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ABSTRACT Aiming at the problem that the traditional time series prediction model only considers a
single node (region), does not take into account the spatial interactivity among multiple nodes and the
cycle characteristics embedded in the time series data, and has low accuracy in the task of predicting the
spatio-temporal sequences of multiple sources, this study proposes a feature extraction prediction model
GMC (GAT-MULCYCLE). Themodel is designed to copewith the accuracy of complex prediction problems
characterized by both spatial correlation and temporal periodicity (e.g., multi-site PM2.5 prediction). In this
study, spatial correlation is first extracted using GAT to dynamically focus on the contribution of different
neighboring nodes. Then, focusing on the multiple cycles present in the time series, the extracted features
are fused for final prediction. Comparison tests with 10 other related models in the PM2.5 prediction task
in three cities, Beijing, Shenyang and Qingdao, show that compared with the baseline model with the best
prediction results, our proposed method reduces the average of the two evaluation metrics (Mean Squared
Error MSE and Mean Absolute Error MAE) by (9.50% and 8.87%). It shows that GMC has smaller error
and accurate prediction among the same type of models, which can extract the spatio-temporal features of
sequence data more accurately and is more suitable for the prediction task of multi-source time series data.

INDEX TERMS Time series forecast, PM2.5 concentration, multi-source timing data, multiple time periods.

I. INTRODUCTION
This Compared with traditional time series, multi-source
spatio-temporal series data focuses not only on the time series
data but also on the interactions between different nodes
that produce the data. Such data are ubiquitous in our daily
life, such as the concentration of PM2.5, the traffic flow
on highways, and the electricity consumption of residents
in different regions. In such cases, the interest is usually
in predicting new trends based on observations of historical
time series information. For example, we can predict future
PM2.5 concentrations based on historical data to remind

The associate editor coordinating the review of this manuscript and

approving it for publication was Wojciech Sałabun .

district residents to take precautions, or plan a better route
based on predicted traffic congestion.

In recent years, the serious problem of air pollution is
getting more and more attention, and the prediction of
air pollutant concentration is a popular research direction
nowadays. Among them, PM2.5 is the primary pollutant
affecting air quality and the main culprit causing haze,
which contains toxic substances that can jeopardize human
health [1]. Accurate prediction of PM2.5 concentrations [2],
[3] and timely knowledge of air quality conditions can help
to take effective environmental protection measures to reduce
the adverse effects of air pollution on natural ecosystems.
The government and the public can take measures to mitigate
health risks, especially by taking protective measures during
periods of high pollution. Overall, the accurate extraction
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of time series features plays a positive role in predicting
PM2.5 concentrations for building a clean, healthy and livable
society.

There are three main categories of existing time-series
prediction methods: prediction models based on traditional
statistical methods [4], prediction models based on machine
learning [5] and predictionmodels based on deep learning [6].
Initially, traditional statistical forecasting methods such as
ARIMA (Autoregressive IntegratedMoving Average) [7] and
its improved model VAR (Vector Autoregressive) [8] were
used for forecasting. ARIMA model is suitable for the case
of smooth serial data, but because it is sensitive to outliers
and noise, it cannot deal with dynamic and seasonal time
series data. So the method has limitations in dealing with
complex, nonlinear and dynamically changing data. VAR
is its improved model and has been successfully applied
to multivariate prediction problems. However, the problem
of prediction accuracy depending on data smoothness and
data volume still exists. With the development of machine
learning technology, in order to solve the shortcomings
of the above statistical methods and accurately capture
the relationship between long and short sequences, models
such as SVR (Support Vector Regression) [9] and RF
(Random Forest) [10] have been proposed, but they are
overly reliant on the feature extraction engineering and prior
knowledge, and are difficult to obtain accurate results when
predicting PM2.5 data with complex spatial and temporal
relationships. In recent years deep learning based prediction
methods have received more and more attention, and neural
network based methods have been gradually applied to
the task of predicting pollutants. The most common ones
areRNN(Recurrent Neural Networks),RNN can capture the
dependencies within the time series data, due to its accumu-
lation of time steps, if the time step is too long it will produce
the problem of gradient explosion. To solve this problem,
models such as LSTM (Long Short-Term Memory) [11] and
its simplified version GRU (Gate Recurrent Unit) [12] have
been proposed. LSTM and GRU effectively alleviate the
problems of gradient vanishing and gradient explosion in
traditional RNNs by introducing a gating mechanism, which
improves the network’s ability to model long sequences,
while reducing the number of parameters and better adapting
to actual sequence data. However the problem of gradient
explosion remains when dealing with particularly long
sequences. Therefore a number of models based on attention
mechanisms that do not depend on the cyclic structure have
subsequently been proposed to better capture long-distance
dependencies while avoiding the gradient problem. For
example, Transformer [13], a generalized sequence modeling
model, is able to focus on information at different locations
in a sequence, both in terms of local details and global
context, and can better capture important information in a
sequence. This was followed by Informer [14], a prediction
model specialized for long sequences, which uses both
local and global self-attention mechanisms and divides long

