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ABSTRACT The advancement of Internet of Everything (IoE) propels the fast growth of next-generation,
such as 6G networks, leading to a new era of coverage, connectivity, and technological innovation, which
calls for novel approaches to address rising energy consumption and maximize resource use. The proposed
article presents a robust hybrid algorithm that combines leader-based optimization and Adaptive Differential
Evolution (DE) in the framework of the Energy Efficient Hybrid Evolutionary Algorithm (EEHEA), which
is specifically designed for the complex environment of IoE-enabled 6G networks. The scheme EEHEA
combines the efficacy of leader-based optimization (LBO) for an effective decision-making process and
adaptive differential evolutionary optimization (ADE) ’s dynamic network-parameters adaptation, enhanced
convergence, and global searching ability, persistently fine-tuning optimization strategies based on the
dynamics of the network. Combining these components into the scheme EEHEA allows it to balance local
exploitation and global exploration effectively. This implies better resource allocation and improved energy
efficiency in ecosystems with IoE-driven 6G (IoE-6G). The outcomes report that the scheme EEHEA can
address the rising energy consumption issues and enhance the efficiency of IoE-6G. Based on simulation
experiments, the proposed scheme EEHEA can demonstrate faster convergence times, higher accuracy,
and superior flexibility concerning changing network conditions. Its capability to handle energy-related
challenges and navigate complex network environments with resilience shows the ability to enhance the
performance of IoE-6G. The EEHEA scheme reports its efficacy over state-of-the-art schemes regarding
localization, latency, coverage, and energy expenditure performance metrics.

INDEX TERMS Leader-based optimization, adaptive differential evolutionary algorithm, resource
allocation, energy efficiency, dynamic parameters adaptation, IoE-driven 6G.

I. INTRODUCTION
This The Internet of Everything (IoE) facilitates the connec-
tion between digital and physical realms, fostering innovation
in domains such as smart cities, manufacturing, healthcare,
and agriculture [1], [2]. As IoE progresses, aligning with
the deployment of 6G networks promising dependable,
low-latency connectivity and seamless integration across
devices and applications [3], [4], challenges persist in
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energy consumption, coverage, dependability, and resource
allocation efficiency within the IoE environment [5], [6].
With the increased use of interconnected network devices and
services in smart city applications, ensuring optimal service
delivery is critical for enabling continuous and perpetual
interactions, efficient resource management, and improved
user experiences. For precise asset tracking and location-
based services, localization accuracy is needed. Energy
consumption minimization is also needed to improve the
battery life of IoE devices, decrease operational costs, and
reduce environmental impact. Similarly, improved coverage

VOLUME 12, 2024


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

63839

https://orcid.org/0000-0001-7062-0131
https://orcid.org/0000-0002-5520-8066
https://orcid.org/0000-0002-6510-6768
https://orcid.org/0000-0002-1167-2430
https://orcid.org/0000-0003-2846-4707
https://orcid.org/0000-0002-1094-1985


S. P. Singh et al.: EEHEA for IoE-Enabled 6G

is necessary for ensuring ubiquitous connectivity, especially
in harsh/challenging environments. Reducing delay enables
real-time communication and better immersive experiences
in IoE ecosystems. So, prioritizing advancements in these
quality of service factors is necessary to leverage the full
potential of 6G-enabled IoE in smart city applications.

As said earlier, with the increasing number of IoE-enabled
devices in 6G networks and a parallel rise in energy
consumption of IoE applications, effective energy man-
agement and harvesting in smart city solutions become
critical [1], [7], [8], [9], [10], [11], [12], [13]. Despite
the investigation of numerous Energy Optimization (EO)
methods, energy optimization in computing systems remains
a critical challenge, hindering the full development of
innovative technology. Challenges, such as delay-sensitive
data processing and efficient network resource management,
further impede progress [14]. The convergence of diverse
devices, applications, and dynamic network environments
necessitates a substantial study in optimizing energy usage
and resource allocation in IoE-enabled 6G networks [15].
Evolutionary algorithms, including Floating flame moth-
flame (FMFO) [16], grey wolf and its variants [17], [18],
traditional genetic algorithms (GAs) [19], [20], [21] and
Particle Swarm Optimization (PSO) methods [9], have
shown potential but must effectively balance exploration
and exploitation in changing network dynamics. Adaptive
variants, such as Adaptive Differential Evolution (ADE),
prove suitable for real-time optimization in IoE-driven net-
works [22]. Additionally, leader-based optimization (LBO),
incorporating dispersed decision-making procedures, has
gained interest due to its effectiveness in negotiating intricate
network dynamics [23]. Despite these advancements, existing
research often focuses on individual optimization strategies,
lacking a comprehensivemethodology for resource allocation
and energy efficiency.

Recent contributions of heuristic/meta-heuristic algo-
rithms in 6G-enabled IoE applications, such as ICR-IoT
using Butterfly Optimization Algorithm [7] to address load
balancing and energy efficiency issues and MOMGWO
for multi-objective optimization [8] to optimize throughput,
interference, and energy efficiency, offer valuable insights.
However, limitations include fragmented solutions and
gaps in achieving holistic green communication [11]. The
Multi-objective Differential Evolution (MODE) scheme [24]
was also investigated by incorporating a rapid mutation
operator to enhance energy efficiency along with diversity
and convergence speed in IoE.

Practical implementation challenges [25] persist. The
proposed work is motivated by these limitations, aiming
to provide a unified and comprehensive framework that
addresses load balancing, energy efficiency, security, and
spectrum management, offering practical solutions for the
evolving landscape of IoE-enabled 6G applications. Address-
ing these research gaps will advance knowledge and develop
practical solutions for optimizing 6G-IoE networks, leading

to improved energy efficiency, reliability, sustainability, and
overall network performance.

