Zhejiang
Provincial Natural Science Foundation of China under Grant LY23F020023, and in part by the Yongjiang Talent Introduction Program
under Grant 2022A-234-G.

ABSTRACT Agents have been applied to a wide variety of fields, including power systems and spacecraft.
Belief-Desire-Intention (BDI) agents, as one of the most widely used and researched architectures, have
the advantage of being able to pursue multiple goals in parallel. The problem of deciding ‘‘what to do’’
next at each of the agent’s deliberation cycle is therefore critical for BDI agents, which is defined as the
intention progression problem (IPP). Among all existing approaches to IPP, the majority of approaches have
overlooked the significance of runtime historical data, thereby limiting the adaptability and decision-making
capabilities of agents. In this paper, we propose to incorporate online learning into the current state-of-the-art
intention progression approach SA to overcome the above limitations. This approach not only prevents SA
from consuming computational resources on ineffective and inefficient simulations, but also significantly
improves the execution efficiency of the agent. Especially when dealing with large-scale problem domains,
this improvement significantly enhances the planning capability of the agents. In particular, we have
proposed the SAQ and SAL schedulers, both of which can learn how to generate ‘‘reasonable’’ rollouts
during the simulation phase of MCTS based on historical simulation data at run time. We compare the
performance of our approach with the state-of-the-art SA in a range of scenarios of increasing difficulty. The
results demonstrate that our approaches outperform SA, both in terms of the number of goals achieved and
the computational overhead required.

INDEX TERMS BDI agents, intention progression problem, Monte-Carlo tree search, online learning.

I. INTRODUCTION
The Belief-Desire-Intention (BDI) model [1], which origi-
nated from philosophical work on practical reasoning [2],
is one of the most popular architectures for implementing
agent-based systems, especially in complex environments
[3]. In the BDI model, the behaviour of an agent is specified
by its mental state which consists of beliefs, goals and
intentions. Beliefs represent the agent’s information about
the environment (and itself). Desires (or goals) indicate the
state of the environment that the agent wants to bring about.
Plans are the means by which an agent can achieve its
goals. Each plan contains a sequence of execution steps
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which are either primitive actions that can directly change
the state of the environment or subgoals that are in turn
achieved by sub-plans. Once a plan is selected to achieve
a particular goal, an intention is formed. A key feature of
BDI agents is their ability to simultaneously pursue multiple
goals in parallel. To do so, a BDI agent needs to iteratively
select and decide which of its current intentions should be
progressed next, and if the next step in the selected intention
is a (sub)goal, the agent also needs to decide which plan
should be used to achieve the goal. Each iteration in the
repetitive process is called the agent’s deliberation cycle, and
the problem of deciding ‘‘what to do next’’ is termed the
Intention Progression Problem (IPP) [4].
A number of approaches have been proposed in the

literature to address the intention progression problem
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from different aspects. Thangarajah et al. [5], [6], [7], [8]
proposed an approach based on summary information (SI)
that avoids conflicts between intentions by reasoning about
the necessary and possible conditions to achieve a top-
level goal. Waters et al. [9], [10] proposed a coverage-based
(CB) approach that selects the intention with the lowest
coverage for execution, i.e., the intention with the highest
probability of becoming non-executable due to environmental
changes. These approaches mostly rely on pre-computed
information to guide the decision-making process of agents,
to some extent overlooking the significant value embedded
in historical data. The most promising approach to IPP to
date is perhaps the SA scheduler proposed by Yao et al. [11],
[12], which is based on theMonte-Carlo Tree Search (MCTS)
[13], [14]. The SA scheduler uses pseudorandom simulations
to guide the expansion of the search tree and returns the
‘‘best’’ action to be performed in each deliberation cycle,
where the agent’s intentions are denoted as goal-plan trees as
in [15].

Although Yao et al. have shown their approach out-
performs SI and CB in both static and dynamic environ-
ments [11], it also fails to fully leverage the runtime historical
data in its decision-making process. Firstly, the simulation
policy used in the SA scheduler during its simulation phase
is totally random. While this policy allows the scheduler to
explore all possible moves during the simulation process,
its randomness also means that it may waste computational
resources on unnecessary or inefficient simulations. This
lack of ‘‘preferences’’ simulation will significantly affect
the effectiveness and the efficiency of SA. Secondly, the SA
scheduler re-generates theMCTS search tree at the beginning
of each deliberation cycle [11], none of the existing statistics
or the MCTS search tree is considered in future steps.
Therefore, we need to address two aspects of how to learn
the historical simulation data and how to use the historical
simulation data generated in the previous deliberation cycles
to assist the intentions scheduling in later steps.

In this paper, we introduce a novel intention scheduling
algorithm by incorporating the online learning mechanism
into the SA scheduler. Specifically, our approach involves
continuously accumulating and learning from historical
simulation experiences through online learning, i.e., the
agents reduce resource wastage on ‘‘bad’’ simulations
through online learning, and guide the agents to prioritize
actions that have performed well in historical simulations in
future simulations, thus greatly improving the effectiveness
and efficiency of decision-making. Therefore, our approach
maintains the original advantages of the SA scheduler
while achieving the improvement and optimization of the
traditional approach by incorporating an online learning
mechanism.

In this paper, we first introduce two approaches that
can be used as the simulation policy for MCTS. The first
approach is based on the traditional Q-learning and the
second one is based on a hierarchical tree structure called
State-Action tree. Both approaches take the simulation results

generated in previous deliberation cycles into account and
then generate probability distributions based on the statistics.
We then propose two variations of SA scheduler called SAQ
and SAL . Unlike SA which generates totally random rollouts
in its simulation phase, SAQ and SAL use the proposed
simulation policies to generate ‘‘intelligent’’ simulations at
run time. Finally, we evaluate the performance of SAQ and
SAL , and compare them to the state-of-the-art SA scheduler
in both static and dynamic environments. The preliminary
experimental results suggest that both SAQ and SAL can
achieve the same number of goals as SA with less time, and
if the computational time is fixed, SAQ and SAL can achieve
more goals compared to SA scheduler. Moreover, in almost all
situations SAL performs slightly better than SAQ.
The rest of the paper is organized as follows. In Section II,

we provide a brief overview of the terms related to BDI
agents and formally define the intention progression problem.
A brief introduction to the SA scheduler together with a short
discussion on how to improve its performance is included
in Section III. In Section IV, we present two different
approaches to learning how to generate rollouts based on
previous simulation results, namely the Q-learning-based
approach and the State-Action tree approach. The proposed
approaches are then incorporated with the MCTS-based
scheduling in Section V to form the SAQ and SAL scheduler.
We then evaluate the performance of the proposed schedulers
in Section VI, and finally, a brief discussion on the related
works and future research directions is provided.

