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ABSTRACT Pufferfish, globally recognized for its distinctive delicacy, carries high culinary value. However,
it is also notorious for the lethal toxicity, and there is a great demand for traceability measures in the
commercial trade of pufferfish to assure safety and accountability. This research introduces a novel deep
learning approach, utilizing facial recognition techniques, to identify pufferfish individuals. This method
specifically leverages distinctive back skin texture patterns as key biological traits. Our initial step involved
assembling a collection of annotated and augmented images of Takifugu bimaculatus, a species of pufferfish
native to East China Sea, which is accessible upon request. We then extensively investigated fundamental
components of Deep Face Recognition (deep FR) systems, focusing on segmentation and extraction models,
and assessed their effectiveness in identifying pufferfish. Following this, we developed FishIR (Fish
Individual Recognition), a framework to identify pufferfish individuals that consists of four deep FR stages
while incorporating enhanced segmentation and feature extraction techniques. Experimental results show
that this framework successfully captures unique representations of individual pufferfish, as verified by the
high accuracy achieved in recognition tasks.

INDEX TERMS Fish recognition, deep face recognition, deep learning.

I. INTRODUCTION
Pufferfish, known for its exquisite delicacy, unique texture,
and nutritional value, has enjoyed enduring popularity
as a luxury food ingredient, particularly in the eastern
hemisphere, for many centuries. In 2019, the Ministry of
Agriculture and Rural Areas of Chinamade an announcement
stating that the National Pedigree and Fine Aquatic Breed
Verification Commission would grant approval for 14 new
aquatic varieties, including new varieties of pufferfish [1].
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This development has spurred the growth of pufferfish
farming as a sustainable alternative to wild harvesting.

However, despite its culinary appeal, it is widely known
that pufferfish can be highly dangerous due to the presence of
tetrodotoxin, a toxic and fatal substance found in its liver and
ovaries, persists even after cooking. As a result, the US Food
and Drug Administration (FDA) has stringent regulations
regarding the import of pufferfish to ensure public health [2].
In China, regulations have been implemented since 2016
to allow certified companies to farm Takifugu rubripes and
Takifugu obscurus, which can be sold after undergoing
proper processing and packaging with traceability codes
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indicating their origin. However, the sale of fresh pufferfish
remains banned [3]. Despite these measures, there has been
a significant increase in cases of intoxication caused by wild
pufferfish caught and consumed by individuals, highlighting
the challenges in ensuring safety. The complex nature of the
food supply chain, involvingmultiple economic stakeholders,
makes it difficult to obtain reliable information about the
origin and safety of food products, leading to possible
incidents of food fraud and safety concerns [4]. There is an
increasing awareness among customers about the safety and
security of the food distribution network.

To address the aforementioned problem, techniques for
identifying and tracking pufferfish individuals can prove
valuable for the aquaculture and food processing industries.
Relying on humans for individual identification is notably
labor-intensive and prone to errors [5]. Previous attempts
such as using alphanumeric or barcode systems [6], lack
direct physical interaction with the fish and easily raises
concerns about reliability in the food supply chain. Alter-
natively, the emerging approach based on Radio Frequency
Identification (RFID) utilizes wearable devices and offers
significant operational improvements compared to traditional
methods. However, implanting RFID chips in fish poses a
potential risk of injury [6], [7]. Moreover, RFID systems are
generally expensive and involve labor-intensive processes.
In contrast, a non-invasive computer vision method for
individual fish identification minimizes the need for invasive
techniques. Traditional approaches rely on shape and texture
feature extraction [8], [9], [10], [11], [12], [13], which
however have certain limitations, including sensitivity to
background noise, restricted capacity for generalization, and
challenges in identifying distinctive features [14].
Recent years have witnessed remarkable progress in

the use of deep learning (DL) techniques across various
cutting-edge disciplines, including ecology, biology, marine
science, nutrition, and food engineering. Convolutional
neural networks (CNNs), a type of deep learning archi-
tecture, have become fundamental in various computer
vision tasks, ranging from image classification to object
detection and semantic segmentation [15]. Deep learning has
demonstrated its effectiveness in identifying and counting
animal or plant species [16], [17]. Furthermore, it has
been extensively researched and proven highly successful
in individual identification, particularly in human-related
studies [18]. More recently, similar methodologies have
been adapted for individual recognition in other animal
species, leveraging visual biometrics to capture unique and
stable biological characteristics. Notable examples include
individual recognition in primates [19], [20], pigs [21],
cattle [22], [23], and elephants [24], employing computer
vision approaches.