A novel hybrid method combining LBO and ADE [26]
called the Energy Efficient Hybrid Evolutionary Algorithm
(EEHEA) is proposed to handle practical QoS issues in IoE-
enabled 6G applications. The LBO used in this method has
better exploitative capabilities and efficiently converges to
optimality. The self-adaptiveness of ADE enhances its robust-
ness and the nature of adaptability, specifically in dynamic
hostile environments. ADE can provide its exceptionally
efficient search space exploration, and better balancing
mechanism in between exploration, and exploitation. Its
intelligent adaptation feature is incorporated in its operations
of mutation and crossover, providing robustness to cope with
complex multi-modal problems. This dynamic combination
and adaptation provide a real-time optimal solution, enhanc-
ing the overall network performance. This combination also
enables the optimization of resource allocation, including
resource-scheduling management significantly enhancing
energy utilization efficiency and reliability in an IoE driven
6G networks. The EEHEA scheme’s strategy achieves a bet-
ter balance between local and global optimization, improving
energy efficiency, reliability, and convergence efficiency.
The intelligent blending and optimization techniques in
the EEHEA gives flexibility and robustness to address the
complex issues in dynamic IoE-driven 6G environments. The
major contributions of the suggested work are as follows:

• To propose a novel hybrid Algorithm called Energy
Efficient Hybrid Evolutionary Algorithm (EEHEA)
combining two different Algorithms Adaptive Differ-
ential Evolution (ADE) and leader-based optimization
(LBO) to address energy issues in IoE-enabled 6G
ecosystems.

• To enhance diversity and accelerate convergence in
benchmark functions, the proposed approach employs a
dynamic adaptation strategy and leader-based optimiza-
tion.

• To optimize the delicate balance between energy effi-
ciency and network connectivity in 6G-IoE systems, the
proposed method integrates adaptability, reliability, and
scalability in dynamic IoE-enabled 6G environments.

• Conducted extensive simulations demonstrating supe-
rior convergence rates, solution quality, and energy
efficiency compared to existing methods.

The suggested article is structured to explore the topic com-
prehensively. Section II reviews Related works, Section III
briefly discusses IoT-based framework networks, Section IV
presents the proposed multiobjective methodology, and
Section V depicts Results and Analysis. Finally, Section VI
concludes the study and outlines future research directions.

II. RELATED WORKS
In recent research endeavors, Several innovative relevant
approaches have been surveyed to address various challenges
in the evolving landscape of IoE-enabled 6G environments.
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Arya et al. [7] introduced ICR-IoT, leveraging the Butterfly
Optimization Algorithm, to intelligently manage clustering
and routing for IoT-edge computing, with a specific focus on
load balancing and energy efficiency. Eappen and Shankar [8]
proposed a Multi-Objective Modified Grey Wolf Optimiza-
tion (MOMGWO) algorithm, aiming to optimize throughput,
interference, and energy efficiency amidst the increasing
mobile data demands associated with 6G technology.

Singh et al. [24] presented a multi-objective evolu-
tionary algorithm incorporating a rapid mutation operator
with multi-objective differential evolution (MODE). This
approach enhances diversity and convergence speed, with
evaluations in IoE service scenarios demonstrating superior
performance in optimizing service cost, delay, and sensor
lifetime compared to other multi-objective evolutionary
algorithms. Iwendi et al. [9] devised a hybrid meta-heuristic
approach by combining Whale Optimization with Simulated
Annealing. This was applied to improve the selection
of Cluster Heads in IoT/IoE cluster-networks, considering
multiple performance metrics such as active nodes, load,
remaining energy, temperature, and cost function for efficient
cluster head determination.

Rico-Garcia et al. [27] addressed the Traveling Salesman
Problem (TSP) in smart city environments by proposing
a modified version of the Teacher Learner Based Opti-
mization scheme. The solution was implemented on a
parallel graphics processing unit architecture, specifically
utilizing Compute Unified Device Architecture (CUDA)
for enhanced performance. Das et al. [28] introduced a
unique transient search method, TSA-OSSAE, for cyber
threat detection in IoE-enabled smart city applications. This
method utilizes a TSA-based feature selection approach
to minimize computational complexity and the stacked
sparse autoencoder (SSAE) model for cyber threat detection,
with hyperparameters optimized through the multi-versus
optimizer (MVO) scheme.

Alazab et al. [10] addressed IoE challenges in smart
cities, focusing on Cluster Head (CH) selection in wire-
less sensor networks. They introduced a modified Rider
Optimization Algorithm (ROA) for optimized CH selection,
achieving objectives like delay minimization and energy
sustainability through the proposed Fitness Averaged-ROA
(FA-ROA). Nematollahi et al. [29] presented an improved
multi-objective Aquila optimizer (IMOAO) for efficient
task offloading in resource-constrained IoE devices to
fog nodes, outperforming existing optimization methods.
Jain et al. [30] introduced MWBA-RAT, a metaheuristic
with a blockchain-based resource allocation technique for
cybertwin-driven 6G in IoE environments. Singh et al. [11]
proposed an artificial intelligence-enabled Dingo Optimizer
for Energy Management (AIDO-EM) in 6G networks,
utilizing the Dingo Optimization Algorithm (DOA) for
cluster-based routing.

Abdel-Basset et al. [31] explored security and privacy
concerns in 6G networks, emphasizing the effectiveness
of advanced metaheuristic algorithms. Wang and Lu [32]

focused on QoS-aware service discovery and selection in
cloud-edge computing for IoE, introducing a hybrid GWO-
GA algorithm. El Amraoui [12] introduced the Metaheuristic
Moth Flame Optimization Algorithm for Energy-Efficient
Clustering (MMFO-EEC) in 6G-enabled UAV networks,
leveraging artificial intelligence for decision-making. Eldran-
daly et al. [25] explored the synergy between 6G technology
and AI through an Intent-Based Network architecture,
introducing the hybrid MPGND algorithm for sustainable
green 6G-IBN. Pandi Selvam et al. [33] addressed the
evolution to 6G networks, emphasizing the integration of
terrestrial, aerial, and maritime communication for fast
and reliable connectivity. Verma et al. [34] focused on
achieving green communication in 6G-enabled massive IoE
devices through a cluster-based data dissemination approach,
introducing the Hybrid Whale-Spotted Hyena Optimization
(HWSHO) algorithm. Zheng et al. [13] investigated the
age of information (AoI) and energy efficiency in a
wireless-powered industrial Internet of Everything (IIoE)
network. They proposed a deep reinforcement learning
(DRL)-based approach, specifically the dual-layer deep
Q-network (DLDQN) algorithm, to address challenges
related to AoI and energy efficiency in the IIoT context.
Collectively, these research contributions provide a compre-
hensive overview of innovative methodologies addressing
various aspects of IoT, IoE, and 6G-enabled environments.