II. PRELIMINARIES
We start this section by giving the definition of beliefs,
goals and plans, and then briefly introduce the goal-plan tree
structure which can be used to represent agents’ intentions.
Finally, a formal definition of the intention progression
problem based on the goal-plan tree structure is presented.

A. BELIEFS, GOALS, PLANS AND ACTIONS
1) BELIEFS
The agent’s beliefs represent its information about the
environment, i.e., what the agent believes to be true. For
simplicity, we assume that the agent’s beliefs B is a finite set
of literals (proposition p or its negation ¬p):

B = {b1, . . . , bn} (1)

B is updated at each cycle based on the agent’s perceptions,
i.e., the agent updates its beliefs after sensing the environment
at each cycle. We further assume that the beliefs in B are
consistent, i.e., there is no p such that both p ∈ B and ¬p ∈ B
are true.

2) GOALS
The goals delegated to BDI agents can be divided into
different categories based on their properties and how they
will be pursued. One commonly used taxonomy is to
classify goals as achievement goals and maintenance goals.
Achievement goals specify the state of the environment
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the agent is trying to bring about, while maintenance
goals require the agent to maintain a particular state of
the environment for a while. In this paper, we focus on
achievement goals. Each goal G is associated with a set of
plans P1,. . . ,Pn that achieve G. Once an achievement goal is
achieved, the goal itself is dropped by the agent.

3) PLANS
Plans are the means by which an agent can achieve its goals.
For each top-level goal, the agent may have multiple but
at least one plan to achieve it. Each plan pi has its context
conditions χ = pre(pi) which is a set of literals specifying
the conditions that must be met for the plan to be applicable.
Once a plan is selected for execution, all the execution steps
within this plan will be executed. Each execution step is
either a primitive action that can directly change the state of
the environment or a sub-goal that is in turn achieved by a
subplan.

4) ACTIONS
An agent can perform a set of primitive actions in the
environment.

A = {a1, . . . , ak} (2)

Each action has its corresponding pre- and post-conditions.
Pre-conditions specify the states of the environment which
must hold for the action to start execution. Post-conditions
are the state of the environment brought about by executing
the action. The pre- and post-conditions of an action ai(1 ≤
i ≤ k) are represented as a set of literals φ = pre(ai) and
ϕ = post(ai). If the pre-conditions of an action hold, then the
post-conditions of the action will be achieved after executing
the action.

B. GOAL-PLAN TREE
The Goal-Plan Tree (GPT) is a hierarchical tree structure that
can be used to represent the relationships between goals and
plans [5], [8]. The root of a goal-plan tree is a top-level goal
node which contains the name of the goal, and the (goal)
conditions that need to be achieved. Its children are ‘‘OR’’
nodes, each of which is a possible plan to achieve the goal,
i.e., only one of the plans will be selected for execution
to achieve the goal. Each plan node contains information
about the name and the context condition of the plan. Once
a plan node is selected for execution, all its child nodes
representing the subgoals in that plan need to be achieved.
In order to facilitate the deliberation of intention progression
at the action level, we use the version of GPTs defined in [15],
where each child of a plan node can be either a subgoal node
or an action node. All action nodes in the GPT are leaf nodes
that only contain the pre- and post-condition of the specified
actions. In order to achieve a plan, all the subgoals in the
plan should be achieved and all actions in the plan should
be successfully executed in a pre-defined order.

Fig. 1 shows an example of a goal-plan tree, straight lines
connect goal nodes to the plan nodes that are designed to

achieve the goal, e.g., P0 and P1 are two plan nodes to achieve
the goal node g0; dashed arrows connect plan nodes to their
respective execution steps, e.g., g1, a0, a1 are the execution
steps of plan nodeP0. The steps in the plan should be executed
in a pre-determined order as represented by the ‘‘Arrow’’,
e.g., the execution steps in P1 need to be executed in the
following order: a3, a4 and then a5.

FIGURE 1. An example of GPT.

C. INTENTION PROGRESSION PROBLEM
As discussed, a key problem for BDI agents is to decide how
to progress their intentions at each of its deliberation cycles.
This problem is formally defined as the Intention Progression
Problem (IPP) [4], [16] which consists of two sub-problems,
i.e., the intention selection problem and the plan selection
problem. In an intention selection problem, a BDI agent
needs to decide which intention should be executed next.
The execution order of the agent’s intention could decide the
order in which the agent’s goals are achieved, and potentially
cause conflicts while achieving the goals, e.g., certain steps
or intentions need to be finished before others. Once an
intention is selected, the agent also needs to decide which
plans should be used if the next step in the selected intention
is a subgoal, which is termed the plan selection problem.
As with intention selection, the results of plan selection could
affect how agents’ goals are achieved and if they can be
achieved simultaneously.

In this paper, we define the intention progression problem
as a tuple < B, I , fu>, where B is the agent’s current belief
base, I is the agent’s current intentions, and fu is a utility
function specifying how the intentions should be progressed,
e.g., fu might be designed to favour solutions that can achieve
more goals. Formally, the intentions of an agent are defined
as a set of pairs I = {(t1, s1), . . . , (tn, sn)}, where ti are the
goal-plan trees representing all possible ways of achieving the
agent’s top-level goals, si are their corresponding current step
pointers which point to either primitive actions or subgoals.
Initially, the current step pointer of each goal-plan tree ti is
set to its corresponding top-level goal gi. Suppose, we use
next(si) to represent the step following the current step si
of ti. If si is a sub-goal, advancing the current step requires
selecting a plan for the sub-goal and setting si to be the
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first step (action or subgoal) of the selected plan. If si is
an action, then next(si) is the step that follows si in the
same plan. Note that if si is the last step in a plan, next(si)
is the next step in the parent plan of the current plan.
Together, we could use ti and si to define what remains
to be done in order for the agent to achieve its goals. The
progression of an intention to achieve a top-level goal gi
involves traversing the goal-plan tree ti to obtain a path that
specifies a series of sequentially executed plans, actions, sub-
goals and sub-plans. If executed successfully, gi is achieved.
The intention progression of multiple intentions is equivalent
to the interleaving of multiple paths. The solution to the
intention progression problem is therefore a policy 5 that
selects an action to execute at each deliberation cycle which
maximizes the given utility function fu.

III. MCTS-BASED INTENTION PROGRESSION
In this section, we briefly introduce the Monte-Carlo-Tree-
Search-Based intention progression scheduler, SA, and then
discuss how the original SA could be further improved with
historical data while maintaining its generality.