Onemajor challenge in applying deep learningmethods for
individual recognition lies in acquiring a substantial amount
of training data. This process usually involves annotating
images with specific identities or attributes of individual
entities. The amount of data required for training a CNN

is contingent upon the complexity of the classification
challenge, especially in cases of subordinate class recognition
or identifying species associated with certain regions or
habitats. Therefore, developing a robust data collection
strategy is essential for effective individual recognition tasks.

Deep learning techniques have been successfully imple-
mented in marine environments, i.e., underwater video and
acoustic surveillance systems for the monitoring of fish
species [25], fish recognition competitions such as the Kaggle
challenge [26], among other research activities. Despite these
advances, there has been very limited work in the area of
individual fish recognition, possibly due to the historical
preference for statistical approaches in marine biodiversity
and ecosystem studies. The remarkable biodiversity of
deep ocean, in terms of species count and variety, further
complicates the task of individual fish identification. Yet, the
growing interest in learning individual characteristics calls
for the development of more robust and flexible methods in
both aquaculture and food traceability sectors.

It has been noted that each pufferfish has a distinctive
pattern on its back skin texture, similar to that of human
fingerprints. This suggests that such unique texture patterns
can be employed for pufferfish individual identification,
analogically to the process of learning feature representa-
tions to distinguish human faces. Note that in this study,
we specifically focus on the unique Chinese pufferfish
species, Takifugu bimaculatus, which inhabits in East China
sea. Unless stated otherwise, any reference to pufferfish in
this paper will be concerning Takifugu bimaculatus.

This study introduces a well engineered DL framework to
identify individual pufferfish, specifically leveraging the back
skin texture patterns as key biological traits. By training an
architecture similar to Deep Face Recognition (deep FR) on
pufferfish images, we facilitate a cost-effective, non-invasive,
user-friendly and robust approach for the identification of
individual pufferfish. Previous attempts that incorporate
face recognition techniques can be found in [27], where
an architecture based on FaceNet [28] was proposed to
identify salmon. And similarly, a novel face identification
framework by integrating light-weight RetinaFace-mobilenet
with Additive Angular Margin Loss (ArcFace), namely
CattleFaceNet, was proposed in [23]. It should be emphasized
that our approach is not merely a replication of existing
deep FR architecture but rather a comprehensive examination
and selection of the most effective methods among these
fundamental components. Based on the evaluation, we pro-
posed a unique DL framework tailored for pufferfish, named
FishIR, structured similarly to the 4-stage deep FR, but aug-
mented with enhanced segmentation and feature extraction
techniques. This approach has achieved remarkable result and
provides us with a deeper understanding of well engineered
features.

The main contributions of this study are as follows:
• We have developed an annotated and augmented dataset
for the Takifugu bimaculatus pufferfish, which is
accessible upon request.
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• We have proposed a DL framework for individual
pufferfish recognition, introducing well-engineered face
embedding techniques.

II. RELATED WORK
A. FACE RECOGNITION
Face recognition, a typical example of individual recog-
nition, is a technology that can detect faces in video
or images based on facial features and recognize their
identities [29]. Traditional face recognition methodologies
have predominantly relied on manually engineered facial
features. The process often involves segmenting the face
into distinct regions and subsequently applying conventional
feature extraction techniques, such as Histogram of Oriented
Gradients (HOG) [30], Local Binary Patterns (LBP) [31],
Scale-Invariant Feature Transform (SIFT) [32], and Speeded
Up Robust Features (SURF) [33], among others, to derive
features. These extracted features are then aggregated to a
composite representation of the overall facial features. The
Eigenfaces method [34], for instance, is a notable method
in this approach. Moreover, certain hybrid methods employ
feature-based approaches for feature extraction, followed
by dimensionality reduction techniques to achieve compact,
low-dimensional features.

Inspired by the breakthrough work launched by Deep-
Face [35], DeepID [36], and FaceNet [28], research in
face recognition focus has shifted to DL-based approaches
and has reached a high level of maturity [37], [38]. The
deep FR framework typically consists of four phases: face
detection, face alignment, facial feature extraction, and face
matching.

In our work, four similar steps have been used to
identify pufferfish. The pufferfish image is scaled to a
dimension of 1500 × 800, which ensures standardization
across all images. Our approach utilizes the deep FR’s
generic segmentation component to separate pufferfish from
the background. Following this, we perform mask alignment
to address intra variations such as poses, illuminations,
expressions, and occlusions both during training and testing.
Following this, a feature extractor is employed to extract the
back skin features during testing. The final stage involves the
computation of a Euclidean space feature vector to assess
the resemblance between the features extracted from the
pufferfish image and those stored in the database, facilitating
the feature matching process [39].