Despite this extensive exploration, a noticeable research
gap exists. Specifically, there is a lack of a unified and
comprehensive framework that effectively integrates the
strengths of diverse algorithms and technologies for IoE-
driven 6G networks. This gap is further compounded by
limited exploration of energy-efficient strategies, especially
in IoE networks with constrained energy resources. Addi-
tionally, there is insufficient consideration of sustainability
and environmental impact, particularly in the integration of
IoE into green building energy systems. The absence of
comprehensive approaches to tackle multi-objective opti-
mization challenges in IoE networks, addressing conflicting
objectives, is another notable gap. Moreover, the research
lacks studies focusing on the practical implementation and
real-world deployment of IoE-6G network optimization
techniques. The proposed hybrid algorithm, EEHEA presents
a promising solution across various scenarios and network
conditions are necessary to establish its robustness and
effectiveness in real-world applications.

A. NOTATION & ABBREVIATION
This section consists of abbreviations & notations and a
description of our proposed solution. The description of
notations and abbreviations is presented in Table 1.

III. IoE-BASED FRAMEWORK NETWORK
The IoE architecture is intricately interconnected with key
pillars—connectivity, data, people, processes, and things.
In the Things pillar, physical devices and sensors serve as
crucial data collection endpoints. The Data pillar manages
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TABLE 1. Description of notation and abbreviation.

information, enabling real-time responses and value extrac-
tion. People pillar integrates individuals, emphasizing
human-machine interactions. Processes pillar govern work-
flows, while Connectivity pillar ensures robust communica-
tion. Security pillar safeguards data, devices, and infrastruc-
ture. Context pillar enhances data relevance, and Ecosystem
Collaboration pillar fosters cooperation. These pillars create
a cohesive and intelligent IoE network. Applying IoE in smart
cities optimizes urban operations, enhancing efficiency, sus-
tainability, and overall quality of life. IoE applications include
intelligent transportation systems and energy management
through smart grids. Waste management benefits from IoE
with optimized waste collection schedules. For IoE-enabled
6G networks, a comprehensive framework must consider
factors like localization rate, coverage rate, energy efficiency,
and delay to ensure effective and responsive applications
in the evolving landscape. So, in this way, the intricacy of
a framework makes it difficult to describe in mathematical
equations. The suggested article offers a high-level concep-
tual framework explanation using mathematical notations
when necessary. As it concentrates on the essential elements,
let us examine a condensed representation:
(I) Localization Rate (LT ): The present study includes

LT (the success rate at which the individual sensors are
accurately localized) as its first objective (IoE1). However,
there is not a single formula to determine LT, as it depends
on the methodology, algorithms, and metrics used for
localization. So, the proposed study considers a general
concept to evaluate this metric in its proposed problem.
The goal is to maximize the IoE1 value, as formulated in
Equation 1. The ALScount value is computed according to the
methodology used in [35].

LT = (ALScount/N ) ∗ 100, (1)

N is the total number of sensors used in our network and
ALScount denotes the number of accurately localized sensors.
(II) Energy Consumption (Etotal): The suggested article

includes the termEtotal (sum-total energy consumption across
all sensors) as a second objective (IoE2). The goal is to
minimize the IoE2 value, as formulated in Equation 2. The

energy computation model is employed in the same way as
in [36].

• N : Total number of sensors in the WSN-IoE network
• Si: A sensor node with ID i, where i = 1, 2, . . . ,N
• RE(Si): Remaining energy level of the Si
• dij: Distance between sensors Si and Sj
• Ei: Energy consumed by Si
• D(Si): Maximum amount of data that the node Si can
transmit based on its remaining energy RE(Si)

• Eelec: Energy consumed/bit by the transmitter/receiver
circuitry.

• Efs: Energy required to transmit/bit over a free-space
channel/distance

Minimize :Etotal =

N∑
i=1

Ei

Subject to: Ei = Eelec ∗ D(Si) + Efs ∗ D(Si) ∗ d2ij
Ei ≤ RE(Si) (2)

(III) Coverage Rate (CRrate): The fourth objective (IoE4)
of our proposed problem addresses the CRrate, which
represents the proportion of the deployment area covered by
sensors. In order to calculate CRrate, a circular sensing model
is considered. The mathematical representation of CRrate is
provided in Equation (3), outlined as follows:

CRrate = (CoveredArea/TotalArea) × 100, (3)

where TotalArea denotes the total area of the closed region
being monitored and CoveredArea =

∑N
i=1 π ∗ (Cr )2. The

Cr denotes the sensors’ communication range.
(IV) Delay Time (DT ): DT is the duration to forward the

sensed data of all nodes Si : for i = 1, 2, . . . ,N to the base
station (BS) for further processing. This metric is defined in
terms of the fifth objective (IoE5), which aims to minimize
its value to ensure real-time data delivery, and is expressed as
in Eq.4:

DT =

N∑
i=1

Ti, (4)

Ti denotes the time duration required for sensor node Si data
to be transmitted to the BS.
(VI) Proposed Fitness Function: This fitness functions of

smart city application calculated in Eq. 5, all of the objectives
(IoE1, IoE2, IoE3,&IoE4) are turned into a single objective
function.

Fitness = fun1 × IoE1 + fun2 × IoE2

+ fun3 × IoE3 + fun4 × IoE4, (5)

where values of fun1, fun1, fun3, & fun4 are the weights
assigned to each objective function.

A. FITNESS FUNCTION OF MULTI OBJECTIVES OF THE IoE
FRAMEWORK
The suggested study designs four objectives for IoE-based
services calculated by Eqs. 1, 2, 3, and 4. As Eq. 5
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indicates, all objectives are transformed into multi-objective
functions. The optimization objectives are defined as follows:
IoE1 maximizes the function in Eq. 1, IoE2 minimizes the
function in Eq. 2, IoE3 maximizes the function in Eq. 3,
and IoE4 minimizes the function in Eq. 4. The minimization
problem for objectives IoE2 and IoE4 involves estimating the
total energy expenditure across all sensors and the average
delay time. In contrast, the maximization problems of objec-
tives IoE1 and IoE3 pertain to the localization and coverage
rates, respectively. Real-value encoding scheme is used to
represent the individuals in our solution. The proposed
fitness function is designed based on a scalarization method
used in multi-objective optimization, aggregating multiple
objectives into a single scalar value through a weighted
method to represent trade-offs. While the fitness function is
customized with a maximum value to discover optimality,
premature convergence might be an issue. To address this, the
proposed solution employs diversity maintenance strategies
and adaptive weighting schemes, leading to better exploration
even after reaching high fitness values.