A. SA SCHEDULER
The SA scheduler proposed by Yao and Logan [11] was
developed based on thewell-knownMonte-Carlo Tree Search
(MCTS) which has shown its potential in solving complex
combinatorial problems [13], [17] in recent years. The
scheduling procedure is a repeated process of building a
search tree based on pseudo-random simulations. Once the
pre-defined computational budget is reached, e.g., time,
memory or number of iterations, the procedure will halt and
the ‘‘best’’ next step will be selected and returned. In the
MCTS search tree, each node n represents a possible state
in the problem domain. We use state(n) to refer to the state
in node n. In the intention progression problem, a state is
defined as a tuple <B, I>, where B and I are the agent’s
current belief base and intentions respectively. Edges that
connect a parent node to a child node in the search tree are
‘‘steps’’, by executing which the state in the parent node
will be transited to the state in the corresponding child
node. In SA, ‘‘steps’’ are primitive actions that can directly
change the state of the environment.1 Starting from the root
node which represents the agent’s current state, SA iteratively
builds a search tree. Each iteration consists of 4 phases:
selection, expansion, simulation and back-propagation (see
Algorithm 1).

1) SELECTION
In the selection phase, a tree policy is applied to the tree to
select the most ‘‘urgent’’ leaf node for expansion. A good
tree policy needs to balance exploration (traversing nodes
that have rarely been visited) and exploitation (favouring
steps that previously led to strong returns). In SA, a modified

1Note that executing a primitive action may also involve the process of
plan selection.

version of Upper Confidence bounds applied to Trees (UCT)
[18] is used as the tree policy, which models the selection
of child nodes as the k-armed bandit problem [19]. Starting
from the root node n0, SA recursively selects the child node
with the highest UCT value until a leaf node ne is reached
(lines 4-7).

2) EXPANSION
The selected node ne is then expanded by adding new child
nodes to it (line 8). In the case of SA scheduler, child
nodes of ne represent all the states that are reachable from
state(ne). A state state(nr ) is considered to be reachable from
state(ne) if it can be reached by executing a primitive action
ar from state(ne). We further require that ar is one of the
possible next steps of the agent’s intentions in state(ne), and
ar is currently executable, i.e., the precondition of ar holds
in state(ne).

3) SIMULATION
One of the newly generated nodes ns is then randomly
selected for simulation (line 9). The rollouts of ns are
generated according to the simulation policy (line 10) and
the simulation results are evaluated based on the given
unity function fu (line 10). The SA scheduler uses a random
simulation policy to produce the possible rollouts, i.e., the
scheduler randomly selects and executes available next steps
until all goals have been achieved or no intention can be
further progressed.

4) BACK-PROPAGATION
Finally, the simulation results are back-propagated to all the
nodes on the path from node ns to the root node n0 (line 11).
Once the pre-defined computational budget is reached (and

the algorithm halts), the edge to the ‘‘best’’ child node of
n0 will be returned as the primitive action to be executed next
(line 13). The most commonly used functions fbest include
those that select a node with the highest simulation result,
highest average, etc.

Algorithm 1 Basic MCTS Procedure
1: functionMCTS(B, I , fu, fbest )
2: Create a root node n0 with state s0 =< B, I >

3: while within computational budget do
4: ne← n0
5: while ne.hasChild() do
6: ne← TreePolicy(ne)
7: end while
8: Expand(ne)
9: ns← ne.getRandomChild()

10: 1← SimulationPolicy(ns, fu)
11: BP(ns, 1)
12: end while
13: return edge(n0, fbest (n0))
14: end function
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B. SA ENHANCEMENT
Although SA has been proven to outperform most of the
existing intention progression algorithms, there are still some
issues that remain unsolved. For example, SA may not be
very efficient for problems with sufficiently large problem
domains, as the scheduler is likely to waste time on some
obviously ‘‘bad’’ simulations. Additionally, the current SA
scheduler lacks the ability to make use of ‘‘historical data’’
and ‘‘domain knowledge’’ to improve its performance in
specified problem domains.

There are several ways the current SA could be improved
including the changes to the tree policy, the simulation policy
or the expansion function. The tree policy in MCTS will
directly affect the node to be investigated/expanded next, and
thus determine the direction of the tree expansion. In a tree
search, it is critical to ensure the search tree is expanding
in the right direction. The expansion function, on the other
hand, decides the nodes to be added to the tree. By pruning
the search tree or adding constraints to the node expansion,
we could ignore the nodes led by obviously ‘‘bad’’ steps.
Finally, the simulation policy could be adjusted to generate
more ‘‘promising’’ rollouts, avoid obviously ‘‘bad’’ choices
during the simulation, and thus improve the reliability of
the simulation results. In this paper, we focus on improving
the current simulation policy to enhance the performance
of SA. Although both the changes to the tree policy and
the expansion function might be useful to improve the
performance of SA, they are not within the scope of this
paper.

IV. LEARNING-BASED SIMULATIONS
As discussed, one possible way of enhancing the performance
of SA is to optimise the current ‘‘simulation policy’’. Instead
of running totally random simulations as in SA, it might be
beneficial to properly bias the choice of actions during the
simulation phase. That is, the scheduler is more favouring the
selections that are likely to produce good rollouts and tries
to avoid selections that lead to failure or bad performance.
For example, we all know that it will cause a problem if
we try to leave the lecture room while attending a lecture,
thus such choice needs to be avoided in the simulation. The
basic idea of optimising the current ‘‘simulation policy’’
is to learn from previous simulations what are good and
bad simulation choices, and then bias the choice towards
good selection during the simulation phase. Initially, it is
difficult to judge if a selection during the simulation is good
or bad without giving any domain knowledge. However,
as the scheduler keeps running simulations, the performance
of the simulation policy will be significantly improved.
In this section, we introduce two ways of ‘‘learning’’
biasing simulation choices from historical data, namely
the Q-learning based approach and the State-Action tree
approach. Both of them work as online learning mechanisms
(i.e., learning at runtime), and are able to return the
most promising choices based on the results of previous
simulations.

A. Q-LEARNING BASED APPROACH
Q-learning [20] is a popular reinforcement learning algorithm
that has been widely used in games and multi-agent systems
[21], [22]. It relies on a two-dimensional Q-table to store
the Q-value for each possible state-action pair and optimizes
the policy by continuously updating the Q-value. During the
learning process, the agent interacts with the environment
to update the Q-value and selects the next action based on
the updated Q-value. Notably, Q-learning tends to exploit
existing knowledge by selecting the action with themaximum
Q-value for the current state. This aligns well with the idea
of combining online learning to bias the simulation selection
in favor of more promising actions. The following are brief
descriptions of howQ-table can be used to represent historical
simulation results, and when and how the Q-value will be
updated.