B. SEGMENTATION
Image segmentation separates the target object from the back-
ground in an image. Traditional approaches segment images
into distinct regions based on grayscale, color, spatial texture,
and geometric shape criteria. These include Threshold-Based
Method (e.g., Otsu’s thresholding algorithm [40]), Cluster-
Based Method (e.g., K-means clustering [41]), Area-Based
Method [42], and Edge-BasedMethod (e.g., Sobel and Canny
edge detectors [43], [44]) approaches, which are still widely
used.

Deep learning based segmentation methods, on the other
hand, leverage neural networks to automatically learn and
extract meaningful features for segmentation tasks. In this
study, we will present several representative models for
semantic segmentation and instance segmentation tasks,
including Fully Convolutional Networks (FCNs), Encoder-
Decoder Based Models, Pyramid-Based Models, R-CNN
Based Models, and Dilated Convolution Based Models.

1) SEMANTIC SEGMENTATION
Semantic segmentation aims at classifying each pixel in an
image to a specific class, without distinguishing between
different instances of the same class.

a: FULLY CONVOLUTIONAL NETWORKS
Neural networks composed of only convolutional layers,
known as Fully convolutional networks (FCNs), have been
applied to a variety of segmentation tasks as demonstrated
in [45] and [46]. FCN-8, a variant initially proposed by [47],
is employed in this study for semantic image segmentation.

b: ENCODER-DECODER ARCHITECTURES
The encoder-decoder based architecture is usually composed
of an encoder that employs convolutional layers derived
from VGG16 and a deconvolution layer that that offers
segmentation masks and pixel-wise class labels. Our study
evaluates a recently developed encoder-decoder architecture
known as SegNet [48], which has achieved notable success in
the field.

c: PYRAMID NETWORK BASED MODELS
Feature Pyramid Network (FPN), as first introduced by [49],
leverages the multi-scale, pyramidal structure intrinsic to
deep convolutional networks for the creation of feature
pyramids with marginal extra cost. The Pyramid Scene
Parsing Network (PSPNet) [50] further enhances global
context representation in scenes. We evaluate PSPNet as a
benchmark method for performance comparison.

d: DILATED/ATROUS CONVOLUTIONAL MODELS
Dilated convolution employs sparse convolution kernels
to enlarge the receptive field through dilation rates in to
convolutional layers. The DeepLab family [51], [52], [53]
uses dilated convolution to aggregate multi-scale con-
textual information while preserving resolution. In 2018,
DeepLabV3+ was released in [54], achieving significant
performance in the PASCALVOC challenge after pretraining
on diverse datasets.

2) INSTANCE SEGMENTATION
On the other hand, instance segmentation goes beyond
categorizing each pixel in an image by its class, by identifying
and delineating each distinct instance.
R-CNN Based Models: Among the models that are devel-

oped to handle instance segmentation tasks, the Region-based
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Convolutional Neural Networks (R-CNN) and its successors
represent a significant advancement in the field of object
detection and segmentation tasks. Mask R-CNN, introduced
by He et al. [55], can efficiently detect objects in images
while simultaneously generating precise segmentation masks
for each detected instance. Their subsequent work, Mask
Scoring R-CNN [56], has further introduced a mask scoring
mechanism that calibrates the misalignment between mask
quality and mask score, leading to a significant performance
enhancement. Both Mask R-CNN and Mask Scoring R-CNN
are evaluated in this study.

C. FEATURE EXTRACTION
The significance of feature extraction in face recognition
lies in its ability to reduce dimension while preserving
informative features. Classical feature extraction methods
often involve the use of filters or descriptors to extract
key information and highlight distinguishing characteristics.
Representative examples include the implementation of
Gabor filters [57], Local Binary Pattern (LBP) [31], and
Gray-level Co-occurrence Matrix (GLCM) [58] into face
extraction. Detailed information can be found in their
respective original work for interested readers.

In recent years, CNNs have become increasingly promi-
nent for feature extraction, primarily due to their ability of
learning hierarchical representations and identifying complex
patterns in data. Face features are considered discriminative
when they demonstrate a high degree of intra-class similarity
and inter-class dissimilarity. There is a growing research
efforts on incorporating well crafted classification loss
functions, as well as adopting efficient architectural designs
to enhance discriminative power of the learned features.
In this study, we will review several significant achievements
in classification loss functions design.

1) SOFTMAX LOSS
In the context of face recognition, the development of
margin-based softmax loss functions is crucial for acquir-
ing discriminative features, as highlighted in the study
by [59]. Examples include angular, additive, additive angular
margins, etc.