To represent the individuals in the population in this
suggested work, real-value encoding scheme is chosen.
As, this scheme leverages comparatively more flexible,
easy-to-use representation of solutions than binary/discrete
encoding schemes. This flexibility is essential when we
are dealing with mixed-variable domains. The real-value
encoding scheme is very much compatible with mathe-
matical operations, implying it offers compatibility benefits
to perform crossover, mutation, or other operations of
evolutionary algorithms like differential evolution. It enables
better preservation of diversity within the population and
often leads to smoother fitness landscapes. To exemplify the
high level representation of an individual xi in the proposed
population, let us assume a particular scenario of an network
where LT = IoE1 = 85%, Etotal = IoE2 300 Joule,
CRrate = IoE3 = 95%, and DT = IoE4 = 200 Seconds,
then the individual xi can be expressed in real value encoding
scheme as xi = {85, 300, 95, 200}, and the proposed fitness
function can be expressed as Fitness = fun1 × N (IoE1) +

fun2 ×N (IoE2)+ fun3 ×N (IoE3)+ fun4 ×N (IoE4), where
fun1 = 0.4, fun2 = 0.3, fun3 = 0.2, and fun4 = 0.1, and
N (IoE1),N (IoE2),N (IoE3) and N (IoE4) are normalized
values of IoE1, IoE2, IoE3 and IoE4, respectively.

IV. PROPOSED METHODOLOGY
Adaptive Differential Evolution (ADE) and Leader-based
optimization have been combined uniquely to offer an Energy
Efficient Hybrid Evolutionary Algorithm (EEHEA) that
addresses energy consumption issues and resource allocation
inside IoE-enabled 6G networks. The combined use of ADE
and leader-based optimization in EEHEA is intended to
combine the flexibility of ADE with the effectiveness of
leader-based optimization in decision-making. EEHEA aims
to achieve homeostasis in energy consumption and resource
distribution by utilizing the advantages of both local and
global exploration.

A. PROPOSED ADAPTIVE DIFFERENTIAL EVOLUTION
ALGORITHM
The proposed Algorithm 1 initializes several parameters:
Cr accepts values between 0.1 and 0.5, and δ1 is set as
a percentage of a random value r ranging from 0 to 2.
In addition, the iteration count (itr) is initially set to 1, and the
population size is calculated as 100 times the dimensionality
(D) of the problem space. In the subsequent phases, the
fitness of potential solutions is assessed, and the fitness func-
tion is defined using the population initialization. Finding
high-ranking optimal vectors is aided by ranking (Ranki),
where the optimal search vector is P⃗1, the second-best is P⃗2,
and the third-best is P⃗3.
The fitness function is then developed using the popula-

tion’s initialization, allowing the fitness of potential solutions
to be assessed. Finding superior vectors is made easier by
the ranking process (Ranki), where the best search vector
is P⃗1, the second best is P⃗2, and the third best is P⃗3. The
method works in an iterative loop: fitness is calculated for
each search vector, and its location is updated using a formula
that considers the distances between certain places. Update
the position of the current search vector using the distances
between specific vectors. P⃗(itr + 1) is updated based on
the distance between P1t and P2t . P⃗T (itr + 1) is updated
based on the distance between P2t and P3t . In order to
choose an alternative vector P⃗T (itr + 1) for adaptation if
the updated vector is not improved, an adaptive mutation
approach is used. Amutation operator performs this mutation
using certain mathematical modifications based on the best
and random vectors. Then, depending on howwell the vectors
perform, an adaptive selection approach is used to choose
them. The framework’s adaptable DE technique leads the
iterative process towards an approximation solution with
remarkable convergence rates.

B. PROPOSED LEADER-BASED OPTIMIZATION
ALGORITHM
The proposed Algorithm 2 goal is to explore the best solution
within a specified solution space. First, random solutions
are used to construct a population P; then, an objective
function evaluation is used to assess the fitness values of this
population. Based on their fitness evaluations, two leaders,
Lbest and Lworst , represent the best and worst solutions in the
population, respectively. Every time iteration, the Algorithm
carries out several important steps. First, data from the
leaders is used to update the positions of the followers. Two
factors, α and β, which determine how much the greatest
and worst leaders impact followers’ views, serve as the
basis for this update. At the next iteration (t + 1), the
positions of the followers (P(t+1)

follower ) are modified according
to a weighted combination of the variations between the
followers’ present positions and the positions of the greatest
and worst leaders. The leaders actually are then recalculated
based on the updated followers’ data after the followers
have updated. In order to redefine the greatest and worst
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Algorithm 1 Proposed Adaptive Differential Evolution
Algorithm
1: Input:
2: (a) δ1 = r/2, where random (r) value (0 to 2)
3: (b) Cr = 0.1 to 0.5
4: (c) Set the Population Size = 100*D
5: (d) Iteration (itr) = 1
6: Output: Achieve the approximated solution
7: Step 1: Set the fitness function according to initialization of population
8: Step 2: Calculate the fitness function of candidate solution
9: Step 3: Ranki help to generate high-ranking best vectors
10: Step 4: P⃗1 = the best search vector
11: Step 5: P⃗2 = the second best search vector
12: Step 6: P⃗3 = the third best search vector
13: while (t ̸= MaxT ) do
14: Step 7: The proposed ADE algorithm
15: 7.1 For each search vector:
16: Calculate the fitness of all search vectors
17: Update the position of the current search vector:
18: P⃗(itr + 1) = ( ⃗Dist(P1ti ,P2

t
j ))

19: P⃗T (itr + 1) = ( ⃗Dist(P2ti ,P3
t
j ))

20: 7.4 Update P⃗1, P⃗2, and P⃗3
21: 7.5: Update best optimum value using ADE
22: Step 8: Apply the adaptive mutation strategy
23: 8.1 Apply mutation operator and select donor vector
24: if P⃗(itr + 1) < P⃗T (itr + 1) then
25: P⃗(itr + 1) = α⃗best,G + δ1 × (P⃗1r i1,G

− P⃗2r i2,G
) × rand(0, 1)

26: else
27: P⃗T (itr + 1) = α⃗rand,G + δ2 × (P⃗2r i1,G

− P⃗3r i2,G
) × rand(0, 1)

28: end if
29: Note: If P⃗(itr+1) fails to improve, P⃗T (itr+1) is used for adaptation
30: 8.2 Apply the adaptive selection strategy
31: t = t + 1
32: end while
33: Step 9: Approximate Solution with high Convergence Rate

leaders, this phase entails reevaluating the followers’ fitness
values. The lowest leader (Lworst ) is redefined as the follower
with the largest fitness among the updated solutions, and
the best leader (Lbest ) is updated as the follower with the
smallest fitness. The Algorithm moves closer to an estimated
optimal solution through an iterative process of updating
followers based on leaders and influencing leaders based on
followers. The factors α and β that control the impact of
leaders on followers and the reverse, respectively, are critical
to this optimization’s efficacy. Furthermore, the quality of
the resultant solution depends on the fitness assessment
technique used in the optimization framework for both
leaders and followers. Within the Leader-Based Optimization
method, modifications to these coefficients and the fitness
assessment function substantially affect the optimization
procedure and the convergence to the optimal solution.