1) Q(ST , AT ): ACTION-VALUE FUNCTION
The Q-value stored in the Q-table can be accessed through
the Q-function which takes a state-action pair (st , at ) as its
input. In the intention progression problem, the state st is a
pair of the agent’s current beliefs and intentions (same as the
state(n) in SA), the action at represents a primitive action to
be executed in st . During the simulation phase, the scheduler
could simply retrieve the Q-value of executing action at in
state st by calling Q(st , at ).

2) Q-TABLE UPDATE
Once the reward of a simulation (1) is generated by a
utility function fu, the Q-values for all the state-action pairs
that appear in the simulation will be updated based on the
following formula:

Q(st , at ) = Q(st , at )+ ω[1+ γ ·MaxQ(sr , ar )− Q(st , at )]

(3)

where st and at denote the state-action pair to be updated,
sr denotes the state resulting from executing action at in
state st . ar represents a possible action to execute in state
sr . MaxQ(sr , ar ) is therefore the maximum Q-value for
executing an action in state sr , and finally 1 is the reward
value. The learning rate is denoted as ω. It determines the
extent to which the new Q-value contributes to the overall
Q-value during each update. The discount factor γ determines
the degree to which current rewards influence future rewards.
If the discount factor is set too high, the algorithm will
prioritise future rewards. Conversely, if the discount factor is
set too low, it will prioritise immediate rewards.

Traditional Q-learning algorithm initializes the Q-table
with all possible states and actions, where each cell stores the
expected return value (Q-value) of performing a certain action
in a specific state. The agent gradually learns to select optimal
actions in different states based on the Q-value. However,
this method is only suitable for domains with a small state
space. The state space in IPP is significantly large due to
the fact that states are represented by not only the agent’s
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internal intention stacks but also its current beliefs. Therefore,
certain modifications need to be adjusted to the traditional
Q-learning algorithm. Specifically, we limit the state space
for learning by setting the state filtering criteria, which
greatly reduces the number of possible state-action pairs and
improves the efficiency of the algorithm. The specific details
on how to set these criteria will be discussed in detail in later
sections.

B. STATE-ACTION TREE
Instead of using the Q-table to store all possible state-action
pairs, we propose to use a tree structure to store historical data
named State-Action tree. Here, we provide a formal definition
of the State-Action tree structure together with a description
of how the historical simulation results can be stored and
updated based on this structure.

1) DEFINITION
Each node Ni in the State-Action tree is represented as a tuple
< si, ai, Ti, Vi >, where
• si indicates the current state of the agent, i.e., a tuple of
the agent’s current beliefs and intentions < B, I > as in
the MCTS tree.

• ai is a primitive action that can be executed in state si−1,
where si−1 is the state in the parent node of Ni, Ni−1.
Executing action ai in state si−1 will transmit the agent’s
state from si−1 to si.

• Ti represents the number of times action ai has
been chosen for execution in state si−1 in previous
simulations.

• Vi represents the total simulation value of Ni, i.e., the
sum of the reward for the simulations that execute action
ai in state si−1.

The first two parameters together represent the agent’s
current state and the decision made in its preceding state.2

How good the decision is can be estimated through the
associated simulation statistics (i.e., the value of Ti and Vi).
Unlike the leaf nodes in MCTS which can be potentially
further expanded, all leaf nodes in the State-Action tree are
terminal states representing the end of a simulation. A path
from the root node to a leaf node, therefore, can be seen as a
possible rollout starting from the root node.

2) TREE GENERATION AND UPDATE
When generating a new State-Action tree, a root node
representing the current state of the agent will be created, i.e.,
N0 = < s0, δ, 0, 0 >, where s0 is the agent’s current state, δ

means there is no primitive action executed prior to state s0,3

and the statistics for this node are all initialised to 0. We then
expand the tree and update its statistics based on the given
simulation paths. A simulation path from a node ni until a

2Note that the state-action pairs here are different from those defined in
the Q-table.

3There may be actions executed before s0 in the entire scenario, but they
are not considered in the State-Action tree.

terminal state is represented as follows:

P = [(si, ai), (si+1, ai+1), . . . , (st , at )]

where si = state(ni), ai is an edge that connects ni to its parent
node,4 st is a terminate state, and executing action ak+1 in
state sk will result in a new state sk+1 for all i ≤ k ≤ t−1. So,
the definition of state-action pairs in a path is essentially the
same as the state and action in a State-Action tree node. Given
a simulation path P together with its associated reward 1,
the State-Action tree will be expanded and updated as in
Algorithm 2.

Algorithm 2Update the State-Action tree Based on a Rollout
1: function Update(N0, P, 1)
2: Nc← N0
3: for each (aj, sj)inP do
4: Nx ← SearchFor(sj,Nc)
5: if Nx == NULL then
6: Nx ← < sj, aj, 0, 0 >
7: Nc.AddChild(Nx)
8: end if
9: Nc← Nx

10: Nc.UpdateValue(1)
11: end for
12: end function

Starting from the root node N0, Algorithm 2 iteratively
searches for the nodes corresponding to each state-action pair
in the given simulation path, and updates their statistics based
on the reward value 1. More precisely, the Update function
in Algorithm 2 does not only update the statistics for the
existing nodes in the State-Action tree but also expands the
tree if the nodes specified by the state-action pairs haven’t
been included in the tree yet, i.e., the SearchFor function fails
(see Line 5-7).

Compared to the Q-learning based approach, the State-
Action tree offers several advantages. Firstly, the relationship
between different state-action pairs naturally fits in the tree
structure. Searching for a node corresponding to a particular
state-action pair in a tree structure is more efficient compared
to finding a state in the Q-table. Secondly, using Ti and Vi in
the tree structure can better reflect the stability and reliability
of state-action pairs compared to Q-value. This is because
the number of visits reflects the level of exploration of the
state-action pair, while the total simulation value reflects the
cumulative evaluation of the state-action pair. Furthermore,
when it comes to irrelevant state cleanup, pruning the
State-Action tree is sufficient, whereas the Q-table requires
sequential traversal of each state. Therefore, pruning in a
tree structure is more effective and time-saving compared to
clearing the Q-table. However, the update process of State-
Action tree is more complex compared to the Q-table, as it
involves the process of expanding the current search tree.

4ai = δ if ni is the root node of the MCTS tree.
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V. INTENTION SCHEDULING WITH ONLINE LEARNING
In this section, we present two novel simulation policies
based onQ-table and State-Action tree. For ease of reference,
we use SAQ to refer to the scheduler which uses Q-table in its
simulation policy, and SAL for the scheduler which generates
simulation rollouts based on the State-Action tree.

A. SAQ SCHEDULER
Compared to the SA scheduler, SAQ has significantlymodified
its SimulationPolicy function (see Algorithm 3).
The new simulation policy requires five parameters as its

input: an MCTS node ns, a Q-table QT , and three constant
values ε, 0 and ν. The value of ε is a floating number in the
range of [0, 1], which controls the balance between selecting
good actions based on historical data and exploration of other
potentially good actions. 0 and ν are the total simulation
results and the total number of simulations from all previous
runs.

