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ABSTRACT The prevalence of cyber-attacks perpetrated over the last two decades, including coordinated
attempts to breach targeted organizations, has drastically and systematically exposed some of the more
critical vulnerabilities existing in our cyber ecosystem. Particularly in Supervisory Control and Data
Acquisition (SCADA) systems with targeted attacks aiming to bypass signature-based protocols, attempting
to gain control over operational processes. In the past, researchers utilized deep learning and reinforcement
learning algorithms to mitigate threats against industrial control systems (ICS). However, as technology
evolves, these techniques become ineffective in monitoring and enhancing the cybersecurity defenses of
those system against unwanted attacks. To address these concerns, we propose a deep reinforcement learning
(DRL) framework for anomaly detection in the SCADA network. Our model utilizes a ‘‘Q-network’’, which
allows it to achieve state-of-the-art performance in pattern recognition from complex tasks. We validated
our solution on two publicly available datasets. The WUSTL-IIoT-2018 and the WUSTL-IIoT-2021, each
comprised of twenty-five networking features representing benign and attack traffic. The results obtained
shows that our model successfully achieved an accuracy of 99.36% in attack detection, highlighting DRL’s
potential to enhance the security of critical infrastructure and laying the foundation for future research in
this domain.

INDEX TERMS Critical infrastructure, deep reinforcement learning, cybersecurity, SCADA.

I. INTRODUCTION
Cybersecurity threats and attacks against businesses are
escalating and becoming increasingly sophisticated, making
them extremely challenging to detect. While traditional
antivirus software with pattern recognition algorithms is
commonly used for early detection, however, the complexity
and frequency of attacks have made it difficult for network
administrators and standard applications to monitor. More-
over, the relentless number of attacks occurring each day has
also added to the growing challenge [1]. Among the domains
and software that are vulnerable and susceptible to cyber-
attacks, is autonomous critical infrastructure or Supervisory
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Control and Data Acquisition (SCADA). In an industrial
control system, such as ‘‘critical infrastructure’’ these sys-
tems enhance and automate equipment’s performances [2].
For example, a SCADA-controlled smart grid infrastructure
would leverage internet protocols to communicate with
sensors to detect faults and isolate potential damages to power
lines and mechanical field assets responsible of performing
daily operations [3], [4].

With the advent of the Internet, coupled with lurking
persistent cyber-threats and the proliferation of the Internet
of Things (IoT), a new paradigm has shifted towards artificial
intelligence (AI) and the dynamism of ‘‘deep reinforcement
learning’’ (DRL). Based on prior knowledge, this technique
is used to navigate through new obstacles to solve future
problems. The methodological complexity and deep neural
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network (DNN) algorithmic policy-based that interconnects
the model’s neurons, gives it significant computational
aptitude to analyze intricate network data and make decisions
[5]. In terms of multi-tasking capabilities, DRL technique
provides researchers with an array of advanced AI technical
frameworks ready to be deployed in various domains of
industrial importance. In areas such as smart grids for voltage
regulation [2]; adaptive assembly lines [6]; in robotics to
perform specific functions that optimized individual tasks
[7]. For example, in cybersecurity [8], the DRL algorithm is
applied to filter through network traffic and prevent intrusions
[9], thus reducing cost and the unnecessary manpower
needed to accomplish complex and time-consuming cyber-
monitoring tasks. Conceptually, DRL technique is trained
in a pre-defined environment where agents learn from low
dimension of feature’s inputs from metadata and perform
meta-learning1 through trial and error [10], [11].

As a subset of machine learning, DRL’s computational
proficiency and intellectual effectiveness in the video gaming
industry display exceptional results in both offensive attack
strategies as well as defensive tactics [12]. DRL’s neural
network application uses a function estimator to observe data
state or labels’ input, as it operates in a set environment, and
uses a greedy algorithmic policy to process unlimited network
traffic’s history for anomalous and malicious attacks [13].
In retrospect, these capabilities make it a valuable intrusion
detection algorithm for protecting and defending against
sophisticated cybersecurity attacks, including advanced per-
sistent threats (APT) [14].
In the digital transformation era, various sectors such

as business infrastructure, banking, IoT, Industrial IoT, and
transportation, including SCADA infrastructure, are under
constant threats of cybersecurity attacks and the risk of
data breaches [14]. However, in recent years, machine
learning techniques have shown great promise in enhancing
the security posture of critical infrastructure by aiding in
penetration testing, pattern detection, and real-time attack
mapping. However, it should be noted that the complexity of
code and the challenges posed by large datasets remain an
obstacle for certain aspects of machine learning algorithms
[15], [16], particularly in areas involving continuous complex
calculations and large-scale decision-making.

In this paper, we conducted a qualitative assessment of
cyber-attacks on critical infrastructure and their impact on
business operations, drawing insights from studies, e.g.,
[17] and [18]. We performed a comprehensive review of
prior research on the application of DRL methodology
in combating SCADA network anomalies; our analysis
revealed that while there have been numerous research efforts
utilizing DRL approaches to enhance the security of SCADA
network infrastructure, however, the focus has been primarily
directed towards hardware and themonitoring aspects of (CI).
Including the development of intrusion detection methods

1Meta-learning in ML is the process that refers to learning algorithms
that continuously learn from other learning algorithms.

and autonomous controls using diverse datasets [19], [20],
[21]. In fact, we did not find any relevant papers on DRL
that used similar data at the time of our research. Considering
these findings, we explored the effectiveness and robustness
of the DRL framework [22] in the cybersecurity domain.
We developed and implemented a model algorithm, testing
it on two SCADA datasets: Wustl-IIoT-2018 and Wustl-
IIoT-2021. Our research results demonstrated the successful
application of DRL methodology in detecting cyber threats
within SCADA’s critical network [14].

A. RESEARCH OBJECTIVES
The main goal of this work is to explore the capabilities of
Deep Reinforcement Learning (DRL) algorithms to enhance
the accuracy of anomaly detection.

In particular, this research explores the potential of
implementing a DRL technique to protect and defend critical
infrastructure from continuous cybersecurity attacks as we
investigate whether the algorithm can effectively enhance the
security and resilience of SCADA systems against ongoing
threats from bad actors.

Similarly, we explore possible challenges associated with
applying DRL in Smart Grid systems and discuss specific
difficulties or limitations in implementing the technique in
the context of critical systems’ network anomaly detec-
tion, which encompasses protection from cybersecurity
attacks.

We discuss optimization and deployment strategies for
utilizing the technique to effectively secure SCADA systems
and provide insights into specific approaches, methodologies,
and necessary considerations for maximizing the efficacy of
DRL to improve network security.

Lastly, we identify the potential advantages and disadvan-
tages of deploying DRL as an Intrusion Detection System and
Intrusion Prevention System in Industrial Control Systems
[3], [23], [24]. This approach seeks to analyze how DRL can
enhance the security and resilience of ICS to effectively detect
and prevent cybersecurity threats, improve incident response,
and mitigate risks to critical infrastructure.

B. CONTRIBUTIONS
Our proposed approach presents a multifold contribution to
critical infrastructures’ existing security measures.

A) It incorporates novel features such as actor-critic
algorithm [23], designed for optimal policy update [24],
to dynamically assist the model (actor) in maximizing
its decision process. The architectural design of the actor
and critic networks are mirrored with the same dynamic
parameters to facilitate a reciprocal training environment.
In this manner, our actor is trained to generate actions that
maximize the expected rewards, as the critic evaluates the
quality of those actions for the expected value of future
rewards. This iterative process continues until the model
converges.