FIGURE 1. Plot of changes in PM2.5 concentrations in a city over a
one-month period.

sequences into different blocks, reducing the time complexity
of the model computation and improving the scalability and
efficiency of the model. During this period, some scholars
noticed that there is an interaction between data sources,
so a series of graph-based networks were proposed to capture
the location information, such as CNN-LSTM [15], which
combines CNN (Convolutional Neural Network) and LSTM
to apply to the time-series prediction problem. CNN is
not applicable to complex structures in reality,so there are
GNN (Graph Neural Network) [16] and GAT [17], GNN is
specially designed to process graph structured data such as
social networks, knowledge graphs, etc., and GAT is a variant
of it that introduces an attention mechanism that allows it
to dynamically pay attention to the level of importance of
different neighbor nodes.

In fact, the PM2.5 concentration within a certain range is
not only related to its own historical data, but also affected
by PM2.5 concentration and meteorological conditions
(temperature, wind direction, wind speed) in neighboring
areas [18].Considering only one’s own data is often a poor
prediction. In addition, through the observation of time series
we found that the real time series data usually show cyclical
changes with time, and it is a mixture of different cycle
changes. For example, PM2.5 concentrations may show short
periodic variations over a few days, manifesting themselves
as rising during the morning and evening peaks and falling
at other times. At the same time, it shows longer periodic
variations over several weeks, rising on weekdays and falling
on rest days, as shown in Figure 1. However, the methods that
currently exist either focus on a single data source, ignoring
the interactions between data sources, or fail to effectively
take into account the characteristics of cyclical variations
or distinguish between short and long cycles. Therefore, the
prediction effect of these methods is naturally not accurate
enough when dealing with such problems.

Therefore, this paper proposes a new model that aims to
solve these two problems. First, by using a GAT graph neural
network, we established the spatial dependencies between
the site to be predicted and its neighboring sites. Based
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on the features extracted in the first stage, we performed
a secondary extraction to capture multiple cycles, in which
we specifically considered the extraction of long and short
time-period features. Finally, it is fused with the original data
that has gone through the autoregressive layer for prediction.
In this study, air pollutant data and meteorological data for
30 cities in northern China for the period from January 1,
2013 to January 1, 2020 were used. We selected three of
these cities for a comparison test of the prediction results.
By comparing with other models that solve similar problems,
we validate the effectiveness of the method proposed in
this paper in multi-source spatio-temporal and periodic time
series forecasting.

The rest of the paper is organized as follows. Section II
describes the general architecture of the model. Section III
conducts comparative tests with existing models. Section IV
summarizes the results of the paper.

II. MODELING FRAMEWORK
In this section we begin with a problem description, followed
by a detailed description of the components of the modeling
framework (2).