Starting from line 2, the proposed simulation policy first
created a list of state-action pairs (List) from the given node
ns all the way to the root node n0, representing the actions
taken and the state achieved prior to the state in ns. A major
difference here is that each pair in the List is defined as
(sj, aj+1) instead of (sj, aj) as in Section IV-B, where sj+1 is
the subsequent state of executing action aj+1 in state sj. Given
the current state si, we can generate the set of executable
actions As in si based on the agent’s current beliefs and
intentions. The simulation policy then iteratively selects and
executes actions until a terminal state is reached (line 5),
i.e., either all goals have been achieved or no actions can
be executed from si. We also record all the state-action pairs
that appear in this iterative procedure and add them to List in
order to update the Q-table after the simulation. Remember
that the definition of state-action pair here differs from that of
Section IV-B. Consequently, we need to add the state-action
pair to List before executing the selected action (lines 11-12).
Once a terminal state is reached, the overall performance of
this simulation is assessed by calling the unity function fu
(line 15).

Similar to the Q-learning [20], we use the ε-greedy policy
to iteratively select actions during the simulation process
(line 6-10). That is, in each iteration, the policy has a 1 - ε

probability to select the action with the largestQ-value, and a
probability ε to randomly select an executable action (which
is the same as the policy in SA). One exception would be
when there is no such Q(si,A′) in the current Q-table, i.e.,
no action selection has been learnt for state si or all the action
selections in previous simulations are considered as ‘‘bad’’
attempts,5 the policy will make a random selection rather than
selecting the ‘‘best’’ action. This is especially useful when
the agent has no historical data, i.e., the Q-table is empty,
and ensures our approaches will still work even without any

5This will happen as we do not include Q-values for all possible states
at the beginning, instead, we generate states and Q-values along with the
simulation.

Algorithm 3 Simulation Policy With Q-table
1: function SimulationPolicy(ns, QT , ε, 0, ν)
2: List ← getStateActions(ns)
3: si← state(ns)
4: As← nextActions(si)
5: while As is not Empty do
6: if Random() ≤ ε then
7: A← RandomSelect(As)
8: else if BestAction(QT , si) ̸= NULL then
9: A← BestAction(QT , si)
10: end if
11: List.add((si,A))
12: si← Execute(si,A)
13: As← nextActions(si)
14: end while
15: 1← fu(si)
16: 0← 0 +1

17: ν ← ν + 1
18: if 1 ≥ 0

ν
then

19: QT .update(List , 1)
20: end if
21: end function

previous simulations. The reason to use the ε-greedy policy in
the action selection procedure is to ensure the agent has the
opportunity to select non-optimal actions and thus to avoid
being stuck with local maximal.

To address the problem of an excessively large state space
raised in the previous section, we set the criterion that
each simulation is considered worth learning only when its
reward is greater than the current average reward for all
previous simulations, i.e., 0

ν
. At the end of each simulation,

the function fu is used to evaluate the performance of the
simulation (denoted as 1). If the value of 1 is higher than 0

ν
,

then the policy will updateQT based on the list of state-action
pairs in List and the reward 1 (lines 18-19). As we have
included all the state-action pairs executed or achieved before
the simulation and during the simulation, we can therefore
represent the List as {(s0, a1), . . . , (si, ai+1), . . . , (st−1, at )},
where s0 is the state in the root node and st is the terminal
state in the simulation. The function QT .update(List, 1) will
update each Q(si, ai+1) ∈ List based on Equation 3.
In a static environment, after reaching a given computa-

tional budget, the agent returns the best child node of the
MCTS search tree’s root node and executes the corresponding
action. Since the environment remains unchanged, the
Q-table updated in previous deliberations can be utilized in
subsequent deliberations. Therefore, maintaining the current
Q-table unchanged, the Q-table guides the simulation in
subsequent deliberations and continues to be updated. One
possible optimization here is to remove all Q-functions
that will no longer be used for future selections. These
Q-functions include those that are not selected (and will never
be selected) for execution and their corresponding subsequent
state-action pairs that appear in previous simulations. In the
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case of a dynamic environment, the environment itself may
change in addition to the changes made by the agent. As a
result, potentially more Q-value will be affected. In the cases
where most of the previously learned Q-table are no longer
applicable, the agent will initialise the Q-table and relearn
Q-value based on the new simulation rollouts. Otherwise,
the approach is similar to that of a static environment,
where the Q-table remains unchanged and is used to guide
simulations in the next deliberation and continues to be
updated. This enables the agent to adapt to constantly
changing environments and learn new optimal strategies.

B. SAL SCHEDULER
Similar to SAQ, the SAL scheduler has significantly changed
its simulation policy by incorporating a State-Action tree to
guide the selection of actions during the simulation phase.
Algorithm 4 shows the simulation policy based on the State-
Action tree.

Algorithm 4 Simulation Policy With State-Action tree
1: function SimulationPolicy(ns, N0, ε, 0, ν)
2: List ← getStateActions(ns)
3: si← state(ns)
4: As← nextActions(si)
5: while As is not Empty do
6: Ni← SearchFor(si,N0)
7: if Random() ≤ ε then
8: A← RandomSelect(As)
9: else ifNi ̸=NULL orNi.getChild ̸=NULL then
10: A← BestChild(Ni)
11: end if
12: si← Execute(si,A)
13: List.add((si,A))
14: As← nextActions(si)
15: end while
16: 1← fu(si)
17: 0← 0 +1

18: ν ← ν + 1
19: if 1 ≥ 0

ν
then

20: Update(N0, List , 1)
21: end if
22: end function

As with the Q-table based simulation policy, the proposed
simulation policy for SAL scheduler also requires five
parameters as inputs, which are essentially the same as those
used in Algorithm 3, except that Algorithm 4 requires the
root node of a State-Action tree as its input rather than a
Q-table. Similar to Algorithm 3, the proposed simulation
policy first creates a list of state-action pairs (List) to record
the states and actions that were achieved or executed prior
to the state in ns. Each state-action pair (si, ai) ∈ List
indicates that executing action ai in the state si−1 leads to
a subsequent state si. Assuming n0, . . . , ns is a path from
the root node of the MCTS tree to the selected node ns,
and we use s0, . . . , sn to represent the state in each of these

nodes, then the list of state-action pairs in List is defined
as (s0, a0), . . . , (si, ai), . . . , (sn, an). Note that, a0 here can
be empty if we don’t know which action leads to the state
of the root node (we will discuss it more later in this
section). Similarly, a set of executable actions in state si (As)
are generated based on the agent’s current belief base and
intention base. We then iteratively select and execute actions
based on the given State-Action tree until a terminal state is
reached (lines 5-15). During the simulation process, all the
state-action pairs that appear in the rollouts will be recorded
and added to List . Here, we need to execute the selected action
before adding the state-action pair to List in order to get the
state that results from executing action A.

In the iterative action selection procedure, we use a similar
ε-greedy policy to balance between the selection of known
‘‘best’’ action and the exploration of all other actions. Same as
in Algorithm 2, the function SearchFor is used to find the tree
node corresponding to state si from the root node N0. If there
is no such tree node or there is no further action selection
for state si in the State-Action tree, then we randomly select
an executable action. Otherwise, the policy will have a
1 - ε probability of selecting the ‘‘best’’ action indicated by
the State-Action tree. Due to the influence of the total number
of visits, the node with the highest average simulation value
is often the one that has been simulated and visited more
frequently. The node with the highest average reward may
provide more reliable and accurate information and is likely
to contain the optimal solution. Selecting the node with the
highest average reward value can help us converge to the
optimal solution faster. We therefore consider an action A
with an average reward R to be optimal in state si if there is
no child node (si+1, ai+1,Ti+1,Vi+1) of Ni in the given State-
Action tree that has a larger average reward thanR, i.e., TjVj >R.
By focusing on nodes with higher average simulation values,
we can more effectively utilize prior knowledge and speed up
the search process. At the end of each simulation, the reward
value 1 which is larger than the overall average reward will
be used to update the State-Action tree as in Algorithm 2.

Similar to the Q-table, the State-Action tree also needs to
clean up irrelevant states after executing the optimal action
returned by MCTS. However, the difference is that cleaning
up irrelevant state in the State-Action tree only requires
pruning out the branches caused by other actions performed
in the state before the action is executed. At the same time, the
root node of the State-Action tree is also updated, i.e., the root
node is updated to the tree node corresponding to the state
after the agent executes the optimal action. In the dynamic
environment, the changes made by the environment itself
may significantly affect future simulations. In cases where
the current state (i.e., the state after executing the ‘‘best’’
action in the previous cycle) cannot be found in the State-
Action tree, the agent needs to initialize the State-Action tree
and relearn the simulation policy based on new simulations.
Otherwise, we could simply update the root node of the State-
Action tree and prune unnecessary tree nodes as in static
environments.
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We also delve into the time complexity of the SA, SAQ,
and SAL schedulers during the simulation phase. The SA
algorithm employs a random simulation policy with a time
complexity of O(n), where n represents the depth of the
simulation. The simulation policy of SAQ and SAL not only
depends on the simulation depth but also on the efficiency
of the function getStateAction() and their respective data
structure updates. Specifically, the agent makes its action
selection based on Q-table and State-Action tree, i.e. the
time complexity of getting data from both the Q-table
and the State-Action tree is O(1).6 Additionally, the time
complexity of the function getStateAction() is O(n), where
n represents the number of steps executed by the agent
during the selection phase. However, since this part of the
computation is not included in the cyclic action selection of
the simulation policy, the time complexity of SAQ and SAL is
still O(n). In summary, despite the differences in the specific
implementations of these schedulers, from the perspective of
time complexity, it can be considered that in the simulation
phase, the SA, SAQ and SAL schedulers all share the same time
complexity, i.e., O(n).

VI. EVALUATION
In this section, we evaluated the performance of SAQ and SAL
in scenarios of increasing difficulty. In particular, we compare
the performance of SAQ and SAL to the state-of-the-art
scheduler SA using sets of synthetic goal-plan trees [11].

A. EXPERIMENT SETUP
The synthetic goal-plan trees are randomly generated by a
generator called genGPT [23]. This generator can generate
random goal-plan trees with different shapes and properties
by specifying a list of parameters including the depth of the
tree, the plan branching factor (i.e., the maximum number of
plans that can be used to achieve a goal), the goal branching
factor (the maximum number of sub-goals a plan may have),
the maximum number of actions in a plan and the number of
environment variables that may appear in the tree. The first
four parameters collectively influence the size and shape of
the generated goal-plan trees. The number of environmental
variables, on the other hand, will affect the possibility of
having potential conflicts while achieving different goals in
parallel, as all pre-conditions and post-conditions of actions
are generated based on the environment variables. Similar
to [11], each environment variable is modeled as a Poisson
process with a specified mean value, thus allowing control
over the frequency with which the environment changes
the value of the variable. By controlling the parameters
of the synthetic goal-plan tree generator and the dynamics
of the environment, we can evaluate the performance of
each scheduling algorithm under different conditions. The

6Theoretically, the time complexity of State-Action tree fetching data is
O(n), where n refers to the number of nodes in the State-Action tree. In order
to improve the efficiency of the algorithm, we store the tree structure in the
form of a table, so the time complexity of State-Action tree fetching data is
the same as that of Q-table, both are O(1).

parameters for generating synthetic goal-plan trees in this
paper are configured as follows:
• depth of the tree: 8
• number of plans to achieve a goal: 2
• number of subgoals in each plan: 1
• number of actions in each plan: 3
• number of environment variables: 60
In addition to the aforementioned parameter settings for

the synthetic GPT generator, during the SAQ update process,
we do not have any preference between immediate and future
rewards during the simulation. The discount factor γ is set to
0.5, which implies that the agent equally values immediate
and future rewards. Similarly, the learning rate ω is also
set to 0.5, indicating that new information and previously
accumulated knowledge would be weighed equally when
updating the Q-value.
We measure the performance of different schedulers based

on two criteria: the number of goals achieved (the more, the
better) and the computational overhead (the less, the better).
Due to the fact that MCTS is an anytime algorithm, in most
cases, the more time we give to the scheduler, the better
performance the scheduler will have. We therefore come up
with two different experiment settings. In the first set of
experiments, the computational budget for each scheduler is
specified by two variables α and β, where α represents the
number of iterations to be performed, and β is the number
of simulations performed in each iteration. The schedulers
are given the same α and β values, and their performance is
first evaluated based on the number of goals achieved. If the
schedulers can achieve the same number of goals, we then
evaluate their performance based on their computational
overhead. This setting is essentially the same as those in [11].
Given the same α and β values, the computational

overhead in our first set of experiments only reflects the
time required for each simulation. In this paper, we focus
more on how the proposed simulation policies will affect
the overall efficiency of the scheduler rather than the time
required to run a single simulation. That is, with the proposed
simulation policy, each simulation may require additional
computation time, however, the number of simulations
required for the scheduler to produce the same results may
also be significantly reduced. Therefore, in our second
set of experiments, we give different schedulers the same
computational time, and then compare the number of goals
they can achieve.

1) STATIC ENVIRONMENT
In static environments, the mean of all Poisson processes was
set to 0. In all experiments reported below, we report the
average performance of each approach in 50 runs. We set the
thresholds ε = 0.1 for both SAQ and SAL (a constant value in
our proposed simulation policy controls the balance between
selecting good actions based on historical data and exploring
other potentially good actions). We then vary the number
of goals (i.e. goal-plan trees) to be achieved from 1 to 15,
increasing by 1 each time.

56408 VOLUME 12, 2024



C. Song et al.: Incorporating Online Learning Into MCTS-Based Intention Progression

Experiment 1: In our first set of experiments, the compu-
tational budget for each scheduler is configured based on the
value of α and β, i.e., the number of iterations to be performed
and the number of simulations performed in each iteration.

First of all, the values of α and β are set to 100 and
10 respectively for all schedulers (which is the same as
in [11]). As shown in Fig. 2, in terms of the number of goals
achieved, the performance of all three schedulers improves
as the total number of goals increases. The performance
differences between the schedulers are negligible when the
agent is given less than 3 goals. When the number of goals
increases, we can see that both SAL and SAQ have a clear
advantage over SA, and the performance of SAL is overall
better than that of SAQ. In cases where the agent is given
more than 10 goals to achieve at the same time, SAQ can
achieve about 0.7 more goals compared to SA on average,
while SAL can achieve 0.6 more goals compared to SAQ.
The superiority of SAQ and SAL over SA is expected because
both have optimized their simulation policy based on SA,
making full use of historical data to guide the simulations.
SAL outperforms SAQ because of its superior calculation
method, i.e., the method of calculating the average reward
value is superior to the method of calculating the Q-value.
More specifically, the calculation of the average reward value
provides more reliable and accurate information compared to
the Q-value.

FIGURE 2. The number of goals achieved with fixed α and β in static
environment.

In terms of the computational overhead, the performance
(i.e., average computation time to achieve the given goals
when α and β are fixed ) of the three schedulers is shown
in Fig. 3. As the number of goals to be achieved by the
agent increases, the computational overhead for all three
schedules increases. Given the same α and β values, SA
requires significantly less computational overhead compared
to both SAQ and SAL . This result is not surprising, as SAQ
and SAL require additional time to update the Q-table
and State-Action tree based on state-action pairs. Overall,
the performance of SAQ is slightly better than that of
SAL because it requires less time to update the simulation
results.

FIGURE 3. Computational overhead with fixed α and β in static
environment.

Given the current results, it is difficult to decide if SAQ
and SAL are more efficient than SA, i.e., they can achieve
more goals but require more time. Therefore, we conducted
another set of experiments where we used SA scheduler but
with an increased α value, i.e., α = 1000. The results are
represented as purple lines in Fig. 2 and Fig. 3. As we can
see in Fig. 2, in terms of the number of goals achieved, SA
with α = 1000 performs nearly as well as SAQ, although
it is still slightly worse than SAL . However, if we look
at the computational overhead required for each scheduler
in Fig. 3, we will see that SA requires significantly more
time to generate a similar performance compared to both
SAQ and SAL .
Experiment 2: In the second set of experiments that follow,

the computational budget of each scheduler is configured by
a given computational time. More specifically, these three
schedulers are all configured to perform 10 simulations
(β = 10) per iteration. The number of iterations to be
performed (α) is not pre-determined, instead, it is decided at
run time according to the given computational time, i.e., the
schedulers will stop immediately when they reach the given
computational time. In the following experiment, we give
different schedulers the same computation time and compare
the number of goals they can achieve. Fig. 4 shows the
performance of all three schedulers when the computation
time for each top-level goal is set to 10 milliseconds. Given
the same computational overhead, the number of goals each
scheduler can achieve increases as the total number of goals
given increases. When the number of goals allocated to
the agent is less than 3, the differences between all three
schedulers are negligible. The difference between SAQ and
SAL is also almost negligible when the given number of
goals is less than 5. However, at this point SAQ and SAL
achieve about 0.5 more goals compared to SA. As the
number of top-level goals increases, we can see that both
SAQ and SAL have a clear advantage over SA, and SAL is
performing better compared to SAQ. Overall, SAQ can achieve
about 0.6 more goals compared to SA, while SAL is able to
achieve about 0.6 more goals compared to SAQ on average.
SAL achieves more goals than SAQ, as experiment 1 shows
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that a single simulation of SAL incurs only slightly higher
computational overhead than SAQ. Therefore, under fixed
computational overhead, the difference in the number of
iterations performed between the two is not significant, e.g.,
in the case where the number of goals pursued by the agent
is 10, SAQ performs only about 12 more iterations than SAL .
However, since the method of calculating the average reward
value by SAL is superior to the method of calculatingQ-value
by SAQ, SAL results in a better performance of the agent
while compensating for the effect of the gap in the number
of iterations.

FIGURE 4. Fixed computational overhead in static environment.

2) DYNAMIC ENVIRONMENT
We then evaluate the performance of the proposed schedulers
by setting a non-zero mean to the Poisson processes, which
is essentially the same as those in [11]. That is, the value
of the environment variables will be reversed after executing
the selected action, based on the Poisson process. A larger
mean value for the Poisson will cause more frequent changes
in the environment. For each experiment reported below,
we generate 10 goal-plan trees using the same parameters as
in the static environment. We compare the performance of
the schedulers by varying the mean of the Poisson process
starting from 0.005 and increasing the value by 0.005 each
time. Similar to the experiments in the static environment,
we set the threshold ε = 0.1 for both SAQ and SAL . The
results are the average performance of each approach in
50 runs.
Experiment 3: In our third set of experiments, we use

α and β values to configure the computational budget
as in experiment 1. The performances of the schedulers
are again first evaluated based on the number of goals
achieved, and then the computational time required. Similar
to experiment 1, we set up four different settings, i.e., SA, SAQ
and SAL schedulers with α = 100 and β = 10, and the SA
scheduler with α = 1000 and β = 10. The results are shown
in Fig. 5. As we would expect, in terms of the number of
goals achieved, the performances of all schedulers decrease
as the value of the Poisson mean increases. Moreover, the
differences between the schedulers also decrease as the

FIGURE 5. The number of goals achieved with fixed α and β in dynamic
environment.

Poissonmean becomes larger. For example, when the Poisson
mean is set to 0.005, SAQ is able to achieve about 0.7 more
goals compared to SA, while SAL can achieve around 1.2more
goals compared to SA. However, when the Poisson mean
increases to 0.04, SAQ and SAL can only achieve 0.2 and
0.4 more goals compared to SA respectively. The reason
behind the scenes is that the unpredictable dynamic changes
in the environment will hugely affect the overall performance
of the schedulers, especially since some learned policies from
previous simulations may be discarded due to unexpected
changes in the environment. As the mean value gradually
increases, environmental changes become more apparent.
Consequently, frequent resets of theQ-table and State-Action
tree are necessary, which is similar to having almost no
prior experiences to draw from. As a result, the differences
in the number of goals achieved by these three schedulers
become smaller and eventually approach that of SA. Overall,
consistent with the results of experiment 1, SAQ and SAL
consistently outperform SA in terms of the number of goals
achieved in almost all cases. In terms of the computational
overhead, the results shown in Fig. 6 are similar to those in
Fig. 3. That is, significantly more computational time will be
required for SA to achieve a similar level of performance as
SAQ and SAL .

FIGURE 6. Computational overhead with fixed α and β in dynamic
environment.
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Experiment 4: Similar to experiment 2, in our last set of
experiments, we evaluate and compare the performance of
SAL , SAQ and SA in the dynamic environment by giving them
the same computational time. The results are shown in Fig. 7.

As can be seen, the number of goals achieved by
three schedulers gradually decreases, as the Poisson mean
increases.More specifically, as themean value increases from
0.005 to 0.04, the differences between SAL and SA went
down from 1 to 0.2. Moreover, the performance of SAQ and
SA is almost identical when the Poisson mean increases to
0.04 if they are given the same computational time, i.e., the
difference in the number of goals achieved between SAQ and
SA is not more than 0.1. Overall, the results of the experiments
are consistent with those in experiment 2, i.e., both SAQ and
SAL can outperform SA in most of the situations. Even in the
worst case (i.e., the Poisson mean is set to 0.04), SAQ and SAL
will not perform worse than SA in a dynamic environment.

FIGURE 7. Fixed computational overhead in dynamic environment.

VII. RELATED WORK
In [24], Yao et al. have introduced the notion of quantitative
summary information to estimate the likelihood of conflicts
between an agent’s intentions to avoid unnecessary simu-
lations. In particular, the quantitative summary information
was computed offline before the scheduling started, and
it was then used to predict the probabilities of conflicts
between different intentions at run time. In cases where
the scheduling problem is extremely difficult or extremely
easy, the simulation values can be directly predicted without
running any real simulations. They have shown that the
proposed approach can be used to improve the efficiency
of the SA scheduler, however, their solution works only for
extreme cases. For cases where it is not easy to identify the
solutions, the scheduler still needs to run random simulations
as before.

In addition to the work discussed above, a number of
other approaches to scheduling intentions to avoid conflicts
have been proposed in the literature. As in [5], [6], [7],
[8], and [25], intention selection is limited to the plan
level, and the plans and sub-goals in a goal-plan tree are
regarded as basic steps. In [25], Yao et al. first applied the

MCTS algorithm to solve agent intention scheduling. They
used a variant of MCTS called Single-Player MCTS [26]
to schedule the intention of a single agent at the plan
level. This work was then extended to the action level [11].
Shaw and Bordini have proposed approaches to intention
selection based on Petri nets [27] and constraint logic
programming [28]. Cope et al. [29] proposed a deep
reinforcement learning-based planning method that builds on
tree search by using neural networks to estimate the value
function of each state to guide the search. There has also
been work on avoiding conflicts in a multi-agent setting.
Based on the previous work on single agent, Dann et al. [30]
extended the MCTS algorithm to apply to multi-agent
settings. Clement and Durfee [31], [32], [33] propose an
approach to coordinating concurrent hierarchical planning
agents using summary information and HTN planning.

In addition to the study of BDI agent in the intention
progression problem, a number of approaches for combining
BDI agent with learning for decision-making have been
proposed in the literature. Singh et al. [34], [35] have
proposed an approach that allows the agent to learn the
probability of success for plans based on previous execution
experiences. By using a probabilistic plan selection function,
the agents can balance exploration and exploitation of their
plans. Wan et al. [36] proposed a method to extend the
BDI model with Q-learning which is one algorithm of
reinforcement learning, and solve the problem that BDI
agent can’t decisions in dynamic and uncertain environments.
Luna-Ramírez and Fasli [37] considered and developed
intentional learning for agents within the Jason BDI frame-
work, focusing on a plan acquisition strategy to address
learning plans involving one action, sequences, or repeated
actions that allow an agent to improve their behavior at
run-time. Reference [38] deal with the issue of learning in
multi-agent system (MAS) and proposed an extended BDI
agent architecture with learning capabilities for MAS. The
inductive approach of first-order Logical Decision trees is
used by agent to learn when plans are successfully executed.

The above literature mainly discusses the application
of BDI agents in the field of intention progression. BDI
agents are regarded as representatives of rational agents,
characterized by having clear goals and the ability to make
decisions based on their beliefs, desires, and intentions to
maximize the likelihood of achieving these goals. In contrast,
non-rational agents may not adhere to optimization principles
or logical reasoning in their decision-making process, but
are likely constrained by various non-logical factors such
as cognitive limitations, emotional influences, and social
impacts. Yildiz et al. [39] studied binary opinion dynamics
in a social network with stubborn agents and explored
the role of stubborn agents in the process of opinion
formation. Shang [40] introduced a general model for opinion
formation in the averager-copier-voter network with non-
rational agents, extending traditional consensus theory to
accommodate a broader range of agent types. Furthermore,
they proposed the averager-copier-voter filtering strategy that
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is capable of steering the robust opinion network toward a
stochastic hybrid consensus in the sense of convergence in
expectation.

VIII. CONCLUSION
In this paper, we present two novel approaches to improving
the SA ‘s simulation policy. The first approach is based on
traditional Q-learning, while the second one uses a hierarchi-
cal structure called State-Action tree. Both approaches take
into account the simulation results from previous simulations
and learn how to favour more ‘‘promising’’ moves during
the simulation phase. We then proposed SAQ and SAL , two
variations of the SA scheduler [11] based on the proposed
approaches. We evaluated the performance of SAQ and SAL
and compared it to the state-of-the-art SA scheduler in both
static and dynamic environments. The preliminary results
indicate that our approaches have a clear advantage over the
SA scheduler in terms of efficiency in both static and dynamic
environments.

As discussed in section III, we explore in depth the
core strategies of the MCTS algorithm, including tree
policy, expansion function, and simulation policy. The
optimization of these strategies is crucial for enhancing
the overall performance of the algorithm. In this paper,
we primarily optimized the simulation policy, and may
consider optimizing the expansion function in the future. The
expansion function determines which nodes to add to the tree.
By introducing constraints during the expansion phase, the
algorithm can efficiently identify the most promising nodes,
ultimately enhancing its overall performance. Considering
the wide research prospects and practical application value of
collaboration and competition issues in multi-agent system,
another line of future work is to extend the approach proposed
in this paper to multi-agent system.
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