63382 VOLUME 12, 2024



F. Mesadieu et al.: Leveraging DRL Technique for Intrusion Detection in SCADA Infrastructure

To address issues stemming from correlated data and non-
stationary distributions, we introduce a ‘‘ReplayMemory’’
function [3] designed to store experiences and sample
transitions (i.e., state−action−reward−next−state, tuples)
that the agent encounters during its exploration of the
environment. This memory buffer enables the agent to learn
from past experiences by randomly sampling previous tran-
sitions from the memory during training. By incorporating
this technique, the agent can leverage a wider range of
experiences from its entire history rather than relying solely
on its most recent encounters.

B) We present a detailed assessment and conduct a
qualitative and quantitative evaluation using two real-world
datasets to train our model. We evaluate our algorithm on
the WUSTL-IIoT-2018 dataset [25], and the WUSTL-IIoT-
2021 dataset [26], consisting of network traffic protocols.
To validate our solution, we load the saved model with test
data containing multiple binary classification inputs. The
agent applies the methods described in algorithms (6) and (7)
to read the labeled attacks and predict the targeted attack
labels. The results obtained, demonstrates that our DRL
model can effectively classifies threats in real time and
provides detection and response [27].
C) Lastly, we offer valuable insights for future research

directions regarding the use of DRL to detect cybersecurity
attacks in the SCADA domain. Despite its successes, some
of the challenges faced by DRL technique applications
are: Deep neural network utilization, greedy policy imple-
mentation, and the need for sample or data efficiency.
In addition to these challenges, there are several points
of interest for future research on DRL implementation in
the cybersecurity domain. These include: Investigating the
capability of DRL framework to handle larger and more
complex SCADA network datasets; evaluating the robustness
and generalizability of the technique by testing it on diverse
SCADA systems and network environments; and exploring
the possibility of combining the DRL algorithm with other
machine learning techniques, such as anomaly detection
and ensemble methods, to further improve the accuracy and
effectiveness of cyber threat detection and response. These
research directions aim to address challenges in adopting
DRL for cybersecurity and advance the development of active
solutions in this field.

C. STRUCTURE
The remainder of the paper is structured as follows: Section II
details a comprehensive background of DRL and highlights
key topological concepts of SCADA. Section III reviews prior
work that employs DRL methodology for anomaly detection
in SCADA. Section IV describes the methodology used to
build our DRL model and the application of the model to
SCADA domain. Section C details the training process and
the implementation of our DRL model. Section VI presents
the results of our evaluation. Section VII outlines the threats
to validity. Section VIII concludes the paper.

II. BACKGROUND
In this section, we provide a brief introduction of DRL
framework. Following that, we summarize the necessary
background information related to SCADA infrastructure.

A. DEEP REINFORCEMENT LEARNING
Deep reinforcement learning (DRL), a subset of machine
learning, is a branch of artificial intelligence that combines
deep learning algorithms and reinforcement learning tech-
niques allowing an agent to interact with its environment
and learn from trial and error. Using Python programming
language, we defined the following: an agent is represented
through functions, software, or a block of codes. The envi-
ronment, on the other hand, is a function that simulates both
virtual and physical training scenarios, containing parameters
for an agent to exploit. In this conceptual framework (Fig.1),
the agent explores a pre-defined environment and exploits its
parameters [28] to maximize reward signals.
In training, for each time step, the environment sends

a scalar reward signal to the reinforcement learning agent
for each action taken. It is important to highlight that due
to the insistent algorithmic nature of DRL framework, the
sole objective of the agent is to learn from its implemented
stochastic policy to maximize cumulative reward over
time [29].

FIGURE 1. DQN Agent in SCADA Environment Using MDP.

A typical DRL framework has several key components.
An essential element in the software design is the ‘‘envi-
ronment’’, representing the task or challenges the agent
is attempting to resolve [30], as depicted in figure 1.
In that context, the environment facilitates the agent with
observations, thus prompted an action (a), state (s) that
geared towards a signal reward (r). This virtual cyber-space
is usually a high-dimensional sensory inputs, with expected
rewards, indicating the agent’s performance based on the
quantity of rewards obtained [15]. The second component in
DRL framework is the ‘‘agent’’, this methodology employs

VOLUME 12, 2024 63383



F. Mesadieu et al.: Leveraging DRL Technique for Intrusion Detection in SCADA Infrastructure

deep neural network, hence enabling the agent to learn and
interact with the environment. During training and upon
initialization, the agent uses data input as observations and
its outputs as actions, while attempting to maximize reward
signals, where Q(s, a) represents the sum of all rewards, and
maxQ(s′, a′) for the maximum rewards an agent is able to
achieve from its current state [31]. The third component is
the ‘‘training algorithm’’, which updates the deep neural
network’s weights based on the reward function and the
actions taken by the agent. In our proposed model, the state-
action value function is called a Q function, and is defined as
Q(s, a). Referred to as Q-learning, this Q function is used for
optimal rewards in each action as it updates the policy using
this Bellman equation [24].

Q(s, a) = Q(s, a)+ α(r + γmaxQ(s′, a′)− Q(s, a))

1) DEEP Q-NETWORK ALGORITHM
Deep Q-Network (DQN) is a deep reinforcement learning
algorithm that uses deep neural networks or a Q-network
to approximate optimal action-value functions in a Markov
Decision Process (MDP) [32]. The technique is built upon
the traditional Q-learning algorithm, which serves as a
function approximator. Unlike reinforcement learning which
maintains a (Q − table to store Q − values for each state −
action pair), Q-network takes the raw observation state as
input and directly outputs the estimated Q-values for all
possible actions. Introduced by Google DeepMind in 2013
[33], the DQN technique combines deep neural networks and
Q-learning to learn optimal policies in complex and high-
dimensional environments [34].

2) IMPROVING DQN ACTION SELECTION USING TEMPORAL
DIFFERENCE
Using MDP principle, we initialized the DQN ReplayMem-
ory with St ,At , where the model takes random action in the
environment and uses experience replay samples to update
Q-values. However, from a policy-based perspective, the
algorithm is designed for optimal performance, from which
an RL agent’s goal is to select a policy that optimizes its
expected return (V-value function):

Vπ (s) =
∑
a

π (a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γVπ (s′)]

This aggressive approach may lead to (TD) or Temporal
Difference learning which may create noise [35], [36].
To calculate TD for reward maximization, where at = st ,
we use Q(st+1, a′) for immediate reward R = Q(st+1, a′).
By adding Q(st , at ), we were able to update the difference
between TD-target, using a as the learning rate for each added
Q(st , at ) [37].

B. SCADA
The Supervisory Control and Data Acquisition System
(SCADA), is a modern computerized control system com-
prised of hardware components, software, and network data

communications. Known as the Industrial Internet of Things
or IIoT 4.0 [38], these peripherals enable remote automation
and high-level supervision of critical infrastructures like
power grids and water distribution plants. The system is an
integral component of smart grids and facilitates real-time
data analysis, command, and control processes of assets.
Depicted in figure 2, a standard SCADA structural design can
be outfitted with ‘‘Remote Terminal Units, Programmable
Logic Controller, etc.’’ These microprocessors communicate
commands to field devices such as Pump units and valves,
where the processes are then displayed in a ‘‘human-machine
interface’’ HMI for visual confirmation [39].

1) SCADA OPTIMIZATION PROCESS
• Control processes
• Monitor and gather information in real-time
• Interact with various devices
• Record events in a back-end database
Based on figure 2, regardless of topological configuration

and structural design, a SCADA system uses data from its
connected nodes or (IIoT) devices to perform its operations.
These nodes are a collection of sensors and other monitoring
devices attached to the network via ethernet cables or
wireless communication channels [40]. Depicted in 3, remote
control access requires internet communication and uses the
following mode for data exchange: ‘‘Local Area Network’’
(LAN) or a ‘‘Wide Area Network’’ (WAN). Protocols such
as Modbus, DNP3, OPC, and others, defined the format and
rules for exchanging data and commands between nodes
within a system [40].

FIGURE 2. SCADA network topology.

2) THREAT ANALYSIS
This section outlines the application of threat analysis in the
context of SCADA systems operational continuity and its
relevance with the integration of Industry 4.0.

Threat analysis helps identify potential vulnerabilities and
assess their impact on business operations. It is a quantitative
and qualitative assessment of critical organizational resources
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FIGURE 3. Modbus server.

to determine the business impact on Information Technology
and Information Systems IT/IS [41], [42].

a: INDUSTRY 4.0 VULNERABILITY
IoT and IIoT devices integrated in SCADA infrastructure,
enable advanced automation and cost effectiveness of
operational processes. However, the risks associated with
critical infrastructure are derived from the programmable
logic controllers (PLCs) installed in components responsible
for executing tasks upon commands [39]. SCADA’s physical
structure is comprised of PLCs, such as actuators, sensors,
enterprise resource planning, and manufacturing execution
system (MES) for asset tracking and management [43].
Together, vulnerabilities like ‘‘insecure software/firmware,
insecure web interface, lack of transport encryption, insuf-
ficient authentication, can all be exploited as part of the
system’s flaws.

b: IDENTIFYING AND DETERMINING RISKS
SCADA communication links in relation to topological
structure, functionality, and proximity, make the use of
internet protocol (e.g., TCP/IP) essential to its operation; as
a result, IoT devices connected to network traffic facing the
internet are likely to become targets of malicious attacks [44],
[43].Meaning, both hardware and software components, such
as PLCs,2 RTUs,3 sensors and other controllers performing
data communication and acquisitions, can also be exposed to
unwanted attacks when using internet resources (e.g., local
area network (LAN) and wide area network or (WAN) to
carry out critical functions). In lieu of these identifiable

2PLC programmable logic controller; a microprocessor that communi-
cates commands to field devices.

3RTU Remote Terminal Unit, is a microprocessor that monitors &
controls field devices.

risks, a network attack such as Stuxnet4 on IoT devices can
disrupt an entire system and causes great financial loss in
terms of the business impact to consumers and stakeholders
[43], [45]. SCADA software and IoT devices can be
subjected to various types of security attacks [41], especially
when considering and evaluating communications’ links
with respect to software-related vulnerabilities. Although
multiple AI techniques and frameworks have been developed
in conjunction with cybersecurity taxonomies for intrusion
detection and mitigation, unfortunately, these techniques are
not designed to address software flaws.

III. RELATED WORK
In retrospect to threat prevention and detection, our main
focus is to develop a cutting-edge DRL algorithm that
incorporates network communication protocols to proac-
tively detect network intrusion in SCADA’s industrial control
systems and field assets. To guide our search, we referred
to the systematic mapping conducted in [46], which helps
identify existing machine learning techniques that can be
leveraged to analyze network traffic behaviors for threat
anomalies. Surprisingly, most of the research conducted
on DRL in this domain focused on anomaly detection,
but utilized diverse datasets, including proprietary data,
to address specific SCADA network security challenges.
Table 1 provides a summary of the reviewed studies,
including the related work, datasets employed, and their
respective domains.

For example, Liu et al. [3] developed a DRL framework
that monitors IIoT components in physical water plant to
investigate the impact of a performance-based attack on
IoT devices. The authors’ proposed DQN experimented
on proprietary data, collected from a simulated water
distribution testbed. In [14], the deep RL-based APT
defense scheme introduced by Ning and his associates,
combined deep learning and policy-gradient based actor-
critic to identify ‘‘advanced persistent threats’’ and determine
the type of resources needed to manage both the speed
and the interval at which attacks are launched against
critical infrastructure. Tharewal et al. [15] presented a
DRL-based intrusion detection system for the industrial
Internet of Things, to detect network intrusions that are
otherwise too complex for conventional machine learning
techniques to identify. Introduced by Landen et al. in [17],
DRAGON is a DRL model, structured to actively monitor
potential cyber-attacks in smart grids through interactions,
and data collection, from which the model learned from past
experiences using a grid simulator, featuring IEEE 14-bus
power transmission system as its environment. Wei et al. [18]
developed a DRL framework that serves as a transmission
retriever and optimizer of lost communications during a
cyber-attack. The model’s objective is to minimize reclosing
time among affected communication lines to both prevent

4Stuxnet a self-replicating malware that takes advantage of auto-
execution vulnerabilities.
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TABLE 1. Related work comparison.

and recover from network transmission attacks. The proposed
methodology presented byWang et al. [21] is a DRL based Q-
learning attack strategy, simulated on the IEEE 30-bus system
for SCADA load management uncertainty; a vulnerability
that a hacker may use to trip critical transmission lines. Their
model detects and prevents smart grid-coordinated topolog-
ical attacks by identifying false electronic communication.
The actor-critic approach by Moradi et al. [29] is a high-
level algorithm, structured to strategically simulate attacks
in a smart environment. The technique can simultaneously
learn policies and detect network anomalies from smart
electrical communication systems. The evaluation shows
positive results against the Wood and Wollenberg 6-bus
and the IEEE 30-bus systems respectively. The abnormal
flow detection in industrial control network presented by
Wang et al. [44] is a DRL model which the authors deploy
to monitor ‘‘abnormal flow’’, a form of intrusion in ICS
systems. The model helps prevent bad actors from taking
over command of industrial control systems or natural
gas pipeline operations. To the best of our knowledge,
our study is the first to implement a DQN in SCADA
‘‘Industrial Internet of Things’’ for intrusion detection.
In contrast, the gap between our proposed algorithm and the
related work comparison presented in table 5, lies in the
sophistication of our model’s architecture, the complexity
of our datasets and the performance achieved, highlighting
our algorithm’s advancements in handling complex tasks,
and preventing continuous cyberterrorism attacks against
SCADA communication’s infrastructure.

IV. METHODOLOGY
As follows, we present the research methodology employed
in constructing our DRL model, which is based on our
investigative discoveries [38].

Our research aims to explore the potential of DRL
techniques in the cybersecurity domain, specifically focusing
on optimizing and deploying these techniques to enhance
the security of industrial control systems. By leveraging
DRL, we aim to strengthen the resilience of SCADA systems
against various cyber threats. Here, we introduce the four-step
methodology:
1. Building the DRL Model (Section IV-A). We devel-

oped a DQN-based approach that effectively addresses
the challenges in protecting and defending critical
infrastructure against cybersecurity attacks using com-
plex IIoT datasets.

2. Applying DRL to SCADA (Section IV-B). We describe
how the DRL model can be applied to SCADA domain.

3. Optimizing DRL to SCADA (Section IV-C). We detail
the steps to take in order to optimize our DRL model to
SCADA domain.

4. Monitoring SCADA with DRL (Section IV-D).
We elaborate on the monitoring techniques that enable
our model to identify potential attacks on SCADA
systems.

Following this, we offer a detailed breakdown of the four
steps.

A. BUILDING THE DRL MODEL
In this paper, we utilize datasets within the IoT and IIoT
domain.

As follows, we outline some of the primary protocols
and software deficiencies affecting IIoT with respect to
SCADA, highlighting how these discrepancies continue to
jeopardize the security of smart grid systems. In reference to
the framework of IoT vulnerabilities outlined in [40] and [47],
we categorize security threats in IIoT devices to include the
following vulnerabilities:
• Outdated software: Inadequate access control, which
may allow unauthorized access.
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Algorithm 1 DRL Agent Action Algorithm for
Unexpected Queries
Input: Query q
Output: Action a
if q contains restricted content then

if anomaly detected then
initiate countermeasures to neutralize request;
a = neutralize;

end
else

raise alert;
a = raise-alert;

end
else

allow request;
a = allow;

end

• Poor network segmentation: The absence of encryption
causes security vulnerabilities within the network of
devices and equipment used in industrial settings.

These limitations pose the most significant security
concerns in SCADA operations. Therefore, implementing
DRL as an intrusion detection system (IDS) and as a network
intrusion prevention system (NIPS) can potentially enhance
cybersecurity defenses against continuous attacks in critical
infrastructure [18]. Our approach, can analyze past attacks
and simulate threat scenarios to learn and adapt to new threats
in real-time. Utilizing a concept called Deep Q-Learning as
contrast in Figure 4, the proposed model intelligently uses
meta-leaning1 for continuous decision-making to maximize
rewards [17].

Because unlike Q-learning [37], which uses a Q-table
(Fig. 4) to store expected rewards for each state-action
pair [32], ‘‘Deep Q-Learning’’ architecture, however, uses a
dual neural network and weights differences for its learning
processes [48]; the added neural networks allow a trained
DRL agent to identify patterns of malicious behaviors and
take appropriate actions to mitigate threats, such as detecting
anomalies and unusual network traffic in the system’s data.
For example, if a DRL agent detects any unexpected queries
made to a SCADA client’s server, attempting to access
restricted content [49], as shown in Figure 3, the agent can
take deliberate actions, such as initiating countermeasures as
seen in (Algorithm 1) to neutralize the request if an anomaly
is detected [14]. These measures may include blocking
network traffic from suspicious requests to isolating affected
parts of the system [3].

For our proposed scheme, the ‘‘Deep Q-learning’’ tech-
nique is implemented, because it combines ‘‘Convolutional
Neural Network’’ with the classical Q-learning to approx-
imate rewards signal [29], [32]. In this way, training our
agent to interact with the SCADA system and learn from
its actions in a complex environment has proven to be fully

FIGURE 4. Q-learning vs Deep Q-learning.

capable of detecting and mitigating cybersecurity threats in
real time. Based on our proposed approach, it is evident that
with the Deep Q-learning algorithm, when paired with our (ϵ)
epsilon greedy policy, the result greatly enhances our model’s
performance and in turn strengthens the security of SCADA
infrastructure [48].

1) PROPOSED MODEL ALGORITHM STRUCTURE
In the following manner, we present a detailed description of
our DRL-based model:

1) The structural design of our QNetwork, leverages the
Bellman equations [50], [51] to compute and express
actions’ value taking in a given state, with respect to
the sum of the immediate reward and the discounted
value of the next state:
≫ Q(s, a) = r(s, a)+ γ · max ′a(Q(s

′, a′)) where:
• Q(s,a) is the expected value of action’s taken a in
state s

• r(s, a) is the immediate reward received for
action’s taken a in state s

• γ is the discount factor, which determines how
much the agent values future rewards over imme-
diate rewards

• s′ is the next state that the agent transitions to after
taking action a in state s

• max ′a(Q(s
′, a′)) is the maximum expected value

over all possible actions a′ in the next state s′

2) Policy Gradient: Our model uses this policy in
conjunction with an epsilon greedy policy to optimize
the objective function directly [52] by computing the
gradient of the expected reward with respect to the
policy parameters:
≫ ∇θJ (θ ) = E[

∑
t = 0T∇θ logπθ (at |st ) · At ] where:

• J (θ ) is the expected reward (also known as the
objective function) for a given policy parameter-
ized by θ

• πθ (at |st ) is the probability of action’s taken at in
state st under the policy parameterized by θ

• At is the advantage function, which measures
how much better the agent performed in state st
compared to the expected reward in that state.
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3) Actor-Critic: In our model, we implemented an actor-
critic algorithm (2) [23], combined with our policy
gradient which updates the training agent’s (actor)
expected reward for a given state-action pair:
≫ δt = rt + γ · V (st+1) − V (st )θ < −θ + αθ · δt ·

∇θ logπθ (at |st )V (st ) < −V (st )+ αV · δt
where:

• δt is the temporal difference (TD) error, which
measures the difference between the predicted
value of the current state-action pair and the actual
reward received.

• V (st ) is the estimated value of state st
• αθ and αV are the learning rates for the policy and
value function, respectively.

Algorithm 2 Actor critic algorithm implementation
Input: Initialize policy, two soft Q and two target soft
Q-DNNs; Initialize experience replay buffer with attack
samples; Result: Optimised actor and critic DNNs for each
episode do

for each step do
sample actions from the policy; sample transition
from the environment; store the transition in the
replay buffer;

end
for each gradient update step do

update the soft DQNetwork weights; update the
policy DQNetwork weights; adjust the entropy
temperature; update the target DQNetwork
weights;

end

end

2) ON-POLICY VS OFF-POLICY
Actor-critic algorithms can be on-policy or off-policy. These
methods are used in DRLs when determining whether the
data collected during training is used for updating the policy
or remains neutral.

The main objective of this paper is to develop a DRL
framework that improves network security with a robust
algorithm that optimizes attack’s detection. In that, we tested
our actor-critic algorithm using the two policy methods;
however, because on-policy uses the same policy (SARSA),
which it seeks to improve experience collection [49], as a
result, that approach could not fully optimize our actor
network for our intended solution.

Based on this insight, we conducted our experiment using
the off-policy approach, which revealed that the method
instead follows the tailored policy gradient, such as ‘‘∈-
greedy’’ for experience replay. In doing so, our agent learned
from a parameterized policy [53] that differed from the one
it was supposed to follow (on-policy), thus allowing it to
explore the state space, using a stochastic algorithmic policy.5

5Stochastic: A probability distribution that allows an agent to explore the
state space without always taking the same action.

In adopting this algorithm, the agent updates the action-
values Q(S,A), representing the sum of rewards to Q(s, a)
= maxQ(s′, a′) relative to optimal rewards at s(t + 1) based
on the maximum action-value of the next state, even though
the exact action-value for the next state might not be fully
known, due to the random actions [35], [6]. Nonetheless, this
tabular algorithm ensured the computation and convergence
of the action-values Qt + 1(St,At) = Qt(St,At) + αt for
each state-action pair, leading to the exploration of infinite
optimal action-values as states are explored. In algorithm 3,
we present the pseudo code implementation of our off-policy
model as described by [54] Sutton and Barton.

Algorithm 3 Q-learning (off-policy approach) for
estimating π ≈ π∗

Algorithm parameters: step size α ∈ (0, 1], small
(epsilon)ϵ > 0;

Initialize Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrarily except
that Q(terminal, ·) = 0;

for each episode do
Initialize S;
for each step of episode do

Choose A from S using policy derived from Q
(ϵ − greedy);

Take action A, observe R, S ′;
Q(S,A)←
Q(S,A)+ α[R+ γ maxa Q(S ′, a)− Q(S,A)];
S ← S ′;

end
end

In addition to off-policy, we improved our approach in
its exploratory state of the environment, by adding this
decay function σ (N ) = σ0ekN . The algorithm represents
the relationship between the model’s input and output as
the rate of decay. By defining the values of σ0 and k ,
we parameterized the rate at which the decay value changes
during iterations. The method helps estimate future values
and rewards, based on observed trends [55].

3) SOLVING EXPLORATORY NOISE
In our algorithm, exploration noise arose from deliberate
exploration strategies, environmental stochasticity, random
initialization, and the use of experience replay. These features
enable our agent to discover optimal policies in complex
environments [56] and is also added to encourage the agent
to explore new actions.

To enhance our approach during the exploratory phase
of the environment, we utilize a decay function. Gradually,
the method reduces the level of exploration thus making the
agent more deterministic as it accumulates experiences in the
environment. By incorporating a decay function within the
algorithm as a policy, we helped guide the agent’s actions
towards increased determinism based on its experience level,
using this equation:

π (a|s,N ) = (1− σ (N ))πtarget(a|s)+
σ (N )
|A|
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where πtarget(a|s) is the target policy, |A| is the number of
actions in the action space, and σ (N ) = σ0ekN is the decay
function for the exploration noise [55].
Alternatively, when incorporating the decay function into

the exploration noise as a policy, our agent learned how to
effectively balance both the exploration and exploitation time,
thereby allowing it to achieve better performance during each
episode over the course of the training [57].

In testing our model’s robustness, we train and evaluate
our DRL algorithm with network traffic collected from a
SCADA test bed. We inspect the data for typos, and remove
all duplicates and irrelevant content, which streamlines the
data preparation. Next, we label the attacks to be iterated,
so that when introduced to the environment, the model can
learn from the patterns [35]. We set the decay parameter,
and epsilon values for each step, initialize both our ‘‘loss
function and the replaymemory’’ with a bach-size of 32, and
then train the model for 250 episodes Fig. 10. The successful
results obtained from our experiment shows that DRL has the
potential to improve the detection and prevention of persistent
attacks against SCADA systems.

Summary: DRL has the capability to learn
patterns effectively, using convolutional neuro
network while leveraging Deep Q − Learning
(Fig. 4) to efficiently classify intrusions from
SCADA’s network traffic protocols.

B. APPLYING DRL TO SCADA
DRL is a powerful technique, ideal for monitoring and secur-
ing SCADA systems. However, from an algorithm design
perspective, many challenges in method applicability must
be considered when choosing the appropriate framework best
suited for SCADA security; particularly when employing the
Deep Q-learning algorithm and epsilon-greedy policy [29].
During the software development, training, and testing of our
DRL algorithm, overcoming the following challenges were
crucial to the success of our experiment:
Exploration vs Exploitation Trade-Off: This framework

represents the fundamental concept in reinforcement learn-
ing, including DRL. It outlines the dilemma faced by an agent
when deciding between exploring new actions or exploiting
its current knowledge to maximize long-term rewards.

In the explorative state, training our actor in a complex
environment with large state and action spaces is very
time-consuming as the agent network samples each set of
actions to obtain optimal rewards. This risky strategy can
lead to negative results and ultimately affects our model’s
detection outcome. In contrast, our model exploitation state
experienced ‘‘local optima’’ and over-fitting as it exploits
prior knowledge through experience in favor of long-term
rewards [58]. Though exploiting existing knowledge can lead
to more efficient and effective decision-making, however, the

random selection of actions with a probability of (ϵ) epsilon,
can also lead to sub-optimal performance [59].

To address this trade-off, we improved the robustness of
our DRL-based model by incorporating a deep Q-learning
algorithm, along with an off-policy approach and a decay
function. This optimization aims to overcome the limitations
and enhance the overall performance of the model [14].

Summary: In developing our DQN model, the
explorative and exploitative concepts within the
DRL methodology present significant challenge
in our design, particularly in large state and
action spaces. To overcome this trade-off and
achieve optimal performance, we carefully man-
aged and balanced the technique by incorporating
a ReplayMemory function with a mini-batch
training; a decay function in conjunction with an
off-policy approach.

C. OPTIMIZING DRL FOR SCADA ENVIRONMENT
From our investigative analysis of SCADA, particularly from
the perspective of the dynamic configuration (i.e., proprietary
software, hardware, and topological configuration), the
information collected and expertise gained from the analysis
led to the structural design of our proposed approach.

As outlined in subsection IV-C, para IV, the difference
between exploration & exploitation can be balanced to help
optimize DRL as they merge in unified facets, in which the
model decides ‘‘when’’ to explore versus ‘‘what’’ to exploit
as a strategy [48]. It is worth noting that several explorative
strategies have been developed to address this trade-off,
including ‘‘Thompson sampling, Upper Confidence Bound
(UCB), epsilon-greedy, and more. By incorporating a level
of randomness, these strategies help balance this trade-off.

To overcome all performance challenges associated with
explorative and exploitative states, we designed a DRL
framework that balances explorative strategies IV-B using
epsilon-greedy as presented in (Algorithm 3), which encour-
ages the agent network to explore, trying out new actions,
while actively taking advantage of experienced knowledge
through exploitation. Our design incorporates regularization,
in which ‘‘decay weight’’ is adjusted, with an ensemble
method comprised of an actor-critic (Algorithm 2); the
technique helps balance the model’s efficiency and prevents
generalization to new environments.

We adopted this approach because SCADA datasets are
subject to data bias, due to their dynamic and non-stationary
properties [21], and also because of privacy and security
concerns, as their structural designs differ based on regions,
software, etc.

To avoid model specialization in retrospect to DRL
challenges, we create a separate data class with specific
functions and methods, tailored to accommodate individual
dataset’s format [60]. This allows us to carefully tune and
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adjust our hyperparameters [48], [59], as shown in Table 3,
in order to achieve the best possible performance.

Summary: To optimize DRL for SCADA net-
work security, we addressed the challenges caused
by model generalization and specialization. They
are due in part to data formatting; we create a
separate data class with functions and methods
tailored to SCADA designs to resolve the prob-
lem.

D. MONITORING SCADA USING DRL ALGORITHM
In our investigative findings, we identified various domains
in which DRL algorithm implementation has shown remark-
able success. For example, in the gaming industry, DRL
deployment in video game applications developed learning
strategies in complex and large action spaces for reward
maximization; in assembly line operations, the technique also
demonstrated substantial results in process optimization and
labor reduction. However, in retrospect to these domains,
when considering similar methodology for cybersecurity
threat detection, particularly in SCADA application, we iden-
tified several functions in DRL structural design that affect
the algorithm performance [3], [61], [62].

For example, implementing a Greedy Policy Limitation
function confines the agent to rely solely on current
knowledge to exploit actions that maximize immediate
rewards. The Exploration and Exploitation function within
the algorithm designs would direct the agent to either
explore the environment to gain knowledge, discover new
threat patterns about protocols’ vulnerabilities to maximize
rewards or exploit the environment by taking uncertain and
potentially risky actions that may reduce immediate rewards
[63]. The cascading effects of these features can make
it challenging for a DRL agent to operate effectively in
stochastic, unpredictably large, and complex environments
[53].

Unlike video game structural environments and assembly
lines which are strictly designed with constants such as
known rules and constraints, with a deterministic configu-
ration that makes it relatively easy for the DRL technique
to optimize rewards, SCADA systems, on the other hand,
often operate in dynamic and unpredictable real-world envi-
ronments, with complex interconnected systems comprising
of water treatment plants, power grids, or manufacturing
facilities. The interdependencies of nodes and network
communication settings of the individual system are also
proven to be very challenging for a DRL agent to optimize
rewards effectively [52], [64]. As follows, we provide the
explanations of the different method implementations:

• To actively monitor SCADA systems, we address
the challenges stemming from the DRL framework
by developing a DQN model with defined security
objectives that allow the algorithm to detect network

anomalies and classify them as network intrusions based
on our label parameters [58].

• To improve scalability, we implemented a replay
memory and utilized a mini-batch function that allows
the agent to sample data from its prior experiences
to optimize learning. We employ an off-policy along
with a decay function to balance the trade-off between
exploration and exploitation for rewards optimization
while reducing unnecessary exploitation time [65].

• We pre-processed and formatted our data using a multi-
class binary classification, which reduces false positives,
and then trained our model on historical data containing
examples of both normal network behavior and various
attack scenarios.

• We continuously monitor our DQN performance by
testing it on additional datasets to ensure its efficacy of
real-time threat detection and response, thus simulating
the automation of regular updates of new attack patterns
and emerging security risks.

Using this approach, as the model adapts to changing
network traffic, it generates appropriate actions or alerts to
address security threats. This proactive monitoring technique
allows our model to identify potential attacks of SCADA
communication systems in real-time and take preventive
measures to ensure the integrity and reliability of the
grid [66].

Summary: To train and deploy a DRL model to
actively monitor smart infrastructure, we simu-
lated the following: We selected two well-known
datasets to simulate the data collection and for-
matting process; we define the security objectives
using binary classification; we developed and
trained a DQN model using a SCADA dataset;
we then reloaded the saved model and tested it
on a second set of data, thus simulating ‘‘real-
time deployment.’’ The result of this experiment
shows that our model continuously analyzes the
incoming data, leveraging its training to recognize
patterns of normal behavior and anomalous activ-
ity.

V. IMPLEMENTATION AND EVALUATION
For our implementation, we utilize the SCADA use-case pre-
sented in Fig. 5. This use-case scenario describes a network
fully responsible for remotely supervising, monitoring, and
controlling critical infrastructure, such as electrical grids and
stations, water treatment facilities, transportation systems,
or oil refineries. In this complex operational cyber-space,
the threat model involves an unauthorized attacker gaining
access and compromising SCADA network traffic protocols,
attempting to disrupt the system’s operations.
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FIGURE 5. DRL deployment.

A. SYSTEM THREAT MODEL
1. Initial Compromise: Through vulnerability exploita-

tion, either by means of brute force and or social
engineering, an attacker gains unauthorized access to the
system’s network and begins to sabotage network traffic
protocols and disrupts industrial processes.

2. Traffic Protocol Manipulation and Alteration: Upon
establishing administrative command, the attacker can-
cels and encrypts control commands, injecting false
sensor data to disrupt communications between IoT and
IIoT devices. Such compromise may lead to catastrophic
loss and physical damage to consumers.

3. Detection Scheme and Response: Deploy a trained
DRL as an intrusion detection response system to
mitigate and assess abnormal network behaviors and to
identify possible threats caused by compromised traffic
protocols.

Critical infrastructure Model: Because modern critical
infrastructure systems are autonomous, they use IoT and
IIoT devices, and internet protocols (i.e., TCP /IP) to
monitor and control critical functions in water treatment
plants, power grids, transportation networks, etc. Although
these devices provide cutting-edge multi-functionality to data
collection and automation processes, their designs pose the
greatest security vulnerability to the system. So, deploying
a trained DRL as an NIDS [35], [67], [68] can authenticate
communication and filter TCP/IP traffic of attached nodes in
a synchronous and asynchronous [66] manner to help detect
lurking threats.
Applying DRL to Critical Infrastructure: In this section,

we describe our Deep QNetwork approach to ensure the

security of SCADA’s network-attached nodes (Fig. 2). These
interconnected IoT and IIoT devices lack the necessary
security features, which create a larger attack surface within
the system, thus making it more susceptible to cyber threats.
However, applying DRL as an intrusion detection ‘‘avant-
guard’’ addresses this challenge by using deep q-learning
[58] algorithms to analyze network traffic patterns, identify
anomalous behaviors for potential intrusions, while reducing
downtime using the deployment approach in (Fig. 5) and the
detection strategy in (Algorithm 4).

B. EXPERIMENTAL ENVIRONMENT
All of our experiments were conducted on a computer with
the following specifications:

• Intel(R) CoreTM I7-1700 CPU@2.90GHz; 16GBRAM
• Intel(R) UHD Graphics 630 GPU
• And a dedicated AMD Radeon RX 640 GPU
• Windows 10 Pro operating system
• Python 3.9.12, gym 0.21.0, Tensorflow 2.9.1
• Keras 2.9.0, SciKit-Learn 1.0.2, matplotlib, seaborn

C. EVALUATION
In this section, we briefly outline key tenants of our algorithm
research objective and provide a brief description of the
datasets used in our proposed approach.

Our experimental objective aimed to develop and evaluate
a DRL framework to assess its robustness and effectiveness
and to determine whether the algorithm can be successfully
leveraged to detect cybersecurity attacks in large and complex
environments [29]; specifically, to investigate the impact of
using DRL’s technique on new and unseen data.
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Algorithm 4 Deploying DRL as an IDS
_Use-case: we consider a SCADA (Fig. 2) network
fully responsible for remotely supervising,
monitoring and controlling critical infrastructure,
such as electrical grids and stations, water treatment
facilities, transportation system, or oil refineries;
_Threat: unauthorized access and compromised
network traffic protocols;
1. Initial Compromise:
Attacker exploits vulnerabilities through brute force
or social engineering;
Gain unauthorized access to the network;
Sabotage network traffic protocols and disrupt
industrial processes;
2. Network Protocol Manipulation and Alteration:
The attacker establishes administrative command;
Cancel and encrypt control commands;
Inject false sensor data;
Disrupt communication between IoT and IIoT
devices;
Potential catastrophic loss and physical damages;
3. Detection Scheme and Response:
Deploy a trained DRL as an intrusion detection
response system;
while not done do

Observe the network state;
Select an action using an epsilon-greedy policy;
Perform the selected action in the network;
Observe the next network state, reward, and done
flag;
Store the experience in the replay memory;
Sample a minibatch of experiences from the
replay memory;
Update the Q-network using the actor-critic
algorithm;
Update the actor-network using TD error;
Update the critic network using the TD target;
Periodically update the target networks;
Check if the episode is done or the maximum
number of steps is reached;
if yes then

Go to the next episode;
end
Evaluate the trained DRL agent’s performance;
Publish attacks: Types, Names and graph results

end

To validate these objectives, we developed a DNQ model
consisting of two hidden layers with an actor-critic algorithm
and a replay-memory function.

As illustrated in algorithm 5, to balance our model
explorative and exploitative behavior in large, complex state
and action spaces, we implemented an off-policy along with
a decay function that allows the agent to sample mini-

Algorithm 5 DQN cross-validation
Input: Dataset D
Discount factor γ

Exploration rate ϵ

Minimum exploration rate ϵmin
Exploration rate decay factor ϵdecay
Replay memory size N
Batch size B
Number of episodes E
Target network update frequency C
Learning rate α

Hidden layer size H
Number of hidden layers L
Output:
Trained DQN model
Procedure:
Initialize main Q-network Q with random weights
Initialize target Q-network Q′ with same weights as Q
Initialize the replay memory R with size N
for episode in range(E) do

Initialize state s
Initialize done to False while not done do

if With probability ϵ, select a random action a then
end
else

Select a = argmaxa Q(s, a)
end
Execute action a and observe reward r and next state s′

Add transition (s, a, r, s′, done) to replay memory R
Sample random minibatch of B transitions
(si, ai, ri, s′i, donei) from R

foreach transition in the minibatch do
if donei, set target = ri then
end
else

target = ri + γ maxa′ Q
′(s′i, a

′)
end
Calculate loss L = (Q(si, ai)− target)2

Update weights of Q using gradient descent with
learning rate α to minimize L

end
for Every C steps do

Copy weights of Q to Q′

end
ϵ-greedy exploration rate is decayed linearly from ϵ to
ϵmin over time.

end
end
Return trained DQN model

bach from replay-memory containing past experiences, while
reducing exploration rate and improving exploitation of prior
knowledge [67].

We test themodel on two publically available IIoT SCADA
datasets, wustl-iiot-20186 and the wustl-iiot-20217 dataset
to gain insights into the technique’s performance in these
aspects.

1) DATASETS
The WUSTL-IIoT-2018 dataset is a dataset focused on
Industrial Internet of Things (IIoT) systems, capturing
features related to network traffic, device interactions,
and protocols used. It contains a significant number of

6wustl-iiot-2018 https://www.cse.wustl.edu/ jain/iiot/index.html
7wustl-iiot-2021 https://www.cse.wustl.edu/ jain/iiot2/index.html
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attacks, including DDoS, injection, and command execution
attacks [25].

TheWUSTL-IIoT-2021 dataset is a recent dataset focusing
on IIoT devices and systems. It includes updated informa-
tion on IIoT behavior, network interactions, and potential
cybersecurity threats. The dataset contains a variety of
features specific to IIoT, with a substantial number of attacks,
including unauthorized access, data exfiltration, and device
manipulation [69].
Datasets Characteristics: During our preliminary analysis

and pre-processing of the datasets (Fig. 6), we identified
four types of attacks commonly simulated to test SCADA’s
network security defenses: Port Scanner; Address Scan
Attack; Device Identification Attack and Exploit [16], [70],
[71], [72]. These ‘‘scans’’ represent a precursor or the
initial stage for more severe attacks. These frontal assaults
help collect sensitive data and subsequently expose an
organization’s vulnerability [14]. Their success can lead to
data breaches and possibly affect control decisions, causing
equipment damage or triggering unsafe use of infrastructure
assets. Based on those threat patterns, we mapped and labeled
those attacks as our target detections (Algorithm 6).

Algorithm 6 Label mapping
Input: Initialize dataset
Process: Initialize an empty dictionary to store labels
Output: DICTIONARY = Attack_labels & Attack_map

for each label in in mapping dict do
if the label is ‘‘normal’’ then

add to dictionary with a value of 0
if the label is ‘‘Probe’’ then

add to dictionary with a value of 1
if the label is ‘‘R2L’’ then

add to dictionary with a value of 2
if the label is ‘‘DoS’’ then

add to dictionary with a value of 3
end

end
end

end

labels
end

Algorithm 7 Reading Labels
Input: Initialize dictionary
Output: Attack_labels

forall correct label do
labels← Agent (by)
for each iteration do

st , at = []
for attack label in attack_map do

n=length(attack_map)
end
return labels

labels
end

end

In meeting our set goals, we designed a double-layer Deep
QNetwork algorithm [58], we pre-processed two unique

datasets, and extracted features of importance for detecting
cyber anomalies. We then label each selected features and
store them in a dictionary to fit our model’s input as shown
in (Algorithm 6). Upon initialization, the actor-network loops
through the dictionary and matches the corresponding labels
with each attack category as presented in (Algorithm 7).

Next, we fine-tuned the algorithm using the values
in (Table 3). These methods allow our actor to recog-
nize patterns from normal and anomalous network traffic
behavior.

2) PERFORMANCE METRICS
For validation, we used the standard measurement metrics
to assess the model’s predicting ‘‘Accuracy, F-1 score, False
Positive, and False Negative rates.’’ We also use the formulas
TP, TN, FP, and FN to calculate our model’s performance.
Accuracy: It measures the ratio of correctly predicted labels

using this equation:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

Precision: Measures the ratio of the accuracy of positive
predictions:

Precision =
TP

TP+ FP
(2)

Recall: Quantifies the number of correct positive predic-
tions made out of all positive predictions that could have been
made by the classifier:

Recall =
TP

TP+ FN
(3)

F1-score: This metric measures the harmonic mean of
precision and recall using this formula:

f 1− score =
2 · P · R
P+ R

(4)

Lastly, we trained and evaluated our model using the
selected datasets:WUSTL-IIoT-2018 [25] andWUSTL-IIoT-
2021 [26], comprised of network traffic protocols. After
successfully training the model, our DRL learns to classify
threats in real-time and provides detection and response [27].
In retrospect to validation V-C2, we loaded the saved model
with our test data, comprised of multiple binary classification
inputs. Using both methods from algorithms 6 and 7, the
agent-network read the selected labeled attacks and predicts
our targeted attack labels.

VI. RESULTS
The results presented from our evaluation is an illustration
of the training characteristic of our DRL framework. Table 4
shows the evaluation results achieved on the two datasets
considered in this work: WUSTL-IIoT-2018 and WUSTL-
IIoT-2021. Likewise, in Table 5, we present the performance
metrics of our model, which were compared with two other
research works that also utilized a DRL technique. (i.e.,
[15] and [44] on the same dataset. We considered only the
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FIGURE 6. Data processing.

TABLE 2. Common attacks found on each dataset.

TABLE 3. Environment hyper-parameter.

research works by Tharewal et al. [15] and Wang et al. [44],
because they were the only two presenting a complete
evaluation of their solution with the appropriate evaluation
metrics. In this experiment, we trained our model using an
actor-critic algorithm that learns to make decisions. From
the conceptual environment as demonstrated in Figure 10,
the critic evaluates the actor’s performance by providing
feedback; the actor then updates the policy distribution based
on the information received, thus helping to improve the
model’s learning capabilities.

Our DQN is trained with optimized parameters as recorded
in table 3 and algorithms 6 and 7 to accurately classify
both normal and anomalous behavior from the input data.
In this synchronous process, we set our critic parameter to
equal those of our actor-network (i.e., identically mirroring
γ , ϵ, ϵmin, and rd ) as target value.

We adjust our DQN minibatch_size after each training
phase to minimize the loss function, aiming to improve
the alignment between the predicted output of the model
and the desired output, as labeled in algorithm 6. Overall
the training results demonstrate that our model successfully
captures and accurately interprets the assigned attack labels,
achieving convergence with an improved loss of less than
0.4 over 250 training episodes (Fig. 10), while accumulating
the highest number of rewards (Fig. 7).
During each learning step, our model updates both

the Actor-Critic’s parameter using ‘‘policy gradients’’ and
‘‘advantage value’’ by minimizing the mean squared error
using the Bellman’s equation as detailed and implemented
in IV-A1.
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FIGURE 7. DQN agent cumulative rewards.

After convergence, the model total loss per episode drops
from 0.5 and remains stable at under 0.3 for the duration of
the training as presented in Figure 8.

FIGURE 8. Converging loss.

Figure 9 illustrates our DQN successful training results,
depicting the accurate labeling and classification of network
attacks.

FIGURE 9. Training results.

VII. THREATS TO THE VALIDITY
In this section, we explore the conceivable threats to
the validity of our study and discuss criteria that could
potentially impact the integrity and applicability of our
findings. We acknowledge and address the following
threats:

SCADA technology plays a significant role in the
autonomous operations of smart infrastructure. From a

functionality and security perspective, the diverse structural
designs of these systems, change the dynamics of data
collection, in terms of hardware, network protocols, and data
uniformity.

TABLE 4. Model performance results.

TABLE 5. Comparison table WUSTL-IIoT-2018.

A. SAMPLING BIAS AND CULTURAL BIAS
a.) Our selected WUSTL-IIOT datasets may not be rep-
resentative of all categories of SCADA communication
infrastructure; this is due in part to structural designs
(e.g., topology, hardware, and software) which may produce
significant variance in data samples

B. NON-STATIONARY DATA AND LIMITED
GENERALIZABILITY
b.) SCADA communications network could vary by states,
regions, and country-to-country, such that it changes over
time. In that, when considering the WUSTL-IIOT dataset,
there is a likelihood that these changes may not be reflected
The presence of these variances could significantly affect
the performance of the model on unseen data; meaning,
If the sample is not representative of the target population,
the generalizability of the results may be limited, and it
may be inappropriate to extrapolate the findings to broader
populations or contexts

C. MITIGATION STRATEGIES:
To alleviate these threats, we employed rigorous methodolog-
ical procedures, including:
• randomized control trial selection selection
• we carefully conducted sample and robust statistical
analyses

Nevertheless, it is important to acknowledge that some degree
of uncertaintymay still exist. Additionally, we have discussed
and addressed several of these concerns in the limitations’
section.

D. LIMITATIONS
Despite our proposed DRL promising outcomes and effective
results in identifying patterns and detecting cyber-attacks in
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FIGURE 10. Cumulative training results.

SCADA infrastructure, we have identified three limitations
that should be acknowledged. We detailed these techniques
and outlined the measures taken to mitigate these constraints:
1. Limited Dataset: one of the limitations of our study is

the availability of a limited dataset specific to SCADA
infrastructure cyber-attacks. To mitigate this limitation,
we utilized the WUSTL-IIoT-2018 and WUSTL-IIoT-
2021 datasets, which include 25 networking features
representing both benign and attack traffic. While
these datasets provide valuable insights, they may not
cover the entire spectrum of potential cyber-attacks.
In particular, the selected datasets WUSTL-IIOT-2018
and the WUSTL-IIOT-2021 may not represent the
broader population of SCADA infrastructure, which
could lead to sampling bias. Such inconsistency may
affect a model’s accuracy and cause poor performance
on unseen data [73]. To address this, we ensured rigorous
preprocessing to maximize the utility of the available
data.

2. Generalization: our proposed model may face chal-
lenges in detecting novel or previously unseen cyber-
attack types that are not present in the training dataset.
Although the Deep Q-learning algorithm and the Q-
network as function approximators are designed to
capture complex patterns, the model’s performance may
be affected when encountering unknown attack patterns.
In other words, our DRL model trained on two specific
datasets, as explained in ‘‘non-stationary data’’ may not
generalize well to other datasets or when applied to
different scenarios. This could limit the applicability of
the model and may require substantial retraining when
attempting to use the saved model in a new context.
To address this, we emphasize the need for continuous
monitoring and updating of the model with new data
to adapt to emerging threats and to ensure ongoing
effectiveness in real-world scenarios.

3. Scalability: the proposed framework utilizes a fully
connected neural network architecture with two hidden
layers consisting of 64 and 32 fully connected neurons,
respectively. While this architecture has demonstrated
satisfactory performance in our experiments, scala-
bility may become a concern when dealing with
larger SCADA systems or more complex environments.
To address this, future research should focus on inves-
tigating advanced network architectures and exploring
techniques such as convolutional or recurrent neural
networks to enhance the scalability of the model without
compromising its performance.

E. FUTURE RESEARCH DIRECTIONS
Subsequently, we present four future research directions that
arise from our study:
1. Focus on Adversarial Attacks: as the sophistication

of cyber-attacks continues to evolve, future research
should explore the vulnerability of the proposed DRL
framework to adversarial attacks. Investigating methods
to enhance the model’s robustness against adversar-
ial manipulations and exploring adversarial training
techniques could significantly improve its real-world
applicability and effectiveness.

2. Use Real-time Data: real-time detection and response
are crucial in protecting SCADA infrastructure. Future
research should focus on reducing the inference time of
the proposed model to ensure timely identification and
prevention of cyber-attacks. Techniques such as model
compression, quantization, and hardware acceleration
can be explored to achieve low-latency and efficient
deployment of the framework in real-world scenarios.

3. Apply Transfer Learning and Data Augmentation:
to address the limited dataset issue, future research can
explore transfer learning techniques to leverage pre-
trained models on larger and more diverse datasets in
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related domains. Additionally, data augmentation tech-
niques can be employed to generate synthetic samples
that represent a wider range of attack scenarios, further
enhancing the model’s generalization capabilities.

4. Improve Explainability and Interpretability: DL
models, including the proposed DRL framework, often
lack interpretability, making it challenging to understand
the reasoning behind their decisions. Because DRL
models are difficult to interpret, it may be challenging
to fix errors, diagnose, or even improve a model’s
overall performance, all due in part to structural
complexity. However, through proper design choices
and documentation, including the model’s assumptions
and hyperparameters implementation, researchers can
have a clear understanding of a model’s behavior and
even a broader insight into its decision-making process.
Future research should focus on developing techniques
to explain and interpret the model’s behavior, providing
insights into the features and patterns that contribute to
cyber-attack detection. Doing so would not only help
enhance the model’s trustworthiness but also enable
cybersecurity analysts to gain valuable insights for
further investigations.

By addressing these limitations and exploring future
research directions, we can continue to advance the capa-
bilities of DRL in detecting and preventing cyber-attacks in
SCADA infrastructure, ultimately enhancing critical infras-
tructure security and protecting against emerging threats.

VIII. CONCLUSION
In this work, we aimed to address the challenges of the
DRL framework and its applicability in cybersecurity to
advance the development of effective solutions in this
field. To achieve this, we design a double-layered DQN
model that utilizes a Deep Q-Learning algorithm that
enhances learning abilities in complex environments while
adapting to new and unseen data. To balance our model’s
explorative and exploitative behavior in complex state and
action spaces, we implemented an off-policy with a decay
function, allowing the agent to sample a mini-batch from
replay memory containing past experiences. To evaluate
the model’s efficacy, we explored the security challenge
of critical infrastructure against continuous cyber-security
attacks. We conducted an investigative threat analysis of
SCADA systems to assess their network dependency and
potential vulnerabilities. Based on our findings, we selected
the SCADA domain as our target objective and evaluated our
DQN using two publicly available datasets from the SCADA
testbed: WUSTL-IIoT-2018 and WUSTL-IIoT-2021. The
results from our trained model show that our DQN can learn
to classify threats at 99% accuracy and provide detection and
response in real-time. In retrospect, it is important to note
that detecting certain types of attacks, such as spoofed traffic,
destination packets, and total byte attacks, can be challenging
and may require collaborating with other techniques and
tools. Overall, the use of DRL for detecting cybersecurity

attacks in SCADA infrastructure is a promising approach
with the potential to significantly improve the security of
these systems.
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