Softmax loss consists of a series of components, including
the last fully connected layer, the softmax function and the
cross-entropy loss. In the following formulation, with d being
the feature dimension and K being the number of classes,
wk ∈ Rd represents the weights of k-th classier where
k ∈ 1, 2, . . . ,K , while x ∈ Rd is the feature vector associated
with input data.
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y x
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In face recognition, it is a common practice to transform
the original softmax loss into a cosine similarity-based
formulation. Given an input feature vector x with its
ground truth label y, the cosine similarity is calculated by
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2) LOSS FUNCTIONS AND ITS VARIANCE
In following we will present three different loss functions
which are evaluated in our experiments. The interested
readers can refer to [59], [60], and [61] for theoretical details.

a: ANGULAR MARGIN SOFTMAX
The angular softmax (A-softmax) [60], modifies the tradi-
tional softmax loss to enforce an angular margin (A-Softmax)
between feature vectors and their corresponding class centers
in the embedding space. It is designed to enhance the
discriminative power of deep learning models, especially in
face recognition related tasks.

b: ADDITIVE ANGULAR MARGIN LOSS
A-Softmax, while effective, can be sensitive to parameter
settings. Deng et al. [59] developed an additive angular
margin loss, which has a clear geometric interpretation to
address the stability of A-Softmax loss.

c: LARGE MARGIN COSINE LOSS
LargeMargin Cosine Loss, was proposed in [61] to maximize
inter-class variance and minimize intra-class variance from a
different perspective, in contrast to traditional softmax loss
and angular softmax loss. It reformulates the softmax loss
as a cosine loss by L2 normalizing both the feature vectors
and weight vectors to remove radial variations. Additionally,
a cosine margin term is introduced to further maximize the
decision margin in the angular space.

III. MATERIALS AND METHODS
A. DATA COLLECTION AND PROCESSING
Recent advances in deep learning based face recognition have
been driven by the availability of extensive, large annotated
databases, that enable the extraction of comprehensive and
concise facial representations. Several benchmark datasets
are now available for researchers to assess their algorithms,
such as PASCAL [62], MS COCO [63], and ILSVRC [64].
To the best of our knowledge, there is no existing publicly
accessible dataset of labeled pufferfish. To bridge the gap
and foster pufferfish identification, we have constructed a
properly annotated pufferfish database in this study.

In order to construct our dataset for Takifugu bimaculatus,
we followed a systematic approach. We initiated the dataset
construction process by collecting labeled pictures of tak-
ifugu bimaculatus, a species of pufferfish found in the East
China Sea. To obtain these labeled pictures, we utilized video
clips and extracted frames from the recorded footage. This
process involved acquiring the video clips and subsequently
extracting individual frames, which were then labeled and
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FIGURE 1. Takifugu bimaculatus images extracted and filtered from one
video clip.

incorporated into our dataset. The specific implementation
details of this process are outlined below:

• We carefully set up the photography environment and
device for clear image acquisition. A D65 light source
with a color temperature of 6500Kwas applied to ensure
a light background with a distinct contrast to the fish’s
color.

• To document the various features of the fish,
we recorded video clips frommultiple angles (e.g., 30 or
45 degrees), allowing the camera to rotate for about
60 seconds. From each video segment recorded,
we derived approximately 200 images.

• Finally, we categorized and annotated the images
according to a specific naming convention, ensuring
systematic organization and easy reference within the
dataset.

By following these steps, we constructed a comprehensive
dataset for Takifugu bimaculatus. In our data collection
process, we acquired a total of 146 video clips, with each
clip capturing an individual Takifugu bimaculatus. To ensure
consistency, we scaled each image to the dimensions
of 1500 × 800. From these video clips, we extracted and
meticulously filtered a total of 20,793 high-quality pufferfish
images. Fig. 1 showcases a selection of Takifugu Bimaculatus
images that were extracted and filtered from one video clip.

To create a dataset for the segmentation task, we employed
the MS COCO-style approach [63]. We utilized 30 dif-
ferent Takifugu bimaculatus fish, encompassing a total of
1,267 images, as the training dataset for this relatively
straightforward task. We utilized the LabelImg software [65]
to manually label and annotate the images. For feature
extraction, we utilized the Labeled Faces in the Wild (LFW)
method, which incorporates pair matching to organize the
dataset. The dataset was divided into verification and iden-
tification subsets. The verification subset contained 126 fish,
while the identification subset included 20 fish. Within the
verification subset, the dataset was further split into training,
verification, and recognition sets at a ratio of 8:1:1.

TABLE 1. Dataset before and after data augmentation.

FIGURE 2. