
Received 26 March 2024, accepted 11 April 2024, date of publication 18 April 2024, date of current version 3 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3391234

Comparing Conformance Checking for Decision
Mining: An Axiomatic Approach
ADAM BANHAM 1, ARTHUR H. M. TER HOFSTEDE 1, SANDER J. J. LEEMANS 2,3,4,
FELIX MANNHARDT 5, ROBERT ANDREWS 1, AND MOE T. WYNN 1, (Member, IEEE)
1School of Information Systems, Queensland University of Technology, Brisbane, QLD 4000, Australia
2Department of Mathematics and Computer Science, RWTH Aachen University, 52062 Aachen, Germany
3Teaching and Research Area of Business Process Management Foundations and Engineering, RWTH Aachen University, 52074 Aachen, Germany
4Fraunhofer, Institut für Angewandte Informationstechnik, 52074 Aachen, Germany
5Department of Mathematics and Computer Science, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands

Corresponding author: Adam Banham (adam.banham@hdr.qut.edu.au)

The work of Adam Banham was supported in part by Australian Government Research Training Program Scholarship;
and in part by Queensland University of Technology, Centre for Data Science Scholarship.

ABSTRACT Process mining uses historical executions of business processes (as recorded in an event log)
to uncover and describe the process’ behaviour as a process model. The goal of conformance checking is
to ensure that the model is of high quality and is a good representation of the event log, thus assuring the
model is a solid foundation for subsequent analysis of the process. To date, few conformance checking
approaches have considered model quality beyond what is determined by the execution order of process
activities. In data-aware process models, which are generated by decision mining techniques, process
activities are annotated with conditions to represent the decision-making of a process. Such models are
more expressive than those that represent only process activities. With the current notions of conformance
checking, it is unclear what properties determine the quality of these data-aware process models. To address
this gap, we introduce desirable properties, as axioms, for conformance checking of data-aware models. Our
contribution is threefold: i) we present a generalisation that abstracts from the representation of data-aware
models, ii) we present nine axioms of desirable properties for data-aware conformance checking, and iii)
we define two measures for model recall and precision. Using our axioms as a yardstick, we compare our
proposed recall and precision measures with existing measures. Our experimental results show that existing
measures exhibit limited adherence to our axioms; while, our two proposed measures exhibit high adherence
to our axioms.

INDEX TERMS Process mining, data perspective, conformance checking, decision mining, data-aware
conformance checking.

I. INTRODUCTION
Process mining is a field of data science that uses observed,
historical data from an organisation’s business process(es)
to understand the actual behaviour and performance of the
process(es) [1]. Such historical data is recorded in event
logs, consisting of process instances (traces), where each
trace describes a series of process activities that unfolded
over time [9]. Process discovery techniques [23] exploit these
traces to recreate the structuring of activities (control-flow)
in the form of a process model. Then, by using conformance

The associate editor coordinating the review of this manuscript and

approving it for publication was Wojciech Sałabun .

checking [11] the quality of a given process model against an
event log can be quantified by considering the intersection of
observed and described behaviour to measure concepts such
as precision, recall, generalisation and simplicity [10], [24].
However, consensus has yet to be reached on the intuitive
properties for conformance checking [2], [6], [40], [41].
To motivate which intuitive properties for conformance

measures are desirable, we now provide a high-level sum-
mary of existing discussions [2], [6], [10], [40], [41]. Much
of the existing work derives from [10], which showed how
the behaviour in an event log, process model, and the
underlying system can be disjoint or overlapping. In [2]
and [41], the authors observed that existing conformance

60276

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-9912-8220
https://orcid.org/0000-0002-2730-0201
https://orcid.org/0000-0002-5201-7125
https://orcid.org/0000-0003-1733-777X
https://orcid.org/0000-0001-7743-5772
https://orcid.org/0000-0002-7205-8821
https://orcid.org/0000-0001-7076-2519


A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

FIGURE 1. An example Petri net with data, with guards above transitions.

measures were not formulated against a set of desirable
properties. Hence, such measures were not easy to interpret
or to compare against each other. This issue was confirmed
through evaluations in [6] and [40]. Thus, using [10], the
authors of [2], [40], and [41] propose desirable properties,
or propositions/axioms, for conformance checking limited to
the control-flow perspective (sequences of activities).

Conformance checking beyond control-flow is also impor-
tant. In [31], the author considers multi-perspective process
mining, which includes activities, resources, data attributes,
and expressions (guards) for activities. Although [31] intro-
duced conformance checking that considers guards, it did not
consider desirable properties. Therefore, we extend existing
discussions [2], [31], [40], [41], by considering desirable
properties for data-aware process models [26], [31], [38].
Existing data-aware conformance checking [12], [19],

[33], [35] predominantly utilises an alignment-based
approach [4] to firstly compute a mapping between a log and
a model, and then compute a distance between them [12],
[33], [35]. The distance between an alignment and trace in
the log, to some extent, is subjective as it is reliant on a
domain-relevant cost-model, which specifies what steps are
realistic and what are not (and are therefore penalised more).
Furthermore, the cost-model defines which alignments are
considered ‘‘optimal’’.

A property of alignments that must be taken into account
when comparing models and an event log, is that existing
measurements [12], [33], [35] have their state-space uniquely
tied to the process model (and underlying cost-model). Thus,
when comparing a single model with many logs, it is easy to
identify the most compliant log. However, it is challenging
to identify the highest quality model from a collection of
models when considering a single log, as any model-log
distance measurement is not guaranteed to be comparable to
another due to the possibility that each model and underlying
cost-model inducing a larger/smaller state-space. Comparing
decision mining techniques to identify which technique
excels in model-recall or model-precision [2], [3], [10], [11],
requires just such a comparison between many models with
a single log. Hence, in this paper, we address the challenge
of identifying the highest quality model when considering
a single log, and the desirable properties that should be
considered.

To motivate data-aware conformance checking, we now
consider a representation of a data-aware process model (see

FIGURE 2. Our contributions.

Fig. 1). This model describes the purchase of a financial
product and depicts the concepts of choices, data and guards.

Central to our discussion in this paper is the notion of
‘choices’ in models. A choice represents a state in the model
where a set of (more than one) process activities could
be executed next, and from which, only one activity can
happen. For instance, in Fig. 1, after the completion of ‘final’,
both ‘agree’ and ‘reject’ are possible next activities, but the
occurrence of one means the other cannot occur. Transitions
in this model have been annotated with guards. Some guards,
e.g., the guard for ‘h.dis’, are defined over process data
attributes, while others, i.e. guards for ‘show’ and ‘agree’, are
indifferent to data.

The semantics of guards may differ. For instance, the
first two guards (for ‘reg.’ and ‘verify’) are domain policies
that should be enforced in practice, and are challenging
to discover (see [27]). Furthermore, one could consider
guards that prescribe how data should change after a process
activity [16], [28]. However, the following three guards (for
‘h.dis.’, ‘l.dis.’, ‘prem.’) are guards that determine, from
data, what process activity should occur next. The latter is
a specific concern for decision mining techniques [26], [31],
[38] and we emphasise this viewpoint in this paper.

The quantification for the quality of guards is often
restricted to their respective model representations [16], [26],
[31], [33], [35]. To be able to compare any data-aware model
with an event log, we need to forego specific representations
of these models. While we visually represent models using
Petri nets with data (DPN) notation, our approach does not
rely on DPNs. Note that we require the control-flow of a
model to always have the option to complete (see [1, clause 3
of Def.3.7]), but we do not restrict our approach to models
that are relaxed data sound (see [31, Def. 5.1]) as existing
decision mining techniques do not guarantee this property in
their outcomes [26], [31], [38].

Fig. 2 outlines our contributions. Our foundation section
(Section V) presents a generalised modelling formalism.
This formalism is our means for quantification through:
(i) inducing a set of execution paths from an executable
process model [2] or a play-out log, (ii) constructing a
finite transition tree from these execution paths based
on a given event log, (iii) mapping traces in the log to
paths through the tree through a matching, (iv) collecting

VOLUME 12, 2024 60277



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

diagnostic information about the guards within the tree
through bookkeeping functions for conformance checking.
After which, we formulate desirable properties for data-aware
conformance checking using our bookkeeping through nine
quality axioms (Section VI), extending previous discussions
in [2], [6], and [40]. To addresses these axioms, we propos-
ing two new measures, guard-recall and guard-precision
(Section VII). Finally, we evaluate our proposed measures
and existing techniques [19], [33], [35] for adherence to our
axioms (Section VIII).

The remainder of the paper is organised as follows:
Section II provides a deeper look into the problem space for
decision mining and how it affects conformance checking.
Section III presents related work. Section IV introduces
background and notation. Section IX summarises our
contributions.

II. PROBLEM MOTIVATION
At a very high level, decision mining finds ‘human-readable’
guards for activities in a process model [29]. These guards
guide the execution of a process model at runtime, and
may lead to a deterministic execution. As observed in [25],
different techniques exist for achieving this goal. Such
techniques may either consider an existing control-flow
and annotate the control-flow with guards, or adopt a
decision-aware approach to process discovery [25], [29].
In this work, we focus on the control-flow annotation
approach and its properties.

A typical decision mining technique using the annotation
approach will consist of the following steps for a given model
and event log: a) identify decision points in the model, b) find
a control-flow mapping between the log and the model,
c) construct classification problems for each decision point,
d) learn a classifier for each problem, and then e) extract
guards over a set of attributes from each classifier, which are
then annotated to activities within the model.

A natural consequence of applying this approach is that
all possible outcomes (i.e. data-aware models) will have the
same control-flow, with differences between the outcomes
arising due to the restrictions on model behaviour imposed
by the various, different guard annotations. As such, we will
discuss desirable qualities for conformance checking when
considering models derived from the same control-flow and
ensuring measurements over these models are comparable.

An important consideration for conformance checking is
that measures should not be bound to representation, e.g.
Petri nets or extensions thereof, such as Fig. 1. However,
this does pose a problem with step a) identifying decision
points or choices between process activities, as it requires
some understanding of the representation of the model.
To address this issue, we use an abstraction of processmodels,
i.e. transition trees [20]. This model abstraction meets our
need for clearly identifying decision points, however some
cases might result in an infinite tree when considering loops
and concurrency, but given our focus on what is observed
these are largely not a concern.

FIGURE 3. The conceptualisation of a system reacting to data and process
activities [20], where the system signals that a trace is complete when it
presents an empty offer ∅.

A further justification for the use of transition trees comes
from the generalisation of process execution described in [20]
and illustrated in Fig. 3. Here, process execution is conceived
as a system which reacts to process activities and data (1 or
3), by presenting offers (i.e. a set of process activities) to an
environment (2). Next, the environment responds to the offer,
with a process activity and additional data back to the system
(3). Then, the system adapts to the response, and this cycle
of offers and responses is repeated until a process execution
is completed (4). The iterative relationship between system
and environment not only builds a trace, but is naturally
represented as a transition tree. We use transition trees in our
theory for process models in the rest of this paper and show
that executable models can be represented by a tree.

We use the offers generated by the system to position
conformance checking regarding precision and recall. For
example, where a decision mining outcome restricts all
offers presented at runtime by the system to only a single
process activity, the process is entirely deterministic, and
hence, precision is maximised. If any offer(s) consist of more
than one process activity, the process is non-deterministic,
implying precisionwill be less thanmaximal. Likewise, if any
offer(s) are empty at runtime, the process will terminate early,
which will negatively impact on recall. As such, we will
introduce these issues as the notions of guard-precision
and guard-recall, a specialisation of data-aware con-
formance checking for the quantification of data-aware
models.

Typically, for step b), finding a control-flow mapping
between the event log and model, an alignment procedure [4]
is used. An alignment between a log and a model is a
case-specific sequence of steps, which are either sync steps
(an event is matched with an execution step), log steps (an
event without an execution step), ormodel steps (an execution
step without an event). For Petri net-based representations,
alignment procedures that find the ‘‘optimal’’ alignments
have been studied at length [4], [12], [13], [19], [33], [39].

However, in step c), constructing classification problems
for each decision point, we generalise the alignment to
include only sync and log steps. Such generalisation ensures
that only behaviour observed in the log is used in learning
guards for the model. We refer to this generalisation of a
control-flow alignment as a ‘‘matching’’ and use it throughout
the rest of the paper.

60278 VOLUME 12, 2024



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

III. RELATED WORK
In this section, we discuss techniques for discovering
data-aware models (i.e. decision mining techniques), and
existing frameworks for comparing these techniques. Then,
we provide an in-depth discussion of the data-aware confor-
mance checking papers published to date.

Decision mining was first presented in [37], where token
replay was used to generate examples for classification
problems that were solved using a decision tree, after which,
the decision tree could be used to generate a ‘human’
readable expression based on process attributes. These
expressions were then attached to transitions in a Petri
net to denote why a process activity would occur based
on data. The next advancement came in [26], where the
authors used alignments [4] to generate examples for the
classification problems. This approach has greater flexibility
than token replay and can handle unfitting event logs and
process models. In [31], the author presented a strategy for
extracting expressions, where ‘overlapping’ rules could be
constructed. Lastly, in [38], the authors used a variety of
preprocessing steps to include time series data in decision
mining techniques.

Several studies have used decision mining to under-
stand decision-making within processes. In [14], the author
considered patient triage in an emergency department and
used decision mining to determine age groups for triage
behaviour. In this study, F1 score was used to evaluate
effectiveness locally. Similarly in [32], the authors considered
a Dutch emergency department and worked with domain
experts to understand patient readmission using decision
mining. In this case, the conformance measure presented
in [33] was used to evaluate effectiveness. In contrast, [8]
used decision mining to identify business rules between
process variants, comparing the similarity of generated
expressions.

In [22], the authors noted the difficulty in comparing
decision mining techniques, as many tailored their evaluation
for the case; thus, they presented a framework to evaluate and
compare techniques in an artificial setting using simulation.
The difficultly in comparing outcomes was also noted in [7],
where external data sources were integrated into event logs,
greatly expanding the state-space that both [33] and [35] use.
Additionally, an ad-hoc measure was introduced to study the
number and support for the discovered guards.

In summary, many different methods have been used to
evaluate the effectiveness of decision mining techniques, but
so far, consensus on the quantification of the quality of
data-aware models has not been reached.

A. DATA-AWARE CONFORMANCE CHECKING
In terms of data-aware conformance checking, we separate
our discussion between verification [15], [17], [18], [36] and
the quantification of recall or precision notions [10], [11],
[12], [19], [33], [34], where the latter is our focus.

The difference between verification and quantification is
that verification focuses on the properties of a model, while

quantification is about the distance or disagreement between
a log and a model. Verification of properties for a data-aware
model like reachability [36], relaxed data soundness [31],
data soundness [15], [18] is important to decision mining.
In some cases, we can even repair unsound data-awaremodels
into data sound versions [17], which is helpful as none of the
aforementioned decision mining techniques [26], [31], [37],
[38] provide any guarantees about their outcomes. However,
we do not consider verification properties within the scope
of our discussion, as they are typically focused on the model
rather than log-model comparisons.

We now describe the existing data-aware conformance
checking techniques in the literature related to either
recall or precision notions [10], [11]. The first data-aware
conformance checking technique we are aware of, proposed
in de Leoni and van der Aalst [12], uses Integer Linear
Programming (ILP) to compute an alignment between trace
andmodel, which accounts for all perspectives. Alongside the
alignment procedure proposed in [12], the authors presented
a conformance checking technique for recall, that considered
the guards of a DPN. This technique applies a staged
approach using the following steps: (1) compute a control-
flow alignment, (2) an ILP problem is solved for the optimal
number of changes needed to make the trace compliant
with the model’s guards, (3) compute the recall using the
harmonic-mean of (1) and (2). A downside of performing (1)
and (2) in sequence, is that a sub-optimal alignment could
be returned by (1) if it describes an execution which is more
costly than another, when both control-flow and guards are
considered.

To address this downside, Mannhardt et al. [33] proposed
an extended set of alignment moves and computing one holis-
tic alignment, instead of the staged approach in [12]. As such,
the technique uses Multiple Integer Linear Programming
(MILP) to solve for an alignment which included suitable
write conditions for a given trace and DPN. The benefit of
this approach was that each alignment move could be given a
unique cost. However, this approach needs many more MILP
problems to be solved than [12], which is time consuming but
always returns the holistic optimal alignment.

Also presented in [33] was a data-aware conformance
checking technique for recall. This proposed recall tech-
nique [33] computes a ratio between the optimal alignment
and the worst alignment for a given trace and a DPN.
A downside of this approach is that both the cost-model
and guards within the DPN affect the optimal and reference
alignment, in turn defining a unique state-space for the result-
ing recall measurement and making comparison between
measurements challenging.

Another extension was presented in Felli et al. [19], which
introduces the ‘Computing Conformance Modulo Theories’
(CoCoMoT) framework to compute alignments in a similar
vein to [12] and [33]. The CoCoMoT framework revolves
around using Satisfiability Modulo Theories (SMT) and
solves an SMT problem for the minimal number of edits to
make a trace compliant with a given DPN. We note that this

VOLUME 12, 2024 60279



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

technique focuses exclusively on the alignment problem and,
unlike [12], [33], does not present a recall measure.

The CoCoMoT framework [19] performs the following
steps: (1) first, the log is pre-processed to be a set of
unique traces, (2) trace clustering is performed to find
subsets of equivalence trace classes, (3) a representative is
selected from each class, (4) a SMT problem is encoded
and solved for each representative and then an alignment is
decoded from the SMT solution. After which, the decoded
alignment can be used to denote the distance between
the original trace and the alignment. The benefit of this
approach is that only one problem per representative is
needed, reducing the computation needed in comparison to
[12] and [33].
The only data-aware conformance checking technique

for precision, that we are aware of, is presented in [34].
A requirement of the technique in [34] is that the log must be
perfectly compliant with the given model including system
behaviour (i.e. silent actions or silent transitions). However,
the authors show that this requirement can be overcome by
applying the alignment procedure in [33] on the given log.
Then, for each state of the model, the technique computes the
observed and possible behaviour for that state. After which,
a ratio is computed between all observed and all possible
behaviour seen at states of the model. A downside of this
approach is that due to the alignment performed, the original
data in the log may be changed to be compliant to guards. For
non-compliant logs, this downside may lead to non-intuitive
precision values.

In these existing techniques, the dominant discussion
focused on addressing the alignment problem for data-aware
models, and to date, little has been presented concerning the
quantification of quality for data-aware models. This gap can
be seen in our overview, in Table 1, where most work around
data-aware models either focus on discovery or methods
for efficient quantification without a discussion of desirable
properties.

IV. PRELIMINARIES
In this section, we introduce notations, event logs, and
transition trees as a process model formalism.
Functions. To denote a function, we write f : X 7→ Z ,

where f is a function that maps each element of the set X to
an element of the set Z . Function f is a bijection if no two
different elements of X are mapped to the same element in Z
and all elements in Z have an original, i.e. an element from X
that is mapped to it.
Bags. A bag over X is a function f : X 7→ N. Function f

captures the frequency of each element from X in the bag.
To denote a bag, we use square brackets and only denote
non-zero frequencies as superscripts, e.g. [x11, x25, x310].
Sequences. Weuse angle brackets to denote sequences, e.g.

⟨a, b, c⟩. A sequence can be constructed by a first element,
the head, say h, and another sequence, say t , the tail. We will
denote such a sequence as h : t . We widen this notation and
write t : h to extend t with an element h.

TABLE 1. An overview of the discussed literature categorised into work
that only considers control-flow, work that focuses on verifying
(data-aware or not) model properties, and those that consider the
discovery or conformance of guards in data-aware models. We are
unaware of any work that proposes desirable properties for the latter
category.

To denote the length of a sequence, say s = ⟨a, b, c⟩,
we write |s|; e.g. |s| = 3. To access an element of a sequence
s, we write si such that 1 ≤ i ≤ |s|, e.g. s3 = c. When
we want to access the last element of a non-empty sequence
s, we will use the function last, defined as: last(s) = s|s|.
To denote the concatenation of two sequences, we use the
concatenation operator +, e.g. ⟨a, b⟩ + ⟨c, d⟩ = ⟨a, b, c, d⟩.
To take a segment from position i up to and including position
j from a sequence s, we use the notation s[i : j]. For example,
⟨a, b, c, d⟩[2 : 3] = ⟨b, c⟩. By definition, if i > j, s[i : j] = ⟨⟩.
Also, if j > |s| and i ≤ |s|, then s[i : j] = s[i : |s|].
Universes. We now define some universes that we will

build upon.
Definition 1 (Universes): Uev is the universe of event

identifiers; Ucase is the universe of case identifiers; Uact
is the universe of process activities; Utime is the universe
of timestamps; Uatt is the universe of process attribute
identifiers; Uval is the universe of possible values that process
attributes can take. The latter universe includes ⊥, a value
that can be used to indicate that an attribute is undefined. All
these sets are mutually exclusive.
Data. An assignment is our representation of data and is a

function from process attributes to values.
Definition 2 (Assignments): 5 = Uatt 7→ Uval is the set of

all possible attribute assignments.
As a process executes, assignments need to be correspond-

ingly updated. We use an override ⊕ operator as an operator
on assignments, where the values of the right assignment take
precedence over the left assignment.
Definition 3 (Overriding Assignments): Let π1, π2 ∈ 5

be assignments, then π1 ⊕ π2 ∈ 5 is an assignment defined
as follows. For all a ∈ Uatt :

π1 ⊕ π2(a) = if π2(a) ̸= ⊥ then π2(a) else π1(a).
Guards. Guards are used to guide process execution. For

the remainder of the paper, we assume no particular language
for the specification of guards. In the context of a particular
assignment, a guard may evaluate to true or false or it may
not be possible to evaluate the guard in this context.
Definition 4 (Guards): Ugrd is the universe of guards.

Then for any guard g ∈ Ugrd , we can access the attributes that
the guard is formed over through var : Ugrd 7→ 2Uatt , and we
can evaluate guards in the context of attribute assignments.
In particular, for a guard g ∈ Ugrd and an assignment π ∈ 5,

60280 VOLUME 12, 2024



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

JgK(π) denotes the evaluation of guard g in the context of
assignment π and yields true (T), false (F), or undefined (U).
Events. An event, represented by a unique identifier,

describes a state change in a process execution. Each
event identifier is associated with an assignment of pro-
cess attributes, a process activity, a case identifier, and a
timestamp.
Definition 5 (Events): For every event e ∈ Uev,

we can access its attribute assignment through the func-
tion # : Uev 7→ 5, its activity through the function
act : Uev 7→ Uact , its case identifier through the
function case : Uev 7→ Ucase, and its timestamp through the
function time : Uev 7→ Utime.
Traces. A sequence of events σ denotes a trace or a single

execution of a process if all events – all different – refer to the
same case and the time ordering is preserved.
Definition 6 (Trace): A trace σ is a nonempty sequence of

events, i.e. σ ∈ U+
ev , such that:

1) All events of σ belong to the same case:

∀1≤i<j≤|σ |[case(σi) = case(σj)];

2) The sequence of events in σ adheres to their timing:

∀1≤i<j≤|σ |[time(σi) ≤ time(σj)];

3) All events in σ are different:

∀1≤i<j≤|σ |[σi ̸= σj].
For convenience, we write case(σ ) to access the case of a

trace and to obtain the activity sequence of a trace σ , or the
variant of the trace, we write σ̂ = ⟨act(σ1), . . . , act(σ|σ |)⟩.
Next, to evaluate guards, access is needed to the assignment
that holds after a particular position of a trace.
Definition 7 (Running Assignment): Let σ be a trace, let

j ∈ N be the trace position, and let π ∈ 5 be an
initial assignment. Then, the function µ yields the running
assignment of the trace defined as:

µ(π, ⟨⟩, j) = π and

µ(π, e : σ, j) =

{
µ(π ⊕ #(e), σ, j− 1) if j > 0,

π otherwise.
For the rest of the paper, wewriteµσ,j instead ofµ(∅, σ, j).
Logs. An event log contains the completed executions of a

process over some period.
Definition 8 (Event Logs): An event log L is a set of traces,

such that no two traces σ ′, σ ′′
∈ L, σ ′

̸= σ ′′, share a case:

case(σ ′) ̸= case(σ ′′).
At times we are only interested in the control-flow variants

observed in an event log.
Definition 9 (Control-flow Variants): Given an event log

L, the set of its control-flow variants VL ⊂ U+
act is defined

as:

VL =
{
σ̂ | σ ∈ L

}
.

To represent event logs in this paper, we do not show
event identifiers, and instead showcase the variants and bags
over the sequences of assignments that occurred for those

variants. For example see the representation below, which
shows a view on an event log with two process variants and
two different assignments for one of these variants:

L =

{
⟨a, b, c⟩ 7→ [⟨π1, π2, π3⟩

1, ⟨π1, π4, π3⟩
3],

⟨a, d, c⟩ 7→ [⟨π1, π5, π3⟩
2]

}
.

Enlarging. Often we refer to a log which has been enlarged
with respect to distribution of variants and assignments. To be
able to enlarge a log, we first need to be able to clone a trace.
Definition 10 (Cloning Traces): Let σ ∈ U+

ev be a trace.
Then, σ is a clone of σ which satisfies the following
properties:
1) the clone is also a trace;
2) the length of the trace is preserved: |σ | = |σ |;
3) the sequence of process activities is preserved: σ̂ = σ̂ ;
4) the sequence of assignments is preserved:

∀1≤i≤|σ |[#(σi) = #(σ i)];

5) the trace and its clone do not share events:

∀1≤i≤|σ |,1≤j≤|σ |[σ i ̸= σj];

6) the cloned trace belongs to a different case:

case(σ ) ̸= case(σ ).
Now that we can clone a trace, we can enlarge an event log

by cloning the traces in the log a number of times.
Definition 11 (Enlarging Event Logs): Let L be an event

log, and let k ∈ N be a integer scaling factor s.t. k ≥ 1.
For each σ ∈ L, we assume k − 1 clones: σ 2, . . . , σ k with
none of these clones sharing case identifiers or events among
them or with any other such clones created for other traces
in log L. Then, Lk denotes the enlarging of the event log via
cloning, defined as:

Lk = L ∪
{
σ j | σ ∈ L ∧ 2 ≤ j ≤ k

}
.

For example, consider the following enlargement of an
event log:

if L =

{
⟨a, b, c⟩ 7→ [⟨π1, π2, π3⟩

1, ⟨π1, π4, π3⟩
3],

⟨a, d, c⟩ 7→ [⟨π1, π5, π3⟩
2]

}
,

then L3
=

{
⟨a, b, c⟩ 7→ [⟨π1, π2, π3⟩

3, ⟨π1, π4, π3⟩
9],

⟨a, d, c⟩ 7→ [⟨π1, π5, π3⟩
6]

}
.

Note that each instance in the bags on the right represents
a unique trace; therefore, enlargement of the log in our
visualisation is seen as multiplying these frequencies by the
enlargement, i.e. 1 · 3, 2 · 3 and 3 · 3.
Trees. We will abstract from a specific representation for

process models but assume that they capture control-flow and
data dependencies. We will use transition trees [20] as our
abstraction to denote process models.
Definition 12 (Models): A process model M = (N ,F,

nr ,Nf , src, tgt, gd, actf) is a rooted and non-cyclic tree, with
N a set of nodes, F a set of flows, a root node nr ∈ N, a set

VOLUME 12, 2024 60281



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

of terminal nodes Nf ⊆ N, a function src : F 7→ N to yield
the source node of a flow, a function tgt : F 7→ N to yield the
target node of a flow, a function gd : F 7→ Ugrd to yield the
guard of a flow, and a function actf : F 7→ Uact to yield
the activity of a flow.

In the context of a model M = (N ,F, nr ,Nf , src, tgt, gd,

actf), we use the following shorthand notation. If there is an
f ∈ F such that src(f ) = n and tgt(f ) = n′ for n, n′

∈ N ,

then we can write n → n′ and n
f

→ n′. To access the flows
that are outgoing from a given node n, we write n• to denote:

n• =

{
f ∈ F | n

f
→ n′

}
.

As a convenience, wewrite splits(M) to denote flows in the
process model whose source node is source node of at least
one other flow in the model, i.e. flows at splits in the model:

splits(M) = {f ∈ F | |src(f )•| > 1} .

To determine whether two process models M and M′ have
the same behavioural structure, we require the existence of
an isomorphism between them: M ≃ M′. For an in-depth
consideration of isomorphism see [30]. Two process trees are
isomorphic if and only if there exists a bijection between
their flows and nodes that preserves sources and targets of
flows as well as their activities. Such a bijection is termed
an isomorphism, denoted as isoMM ′ or iso for short, when the
models involved are clear. Note that this bijection is only
considering the control-flow of the models in question.

V. FOUNDATIONS
This section introduces our formal quantification of quality
for data-aware models. First, we introduce an example data-
aware model, which we use to demonstrate our transforma-
tion to a model-agnostic form for data-aware conformance
checking. Next, we denote how we combine guards through
binary operators on guards referred to as reinforcing or
weakening and their formal properties. These properties
allow for simplifications when combining guards from partial
executions of a model consisting of infinitely many silent
actions (τ ) followed by a non-silent action or whenwe need to
denote alternative execution paths leading to the same visible
action.

In the following two subsections, we introduce how we
produce a model-agnostic form of any executable data-aware
process model, such that the form conforms with our
conceptual view of a system reacting to an environment (see
Fig. 3). Our next step is to introduce how we study the
intersection of an event log and our transition tree through
a generalisation of alignments called a matching, which
only considers synchronised and log moves to avoid the
propagation of dead assignments. Lastly, we combine all of
these steps to present our quantification mechanism, called
bookkeeping, that allows us to say, for a part of our tree, how
often it was traversed and how often particular outcomes of
the associated guards occurred.

FIGURE 4. Example Petri net with data.

Together, these advancements will be used to present
desirable properties for data-aware conformance checking
in Section VI and to define guard-recall and guard-precision
in Section VII.

A. RUNNING EXAMPLE
In Fig. 4, we introduce a example model for demonstration
purposes. This model has one write constraint, i.e. ‘a’ writes
attribute d1 which has an integer domain. This model contains
silent actions (transitions labelled with τ ) and a rework
loop that can occur silently. In this model, we can see that
infinite system behaviour can occur between ‘a’ and ‘e’.
For simplicity, we will reference the guards in Fig. 4 in the
following manner:

ϱT ≡ true, g1 ≡ d1 < 6, g2 ≡ d1 < 8, g3 ≡ d1 < 10.

B. STRENGTHENING AND WEAKENING GUARDS
We now advance our theory around guards. Our motivation
for these advancements is that we will need to unfold
executions of a model, and will be required to combine a
series of guards into a single guard. Such a case appears in
Fig. 4, where the two silent transitions (τ ) can be fired many
times and we wish to encode their guards alongside the guard
of the next visible fired transition (either b, c, or e). However,
there can be many partial executions that lead to the firing
of ‘e’ after ‘a’ in our model, and we wish to capture these
cases as well. To be able to encode these cases, we need a
simplification process over a series of guards.

Our first step toward this goal is to introduce the concept
of neutral guards, which yield the same value regardless of
the assignment.
Definition 13 (Neutral Guards): A guard g ∈ Ugrd is

neutral iff for any assignments π, π ′
∈ 5, JgK(π) = JgK(π ′).

A guard is referred to as truth neutral, truth(g), iff for any
assignment π ∈ 5, JgK(π ) = T, while it is referred to as
undefined neutral, undef(g), iff for any assignment π ∈ 5,
JgK(π) = U.
While we abstract from the form of guards, we will be

required to reason about their evaluation behaviour. Thus,
we now formally introduce equivalence between two guards.
Definition 14 (Equivalent Guards): Guards g1, g2 ∈ Ugrd

are equivalent, g1 ≡ g2, iff for allπ ∈ 5, Jg1K(π ) = Jg2K(π ).

60282 VOLUME 12, 2024



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

To create stricter guards, we introduce the reinforce
operator ⊗. Reinforcing a guard with another, means that the
reinforcement is a guard that returns undefined if either guard
is undefined, returns true if both guards are true, otherwise it
returns false.
Definition 15 (Reinforcing Guards): Let g1, g2 ∈ Ugrd be

guards, and let π ∈ 5 be an assignment. Then, we define the
reinforce operator ⊗ over guards as:

Jg1 ⊗ g2K(π ) =


U if Jg1K(π ) = U or Jg2K(π ) = U,

T if Jg1K(π ) and Jg2K(π ),
F otherwise.

From this definition, the following proposition immedi-
ately follows.
Proposition 1 (Properties of ⊗): Let g1, g2, g3, ϱT ∈ Ugrd

be guards such that truth(ϱT). Then, it follows that the
reinforce operator ⊗ has the following properties:

a. if g1 ≡ g2 then g1 ⊗ g2 ≡ g1; (idempotent)
b. g1 ⊗ g2 ≡ g2 ⊗ g1; (commutative)
c. (g1 ⊗ g2) ⊗ g3 ≡ g1 ⊗ (g2 ⊗ g3); (associative)
d. g1 ⊗ ϱT ≡ ϱT ⊗ g1 ≡ g1. (neutral element)

Using these properties, then the following reduction can be
applied to any reinforcement of guards.
Lemma 1 (Strong Idempotence of ⊗): Let g1, . . . , gn ∈

Ugrd be guards and let g ∈ Ugrd be another guard, then if
g ≡ gi for some 1 ≤ i ≤ n:⊗

1≤i≤n

gi ⊗ g ≡

⊗
1≤i≤n

gi.

To create laxer guards, we introduce the weaken operator ⊖.
Weakening a guard with another, means that the weakening is
a guard that returns undefined if both guards are undefined, it
returns true if either guard is true, otherwise it returns false.
Definition 16 (Weakening Guards): Let g1, g2 ∈ Ugrd be

guards, and let π ∈ 5 be an assignment. Then we define the
weaken operator ⊖ over guards as:

Jg1 ⊖ g2K(π ) =


U if Jg1K(π ) = U and Jg2K(π ) = U,

T if Jg1K(π ) or Jg2K(π ),
F otherwise.

Similar to before, the following proposition arises from
Def. 16.
Proposition 2 (Properties of ⊖): Let g1, g2, g3, ϱU ∈

Ugrd be guards such that undef(ϱU). Then, it follows that the
weaken operator ⊖ has the following properties:

a. if g1 ≡ g2 then g1 ⊖ g2 ≡ g1; (idempotent)
b. g1 ⊖ g2 ≡ g2 ⊖ g1; (commutative)
c. (g1 ⊖ g2) ⊖ g3 ≡ g1 ⊖ (g2 ⊖ g3); (associative)
d. g1 ⊖ ϱU ≡ ϱU ⊖ g1 ≡ g1. (neutral element)
Using these properties, we can always apply the following

reduction to any weakening of guards.
Lemma 2 (Strong Idempotence of ⊖): Let g1, . . . , gn ∈

Ugrd be guards and let g ∈ Ugrd be another guard, then if
g ≡ gi for some 1 ≤ i ≤ n:

⊖
1≤i≤n

gi ⊖ g ≡ ⊖
1≤i≤n

gi.

1) EXAMPLE REDUCTION
Let us consider the following reinforcement r over the guards
from our running example (Fig. 4), where truth(ϱT):

r = (((ϱT ⊗ g2) ⊗ g3) ⊗ g2) ⊗ g3.

Now, we consider if r is in its simple form, i.e. contains
the minimal amount of reinforcement to represent the same
behaviour. To do this, we apply Lemma 1 and Prop. 1 as seen
below:

r = (((ϱT ⊗ g2) ⊗ g3) ⊗ g2) ⊗ g3
(neutral element)

= ((g2 ⊗ g3) ⊗ g2) ⊗ g3
(commutative)

= ((g3 ⊗ g2) ⊗ g2) ⊗ g3
(associative)

= (g3 ⊗ (g2 ⊗ g2)) ⊗ g3
(idempotence)

= (g3 ⊗ g2) ⊗ g3
(strong idempotence)

= g3 ⊗ g2

The above reduction is important to show, as Fig. 4
may produce infinite reinforcement of guards from system
behaviour. But, we can always simplify these many infinite
reinforcement down to handful of finite reinforcements.

C. PLAYING OUT A MODEL
We now show how we abstract away from the representation
of a model through the executable play-outs from the model.

A single execution of a data-aware model generates two
sequences of the same length, one containing activities
and another of guards. However, the sequence of activities
may include silent actions, which cannot be encoded into a
transition tree. Therefore, we introduce playout to proliferate
guards from silent activities to non-silent activities. This
proliferation creates a play-out trace and to denote proper
termination, we use a halt symbol denoted as ‘halt’.
Definition 17 (Play-out Traces): Let a ∈ Uact ∪ {τ } be

an activity or the silent action, and tla ∈ (Uact ∪ {τ })∗ be
a sequence of activities with silent actions (τ ), g ∈ Ugrd
be a guard, tlg ∈ U∗

grd be a sequence of guards such that
|a : tla| = |g : tlg|, and g′, ϱT ∈ Ugrd be guards such that
truth(ϱT). Then, to compute a play-out trace using these
sequences, we use the function playout defined as follows:

playout(⟨⟩, ⟨⟩, g′) = ⟨(halt, ϱT)⟩ and

playout(a : tla, g : tlg, g′)

=

{
(a, g′

⊗ g) : playout(tla, tlg, ϱT) if a ̸= τ,

playout(tla, tlg, g′
⊗ g) otherwise.

1) EXAMPLE PLAY-OUT
For example, in Fig. 5 we show two execution of the models
and the associated sequences of activities and guards. Let us

VOLUME 12, 2024 60283



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

FIGURE 5. Example executions for our running example.

consider how these executions are handled by the playout
function. Starting with the execution described in Fig. 5a,
where we apply Lemma 1 and Prop. 1 as we denote the
recursion of the playout function below:

playout(a : ⟨τ, e, g⟩, ϱT : ⟨g2, ϱT, ϱT⟩, ϱT)

= (a, ϱT) : playout(τ : ⟨e, g⟩, g2 : ⟨ϱT, ϱT⟩, ϱT)

= (a, ϱT) : playout(e : ⟨g⟩, ϱT : ⟨ϱT⟩, ϱT ⊗ g2)

= (a, ϱT) : ((e, ϱT ⊗ g2) : playout(g : ⟨⟩, ϱT : ⟨⟩, ϱT))

= (a, ϱT) : ((e, ϱT ⊗ g2) : ((g, ϱT) : playout(⟨⟩, ⟨⟩, ϱT)))

= (a, ϱT) : ((e, ϱT ⊗ g2) : ((g, ϱT) : ⟨(halt, ϱT)⟩))

= ⟨(a, ϱT), (e, ϱT ⊗ g2), (g, ϱT), (halt, ϱT)⟩

In the recursion, some reinforcements were reduced, e.g.
ϱT⊗g2⊗ϱT to ϱT⊗g2 or ϱT⊗ϱT to ϱT. We now perform the
same demonstration for the execution described in Fig. 5b:

playout(a : ⟨τ, τ, τ, e, f ⟩, ϱT : ⟨g2, g3, g2, ϱT, ϱT⟩, ϱT)

= (a, ϱT) : playout(τ : ⟨τ, τ, e, f ⟩, g2 : ⟨g3, g2, ϱT, ϱT⟩, ϱT)

= (a, ϱT) : playout(τ : ⟨τ, e, f ⟩, g3 : ⟨g2, ϱT, ϱT⟩, ϱT ⊗ g2)

= (a, ϱT) : playout(τ : ⟨e, f ⟩, g2 : ⟨ϱT, ϱT⟩, ϱT ⊗ g2 ⊗ g3)

= (a, ϱT) : playout(e : ⟨f ⟩, ϱT : ⟨ϱT⟩, ϱT ⊗ g2 ⊗ g3)

= (a, ϱT) : ((e, ϱT ⊗ g2 ⊗ g3) : playout(f : ⟨⟩, ϱT : ⟨⟩, ϱT))

= (a, ϱT) : ((e, ϱT ⊗ g2 ⊗ g3) : ((f , ϱT) : ⟨(halt, ϱT)⟩))

= ⟨(a, ϱT), (e, ϱT ⊗ g2 ⊗ g3), (f , ϱT), (halt, ϱT)⟩

D. CONSTRUCTING A TREE
We now introduce how derive a transition tree from the
executable play-out traces of a model. Firstly, we formally

introduce a play-out log from a process model and access
functions for play-out traces.
Definition 18 (Play-out Logs): Let ϱT ∈ Ugrd be a guard

such that truth(ϱT), let M be a model, and let I ⊆ (Uact ∪

{τ })+ × U+

grd denote the set of possible execution instances
generated from the model. Then, the play-out log LM ⊂

(Uact × Ugrd )+ for M is defined as:

LM =
{
playout(sa, sg, ϱT) | (sa, sg) ∈ I

}
.

To denote a play-out trace, we write ρ. Furthermore,
we will use access functions, poact and pogd, for play-out
traces to retrieve either the activities or guards within the
play-out.
Definition 19 (Accessing Play-out Traces): Let LM be a

play-out log, and let ρ ∈ LM be a play-out trace, then,
we access the variant for the play-out trace using the function
poact : LM 7→ U+

act , and we access the sequence of guards
for the play-out trace using the function pogd : LM 7→ U+

grd .
Both of these functions, poact and pogd are defined as:

poact(⟨⟩) = ⟨⟩ and poact((a, g) : ρ) = a : poact(ρ),
pogd(⟨⟩) = ⟨⟩ and pogd((a, g) : ρ) = g : pogd(ρ).

We now formally introduce a directed acyclic graph (dag)
which has been derived from a play-out log. To clarify, our
graphs are always constructed in the context of an event log,
as we use the longest observed trace to limit the construction
of a possible infinite transition tree. By using the longest
observed trace length, we also limit the length of the play-out
traces used to derive these graphs.
Definition 20 (Play-out Dags): Let M be a model, let LM

be a play-out log of that model, let k be an integer for the
longest length of observed traces, then a dag from the play-
out log, dagLM = (N ,F, nr ,Nf , src, tgt, gd, actf), is defined
as:

nr = ⟨⟩, (1)

N = {poact(ρ)[1 : i] | ρ ∈ LM ∧ 0 < i < min(k + 1, |ρ|)}

∪ {nr }, (2)

Nf = {poact(ρ)[1 : i] | ρ ∈ LM ∧ 0 ≤ i < min(k + 1, |ρ|)∧

poact(ρ)i+1 = halt} , (3)

F = {(poact(ρ)[1 : i], (poact(ρ)i+1, pogd(ρ)i+1),

poact(ρ)[1 : i+ 1]) | ρ ∈ LM ∧

0 ≤ i < min(k + 1, |ρ| − 1)}. (4)
However, this definition does have a drawback, it can

always produce a directed acyclic graph but not always a tree.
If the play-out log comes from a process model with silent
actions or duplicated activities, our approach may define
more than one flow between two nodes in the graph. Having
multiple flows between the same two nodes is problematic
for our discussions of precision as we need to consider if a
path of the graph only had guards evaluated to be true for the
taken path. Hence, we now introduce a flow reduction step
to ensure only one flow exists between nodes, which when
combined with Def. 20 always reduces a play-out dag to a
play-out tree.

60284 VOLUME 12, 2024



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

Definition 21 (Flow Reduction): Let dagLM = (N ,F,

nr ,Nf , src, tgt, gd, actf) be a play-out dag, let A ={
actf(f ) | f ∈ F

}
be the set of activity labels, and a ∈ A be

a label. Then, treeLM = (N ,F ′, nr ,Nf , src, tgt, gd, actf) is
the play-out tree of dagLM where F is replaced with F ′, such
that only one flow exists in F ′ between two nodes n, n : a ∈ N,
which already had at least one flow between them in F,
defined as:

F ′
={(n, (a, ⊖

f ∈F,n
f

→n : a

gd(f )), n : a) | n ∈ N ∧ n → n : a}.

For the rest of this paper, we refer to a play-out tree as
a play-out dag constructed from Def. 20 that has had flow
reduction (Def. 21) applied to its flows.

1) EXAMPLE TREE
Continuing with our running example, we now consider
generating a play-out log for Fig. 4 and constructing a play-
out tree. For construction of our tree, let us assume that the
longest trace length is four, i.e. for Def. 20, we assume k = 4.
We show a partial derivation of the play-log LM for Fig. 4

below, with the caveat that we will only need play-out traces
that are shorter than six elements:

LM = {⟨(a, gT), (b, g1), (e, gT), (f , gT), (halt, ϱT)⟩,

⟨(a, gT), (b, g1), (e, gT), (g, gT), (halt, ϱT)⟩,

⟨(a, gT), (b, g1), (e, gT), (h, gT), (halt, ϱT)⟩,

⟨(a, gT), (e, g2 ⊗ gT), (f , gT), (halt, ϱT)⟩,

⟨(a, gT), (e, g2 ⊗ gT), (g, gT), (halt, ϱT)⟩,

⟨(a, gT), (e, g2 ⊗ gT), (h, gT), (halt, ϱT)⟩,

⟨(a, gT), (d, g3), (e, gT), (f , gT), (halt, ϱT)⟩,

⟨(a, gT), (d, g3), (e, gT), (g, gT), (halt, ϱT)⟩,

⟨(a, gT), (d, g3), (e, gT), (h, gT), (halt, ϱT)⟩

⟨(a, gT), (b, g1), (b, g3 ⊗ g1), (e, gT), (f , gT)⟩,

⟨(a, gT), (b, g1), (b, g3 ⊗ g1), (e, gT), (g, gT)⟩,

⟨(a, gT), (b, g1), (b, g3 ⊗ g1), (e, gT), (h, gT)⟩,

⟨(a, gT), (d, g1), (b, g3 ⊗ g1), (e, gT), (f , gT)⟩,

⟨(a, gT), (d, g1), (b, g3 ⊗ g1), (e, gT), (g, gT)⟩,

⟨(a, gT), (d, g1), (b, g3 ⊗ g1), (e, gT), (h, gT)⟩, . . . }.

Next, we showcase the derivation of Def. 20 in Fig. 6 and
the resulting directed graph using the play-out log. This
demonstration shows that the flow reduction step is required
to ensure tree is constructed, as Fig. 6h clearly shows that
many flows can exist between two nodes. The comparison
between the resulting directed graph produced by Def. 20,
and the flow reduced tree using Def. 21 is shown in Fig. 7.
In this comparison, the flows which have been reduced into a
single flow are highlighted in red.

E. FINDING A MATCHING
In this section, we introduce the notion of amatching between
variants of a log and paths in a model, i.e. a control-flow

focused alignment which only consists of synchronised and
log moves (as per our problematisation in Section II).
Paths. For a particular process model M , the set of paths-

with-skips through this model is denoted as PM . We will use
P if the context is clear. Each p ∈ P takes a particular form: a
sequence of flows potentially alternated with skips, i.e. P ⊆

(F ∪ {≫})∗; with ≫ denoting the skip symbol, a recognition
that we cannot always follow a particular step in the model.
Note that paths inM do not have skips (treatingM as a graph),
but paths through M may have them. The function noskip
removes all skips from a path and is defined as follows:

noskip(⟨⟩) = ⟨⟩ and

noskip(s : p) =

{
s : noskip(p) if s ̸=≫,

noskip(p) otherwise.

Matching. Amatching function between a log and a model
captures how variants in the log are mapped onto paths in the
model. Thismappingmay not be perfect, i.e. it may imply that
guards are violated, process activities may not match between
events and flows, or some paths may not end in final nodes.
Note, that at this stage we are not placing any restrictions
on the matching to be optimal. Furthermore, a matching is
a generalisation of alignments [4], which only considers log
models (i.e. ≫) or sync moves (i.e the path denotes a flow)
which may or may not be ideal.
Definition 22 (Matchings): Let L be a log, let VL be the set

of variants captured in L, let M = (N ,F, nr ,Nf , src, tgt, gd,

actf) be a model, and let P ⊂ (F ∪ {≫})∗ be the set of paths
through M. Then, a matching function γ : VL 7→ P maps
control-flow variants to paths in the model. For any variant
σ̂ ∈ VL and its reduced path p = noskip(γ (σ̂ )) the following
holds:
1) the reduced path always starts at the root: if |p| > 0 then

nr
p1

−→ tgt(p1);
2) the reduced path is between connected flows: for all 1 ≤

i < |p| : src(pi)
pi

−→ src(pi+1);
3) and the length of the path is never longer than the

variant: |γ (σ̂ )| ≤ |σ̂ |.

1) ONE TO MANY MATCHINGS
We now describe finding a suitable collection of candidate
paths to use as a matching function, where the goal is to
find ‘‘optimal’’ paths through the model for a given variant.
To find these paths one might use an alignment procedure to
efficiently find an ‘‘optimal’’ path for a variant, but in this
section we abstract from the method used. Instead, we focus
on describing a ‘many matching’, which produces all paths
that are least costly or optimal in the best case. The difference
between a matching and a many matching, is that the former
is a one-to-one while the latter is a one-to-many relationship.
Costing. To consider if a path is optimal for a variant,

we consider the quality of this pairing. The quality of the
pairing is impacted by differences in length, nonmatching
activities at corresponding positions, and improper termina-
tion.We use the function cost to determine this quality, where

VOLUME 12, 2024 60285



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

FIGURE 6. A step-wise introduction to our derivation of a play-out tree from a set of play-out traces.

60286 VOLUME 12, 2024



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

FIGURE 7. Comparison of outcomes after flow reduction has occurred. Changed flows are highlighted in red.

cost yields 0 to denote an optimal pairing and anything else
denotes a less-than-optimal pairing.
Definition 23 (Cost of a Path): Let M = (N ,F, nr ,Nf ,

src, tgt, gd, actf) be a play-out tree, let p ∈ PM be path
through this tree, and let σ̂ ∈ U+

act be a variant. Then, cost
is a function that yields a non-zero integer for a non-optimal
path or zero for an optimal path:

cost(p, σ̂ ) = ||σ̂ | − |noskip(p)|| +

∑
1≤i≤|p|

[
actf(pi) ̸= σ̂i

]
+

[
tgt(last(noskip(p))) /∈ Nf

]
.

Now, we formally denote our process for selecting
candidate paths, which prioritises the optimal paths over
non-optimal paths and results in a many matching 0.
Furthermore, in-line with Def. 22 of a matching, we only
consider paths through the model of at most the length of the
variant. To denote this process, we use the function 0, which
takes a variant σ̂ , and yields the set of the least costly paths
through a model for a variant.
Definition 24 (Many Matching): Let M = (N ,F, nr ,Nf ,

src, tgt, gd, actf) be a play-out tree, and let P be the set of

all paths through and in M, and let σ̂ ∈ U+
act be a variant,

then we define:

0(i, σ̂ ) =
{
s ∈ P | cost(s, σ̂ ) = i ∧ |s| ≤ |σ̂ |

}
.

Now 0(σ̂ ) = 0(i, σ̂ ) for the minimal i ∈ N for which
0(i, σ̂ ) ̸= ∅.
Weighing. At times, we will need to be able to determine

the likelihood of a path in the context of a variant. As such we
now introduce a weighting functionω, which in the context of
a set of paths T and a given path p and a variant σ̂ , yields the
likelihood that the path is the true system path for the variant.
Thus, if the given set of paths only contains optimal paths, ω
acts as a full-distribution, i.e.

∑
p∈T ω(σ̂ , p) = 1, otherwise

ω acts as sub-distribution, i.e.
∑

p∈T ω(σ̂ , p) < 1.
Definition 25 (Weighting Paths): Let L be an event log, let

σ̂ ∈ VL be a variant, let M be a play-out tree, let T = 0(σ̂ )
be the least costly paths of the variant through the model,
let p ∈ T be one such path, and let κ ∈ R denote a small
cost-offset such that 0 < κ < 1. Then, ω : VL × T 7→ R
is a function which takes a variant and a path and yields the

VOLUME 12, 2024 60287



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

quality of this pairing, defined as:

ω(σ̂ , p) =
1

|T |
· κ cost(p,σ̂ ).

For the rest of the paper, we will assume κ to be 0.9.

2) EXAMPLE MATCHING
We now show the working for constructing the set of likely
candidates paths for a single trace, when considering Fig. 7.

Consider the following trace, σ = ⟨
a
e1,

b
e2,

z
e3⟩, and the

following partial derivation of PM which considers paths to
nodes and paths to nodes with one skip:

Assuming the following flows from Fig. 7:

f1 =
(
⟨⟩, (a, gT), ⟨a⟩

)
,

f2 =
(
⟨a⟩, (d, (g3) ⊖ (g2 ⊗ g3)), ⟨a, d⟩

)
,

f3 =
(
⟨a⟩, (e, (g2 ⊗ g3) ⊖ ((g2 ⊗ g3) ⊗ gT)), ⟨a, e⟩

)
,

f4 =
(
⟨a⟩, (b, (g1) ⊖ ((g2 ⊗ g3) ⊗ g1)), ⟨a, b⟩

)
,

f5 =
(
⟨a, d⟩, (b, (g3 ⊗ g1) ⊖ ((g2 ⊗ g3) ⊗ g1)), ⟨a, d, b⟩

)
,

f6 =
(
⟨a, d⟩, (d, g3 ⊖ (g2 ⊗ g3)), ⟨a, d, d⟩

)
,

f7 =
(
⟨a, d⟩, (e, gT ⊖ ((g2 ⊗ g3) ⊗ gT)), ⟨a, d, e⟩

)
,

f8 =
(
⟨a, e⟩, (f , gT), ⟨a, e, f ⟩

)
,

f9 =
(
⟨a, e⟩, (g, gT), ⟨a, e, g⟩

)
,

f10 =
(
⟨a, e⟩, (h, gT), ⟨a, e, h⟩

)
,

f11 =
(
⟨a, b⟩, (b, (g3 ⊗ g1) ⊖ ((g2 ⊗ g3) ⊗ g1)), ⟨a, b, h⟩

)
,

f12 =
(
⟨a, b⟩, (e, gT ⊖ ((g2 ⊗ g3) ⊗ gT)), ⟨a, b, e⟩

)
,

f13 =
(
⟨a, b⟩, (d, g3 ⊖ (g2 ⊗ g3)), ⟨a, b, d⟩

)
.

Then, we consider a partial derivation of PM :

PM = {⟨f1, f2, f5⟩, ⟨f1, f2, f6⟩, ⟨f1, f2, f7⟩, ⟨f1, f3, f8⟩,

⟨f1, f3, f9⟩, ⟨f1, f3, f10⟩, ⟨f1, f4, f11⟩, ⟨f1, f4, f12⟩,

⟨f1, f4, f13⟩, ⟨≫⟩, ⟨≫, f1⟩, ⟨f1, ≫⟩, ⟨≫, f1, f2⟩,

⟨f1, ≫, f2⟩, ⟨f1, f2, ≫⟩, ⟨≫, f1, f3⟩, ⟨f1, ≫, f3⟩,

⟨f1, f3, ≫⟩, ⟨≫, f1, f4⟩, ⟨f1, ≫, f4⟩, ⟨f1, f4, ≫⟩, . . .} .

For σ , we can see that no optimal path exists as there is
no flow labeled with ‘z’ (f1−13). Moreover, any sequence
in PM will occur a cost from either not being the same
length ||σ | − |noskip(p)||, or from improper termination
tgt(last(noskip(p))) ̸∈ Nf . Next, we show the working up
until 0 yields a non-empty set, with the cost of a candidate
displayed above it in red, below:

Applying cost to PM we see the following:

PM =

{
0+2+1

⟨f1, f2, f5⟩,
0+2+1

⟨f1, f2, f6⟩,
0+2+1

⟨f1, f2, f7⟩,
0+2+0

⟨f1, f3, f9⟩,

0+2+0
⟨f1, f3, f8⟩,

0+2+0
⟨f1, f3, f9⟩,

0+2+0
⟨f1, f3, f10⟩,

0+1+1
⟨f1, f4, f11⟩,

0+1+1
⟨f1, f4, f12⟩,

0+1+1
⟨f1, f4, f13⟩,

3+1+1
⟨≫⟩ ,

2+2+1
⟨≫, f1⟩,

2+1+1
⟨f1, ≫⟩,

1+3+1
⟨≫, f1, f2⟩,

1+2+1
⟨f1, ≫, f2⟩,

1+2+1
⟨f1, f2, ≫⟩,

1+3+1
⟨≫, f1, f3⟩,

1+2+1
⟨f1, ≫, f3⟩,

1+2+1
⟨f1, f3, ≫⟩,

1+3+1
⟨≫, f1, f4⟩,

1+2+1
⟨f1, ≫, f4⟩,

1+1+1
⟨f1, f4, ≫⟩,

1+0+1
⟨f1, f4⟩, . . .

}
.

Then, we incrementally apply 0 to find the minimal i:

0(σ, 0) = ∅, 0(σ, 1) = ∅,

0(σ, 2) = {⟨f1, f3, f8⟩, ⟨f1, f3, f9⟩, ⟨f1, f3, f10⟩,

⟨f1, f4, f11⟩, ⟨f1, f4, f12⟩, ⟨f1, f4, f13⟩, ⟨f1, f4⟩} .

Thus, for σ we construct a many-matching 0(σ ) that returns
a set of seven non-optimal paths. Where each candidate path
has a weighted share, computed by ω, of 0.115 out of a
maximal share of 0.142 if they were optimal paths.

F. DIAGNOSING A MODEL
In this section, we introduce how we quantify the quality of
guards, and how to count their evaluations using ‘bookkeep-
ing’ functions.
Bookkeeping. Our recall discussions consider how often a

guard evaluated to a particular outcome when an associated
flow is presented in the matching. Thus, the following
functions capture information about guard evaluations given
a flow and an evaluation outcome and we refer to these
functions as traversal bookkeeping functions. In the following
definitions, we will use the Iverson bracket: [φ] = 1 if φ

evaluates to true and [φ] = 0 if φ evaluates to false.
Definition 26 (Traversal Bookkeeping): Let L be a log, let

M = (N ,F, nr ,Nf , src, tgt, gd, actf) be a model, let γ

be a matching between them, and let f ∈ F be a flow.
Then, Grd→

T , Grd→

F , Grd→

U are functions that compute the
traversal bookkeeping for a flow, for a particular outcome of
a guard, defined as:

Grd→

T (f , γ,L) (5)

=

∑
σ∈L

[
∃1≤i<|σ |[γσ̂ ,i = f ∧ Jgd(f )K(µσ,i−1)]

]
,

Grd→

F (f , γ,L) (6)

=

∑
σ∈L

[
∃1≤i<|σ |[γσ̂ ,i = f ∧ ¬Jgd(f )K(µσ,i−1)]

]
,

Grd→

U (f , γ,L) (7)

=

∑
σ∈L

[
∃1≤i<|σ |[γσ̂ ,i = f ∧ Jgd(f )K(µσ,i−1) = U]

]
.

Next, for our precision discussions, we need to understand
how restricted were choices of the system given the matching
and how many times a guard could have been evaluated to
be true. Thus, we use exploratory bookkeeping functions to
capture information about guard evaluations that could have
been evaluated for a given flow, i.e. we consider all paths (and
their associated assignments) that visited the source node for
the given flow.
Definition 27 (Exploratory Bookkeeping): Let L be a log,

let M = (N ,F, nr ,Nf , src, tgt, gd, actf) be a model, let
γ be a matching between them, and let f ∈ F be a
flow. Then,GrdT, GrdF, GrdU are functions that compute the
exploratory bookkeeping for a flow, for a particular outcome

60288 VOLUME 12, 2024



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

of a guard, defined as:

GrdT(f , γ,L)

=

∑
σ∈L

[
∃1≤i<|σ |[src(γσ̂ ,i)=src(f )∧Jgd(f )K(µσ,i−1)]

]
, (8)

GrdF(f , γ,L)

=

∑
σ∈L

[
∃1≤i<|σ |[src(γσ̂ ,i)=src(f )∧¬Jgd(f )K(µσ,i−1)]

]
, (9)

GrdU(f , γ,L)

=

∑
σ∈L

[
∃1≤i<|σ |[src(γσ̂ ,i)=src(f )∧Jgd(f )K(µσ,i−1)=U]

]
. (10)

Now using the bookkeeping functions, we can deter-
mine if two flows from separate models have equivalent
bookkeeping.
Definition 28 (Relaxed Guard Equivalence): In the con-

text of model M (with flow f ) and M ′ (with flow f ′) and with
respect to log L with matchings γ (between L and M) and
γ ′ (between L and M ′), flows f and f ′ are relaxed guard
equivalent, GrdEq(f , f ′, γ, γ ′), iff:

GrdT(f , γ,L) = GrdT(f
′, γ ′,L) ∧ GrdF(f , γ,L) =

GrdF(f
′, γ ′,L) ∧ GrdU(f , γ,L) = GrdU(f

′, γ ′,L).
In the case that an isomorphism exists between the models,

the following corollary exists.
Corollary 1: Guard equivalence implies relaxed guard

equivalence. Let L be a log, let M = (N ,F, nr ,Nf , . . . ) and
M′ be models such that an isomorphism iso exists between
these models, let γ be a matching between L and M, let γ ′ be
its isomorphic equivalent between L and M′, and let f ∈ F be
a flow.

gd(f ) ≡ gd(iso(f )) H⇒ GrdEq(f , iso(f ), γ, γ ′).
Agreement. While not being the direct goal of data-aware

conformance checking, we need to understand the agreement
between a log and a model. To this end, we need to know
whether events were skipped, whether process activities
always matched, and whether traces always ended properly.
Definition 29 (Optimal Matchings): Let L be a log, let M

be a model, and let γ be a matching between them. When
there are no skips, no activity mismatches, and all traces end
in terminal nodes, then the matching is considered optimal:

optimal(L, γ,M) ≡

∑
σ∈L

cost(γ (σ̂ ), σ̂ ) = 0.

VI. QUALITY AXIOMS
In this section we characterise the notions of guard-recall
and guard-precision (grec and gprec). These notions help
us position recall and precision in the context of data in a
way similar to how recall and precision were positioned in
a control-flow context in earlier work [2], [40], [41]. Guard-
recall and guard-precision are functions that require a log, a
matching, and a model to quantify a value between min and
max (inclusive). While the minimal value can be zero and
the maximum can be one, we do not require approaches to
adhere to this notion, as some metrics take on values greater
than one [5]. In this section, we formulate a number of axioms
that guard-recall and guard-precision should at least satisfy.

Representation. We follow Proposition 1 presented
by Syring, Tax, and van der Aalst [40] and require that guard-
recall and guard-precision are deterministic functions, i.e.
their outcome is fully determined by their input: the log, the
model, and the matching (Axioms 6 and 9, where k = 1).
Proposition 2 of [40] requires independence from process
representation. In our case, we have chosen transition trees
as an abstraction of process models, so our approach does
not fully abide by this proposition. However, regarding the
data perspective, we do not prescribe how guards should be
formulated and abide by the proposition (Axioms 1 and 2).
Axiom 1 (Inspired by Proposition 2 in [40]): Let L be a

log, let M = (N ,F, nr ,Nf , . . . ) be a model, let M′ be another
model using a different guard representation such that an
isomorphism iso exists between these models, let γ be a
matching between L and M, and let γ ′ be its isomorphic
equivalent between L and M ′. Then, grec is fully determined
by the behaviour observed in the log and the behaviour of
guards (representation of guards does not matter):

∀f ∈F GrdEq(f , iso(f ), γ, γ ′)

H⇒ grec(L, γ,M) = grec(L, γ ′,M′).
Axiom 2 (Inspired by Proposition 2 in [40]): Let L be a

log, let M = (N ,F, nr ,Nf , . . . ) be a model, let M′ be another
model using a different guard representation such that an
isomorphism iso exists between these models, let γ be a
matching between L and M, and let γ ′ be its isomorphic
equivalent between L andM ′. Then, gprec is fully determined
by the behaviour observed in the log and the behaviour of
guards (representation of guards does not matter):

∀f ∈F GrdEq(f , iso(f ), γ, γ ′)

H⇒ gprec(L, γ,M) = gprec(L, γ ′,M′).
Guard-Recall. Ideally, flows with guards that do not

evaluate to true are not taken. Guard-recall quantifies if
guards have been formed over the observed data and if they
evaluate to true when taken. Hence, when comparing similar
models with the same event log, guard-recall takes on a
larger value for the model with more guard evaluations that
were true (Axiom 3). This Axiom implies that if a guard
evaluates to false or couldn’t be evaluated, then guard-recall
is negatively affected.
Axiom 3: Let L be a log, let M = (N ,F, nr ,Nf , . . . ) be

a model, let M′ be another model with iso an isomorphism
between these models, let γ be a matching between L and M
and let γ ′ be its isomorphic equivalent between L and M′.
Guard-recall takes on a larger value for the model with more
guard evaluations that were true:∑

f ∈F

(
Grd→

T (f , γ,L) − Grd→

T (iso(f ), γ ′,L)
)

< 0

H⇒ grec(L, γ,M) < grec(L, γ ′,M′).
Furthermore, if no guard evaluates to true then guard-recall
takes on the minimal value (Axiom 4).
Axiom 4: Let L be a log, let M = (N ,F, nr ,Nf , . . . ) be a

model, and let γ be a matching between them. Guard-recall

VOLUME 12, 2024 60289



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

takes on the minimal value if and only if, no guard was ever
evaluated to true when taken:

∀f ∈F [Grd→

T (f , γ,L) = 0] ⇐⇒ grec(L, γ,M) = min.

Next, it could be the case, that the given matching is not
optimal meaning that some events in the log may not have
been considered in the bookkeeping functions. Hence, using a
non-optimal matching, opposed to an optimal matching, even
when evaluations are similar, will negatively affect guard-
recall (Axiom 5).
Axiom 5: Let L be a log, let M be a model, and let γ, γ ′ be

different matching functions between log and model. Guard-
recall takes on a larger value for the matching that is optimal,
even if evaluations are similar:(∑

f ∈M

Grd→

T (f , γ,L) ≤

∑
f ∈M

Grd→

T (f , γ ′,L)

∧ ¬optimal(L, γ,M) ∧ optimal(L, γ ′,M)
)

H⇒ grec(L, γ,M) < grec(L, γ ′,M).
We argue that enlarging an event log should not influence
guard-recall (Axiom 6).
Axiom 6 (Proposition 6 in [40]): Let L be a log, let M =

(N ,F, nr ,Nf , . . . ) be a model, let γ be a matching between L
or Lk and M, and let k ≥ 1 be an integer factor. Guard-recall
cannot take on a different value if a log is enlarged:

grec(L, γ,M) = grec(Lk , γ,M).
Guard-Precision. Ideally, flows with guards only evaluate

to true when they are observed to be taken. Hence, guard-
precision quantifies if guards only evaluated to true when
the associated flow is observed and taken. When comparing
similar models with the same event log, guard-precision takes
on a larger value for the model with fewer guard evaluations
that were true (Axiom 7).
Axiom 7: Let L be a log, let M = (N ,F, nr ,Nf , . . . ) be

a model, let M′ be another model with iso an isomorphism
between these models, let γ be a matching between L and
M and let γ ′ be its isomorphic equivalent matching between
L and M′. Guard-precision takes on a larger value for the
model with fewer guard evaluations that were true when the
flow was not taken:∑

f ∈F

(
GrdT(f , γ,L) − GrdT(iso(f ), γ ′,L)

)
> 0

H⇒ gprec(L, γ,M) < gprec(L, γ ′,M′).
Next, guard-precision takes on the maximal value if and only
if all guards only evaluated to true when they are observed
and taken, and no control-flow issues exist in the matching
function (Axiom 8).
Axiom 8: Let L be a log, let M = (N ,F, nr ,Nf , . . . ) be

a model, and let γ be a matching between them. Guard-
precision takes on the maximal value if and only if, the
matching is optimal and guards only evaluated to true when
taken:(
optimal(L, γ,M) ∧ ∀f ∈F [Grd→

T (f , γ,L) = GrdT(f , γ,L)]
)

⇐⇒ gprec(L, γ,M) = max.

Furthermore, we argue that enlarging an event log should not
influence guard-precision (Axiom 9).
Axiom 9 (Proposition 11 in [40]): Let L be a log, let M =

(N ,F, nr ,Nf , . . . ) be a model, let γ be a matching between
L or Lk and M, and let k ≥ 1 be an integer factor. Guard-
precision cannot take on a different value if a log is enlarged:

gprec(L, γ,M) = gprec(Lk , γ,M).
We should note that many things are implied by Axiom 8
beyond what was previously stated. Firstly, the following
always holds for any flow f not part of a split in the model:

f ̸∈ splits(M) H⇒ Grd→

T (f , γ,L) = GrdT(f , γ,L).

Hence, a model without a split may have perfect guard-
precision as the function can only be affected by splits. Also
implied by Axiom 8, is that guard-precision does not penalise
a model-log combination with unobserved behaviour and
unobserved guards, as the following holds for any flow f ∈ F :

∄σ∈L,1≤i≤|σ |[γσ̂ ,i = f ]

H⇒ Grd→

T (f , γ,L) = GrdT(f , γ,L) = 0.

Hence, a model with unobserved flows for a given log
may have perfect guard-precision. To quantify if the
control-flow is imprecise, one should not use guard-
precision as control-flow imprecision is outside the scope of
guard-precision.
We present these axioms as the minimal set to consider

data-aware quantification and do not claim them to account
for all cases. For example, future work may consider if
data-aware conformance checking should quantify models
that are not relaxed data sound.

VII. PROPOSED MEASURES
In this section, we formally introduce a guard-recall measure
and a guard-precision measure according to the extended
theory in Section V.

A. GUARD-RECALL
We first introduce our guard-recall function grec. Guard-
recall quantifies if guards have been formed over observed
data attributes and if they evaluate to true when taken. Ideally,
guard-recall will allow us to differentiate between data-aware
models that have guards that evaluate to false or undefined
more often than others with respect to an event log. Our
formulation uses bookkeeping functions as the axioms do, but
allows for one-to-manymatchings (seeDef. 24). Startingwith
a traversal bookkeeping function which uses one-to-many
matchings to count guard evaluations that were true.
Definition 30 (Weighted Traversal Bookkeeping): Let L

be a log, let M be a model, let LM be the play-out log of M
(Def. 18), let M′

= (N ,F, nr ,Nf , src, tgt, gd, actf) be the
play-out tree (Def. 20) with flow reduction (Def. 21), let 0 be
a one-to-many matching between L and M′ (Def. 24), let ω

be a weighting function for paths (Def. 25), and let f ∈ F be
a flow. Then, MGrd→

T is a function that yields the weighted

60290 VOLUME 12, 2024



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

sum of evaluations that were true for a given flow:

MGrd→

T (f , 0,L)

=

∑
σ∈L

∑
ρ∈0(σ̂ )

ω(σ̂ , ρ) ·
[
∃1≤i≤|ρ|[ρi = f ∧ Jgd(f )K(µσ,i−1)]

]
.

Next, using weighted traversal bookkeeping, we now
formally introduce our guard-recall measure.
Definition 31 (Guard-Recall): Let L be a log, let M be

a model, let LM be the play-out log of M (Def. 18), let
M′

= (N ,F, nr ,Nf , src, tgt, gd, actf) be the play-out tree
(Def. 20) with flow reduction (Def. 21), let 0 be a one-to-
manymatching between L andM′ (Def. 24), Then, we propose
grec is a function taking a log L, a matching 0, and a tree M′,
defined as:

grec(L, 0,M′) =

∑
f ∈F MGrd→

T (f , 0,L)∑
σ∈L

∑
ρ∈0(σ̂ )

1
|0(σ̂ )| · |σ |

.

Our definition for grec consists of a numerator which is
the total weighted sum of guard evaluations that were true,
accounting for whether they are optimal paths or not; while
the denominator is the weighted sum of the flows recorded in
the paths, where each flow is given the optimal share.

B. GUARD-PRECISION
We now introduce our guard-precision function gprec.
Guard-precision quantifies whether guards have been formed
over the observed data attributes and whether they are only
evaluated to true when the associated flow is taken in paths.
Ideally, guard-precision will allow us to differentiate between
data-aware models that have guards that are more exclusive
than another with respect to an event log. Like the previous
formulation, our proposal for gprec is constructed using
bookkeeping functions. As such, we introduce an exploratory
bookkeeping function that uses a one-to-many matching to
count all the possible guard evaluations that were true.
Definition 32 (Weighted Exploratory Bookkeeping): Let

L be a log, let M be a model, let LM be the play-out log of
M (Def. 18), let M′

= (N ,F, nr ,Nf , src, tgt, gd, actf) be the
play-out tree (Def. 20) with flow reduction (Def. 21), let 0

be a one-to-many matching between L and M′ (Def. 24), let
f ∈ F be a flow, then, MGrdT is a function that yields the
total number of possible evaluations that were true for that
flow:

MGrdT(f , 0,L)

=

∑
σ∈L

∑
ρ∈0(σ̂ )

[
∃1≤i≤|ρ|[src(f ) = src(ρi) ∧ Jgd(f )K(µσ,i−1)]

]
|0(σ̂ )|

.

Next, using weighted exploratory bookkeeping, we for-
mally introduce our guard-precision measure.
Definition 33 (Guard-Precision): Let L be a log, let M

be a model, let LM be the play-out log of M (Def. 18), let
M′

= (N ,F, nr ,Nf , src, tgt, gd, actf) be the play-out tree
(Def. 20) with flow reduction (Def. 21), let 0 be a one-to-
many matching between L and M′ (Def. 24), and let c ∈ R
be a constant factor s.t c > 0. Then, we propose gprec is a
function taking a log L, a matching 0, and a tree M′, defined

as:

gprec(L, 0,M′)

=
c · [optimal(L, γ,M′)] +

∑
f ∈F MGrd→

T (f , 0,L)

c+
∑

f ∈F MGrdT(f , 0,L)
.

Note that MGrdT(f , 0,L) will always be at least as large
as MGrd→

T (f , 0,L), so gprec will always be a ratio between
zero and one. However, for the cases where for all f ∈ F :
MGrd→

T (f , 0,L) = MGrdT(f , 0,L) = 0, we include the
constant c in Def. 33 so that the ratio is 1 in this case, to allow
for adherence to Axiom 8, which requires guard-precision to
return max.

VIII. EVALUATION
In this section, we evaluate adherence of existing mea-
sures [12], [19], [33], [35] and our two proposed measures
(in Section VII), to the axioms proposed in Section VI. Our
evaluation focuses not only on adherence to the axioms but
also whether existing techniques encapsulate our notions of
guard-recall or guard-precision. To achieve this, we adopt a
‘counter-example’ approach, as existing work has done [40],
where measure by measure, axiom by axiom, we test for
adherence. We determine that a measure does not adhere to
the relevant axiom if even a single counter-example (drawn
from exemplar logs and models) is found.

A. EXISTING TECHNIQUES
We selected, from existing literature, all known data-aware
conformance checking techniques for which a working
implementation exists. The existing techniques for a grec
function are (i) grecM using recall reported by [33], and
(ii) grecF using a weighted average of distances from equiv-
alent trace classes reported by [19]. Then, the only existing
technique for a gprec function is (iii) gprecM using precision
reported by [35]. For each of these techniques, we used the
default cost-model for its underlying alignment technique.
We formally introduce each technique in Appendix A, noting
that for grecF we propose a metric in a similar manner to the
other techniques.

B. EXEMPLAR LOG AND MODEL
As in similar previous work [2], [40], [41], our evaluation
makes use of counter-examples to test adherence to an
axiom. Accordingly, we created a synthetic event log and a
control-flowmodel for counter-examples. In terms of control-
flow, the log and model are perfectly matching, to exclude
control-flow issues. Our base model has one guard already
introduced and this guard remains unchanged, i.e. the guard
for activity ‘a’ is always true (see Fig. 8). This ensures that
any constructed counter-example from this model could be
relaxed data-sound [31, Def. 5.1], which requires at least one
valid firing sequence from initial state to final state for the
model.

Our exemplar event log LE is shown below. It consists of
nine variants and 18 sequences of assignments, and considers
one attribute, d1, with an integer domain [5 . . . 10]. However,

VOLUME 12, 2024 60291



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

when testing for adherence to our axioms, we used an
enlargement of this log, i.e. LkE with k = 100 (Def. 11).

LE = {⟨a, b, e, f ⟩ 7→ [⟨π1, ∅, ∅, ∅⟩
3, ⟨π2, ∅, ∅, ∅⟩

3],

⟨a, b, e, g⟩ 7→ [⟨π1, ∅, ∅, ∅⟩
2, ⟨π2, ∅, ∅, ∅⟩

2],

⟨a, b, e, h⟩ 7→ [⟨π1, ∅, ∅, ∅⟩
1, ⟨π2, ∅, ∅, ∅⟩

1],

⟨a, c, e, f ⟩ 7→ [⟨π3, ∅, ∅, ∅⟩
3, ⟨π4, ∅, ∅, ∅⟩

3],

⟨a, c, e, g⟩ 7→ [⟨π3, ∅, ∅, ∅⟩
2, ⟨π4, ∅, ∅, ∅⟩

2],

⟨a, c, e, h⟩ 7→ [⟨π3, ∅, ∅, ∅⟩
1, ⟨π4, ∅, ∅, ∅⟩

1],

⟨a, d, e, f ⟩ 7→ [⟨π5, ∅, ∅, ∅⟩
3, ⟨π6, ∅, ∅, ∅⟩

3],

⟨a, d, e, g⟩ 7→ [⟨π5, ∅, ∅, ∅⟩
2, ⟨π6, ∅, ∅, ∅⟩

2],

⟨a, d, e, h⟩ 7→ [⟨π5, ∅, ∅, ∅⟩
1, ⟨π6, ∅, ∅, ∅⟩

1]}

and d1 ∈ Uatt with :

π1 = {(d1, 5)}, π2 = {(d1, 6)}, π3 = {(d1, 7)},

π4 = {(d1, 8)}, π5 = {(d1, 9)}, π6 = {(d1, 10)}.

C. COUNTER-EXAMPLES
In Fig. 8, we show three models used in our counter-
examples. Fig. 8a, denotes a model with an ideal guard-
precision annotation, but struggles with guard-recall as the
guards are never enabled. Fig 8b, denotes a model with
laxer guards in terms of guard-precision, but an improvement
in guard-recall as some guards in the first choice can be
enabled. Note, that for these two models, that activity ‘e’
has a guard that constricts the language of these models
as d1 must be written to be less than 5. Fig. 8c denotes
a model which performs the best in terms of guard-recall,
w.r.t. LkE , but also the worst in terms of guard-precision as
the later choice always enables all options. Finally, all three
models have an isomorphism up to control-flow with each
other.
For most axioms, we constructed many counter-examples

to show that a candidate does not adhere to an axiom.
However, for Axioms 1 & 2, we provide straightforward
reasoning to determine adherence as these relate to how
candidates are formulated. For Axioms 6 & 9, we used any
of the following matching γ , model M, log LkE combinations,
and a further enlarged log LKE s.t. k ≪ K to test that for a
measure m, m(LkE , γ,M) = m(LKE , γ,M) holds.
For Axiom 3, we constructed possible counter-examples

using: LkE , a matching γ and an isomorphic version γ ′, and
any of the following pairs of models: (M:8a, M′:8b),(M:8a,
M′:8c), or (M:8b, M′:8c). All of these pairs have been con-
structed to be such that they are strictly increasing in terms of
(true) traversal bookkeeping from left to right. These counter-
examples expect that for any measure that is a candidate
for guard-recall, grec(LkE , γ,M) < grec(LkE , γ ′,M′) should
hold, otherwise the candidate does not adhere.
The potential counter-examples for Axiom 4 used: LkE ,

a matching γ , and a modified model M of Fig. 8a, where
the guard for ‘a’ was changed, preventing it from being
evaluated to true w.r.t LkE . Such a guard could be d1 < 5,
(d1 ̸= ⊥ ∧ d1 = ⊥) or simply false. The expectation was

that for any candidate of guard-recall, grec(LkE , γ,M) = min
should hold, otherwise the candidate does not adhere.
Next, for Axiom 5 we used: LkE , a model M (Fig. 8b),

an optimal matching γ s.t. optimal(LkE , γ,M), and a non-
optimal γ ′ to construct possible counter-examples. To con-
struct γ ′, we ensured all paths ended with the same flow
(either ‘f’,‘g’, or ‘h’), thus for some traces the associated
path would be optimal but not for all. Also, by using
Fig. 8b and only changing the last flow in paths, the (true)
traversal bookkeeping will be the same between matchings.
These counter-examples expect that for any candidate for
guard-recall, grec(L, γ,M) < grec(L, γ ′,M) should hold,
otherwise the candidate does not adhere.
Changing to guard-precision, the potential counter-

examples for Axiom 7 used: LkE , a matching γ and an
isomorphic version γ ′, and any of the following pairs of
models: (M:8c, M′:8b), (M:8c, M′:8a), or (M:8b, M′:8a).
All of these pairs have been constructed to be such that
they are strictly decreasing in terms of (true) exploratory
bookkeeping from left to right. The expectation of these was
that for any candidate of guard-precision, gprec(LkE , γ,M) <

gprec(LkE , γ ′,M′) should hold, otherwise the candidate does
not adhere.
Next, for Axiom 8 we used: LkE , a model M (Fig. 8a),

an optimal matching γ s.t. optimal(LkE , γ,M), and a non-
optimal γ ′ to construct possible counter-examples. The
expectation of this counter-example was that for any can-
didate of guard-precision, both gprec(LkE , γ,M) = max
and gprec(LkE , γ ′,M) < max should hold, otherwise the
candidate did not adhere. The usage of γ ′ was to ensure
that the measure did indeed account for a less-than-optimal
matching before returning max.

D. IMPLEMENTATION
We have implemented our proposed measures using Python.
Our implementation takes an event log in the IEEE
XES format and any DPN using the PNML format. Our
implementation could be easily extended to consider any
other executable data-aware process model, so long as a
play-out log is derivable. Given that existing decision mining
techniques only produce DPNs, we do not see this as a
major limitation and it can be extended in future work.
Our evaluation of existing techniques and our proposed
measures, including all counter-examples, can be found
here.1 In this repository, we described the detailed steps
taken for the evaluation to ensure the reproducibility of our
results.

E. RESULTS
For each axiom, we investigated if a counter-example existed
to show that a candidate does not adhere to that axiom (which
can be found here2). If no negative counter-example was
found, we include a proof sketch for adherence in these

1github.com/AdamBanham/data-aware-conformance
2github.com/AdamBanham/data-aware-conformance/tree/main/axioms

60292 VOLUME 12, 2024



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

FIGURE 8. A series of counterexamples using one log, where true guard evaluations are monotonically increasing from (a) to (c) with respect to Lk
E ,

where the number of compliant events in traces for models are: (a) 1, (b) 2, (c) 4. Measurements are denoted in sub captions. The variable d1 has an
integer domain of [5 . . . 10] and is written by ‘a’.

TABLE 2. Counter-example testing across our axioms.

cases in Appendix B. We summarise our testing in Table 2,
where ‘

√
’ denotes adherence to an axiom, ‘×’ denotes

disregard for an axiom, ‘-’ denotes irrelevance, and ‘∗’
denotes impediments during testing. Impediments could be
caused by tightly coupled concepts or by the requirements of
a candidate. Our proposed measures from Section VII grec
(Def. 31) and gprec (Def. 33), are highlighted in Table 2.

We note that no existing grec technique adheres to
Axiom 1, i.e., that guard representation should not matter,
only behaviour does. That is, these techniques rely on guards
being in a specific form (representation) so they can perform
their optimisations. Also, we reason that gprecM does not
adhere to Axiom 2, as gprecM requires traces that exactly
match the model with no deviations in either control-flow
or data perspective. Therefore, the implementation requires
creating a log of fitting traces that fulfil guard evaluations
and write constraints of a DPN [16], [31], and the resulting
log will only contain assignments that evaluate guards to be
true.

For the remaining axioms related to guard-recall, the fol-
lowing was observed for existing grec techniques. Consider
Fig. 8, from (a) to (c), where the number of guard evaluations
being true increases monotonically. As all candidates return
the same value for Fig. 8a & 8b, they do not adhere to
Axiom 3, which states that there should be a difference.
All guard-recall candidates require a relaxed data sound
model [19], [31], hence they cannot adhere to Axiom 4,
as if no guard can be true when taken, the model cannot be
relaxed data sound. Axiom 5 focuses on dissimilar matchings
and as all existing guard-recall candidates do not encounter
dissimilar matchings (i.e. they always use the ‘‘optimal’’
alignment), the axiom does not apply. Finally, given a log or

an enlargement for any counter-example, candidates return
the same value, showing adherence to Axiom 6.
As gprecM requires compliant traces and uses [33] to

generate compliant assignments, and these may take on a
range of possible values, means that an implementation of
gprecM has the potential to be non-deterministic. In our
testing, we noted that [33] does not consistently return the
same assignments, this induces non-deterministic behaviour
in gprecM [35] for a given log and model, i.e gprecM
returned several values over ten unique runs shown in Fig. 8.
The resulting behaviour from this requirement impedes
gprecM from adhering to any axiom, but with a deterministic
implementation, it would theoretically adhere to many.

Now, consider Fig. 8, from (c) to (a), where the total
number of guards evaluating to true is monotonically
decreasing. Then, gprecM does not return strictly increasing
measurements across these models. Thus, it does not adhere
to Axiom 7. Next, gprecM does not adhere to Axiom 8,
as it could not return max for Fig. 8a. Finally, given a log
or enlargement for any counter-example, gprecM does not
return the same value, and thus does not adhere to Axiom 9.
Thus, our evaluation shows that the existing candidates

for either guard-recall or guard-precision, do not adhere to
all related axioms. In comparison to existing techniques, our
proposed measures (grec or gprec) can cater for guards of
any representation, as each uses bookkeeping, and our theory
for guards does not optimise over the form of a guard. Hence,
our proposed grec and gprec, adhere to Axioms 1 & 2.

As for Axiom 3, we consider Fig. 8, from (a) to (c),
where the number of guard evaluations being true increases
monotonically. In our case, grec produces measurements that
strictly increase between these models, showing adherence
to Axiom 3. Next, for Axiom 4, our proposed grec uses
bookkeeping based on guards evaluating to true and returns
zero if and only if no guards across all paths evaluate to
true. We constructed several counter-examples with differing
guard representations for this axiom and in each case grec
returned zero (min) showing adherence to Axiom 4.
Then, for Axiom 5, we constructed counter-examples using

Fig. 8b and LkE , where we compared using the optimal
matching (Def. 29) and a strictly worst matching (e.g. all
variants were mapped a path that lead to ‘f’), thus the

VOLUME 12, 2024 60293



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

explorative bookkeeping would either be the same or less as
the model describes that no guard of latter choice can evaluate
to true w.r.t LkE . In these cases, grec returned a larger value
when using the optimal matching over non-optimal matching,
showing adherence to Axiom 5. Furthermore, if we enlarge a
log and compare it with the measurement using the original
log, for any counter-example, grec and gprec returns the
same measurement for the enlarged or original log, showing
adherence to Axioms 6 & 9.

For our proposed gprec function, we consider Fig. 8,
from (c) to (a), where the number of guard evaluations being
true is monotonically decreasing. In such a case, gprec
returns measurements that are strictly increasing across
these models, showing adherence to Axiom 7. To consider
adherence to Axiom 8, we considered Fig. 8a and various
other guard representations with the same behaviour in
terms of guard evaluations. However, we also created a
counter-example model which only contained control-flow
behaviour up to ‘e’ in Fig. 8a, to test that gprec does not
return max as Axiom 8 describes. In all counter-examples
for this axiom, our proposed gprec showed adherence by
either returning max when expected or not max when
expected.

Thus, existing techniques, or their implementations, do not
adhere to many of our axioms for guard-recall or guard-
precision. However, comparing against our proposed mea-
sures, our measures have been shown to outperform existing
techniques in terms of adherence to the proposed axioms.
Furthermore, the biggest difference can be seen between our
gprec and the existing gprecM , where the existing measure
does not adhere toAxiom9, but ours does. This findingmeans
it is challenging for existing techniques to return a reliable
measurement to compare decisionmining techniques in terms
of guard-precision. But, this is not the case for our technique
gprec.

IX. CONCLUSION
In this article, we were motivated by a need to com-
pare decision mining outcomes and were concerned that
existing conformance checking may run into difficulties
when quantifying an outcome. To address these concerns,
we introduced the notion of guard-recall and guard-precision
in terms of data-aware conformance checking through a novel
quantification theory that is model agnostic for executable
data-aware models as seen in Fig. 2. Next, we formalised
these notions and outlined desirable properties for data-aware
conformance checking as 9 axioms (4 related to work
from [40]) which guard-recall and guard-precision functions
should satisfy. Then, we tested existing techniques [19],
[33], [35] against counter-examples for our proposed axioms
and showed no existing candidates adhere entirely to these
axioms. Hence, we saw a need to develop new measures for
our notions of guard-recall and guard-precision, and have
shown that our implementation adheres to our axioms. Our
contribution of comparable conformance checking in terms of
recall and precision, will allow future work to clearly quantify

the differences between the efficiency of decision mining
techniques.

There exist many avenues for future work, including inves-
tigating the possible existence of decision mining techniques
that guarantee perfect guard-recall or guard-precision, or even
both. Consideration of data-aware conformance checking
could be extended to include generalisation and simplicity.
A further area of work is investigating whether changing the
semantics of guards to be policies, as seen in Fig. 1, affects
the desirable properties of conformance checking. Finally,
the sensitivity of our axioms to differences in data quality
and process model quality should be investigated in a manner
similar to [21].

APPENDIX A
EXISTING MEASURES
1) GUARD-RECALL TECHNIQUES
The first existing technique in the literature, proposed by de
Leoni and van der Aalst [12], extends the classical alignment
by using ILP to compute a data assignment matching
the initial control-flow alignment. However, the original
implementation of this technique is no longer available, thus
we only consider the subsequent continuation of this work
in [33] for our evaluation, which ensures that an optimal
alignment is always produced.

The first technique considered in our evaluation, (grecM ),
was proposed by Mannhardt et al. [33], and uses MILP
to solve for an holistic alignment between a given trace
and DPN. The approach applies a cost function (K) which
accounts for misalignments in the data-perspective, as well as
the control-flow in a fully customisable way (i.e. the weights
can be changed to penalise any one perspective more or less
than the others). The formal computation of grecM is noted
below:

Definition 34 (grecM as proposed by [33]): Let L be a
log, let M be a model, let P be the set of paths through M, let
γO : L 7→ P be the computed optimal alignments using [33],
let γR : L 7→ P be the worst reference alignments according
to [33], and let K : (L × P) 7→ R be the cost function with
respect to a given cost-model. Hence, grecM is defined as:

grecM (L, γ,M) =
1
|L|

·

∑
σ∈L

1 −
K(σ, γO(σ ))
K(σ, γR(σ ))

.

Note that for our testing, we used the default cost-model
for this technique where a log-move costs 1, a model-move
costs 2, and any data-move costs 3.

The second candidate, (grecF ), uses the theory proposed in
Felli et al. [19] to formulate a potential recall measurement.
In [19], the CoCoMoT framework is used to compute
multi-alignments in the a similar vein to [12] and [33].
However, their work focuses exclusively on an alignment
problem and, unlike the already described techniques [12],
[33], does not present a fitness/recall measure. Thus,
we propose a metric using their theory for our evaluation.

To describe grecF (from [19]), we take advantage of
the standard cost function to convert an outcome from this

60294 VOLUME 12, 2024



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

technique into a numeric. However, unlike other already
described techniques, we report the weighted average of edits
needed without a normalisation factor. Hence, grecF will
range between [−∞, 0], where 0 means that on average no
edits were required to make traces compliant with the given
DPN. The formal computation of a recall value derivable
from [19] is noted below:

Definition 35 (Proposed grecF using [19]): Let L be a
log, let M be a model, let P be the set of paths through M,
let C ⊂ L be the set of trace classes computed by [19], let
rep : L 7→ C be the representative selection function for
each class, let γO : C 7→ P be the optimal alignments for
each class computed by [19], and let K : (C × P) 7→ [0, ∞]
be the standard cost function in [19]. Then, we propose grecF
is defined as:

grecF (L, γ,M)

=
1
|L|

·

∑
σ∈C

− 1 · |
{
σ ′

∈ L | rep(σ ′) = σ
}
| ·K(σ, γO(σ ))).

2) GUARD-PRECISION TECHNIQUE
We now introduce the only existing technique for guard-
precision, gprecM , proposed in Mannhardt et al. [35]. This
technique computes a precision measurement by considering
the ‘compliant’ version of the log, and computes a ratio
between the observed and the possible behaviour.

To formally denote gprecM , we need to introduce the
notions of possible behaviour and observed behaviour.
Firstly, we formally denote the possible behaviour for a given
point in the model, as the set of possible next steps based on
the assignments seen at that point.
Definition 36 (Possible Behaviour): Let L be a log, let

M = (N ,F, nr ,Nf , src, tgt, gd, actf) be a model, and L̂ ⊂

(F × 5) be the transformed compliant log with respect to M
computed by [33]. Then, pos : F 7→ P(F × 5) is a function
yielding the set of possible behaviour, defined as:

pos(f ) =

{
(f ′, π) | (f , π) ∈ L̂ ∧ f ′

∈ src(f )• ∧Jgd(f ′)K(π)
}

.

Now, we formally denote the observed behaviour for a
given point in the model, as the set of recorded next steps
based on the assignments seen at that point.
Definition 37 (Observed Behaviour): Let L be a log, let

M = (N ,F, nr ,Nf , src, tgt, gd, actf) be a model, and L̂ ⊂

(F × 5) be the transformed compliant log with respect to M
computed by [33]. Then, obs : F 7→ P(F × 5) is a function
yielding the set of observed behaviour, defined as:

obs(f ) =

{
(f , π) ∈ L̂ | Jgd(f )K(π)

}
.

Finally, we formally denote the candidate gprecM as
proposed by Mannhardt et al. [35] below:

Definition 38 (gprecM as proposed by [35]): Let L be a
log, let M = (N ,F, nr ,Nf , src, tgt, gd, actf) be amodel, and
L̂ ⊂ (F × 5) be the transformed compliant log with respect
to M computed by [33]. Hence, gprecM is defined as:

gprecM (L, γ,M) =

∑
f ∈F |obs(f )|∑
f ∈F |pos(f )|

.

APPENDIX B
PROOF SKETCHES
Axiom 3 states that guard-recall increases proportionally
to the (true) traversal bookkeeping. Thus, between two
isomorphic models, one log, and one matching, the model
with larger (true) traversal bookkeeping yields a larger
guard-recall.
For our proposed measure grec, Axiom 3 holds.

Reasoning.Based onDef. 31, our proposedmeasure yields
a measurement based on weighted traversal bookkeeping
function (Def. 30) in the numerator of the proposed ratio.
Given that both of the log and matching are fixed, the
bookkeeping function will yield a number that is proportional
to the number of truthful guard evaluations for a given model.
Hence, the model with larger (true) traversal bookkeeping
will always yield a larger guard-recall.

Axiom 4 states that guard-recall only returns min when the
(true) traversal bookkeeping is zero for a givenmodel, log and
matching.
For our proposed measure grec, Axiom 4 holds.

Reasoning. Based on Def. 31, our proposed measure will
only return zero (min) when the weighted traversal book-
keeping function (Def. 30) returns zero. This bookkeeping
only returns zero when no guard evaluations were true,
in line with the axiom. Hence, our proposed measure only
yields min when there were no guard evaluations that were
true.

Axiom 5 states that guard-recall is negatively affected by
the paths in a matching being non-optimal, in the context of
a log, a model, an optimal and non-optimal matching.
For our proposed measure grec, Axiom 5 holds.
Reasoning. Based on Def. 31, our proposed measure is

proportional to the weighted traversal bookkeeping (Def. 30).
This bookkeeping is a weighted sum over guard evaluations,
where the weight is based on the path in the matching
being optimal. Optimal paths are given larger weights than
non-optimal paths through the weight function (Def. 25).
If the (true) traversal bookkeping between matchings is the
same, then our proposed measure grec is larger for the
matching that is optimal as the bookkeeping will assign more
weight to the optimal case. If the non-optimal matching
has strictly less guard evaluations that were true, then the
weighted sum from the bookkeeping will be less than the
optimal matching.

Axiom 6 states that guard-recall is not influenced by log
enlargements.
For our proposed measure grec, Axiom 6 holds.
Reasoning. Based on Def. 31, our proposed measure is

a ratio where the numerator and denominator are iterations
over the traces in a log. As such, enlarging a log by cloning
(Def. 11) will increase both numerator and denominator by
a factor of k as the clones result in the same outcomes being
counted k times. This factor k cancels out and the same ratio
is returned regardless of the size of the factor.

Axiom 7 states that guard-precision is inversely propor-
tional to (true) explorative bookkeeping (Eq. 8 in Def. 27).

VOLUME 12, 2024 60295



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

Thus, guard-precision will be larger for a model that has a
smaller sum over the explorative bookkeeping than another,
for a given log and a matching.
For our proposed measure gprec, Axiom 7 holds.
Reasoning. Based on Def. 33, our proposed measure uses

two bookkeeping functions, a weighted traversal function for
the numerator and a weighted explorative function (Def. 32)
for the denominator. The weighted explorative bookkeeping
is proportional to the (true) explorative bookkeeping, thus
if the explorative bookkeeping is larger, the denominator
of our proposed ratio for gprec will be larger. As the
denominator will always be at least as large as the
numerator, our proposed ratio will be inversely proportional
to the (true) explorative bookkeeping. Thus, a model will
have a larger gprec than another, if the model has at
least one flow where the explorative bookkeeping was
smaller than its isomorphic reflection in the other model,
reducing the size of the denominator in our proposed
measure.

Axiom 8 states that guard-precision only returns max
when both traversal and explorative bookkeeping are the
same and the matching is optimal, w.r.t. to a log and a model.
For our proposed measure gprec, Axiom 8 holds.
Reasoning. Based on Def. 33, our proposed measure is a

ratio between the weighted traversal bookkeeping (Def. 30)
and the weighted explorative bookkeeping (Def. 32). As such
this ratio can only be 1 (max), when both bookkeeping
functions return the same value. The bookkeeping in the
numerator can only return the same value as the bookkeeping
in the denominator when the matching is optimal, as the
denominator assigns weight to each path as if they were
optimal. Hence, our proposed measure only returns max
when the results of both forms of bookkeeping are the same,
or if guards only evaluated to true when they were taken in
paths within the matching.

Axiom 9 states that guard-precision is not influenced by
log enlargements.
For our proposed measure gprec, Axiom 9 holds.
Reasoning. Based on Def. 33, our proposed measure is

a ratio where the numerator and denominator are iterations
over the traces in a log. As such, enlarging a log by cloning
(Def. 11) will increase both numerator and denominator by
a factor of k as the clones result in the same outcomes
being counted k times. This factor k cancels out and
the same ratio is returned regardless of the size of the
factor.

ACKNOWLEDGMENT
The authors would like to thank Adam Burke, who took
the time for a handful of ‘‘five’’ minute conversations to
discuss formulation in earlier versions, which surely took
longer.

REFERENCES
[1] W. M. P. van der Aalst, Process Mining—Data Science in Action. Berlin,

Germany: Springer, 2016.

[2] W. M. P. van der Aalst, ‘‘Relating process models and event logs—21
conformance propositions,’’ in Proc. Int. Workshop Algorithms Theories
Anal. Event Data Satell. Event Conf., 39th Int. Conf. Appl. Theory
Petri Nets Concurrency Petri Nets, 18th Int. Conf. Appl. Concurrency
Syst. Design, vol. 2115, W. M. P. van der Aalst, R. Bergenthum,
and J. Carmona, Eds. Bratislava, Slovakia, 2018, pp. 56–74. [Online].
Available: https://ceur-ws.org/Vol-2115/ATAED2018-56-74.pdf

[3] W. van der Aalst, T. Weijters, and L. Maruster, ‘‘Workflow mining:
Discovering process models from event logs,’’ IEEE Trans. Knowl. Data
Eng., vol. 16, no. 9, pp. 1128–1142, Sep. 2004.

[4] A. Adriansyah, ‘‘Aligning observed and modeled behavior,’’ Ph.D.
dissertation, Math. Comput. Sci., Eindhoven, The Netherlands, 2014.

[5] H. Alkhammash, A. Polyvyanyy, A. Moffat, and L. García-Bañuelos,
‘‘Entropic relevance: A mechanism for measuring stochastic process
models discovered from event data,’’ Inf. Syst., vol. 107, Jul. 2022,
Art. no. 101922.

[6] A. Augusto, A. Armas-Cervantes, R. Conforti, M. Dumas, andM. L. Rosa,
‘‘Measuring fitness and precision of automatically discovered process
models: A principled and scalable approach,’’ IEEE Trans. Knowl. Data
Eng., vol. 34, no. 4, pp. 1870–1888, Apr. 2022.

[7] A. Banham, S. J. J. Leemans, M. T. Wynn, R. Andrews, K. B. Laupland,
and L. Shinners, ‘‘XPM: Enhancing exogenous data visibility,’’Artif. Intell.
Med., vol. 133, Nov. 2022, Art. no. 102409.

[8] A. Bolt, M. de Leoni, and W. M. P. van der Aalst, ‘‘Process variant
comparison: Using event logs to detect differences in behavior and business
rules,’’ Inf. Syst., vol. 74, pp. 53–66, May 2018.

[9] J. vom Brocke, W. M. van der Aalst, T. Grisold, W. Kremser, J. Mendling,
B. Pentland, J. Recker, M. Roeglinger, M. Rosemann, and B. Weber,
‘‘Process science: The interdisciplinary study of continuous change,’’
SSRN Electron. J., 2021.

[10] J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst, ‘‘Quality
dimensions in process discovery: The importance of fitness, precision,
generalization and simplicity,’’ Int. J. Cooperat. Inf. Syst., vol. 23, no. 1,
Mar. 2014, Art. no. 1440001.

[11] J. Carmona, B. F. van Dongen, A. Solti, and M. Weidlich, Conformance
Checking—Relating Processes Models. Berlin, Germany: Springer, 2018.

[12] M. de Leoni and W. M. P. van der Aalst, ‘‘Aligning event logs and process
models for multi-perspective conformance checking: An approach based
on integer linear programming,’’ in Business Process Managemen (Lecture
Notes in Computer Science), vol. 8094, F. Daniel, J. Wang, and B. Weber,
Eds., Beijing, China. Berlin, Germany: Springer, 2013, pp. 113–129.

[13] B. F. van Dongen, ‘‘Efficiently computing alignments—Using the
extended marking equation,’’ in Business Process Managemen (Lecture
Notes in Computer Science), vol. 11080, M. Weske, M. Montali, I. Weber,
and J. vom Brocke, Eds., Sydney, NSW, Australia. Cham, Switzerland:
Springer, 2018, pp. 197–214.

[14] D. Duma and R. Aringhieri, ‘‘Mining the patient flow through an
emergency department to deal with overcrowding,’’ inHealth Care Systems
Engineering, P. Cappanera, J. Li, A. Matta, E. Sahin, N. J. Vandaele, and
F. Visintin, Eds. Cham, Switzerland: Springer, 2017, pp. 49–59.

[15] P. Felli, M. de Leoni, and M. Montali, ‘‘Soundness verification of data-
aware process models with variable-to-variable conditions,’’ Fundamenta
Informaticae, vol. 182, no. 1, pp. 1–29, Sep. 2021.

[16] P. Felli, M. de Leoni, andM.Montali, ‘‘Soundness verification of decision-
aware process models with variable-to-variable conditions,’’ in Proc. 19th
Int. Conf. Appl. Concurrency Syst. Design (ACSD), Aachen, Germany,
Jun. 2019, pp. 82–91.

[17] P. Felli, M. Montali, and S. Winkler, ‘‘Repairing soundness properties in
data-aware processes,’’ in Proc. ICPM, 2023, pp. 41–48.

[18] P. Felli, M. Montali, and S. Winkler, ‘‘Soundness of data-aware
processes with arithmetic conditions,’’ in Advanced Information Systems
Engineering (Lecture Notes in Computer Science), vol. 13295. Cham,
Switzerland: Springer, 2022, pp. 389–406.

[19] P. Felli, A. Gianola, M. Montali, A. Rivkin, and S. Winkler, ‘‘Data-
aware conformance checking with SMT,’’ Inf. Syst., vol. 117, Jul. 2023,
Art. no. 102230.

[20] J. Hidders, M. Dumas, W. M. P. van der Aalst, A. H. M. T. Hofstede, and
J. Verelst, ‘‘When are two workflows the same?’’ in Proc. 11th Comput.
Australian Theory Symp., vol. 41, M. D. Atkinson and F. K. H. A. Dehne,
Eds. Newcastle, NSW, Australia, 2005, pp. 3–11. [Online]. Available:
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV41Hidders.html

60296 VOLUME 12, 2024



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

[21] G. Janssenswillen, N. Donders, T. Jouck, and B. Depaire, ‘‘A comparative
study of existing qualitymeasures for process discovery,’’ Inf. Syst., vol. 71,
pp. 1–15, Nov. 2017.

[22] T. Jouck, M. de Leoni, and B. Depaire, ‘‘A framework to evaluate and
compare decision-mining techniques,’’ in Business Process Managemen
(Lecture Notes in Computer Science), vol. 342, F. Daniel, Q. Z. Sheng, and
H. Motahari, Eds., Sydney, NSW, Australia. Cham, Switzerland: Springer,
2018, pp. 482–493.

[23] S. J. J. Leemans, Robust Process Mining With Guarantees—Process
Discovery, Conformance Checking Enhancement (Lecture Notes in
Business Information Processing), vol. 440. Cham, Switzerland: Springer,
2022.

[24] S. J. J. Leemans, W. M. P. van der Aalst, T. Brockhoff, and A. Polyvyanyy,
‘‘Stochastic process mining: Earth movers’ stochastic conformance,’’ Inf.
Syst., vol. 102, Dec. 2021, Art. no. 101724.

[25] S. Leewis, K. Smit, and M. Zoet, ‘‘Putting decision mining into context:
A literature study,’’ in Digital Business Transformation, R. Agrifoglio,
R. Lamboglia, D. Mancini, and F. Ricciardi, Eds. Cham, Switzerland:
Springer, 2020, pp. 31–46.

[26] M. de Leoni and W. M. P. van der Aalst, ‘‘Data-aware process mining:
Discovering decisions in processes using alignments,’’ in Proc. 28th Annu.
ACM Symp. Appl. Comput., S. Y. Shin and J. C. Maldonado, Eds. Coimbra,
Portugal, 2013, pp. 1454–1461.

[27] M. de Leoni, M. Dumas, and L. Garcia-Banuelos, ‘‘Discovering branching
conditions from business process execution logs,’’ in Fundamental
Approaches to Software Engineering (LectureNotes in Computer Science),
vol. 7793, V. Cortellessa and D. Varro, Eds., Rome, Italy. Berlin, Germany:
Springer, 2013, pp. 114–129.

[28] M. de Leoni, P. Felli, and M. Montali, ‘‘A holistic approach for soundness
verification of decision-aware process models,’’ in Conceptual Modeling
(Lecture Notes in Computer Science), vol. 11157, J. Trujillo, K. C. Davis,
X. Du, Z. Li, T. W. Ling, G. Li, and M. Lee, Eds., Xi’an, China. Cham,
Switzerland: Springer, 2018, pp. 219–235.

[29] M. de Leoni and F. Mannhardt, ‘‘Decision discovery in business
processes,’’ in Encyclopedia of Big Data Technologies, S. Sakr and
A. Y. Zomaya, Eds. Cham, Switzerland: Springer, 2019.

[30] S. Lindell, ‘‘A logspace algorithm for tree canonization (extended
abstract),’’ in Proc. 24th Annu. ACM Symp. Theory Comput.,
S. R. Kosaraju, M. Fellows, A. Wigderson, and J. A. Ellis, Eds. Victoria,
BC, Canada, 1992, pp. 400–404.

[31] F. Mannhardt, ‘‘Multi-perspective process mining,’’ Ph.D. dissertation,
Math. Comput. Sci., Eindhoven, The Netherlands, Feb. 2018.

[32] F. Mannhardt and D. Blinde, ‘‘Analyzing the trajectories of patients with
sepsis using process mining,’’ in Proc. 18th Int. Work. Conf. Bus. Process
Model., Develop. Support (BPMDS), 22nd Int. Work. Conf. Eval. Model.
Methods Syst. Anal. Develop. (EMMSAD), 8th Int. Workshop Enterprise
Model. Inf. Syst. Architectures (EMISA), 29th Int. Conf. Adv. Inf. Syst.
Eng., vol. 1859, Essen, Germany, 2017, pp. 72–80. [Online]. Available:
https://ceur-ws.org/Vol-1859/bpmds-08-paper.pdf

[33] F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. P. van der
Aalst, ‘‘Balanced multi-perspective checking of process conformance,’’
Computing, vol. 98, no. 4, pp. 407–437, Apr. 2016.

[34] F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. P. van der Aalst,
‘‘Decisionmining revisited—Discovering overlapping rules,’’ inAdvanced
Information Systems Engineering (Lecture Notes in Computer Science),
vol. 9694, S. Nurcan, P. Soffer, M. Bajec, and J. Eder, Eds., Ljubljana,
Slovenia. Cham, Switzerland: Springer, 2016, pp. 377–392.

[35] F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. P. van der
Aalst, ‘‘Measuring the precision of multi-perspective process models,’’
in Business Process Managemen (Lecture Notes in Computer Science),
vol. 256, M. Reichert and H. A. Reijers, Eds. Cham, Switzerland: Springer,
2015, pp. 113–125.

[36] R. De Masellis, C. Di Francescomarino, C. Ghidini, and S. Tessaris,
‘‘Solving reachability problems on data-aware workflows,’’ Exp. Syst.
Appl., vol. 189, Mar. 2022, Art. no. 116059.

[37] A. Rozinat and W. M. P. van der Aalst, ‘‘Decision mining in prom,’’
in Business Process Managemen (Lecture Notes in Computer Science),
vol. 4102, S. Dustdar, J. L. Fiadeiro, and A. P. Sheth, Eds. Berlin, Germany:
Springer, 2006, pp. 420–425.

[38] B. Scheibel and S. Rinderle-Ma, ‘‘Decision mining with time series
data based on automatic feature generation,’’ in Advanced Information
Systems Engineering (Lecture Notes in Computer Science), vol. 13295,
X. Franch, G. Poels, F. Gailly, and M. Snoeck, Eds., Leuven, Belgium.
Cham, Switzerland: Springer, 2022, pp. 3–18.

[39] D. Sommers, N. Sidorova, and B. F. van Dongen, ‘‘Exact and approximated
log alignments for processes with inter-case dependencies,’’ in Application
and Theory of Petri Nets and Concurrency (Lecture Notes in Computer
Science), vol. 13929, L. Gomes and R. Lorenz, Eds., Lisbon, Portugal.
Cham, Switzerland: Springer, 2023, pp. 99–119.

[40] A. F. Syring, N. Tax, andW.M. P. van der Aalst, ‘‘Evaluating conformance
measures in process mining using conformance propositions,’’ in Transac-
tions on Petri Nets and Other Models of Concurrency XIV, vol. 14. Berlin,
Germany: Springer, 2019, pp. 192–221.

[41] N. Tax, X. Lu, N. Sidorova, D. Fahland, and W. M. P. van der Aalst,
‘‘The imprecisions of precision measures in process mining,’’ Inf. Process.
Lett., vol. 135, pp. 1–8, Jul. 2018.

ADAM BANHAM received the bachelor’s
degree (Hons.) in information technology from
Queensland University of Technology (QUT),
Brisbane, Australia, in 2020, where he is currently
pursuing the Ph.D. degree in processmining, under
the supervision of Prof. Sander J. J. Leemans,
Dr. Robert Andrews, and Prof. Moe T. Wynn.

From 2017 to 2021, he was a Research Assistant
with QUT across several data science/process min-
ing projects which investigated ambulance triage,

car insurance claims, and clinical populations across in QLD, Australia.
His research interests include business process management, modeling
formalisms for studying behavior in processes, and decision-making in
business.

ARTHUR H. M. TER HOFSTEDE received
the Ph.D. degree from Katholieke Universiteit
Nijmegen (since renamed to Radboud Univer-
siteit), Nijmegen, The Netherlands, in 1993. Since
1997, he has been with Queensland University of
Technology, Brisbane, QLD, Australia, where he
is currently a Professor and a Principal Research
Fellow of the School of Information Systems.
He was involved in the well-known workflow
patterns initiative. At QUT, he has managed the

well-known YAWL initiative. He is the coauthor on over 290 publications,
including over 100 journal publications. His research interests include
business process automation, process mining, and data quality.

SANDER J. J. LEEMANS received the Ph.D.
degree from Eindhoven University of Technology,
Eindhoven, The Netherlands, in 2017. He is
currently a Professor (W2) with Rheinisch-
Westfälische Technische Hochschule University
(RWTH), Aachen, Germany. His research inter-
ests include process mining, process discovery,
conformance checking, stochastic process mining,
and robotic process automation. In particular,
he specializes in making solid academic tech-

niques available to end-users, analysts, and industry partners. He teaches
business process management, business process modeling, and business
process improvement. He is also affiliated with the Fraunhofer FIT Institute.

VOLUME 12, 2024 60297



A. Banham et al.: Comparing Conformance Checking for Decision Mining: An Axiomatic Approach

FELIX MANNHARDT received the Ph.D. degree
from Eindhoven University of Technology,
Eindhoven, The Netherlands, in 2018. He is cur-
rently an Assistant Professor (Universiair Docent)
with Eindhoven University of Technology. His
research interests include process mining in
various settings and in conjunction with other
data science and machine learning methods, the
development and application of process mining
methods related to low-level event data (event

abstraction, activity recognition, sensor data, and multi-perspective event
logs), related to conformance checking (combination of control-flow with
rules over data), and related to trust and privacy concerns (privacy-preserving
methods, privacy, and trust models). He has published more than 50 peer-
reviewed publications and also contributed significantly to the leading
open-source process mining frameworks, ProM and bupaR.

ROBERT ANDREWS received the Ph.D. degree
from Queensland University of Technology,
Brisbane, QLD, Australia, in 2003. He is currently
a Senior Research Fellow and has worked on
applying process mining techniques in the health-
care and insurance sectors. He is also working
on projects involving pre-hospital transport and
retrieval, patient journeys and outcomes following
major trauma resulting from road traffic crashes,
and process-data quality. His research interests

include data quality, process mining, data mining, and machine learning.

MOE T. WYNN (Member, IEEE) received the
Ph.D. degree in workflow management from
Queensland University of Technology (QUT),
Brisbane, QLD, Australia, in 2007. She currently
leads the Business Process Management Research
Group, QUT. She is also the Vice-Chair and one
of the steering committee members of the IEEE
Taskforce on Process Mining. She has published
more than 80 refereed articles, includingmore than
30 journal articles. Her research interests include

process-oriented data mining (process mining), data quality, and robotic
process automation for the digital transformation of processes.

60298 VOLUME 12, 2024