A. PROBLEM DESCRIPTION - PREDICTION OF
MULTI-SOURCE PM2.5 SPATIAL AND TEMPORAL SERIES
The problem of interest in this paper is the forecasting
problem for multisource, multivariate, time series with
periodicity. Define C = {c1, c2, . . . , cN } a collection of time
series data representing N cities. ck = {D1,D2, . . . ,DT },
k ∈ {1, 2, 3, . . . ,N } denotes T time steps for each city,where
Dt is a d-dimensional vector representing the collected
control pollutant data with meteorological data. Define G =

(V ,A,DISTANCE), where V = {v1, v2, . . . , vn} represents
the set of all city nodes, A ∈ RN×N represents the degree
of association between nodes and DISTANCE is the distance
threshold. Ultimately the task of this paper is to predict the
PM2.5 concentration at a future moment t for a selected target
city k, using the collected time series data with a step size L.
So the input of the model is the past L time-step observation
data with city node map data for N cities, and the output is the
PM2.5 prediction data for the target city k at the moment t.
The formula is expressed as:

Yt = f (G, {ct−1−L , c2, . . . , ct−1}) (1)

Figure 2 shows the overall framework of the model, and its
individual parts are described in detail next.

B. SPATIAL FEATURE EXTRACTION
Atmospheric pollutants spread to surrounding areas, influ-
enced by spillover effects from other regions. In Figure 3,
analyzing PM2.5 concentration data from 10 nodes using
Pearson correlation, we find a highly positive correlation
among different nodes.

Traditional spatial feature extraction methods include
CNN, GNN, etc. CNN extracts local region features through
convolutional kernels with shared weights and performs well

on grid-like data such as images, but CNN is not applicable
to the data situation in this paper since the problem we study
belongs to irregular graph structure. GNN uses fixed weights
or updates the representation of nodes by local information,
in real world problems, the same central node is affected
by neighboring nodes to different degrees and it changes
with time. So in this paper, we choose GAT, which can
calculate the attention coefficients between nodes, assign
different weights to different nodes, automatically learn the
degree of mutual influence between nodes, and capture
the information between different nodes in a more flexible
way.

1) CONSTRUCTING GRAPH ATTENTION NETWORKS
In order to apply graph attention network, the neighbor
matrix between nodes with initial feature matrix needs to
be generated. In this paper, the neighbor matrix is generated
based on the distance between nodes and the distance
threshold DISTANCE. The formula is:

Aij =

{
1, if distance(vi, vj) ≤ DISTANCE
0, otherwise

(2)

where Aij is the initial value of the adjacency matrix,
distance

(
vi, vj

)
denoting the distance between two nodes.For

the initial feature matrix, which is the matrix after normaliz-
ing the raw pollutant data and meteorological data in the set
C mentioned above, hi ∈ Rd denote the initial feature vectors
of the nodes.

2) GRAPH ATTENTION NETWORK COMPUTATION PROCESS
In order to solve the problem that the traditional graph
convolutional network simply averages the information of
all neighbors without considering the importance of different
neighbors, this paper adopts GAT to weight all neighbors in
order to improve the expressive ability of the model. The
specific calculation process can be referred to Figure 4.

It can be seen that at the same point in time, the central node
scans all the neighbor nodes and weights their feature vectors
to obtain its own feature vector. The computation process of
importance level for each neighbor node is represented as
follows:

eij = LeakyRelu
(
aT

[
Whi ∥ Whj

])
(3)

αij = softmax
(
eij

)
=

exp
(
eij

)∑
k∈Ni∪i

exp (eik)
(4)

hi1 = ReLU

 ∑
j∈Ni∪i

αijWhj

 (5)

where eij denotes the importance of neighboring node vj for
node vi, W ∈ RN×N and a ∈ R2N are learnable parameters.
The above equation shows that we first map the original
feature vector to the low dimensional space, then perform
∥ (splicing) and multiply it with aT ,feed it into LeakyRelu
and perform Softmax processing to get αij ∈ R which is
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FIGURE 2. GMC model framework diagram. Left: Extracting spatial features; Right: Extracting multi-periodic temporal features; Bottom: Final result
calculation process.

FIGURE 3. Heat map of Pearson’s correlation of PM2.5 concentrations
between ten cities selected from 30 cities.

the attention weight, and then we aggregate the features of
the neighboring nodes according to the attention weights to
update the features of node vi.