C. PROPOSED HYBRID ALGORITHM
The proposed Algorithm 3 starts by initializing a population
P with solutions that are produced at random. These
solutions’ fitness values are calculated using a specified
objective function, and the best and worst solutions in
the population are represented by two leaders, Lbest and
Lworst , which are determined by their fitness. Using ADE
approaches, followers are updated at the start of the iterative

Algorithm 2 Proposed Leader-Based Optimization
Algorithm
1: Input:Initialize population P with random solutions
2: Output:Approximated optimal solution
3: Step 1: Initialize P randomly within the solution space
4: Step 2: Evaluate the fitness of solutions in P using the objective function

5: Step 3: Define leaders based on fitness values
6: Step 4: Determine leader positions (Lbest , Lworst ) based on fitness
7: while (t ̸= MaxT ) do
8: Step 5: Update followers based on leaders
9: 5.1 Calculate distances between followers and leaders:
10: Distancefollower, leader = ∥Pfollower − Lleader∥
11: 5.2 Update follower positions using leader information:
12: P(t+1)

follower = P(t)follower + α × (L(t)best − P(t)follower) + β × (L(t)worst −

P(t)follower)
13: Step 6: Update leaders based on followers
14: 6.1 Compare current leaders with followers and update leaders based

on fitness:
15: L(t+1)

best = argmin{fitness(P(t+1)
follower)}

16: L(t+1)
worst = argmax{fitness(P(t+1)

follower)}
17: t = t + 1
18: end while
19: Step 7:Obtain the final approximated solution using leader information

process. This involves performing mutation and crossover
operations specifically tailored to ADE and updating the
positions of followers using equations relevant to ADE-based
optimization. The positions of the followers are then updated
even further by applying the concepts of Leader-Based
Optimization. The follower positions are then modified using
equations derived fromLeader-Based optimization strategies.
This step entails calculating the distances between the leaders
and followers.

As the iteration increases, the updated followers’ data is
used to update the leaders (Lbest and Lworst ). In order to
ensure that leadership positions are adjusted to the changing
population, the leaders are redefined to take into account
variations in the fitness values of the followers. In order
to take advantage of each strategy in terms of optimizing
the solution space, the Algorithm switches back and forth
between ADE and leader-based optimizations during this
iterative process. Through information sharing between
leaders and followers and several optimization approaches,
the Algorithm finds its way to an approximation optimal
solution, exhibiting convergence efficiency and flexibility
in examining and improving options within the specified
area. The optimization process inside this hybrid framework
may be greatly impacted by fine-tuning the calculations and
methods within each approach.

D. THE PROPOSED HYBRID SCHEME IN IoE-ENABLED
6G)
Algorithm 4 outlines the suggested Hybrid Algorithm’s
implementation, which combines ADE and Leader-Based
Optimization techniques in a 6G IoE network. The algorithm
starts by initializing the solution population and the IoE-
6G network components. It then goes through iterative
optimization phases that are particular to the limits and
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Algorithm 3 Proposed Hybrid Algorithm
1: Initialization:
2: Initialize parameters δ1, Cr , Population Size, Iteration (itr) for ADE

(Algorithm 1)
3: Initialize parameters α, β for Leader-Based Optimization (Algorithm 2)

4: Set t = 1
5: Initialize best optimum value best_optimum
6: while t ̸= MaxT do
7: ADE Algorithm (Algorithm 1):
8: for each search vector do
9: Calculate fitness of search vectors
10: Update positions of search vectors using Eq. (1) and (2)
11: end for
12: Update best optimum value using ADE if it improves:
13: if fitness of ADE result < fitness of best_optimum then
14: best_optimum = ADE result
15: end if
16: Adaptive Mutation Strategy:
17: if P⃗(itr + 1) < P⃗T (itr + 1) then
18: P⃗(itr + 1) = α⃗best,G + δ1 × (P⃗1r i1,G

− P⃗2r i2,G
) × rand(0, 1)

19: else
20: P⃗T (itr + 1) = α⃗rand,G + δ2 × (P⃗2r i1,G

− P⃗3r i2,G
) × rand(0, 1)

21: end if
22: Adaptive Selection Strategy
23: t = t + 1
24: end while
25: Leader-Based Optimization (Algorithm 2):
26: while t ̸= MaxT do
27: Update followers based on leaders
28: Update leaders based on followers
29: Update best optimum value using Leader-Based Optimization:
30: if fitness of Leader-Based Optimization result <

fitness of best_optimum then
31: best_optimum = Leader-Based Optimization result
32: end if
33: t = t + 1
34: end while
35: Compare Algorithm 1 and Algorithm 2, Pick the best update

optimum value
36: Obtain the final approximated solution using best_optimum

requirements of IoE-enabled 6G deployments. The formulas
and procedures are modified according to the specific
optimization targets and factors of the suggested IoE-6G
application.

V. RESULT AND ANALYSIS
This Result Analysis thoroughly assesses the performance
of the Hybrid Algorithm in optimizing IoE-enabled 6G
networks. The evaluation includes a comprehensive exam-
ination of metrics, comparisons with various algorithms
(Hybrid Genetic Algorithm - Hy_GA Algo, Hybrid Particle
Swarm Optimization Algorithm - Hy_PSO Algo, Hybrid
Differential Evolution Algorithm - Hy_DE Algo, and Hybrid
Learning-based Optimization Algorithm - Hy_LBO Algo),
numerical analyses, and practical implications. The proposed
hybrid method’s main strength lies in its ability to concur-
rently manage many often-conflicting objectives. The LBO
and ADE used in our hybrid algorithm leverage novel advan-
tages and disadvantages in contrast to other popular swarm
intelligence methods such as Hy_GA, Hy_PSO, Hy_GWO,
and others. LBO has better exploitative capabilities and
efficiently converges to optimality states, while ADE’s

Algorithm 4 Proposed Hybrid Algorithm for IoE-Enabled
6G Optimization
1: Initialization:
2: Initialize parameters δ1, Cr , Population Size, Iteration (itr) for ADE

(Algorithm 1)
3: Initialize parameters α, β for Leader-Based Optimization (Algorithm 2)

4: Set t = 1
5: Initialize best optimum value best_optimum
6: Define fitness function considering WSN parameters:
7: Fitness function: f (LT,Etotal ,CRrate,DT)
8: while t ̸= MaxT do
9: ADE Algorithm (Algorithm 1):
10: for each search vector do
11: Calculate fitness of search vectors considering WSN parameters
12: Update positions of search vectors using Eq. (1) and (2)
13: end for
14: Update best optimum value using ADE if it improves:
15: if fitness of ADE result < fitness of best_optimum then
16: best_optimum = ADE result
17: end if
18: Adaptive Mutation Strategy:
19: if P⃗(itr + 1) < P⃗T (itr + 1) then
20: P⃗(itr + 1) = α⃗best,G + δ1 × (P⃗1r i1,G

− P⃗2r i2,G
) × rand(0, 1)

21: else
22: P⃗T (itr + 1) = α⃗rand,G + δ2 × (P⃗2r i1,G

− P⃗3r i2,G
) × rand(0, 1)

23: end if
24: Adaptive Selection Strategy
25: t = t + 1
26: end while
27: Leader-Based Optimization (Algorithm 2):
28: while t ̸= MaxT do
29: Update followers based on leaders
30: Update leaders based on followers
31: Update best optimum value using Leader-Based Optimization:
32: if fitness of Leader-Based Optimization result <

fitness of best_optimum then
33: best_optimum = Leader-Based Optimization result
34: end if
35: t = t + 1
36: end while
37: Compare Algorithms and Pick the Best Optimum Value
38: Obtain the final approximated solution using best_optimum

self-adaptive approaches improve its adaptability and robust-
ness, especially in dynamic environmental scenarios. Further-
more, ADE-based optimization, known for its exceptionally
efficient search space exploration, balances exploration and
exploitation. Simultaneously, the adaptation process is intel-
ligently optimized by the mutation and crossover operations
of the Adaptive DE Algorithm, renowned for its robustness
in handling complex, non-linear, and multi-modal optimiza-
tion problems. This dynamic combination culminates in a
real-time optimal solution, enhancing the overall network
performance in the context of IoE-enabled 6G networks.
Nevertheless, such advantages come along with some draw-
backs. LBO might suffer from premature convergence issue
or parameter sensitivity, restricting its efficacy in dynamic
or complex optimization scenarios. Furthermore, ADE
might have higher computational complexity and slower
convergence because of its population-based characteristics.
Despite such shortcomings, our proposed hybrid Algorithm
including LBO and ADE leverages a balanced optimization
environment, leveraging their complementary strengths to
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TABLE 2. Sensor simulation parameters.

solve conflict objectives effectively. This hybrid form is
motivated to be chosen because of its adaptive and robust
optimization techniques, which can handle different kinds
of complex, dynamic problems while offering competitive
performance. Therefore, compared to baseline schemes, this
method provides computationally efficient solutions against
different operations in multidimensional spaces. Its unique
strength is seamlessly blending several network factors,
leading to reliable data communication. Furthermore, The
proposed approach is specifically tailored for evaluating the
quality of service performance in smart IoE applications,
addressing a novel Multi-objective optimization problem
with a uniquely devised fitness function. Key Quality of
Service (QoS) metrics, such as LT , Etotal , CRrate, and DT ,
are considered. The method is implemented and evaluated
across three scenarios of Wireless Sensor Networks (WSNs)
utilizing IoE services.

1) Experiment 1: Analysis of the Algorithm’s ability to
save energy use in 6G networks with IoE enabled while
maintaining optimal performance.

2) Experiment 2: examination of the Algorithm’s effect
on reducing delay in communication between net-
worked Internet of Everything devices, guaranteeing
effective and rapid data transfer.

3) Experiment 3: An investigation of how the Algorithm
affects expanding or improving the coverage regions in
the 6G network offered by the Internet of Everything,
guaranteeing more accessibility and greater coverage
area.

4) Experiment 4: Evaluating the Algorithm’s stability
and rate of convergence as it comes closer to the best
outcomes. The quality and efficacy of the solutions
found in the IoE-6G context were also included in this
analysis.

A. EXPERIMENTAL SETUP
The IoE architecture spans a 250 × 250 unit square,
with 150 sensors evenly distributed, each representing a
distinct service request or data-gathering point. Initial data
availability for sensors ranges from 0 to 16 Megabytes.
Sensor energy reserves vary from 300 to 1000 millijoules
(mJ), with an average data transmission rate of 20 Kbps,
influencing network-wide data transmission speed. Sensors
possess a fixed communication range of 15 meters, enabling
communication within specific geographical areas. The
detailed simulation parameters values are in Table 2. This
diverse sensor network configuration is the experimental IoE
framework, accommodating varied data availability, energy

TABLE 3. Control parameters for different algorithms.

reserves, and communication capabilities. This configura-
tion, expressed through mathematical notation in Table 3,
forms the basis for evaluating the Hybrid Algorithm’s
effectiveness in optimizing IoE-enabled 6G networks. This
setup, adaptable for exploring complex network optimization
aspects, was fine-tuned using the proposed technique. The
method was tested in IoE scenarios, particularly in healthcare
services, generating Pareto fronts within a four-objective set.
Additionally, it was applied to assess IoE services related
to localization rate, total energy consumption, coverage rate,
and delay time.

B. 6G-IoE: THE PROPOSED ALGORITHM SIMULATION
ANALYSIS
Table 4 provides a comprehensive analysis of algorithm per-
formance over 200 generations, evaluating five key metrics:
energy efficiency, convergence, coverage, and fitness cost.
Each algorithm, including the recommended one, undergoes
meticulous scrutiny, recording the worst and most promising
mean values at 25-generation intervals. The proposed method
exhibits a consistent generation-by-generation enhancement,
with its lowest value decreasing from 0.3345 in the 25th

generation to 0.7136 by the 200th. The best mean value
rises from 0.4485 to 0.9568 over the same period. Notably,
Hy_GA, Hy_PSO, Hy_DE, and Hy_LBO show advance-
ments in energy efficiency optimization. Similar trends are
observed in reliability, where the suggested method steadily
improves, reaching a worst value of 0.6467 and a best mean
of 0.8671 by the 200th generation, compared to 0.2453 and
0.3289 in the 25th generation. The proposed method con-
sistently outperforms in terms of dependability, coverage,
convergence, and fitness cost. In the 25th generation, its
worst values for coverage, convergence, and fitness cost
were 0.2676, 0.47499, and 0.40809, respectively, improving
significantly to 0.64224, 0.72029, and 0.70468 by the 200th

generation. Across all assessed measures, the suggested
algorithm demonstrates a pattern of steady improvement over
200 generations, showcasing its competitive performance
and ability to converge towards optimal values for 6G-IoE
applications.

Our proposed simulation experimental set-up has shown
different performance metrics over 200 generations for
five distinct algorithms, including the Proposed method
along with Hy_GA [37], Hy_PSO [38], Hy_DE [24], and
Hy_LBO [23]. FIGURE 1 reports energy consumptionmetric
values expensed by all the different methods. The Proposed
Algorithm consistently exhibits a greater energy efficiency
rate than the other algorithms due to the adaptive nature of
the proposed algorithm, which ensures dynamic parameters’
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adjustment and efficient search space exploration. It performs
better over generations, outperforming Hy_GA, Hy_PSO,
Hy_DE, and Hy_LBO, which have somewhat efficient but
erratic trends. FIGURE 2 reports latency metric values
incurred by different Algorithms after completing execution.
The Proposed method performs marginally better than
Hy_GA and Hy_LBO but maintains a comparatively lower
latency across 200 generations when compared to Hy_PSO
and Hy_DE. Compared to the other methods, the latency
reduction trend of the proposed approach is steady and
constant. FIGURE 3 shows the coverage efficacy of our
proposed algorithm compared to others due to efficient
energy consumption management, as reflected in 1, and
localization of nodes. FIGURE 4 reports Performance
efficiency values returned by different schemes. Compared
to Hy_PSO, Hy_DE, Hy_LBO, and Hy_GA schemes, the
Proposed scheme exhibits better performance efficiency as its
execution status reaches termination conditions. Compared
to the baseline hybrid algorithms, the proposed algorithm
performs better overall regarding energy efficiency, latency,
and coverage, indicating its effectiveness in optimizing the
desired parameters across 200 generations. This is subjected
to several features:

• The adaptive nature of the ADE, combined with
leader-based optimization, ensures dynamic parameters’
adjustment and efficient search space exploration,
implying optimized resource allocation and minimized
energy expenditure.

• Based on accurate benchmarking and rigorous perfor-
mance evaluation, the algorithm’s robust convergence
properties lead to effective decision-making in real-time
scenarios and minimal latency in complex optimization
cases.

• The proposed algorithm’s adaptability to varied exper-
imental scenarios and capability to control depend-
able performance across diverse conditions implies its
robustness and reliability.

• The improved coverage capability obtained by the
algorithm shows its ability to address various optimiza-
tion situations in communication networks, distributed
systems, and IoT environments, further solidifying its
supremacy in delivering better network performance
across multiple dimensions.

C. ENERGY CONSUMPTION RATE AND DATA DELAY RATE
ANALYSIS
In FIGURE 5, the proposed Algorithm, along with Hy_GA,
Hy_PSO, Hy_DE, and Hy_LBO optimization algorithms,
demonstrates a flourishing trend in minimizing energy
consumption rates across successive generations in a smart
city framework. The graph showcases the decreasing energy
consumption rates over time, providing stakeholders with a
practical comparative study of algorithmic performance. This
proposed method has shownmore energy efficacy than others
due to a better convergence rate, as reflected in Table 4,

FIGURE 1. Energy consumption.

FIGURE 2. Delay.

FIGURE 3. Performance of coverage area.

enhanced exploration and exploitation feature, robustness to
Dynamic environments feature, scalability, and flexibility,
implying the capability of effectively solving complex opti-
mization issues. This visualization assists decision-making
when selecting algorithms to reduce energy consumption in
evolving smart city environments. Moving to FIGURE 6,
the performance trends of various algorithms (the proposed
Algorithm, Hy_GA, Hy_PSO, Hy_DE, and Hy_LBO) in
a 6G-IoE framework for minimizing Data Delay rates are
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TABLE 4. Comparative performance metrics over 200 generations.

FIGURE 4. Performance of efficiency.

FIGURE 5. Energy consumption: number of generations v/s energy
consumption.

illustrated. The Y-axis displays reduced Data Delay rates,
while the X-axis indicates the number of generations. Lower
values on the Y-axis signify better performance inminimizing

FIGURE 6. Data delay rate: number of generations v/s data delay rate.

data transmission delays. This comparative research provides
valuable insights into how various algorithms evolve over
generations and their effectiveness in minimizing data delay
rates, aiding in selecting optimal algorithms for 6G-IoE
infrastructure. We observe the proposed method superiority
of delay reduction capabilities than others, as shown in
FIGURE 6. Observations reveal a consistent decreasing trend
in Data Delay rates for all algorithms as the number of
generations increases. Notably, Hy_LBO and the proposed
Algorithm consistently exhibit lower rates, effectively reduc-
ing data transmission delays over subsequent generations.
In contrast, Hy_PSO shows consistently higher rates.

D. CONVERGENCE RATE AND ENERGY LEVEL ANALYSIS
FIGURE 7 shows the convergence rates of several methods
across multiple generations. The x-axis depicts the number
of generations, while the y-axis represents each algorithm’s
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FIGURE 7. Convergence rate: number of generations v/s convergence rate.

FIGURE 8. Energy Level of proposed algorithm.

convergence rate. Hy_GA and the proposed method have
lower convergence rates initially but show considerable
improvements in the following generations, while Hy_PSO,
Hy_DE, and Hy_LBO maintain a moderate but consistent
convergence rate. The proposed method initially outperforms
others regarding convergence rates before eventually slowing
down. The adaptive nature of DE, blended with the guidance
from leader-based optimization, leads to dynamic and more
excellent search space exploration, yielding an efficient con-
vergence rate towards obtaining optimal solutions. By adap-
tively controlling its parameters and facilitating the collective
knowledge of elite individuals, the proposed Algorithm
can effectively traverse large and complex optimization
landscapes, implying faster convergence rates. FIGURE 8
depicts the proposed Hybrid Algorithm achieves a maximum
accuracy of 96.32% with an average of 200 iterations over
30 runs, demonstrating its usefulness in optimizing sensor
node behavior in IoE environments. The proposed algorithm
to continuously adapt its behavior based on the improving its
energy level performance. The energy analysis in this term
the convergence behavior of these algorithms inside the 6G-
IoE framework, demonstrating their efficiency in reaching
optimal solutions as generations progress. The proposed
Hybrid Algorithm achieves a maximum accuracy of 96.32%
with an average of 200 iterations over 30 runs, demonstrating
its usefulness in optimizing sensor node behavior in shown
FIGURE 8.

FIGURE 9. Efficiency vs energy for various algorithms.

FIGURE 10. Comparison of relation for coverage rate and efficiency.

E. COMPARISON OF RELATION FOR ENERGY AND
EFFICIENCY
The proposed algorithm retains high efficiency across a
range of energy consumption amounts. It performs well
even under greater energy demands, indicating its potential
for resource-constrained applications without compromising
efficiency. In the FIGURE 9 provides an analysis of
the efficiency achieved using various optimization meth-
ods, including the proposed algorithm, Hy_GA, Hy_PSO,
Hy_DE, and Hy_LBO, across increasing levels of energy
consumption. The x-axis shows the energy consumption
in bits per second (bits/sec), while the y-axis shows the
efficiency achieved by the standard algorithms exhibit varied
levels of efficiency across different energy usage scenarios.
The proposed algorithm effectiveness of them tends to decline
as energy needs rise, indicating possible constraints while
they operate relatively well at lower energy levels, their
efficiency significantly as energy needs rise, emphasising
possible optimisation issues in resource-intensive environ-
ments. As a whole, the FIGURE provides useful insights into
the trade-off between energy consumption and efficiency in
Wireless Sensor Networks.

F. COMPARISON OF RELATION FOR COVERAGE RATE AND
EFFICIENCY
The proposed algorithm comparison of Coverage Rate and
Efficiency across different algorithms provides views into
their trade-offs and optimisation capabilities in relation to
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TABLE 5. ANOVA: energy consumption.

TABLE 6. ANOVA: coverage.

TABLE 7. ANOVA: delay.

the context of WSNs. The proposed algorithm selection
of appropriate optimisation strategies based on specific
needs and objectives. FIGURE 10 compares relation for
various optimisation techniques based on how they perform
in terms of Coverage Rate and Efficiency in WSN. The
x-axis indicates Coverage Rate, and the y-axis represents
Efficiency, which is often used to describe the network’s
energy efficiency in terms of data transmission, and energy
consumption. The suggested algorithm’s relationship gen-
erates solutions with varied Coverage Rate and Efficiency
which is provide a trade-off between increasing coverage rate
and maintaining WSN efficiency. The Hy_GA algorithm has
varied trade-offs for Coverage Rate and Efficiency, making it
suited for various application situations and network needs.
Similarly, the relationship for the Hy_PSO, Hy_DE, and
Hy_LBO algorithms gives solutions that balance Coverage
Rate and Efficiency in an individual manner, adding to the
network’s overall performance improvement.

G. PARETO FRONT ANALYSIS OF ENERGY CONSUMPTION
WITH DELAY
The proposed algorithm description of the Pareto front
analysis of the IoE based 6G network. This algorithm
compares with Pareto front for the Hy_GA algorithm iden-
tifies competitive solutions in terms of energy consumption
and delay. Showing a wide range of trade-offs. Similarly,
the Pareto front for the Hy_PSO, Hy_DE, and Hy_LBO
algorithms provides solutions that are competitive in terms of
energy consumption and delay. FIGURE 11 compares Pareto
fronts across various optimisation techniques based on their
performance in terms of energy consumption and delays. The
x-axis shows energy consumption, and the y-axis measures
delay. The Pareto front for the proposed method shows
solutions with different amounts of energy consumption and

FIGURE 11. Comparison of pareto fronts for optimization algorithms.

delay. These ideas offer a trade-off between reducing energy
usage and minimising delay. The proposed algorithm is
achieved the satisfactory diversity as well as convergence rate
in shown FIGURE 11.

H. STATISTICAL ANALYSIS THROUGH ANALYSIS OF
VARIANCE (ANOVA)
The shown results in Table 5, Table 6, and Table 7
are statistically significant via hypothesis testing. ANOVA
(Variance Analysis) is one of the approaches used to test and
verify whether there are significant differences between two
or more means. It concludes whether the means of reported
results of given algorithms are the same (null hypothesis
(H0) is alternative/accepted hypothesis (H1) is rejected) or
not (null hypothesis is rejected). The ANOVA test result
is also known as the F-statistic. In this test result, the null
hypothesis is rejected if the P-value result becomes lower than
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α (significance level) and (b) if the F-statistic value is greater
than the F-critical value. Let n1, n2, n3, n4 and n5 express
sample numbers in Hy_GA, Hy_PSO, Hy_DE, Hy_LBO,
and proposed algorithms. To perform the test, 30 samples
(n1 = n2 = n3 = n4 = n5 = 30) of each individual method
are taken in the similar network-environment setting, where
α = 0.05. H0 and H1 are as follows.
H0 : µHy_GA = µHy_PSO = µHy_DEµHy_LBOµProposed H1 :

µHy_GA ̸= µHy_PSO ̸= µHy_DE ̸= µHy_LBO ̸= µProposed
Table 5, Table 6, and Table 7 show the ANOVA outcome for
five distinct methods for energy consumption, coverage, and
delay metrics.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTION
In this work, the proposed Hybrid Algorithm, a novel
approach combining Adaptive Differential Evolution and
Leader-Based Optimization, demonstrates significant
advancements in optimizing 6G-enabled IoE networks.
The proposed research reports noteworthy improvements
in network coverage, latency reduction, energy efficiency,
and network dependability across various IoE scenarios.
Comparative assessments against traditional 6G networks
underscore its efficacy aligning with IoE-centric goals. While
the proposed algorithm proven efficient and effective for
revolutionizing real-world network applications, it faces
challenges in promptly adapting to dynamic changes and
may exhibit limitations in real-time decision-making speed.
Integrating AI techniques into this hybrid metaheuristic
approach can enhance adaptability, learning capabilities,
and problem-solving intelligence, making it more suitable
for addressing complex and uncertain scenarios. Moving
forward, the suggested article goal is to improve the
efficiency, reliability, and adaptability of 6G-enabled IoE
networks by integrating advanced AI techniques, thereby
supporting a wide range of dynamic 6G-enabled IoE
applications.
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