In order to improve the spatial expression ability and
generalization ability of the model, this paper uses the
multi-head attention mechanism to further extract the spatial
features of the node graph, we repeat the previous step times
to get the results of K attention heads, where K represents
the number of attention heads, and take the average to get the
final result. The formula is as follows:

hi1 = ReLU

 ∑
j∈Ni∪i

aijWhj


hi2 = ReLU

 ∑
j∈Ni∪i

aijWh1j

 (6)

...

hik = ReLU

 ∑
j∈Ni∪i

aijWh
k−1
j


hi = Average

(
h1i , h

2
i , . . . , h

K
i

)
(7)

Here just the features are computed for one time point,
we need to compute the sequence of L time steps both
{hit , hi(t−1), . . . , hi(t−L)},as input for the next section.
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FIGURE 4. The computation process of Graph Attention Networks.Left: Attention mechanism used in our model Schematic; Right: Schematic of 3-head
attention computation.

C. TIME-CYCLE FEATURE EXTRACTION
Since the result of the previous parallel computation contains
the features of all nodes, and we only care about the features
of the target node at this time, this step firstly picks out the
features of the target node, and then carries out the following
two processing steps:

• Multi-cycle feature extraction is performed on the
spatial feature extraction results of the target node;

• Fuse the output obtained from the original sequence
through the autoregressive network with the output of
the previous step for the final prediction;

1) MULTICYCLE EXTRACTION
Through observation we will find that the time series
information selected in this paper shows multiple periodic
changes, so this paper proposes a method for extracting
multiple periodic features contained in the time series.
By setting the cycles dynamically, both long-term and short-
term features can be captured. In order to learn the complex
dependencies within the time series, we introduce the GRU
here, which can better capture and retain the long-term
dependencies in the input sequence through the design of
the gating unit, and at the same time alleviate the gradient
problem, and the principle of the GRU is shown in Figure 5.

Unlike traditional GRU, we define T = {T1,T2, . . . ,Tp} to
denote the selected ensemble of p cycles, for each of which,
e.g., Tp = 7 represents the capture of 7-hour cycle features.
The problem of gradient explosion can be largely mitigated
even on long time series since we focus only on specific

FIGURE 5. Schematic diagram of GRU principle.

cycles, skipping many hidden layer states in between. For a
particular Tn its computation proceeds as follows:

zt = σ
(
Wz ·

[
ht−Tp , xt

]
+ bz

)
rt = σ

(
Wr ·

[
ht−Tp , xt

]
+ br

)
h̃t = tanh

(
Wh ·

[
rt ⊙ ht−Tp , xt

]
+ bh

)
ht = (1 − zt) ⊙ ht−Tp + zt ⊙ h̃t (8)

where σ denotes the sigmoid function, tanh denotes the
bi-tangent function

[
ht−Tp , xt

]
denotes splicing the hidden

state ht−Tp with the input xt , and ⊙ denotes element-by-
element multiplication. xt in the above equation is the time
series {hit , hi(t−1), . . . , hi(t−L)} of the target city we started
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with and picked out, while h in Eq. denotes the calculation
result of the hidden layer. Since p cycles are selected,
p outputs are eventually generated, denoting the features
extracted for multiple cycles for the selected nodes both
Ht = {ht(1), ht(2), . . . , ht(p)}.

2) REGRESSION AND PREDICTION
Due to the highly nonlinear characteristics of the cycle
components extracted above, the feature extraction ability
for linear sequences of neural networks is insufficient.
Therefore,in this part we introduce an autoregressive layer to
adequately extract the temporal features of the time series.
Firstly, we send the Ht obtained in the previous step to
the fully connected layer, and calculate YT for each cycle
result, and then send the original time series to AR (Auto
Regressive) to get YAR, and then fuse the two parts to get Yt
which is the final prediction result. The calculation process is
as follows:

YT =

∑
T∈{T1,T2,...,Tp}

T−1∑
i=0

(Wiht−i)T + b

YAR =

L−1∑
k=0

Wk
arct−k + bar

Yt = YT + YAR (9)

In the above equation, c represents the original time series
data and L is the step size of the observed time series.

3) LOSS FUNCTION AND OPTIMISATION STRATEGY
With the predictive regression task in this paper, we use a loss
function expressed as:

LOSSwith L2(y,Y ) =
1
n

n∑
i=1

(yi − Yi)2 + λ

m∑
j=1

w2
j (10)

where y and Y are the real and predicted values of
PM2.5 respectively n represents the size of the dataset.
Meanwhile, in order to prevent overfitting, the second part
of the formula is added with L2 regularization operation to
constrain the model parameters, where m is the number of
model parameters. For the optimization strategy in this paper,
SGD (Stochastic Gradient Descent), which is commonly used
in prediction tasks, is chosen.

III. EVALUATION
In this section we focus on the experimental data and
parameters of this paper, the comparative models, and their
experimental results.

A. EXPERIMENTAL DATA AND PARAMETER SETTINGS
In this paper, seven years of pollutant concentration and
meteorological data from 30 cities in northern China are used
for the experiments, where the ratio of validation set, training
set and test set is 8:1:1. Details of the selected cities are shown
in Figure 6.

FIGURE 6. Scatterplot of 30 cities used for training and validation in the
selected area.

TABLE 1. Main Hyperparameters and Their Optimal Combination; The
unit for DISTANCE is kilometers (KM); L and T have units of hours.

The grid search method is used to determine the optimal
hyperparameter combinations for the model. The grid
search method is a commonly used hyperparameter tuning
method that finds the optimal configuration by traversing all
possible combinations in a predefined hyperparameter space.
TABLE 1 shows the main hyperparameters and the optimal
combinations derived by the grid search method.

B. EXPERIMENTAL COMPARISON AND EVALUATION
In this section we present the experimental part of the paper,
including the evaluationmetrics and experimental model with
experimental comparison results.

1) EVALUATION METRICS
For the prediction task related to this paper, we use MAE
(Mean Absolute Error) and Mean Squared Error MSE (Mean
Squared Error) as evaluation metrics, which are calculated as
follows:

MAE =
1
n

n∑
i=1

|yi − Yi| (11)

MSE =
1
n

n∑
i=1

(yi − Yi)2 (12)
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TABLE 2. Model Comparison Experiment; (The bolding represents the best model and the results of the model in this paper.)

FIGURE 7. Comparison of prediction results within Shenyang city. Left: Comparison of the prediction results of the experimental model in this paper with
the real value within 30 days; Right: Comparison of the prediction results of the TiDE model with the real value within 30 days.

TABLE 3. Ablation experiment variants and explanations.

where n is the size of the test set. MAE measures the mean
absolute error between the actual observations and the model
predictions and is insensitive to outliers, and MSE measures
the mean squared difference between the actual observations
and the model predictions and is sensitive to outliers. The
smaller the results of the above two calculations, the better
the prediction.

2) COMPARISON EXPERIMENT
For the adequacy of the experiment, models based on
statistical methods, models based on machine learning,

models based on deep learning, and combined models are
selected to verify the effectiveness of the method proposed
in this paper. The comparison models selected for this
experiment are the follows:

• Informer: Efficient handling of long sequences and
multi-scale information;

• TiDE [19]: Removes the attention mechanism and
consists entirely of a fully-connected layer;

• SCINet [20]: A unique multi-layer TSF framework,
effectively models time series with complex temporal
dynamics;

• GRU: RNN with the introduction of a gating mecha-
nism;

• CNN-GRU [21]: Combination of Convolutional Neural
Networks and GRUs;

• LSTNet [22]: Simultaneous capture of short and long
term dependencies in data;

• DeepAR [23]: Aims to model time series data with
potential seasonality and trends.

• ARIMA: Predictive Modelling Based on Statistical
Learning;
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TABLE 4. Five-fold cross-validation model with corresponding hyper-parameter selection, where L represents the length of the window for selection,
DISTANCE is the distance threshold between individual nodes, T is the period of selection, and MAE is the measure.

TABLE 5. Model comparison experiment; (The bolding represents the best model and the results of the model in this paper.)

• SVR: Machine learning based predictive modelling;
Since the input cities (nodes) in this paper are relatively

large, here we only select three representative cities for
comparison test. Among them, Beijing is the capital city
with a large population and the most developed economy,
Shenyang is a heavy industrial city, Qingdao is by the sea
and has more influence on the climate conditions but fewer
neighbouring cities. The final results of the 10 models on the
two indicators for the three cities are shown in Table 3.
The above experiments are mainly for the large-scale city-

level area for comparison, in order to verify that the model
in this paper is also applicable to the small-scale area at the
city district and county level, the following experiments were
done. Specifically, the model with the best performance in
the above experiments (TiDE) and the model proposed in this
paper were selected to conduct comparison experiments at
72 monitoring sites in five districts of Shenyang city, and the
results are shown in Figure 7.
The experimental data from the above comparative tests

show that:

• The prediction errors of deep learning-based models
such as Informer, TiDE, andGRU are significantly lower
than those of statistics-based ARIMA and machine
learning-based SVR, indicating that deep learning-based
methods tend to outperform traditional statistics and
machine learning methods in scenarios with large-scale
data, high-dimensional features, and complex tasks;

• From the results of GRU, GMC, and CNN-GRU
experiments we find that the methods that consider
spatial features are better than the methods that do not
consider spatial features, and that the spatial feature

extraction method using GAT is better than the feature
extraction method using CNN;

• Methods that consider multiple time cycles (GMC) are
superior to methods that consider only a single cycle
(LSTNet);

• The model in this paper is applicable not only to the case
of larger regions, but also to the case of smaller regions.

• Our model achieves the lowest error in all three
cities compared to other models with excellent fore-
casting results. Compared to the optimal baseline
model, our method decreases the MSE and MAR by
(10.55%,11.21%), (9.00%,7.40%), and (8.96%,8.00%),
respectively;

In summary, the method proposed in this paper has
excellent prediction effect on data with spatial correlation
and multi-period characteristics, and can provide accurate
PM2.5 concentration prediction.

3) ABLATION EXPERIMENT
Ablation experiments on the models in this paper can
verify the extent to which the individual modules of the
method proposed in this paper affect the overall performance.
Specifically, we remove or change each component of the
method in this paper one by one to observe the experimental
effect. We constructed a series of variant models as shown in
Table 3.
Because different numbers of cycles were considered,

we compared the effect of different window lengths L on
the model effect. As can be seen in Figure 8, the variant
model that does not take into account spatial correlation
and periodicity properties works the worst, while our model
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FIGURE 8. Comparative results of ablation experimentse. Top: Comparison of MAE results for variant models; Bottom: Comparison of MSE results for
variant models.

works the best. In our observations, we found two noteworthy
phenomena:

• Spatial modelling variants usingCNNs are less effective.
The reason for this phenomenon may be due to the fact
that CNNs rely on a static a pr graph structure, which
restricts the representational ability of the model, and
variants with no spatial feature extraction at all are even
less effective;

• Periods are an important factor in accuracy and have a
significant impact on performance; the more periods are
extracted, the closer to reality and the better the model
works;

The results of the ablation experiments show that both the
GAT component and the multi-periodic component of the
model proposed in this paper play an important role, which
illustrates the importance of extracting spatial and periodic
features, and verifies the effectiveness of the model proposed
in this paper.

IV. CONCLUSION
In this paper, we propose a new prediction model designed
for feature extraction and prediction of time series data
with both spatial dependence and cyclic characteristics.

Through the advantages of graph attention networks and
recurrent multi-periodic networks in spatial and temporal
feature extraction, respectively, our model achieves superior
performance compared to both the best baseline models. The
key role played by various parts of our proposed method is
demonstrated through ablation experiments.

Currently, the method proposed in this paper is applicable
to PM2.5 prediction, which can theoretically be applied to the
prediction task on any time series data with the same features,
and the future design will focus more on the optimization of
the model’s generalization and training time.
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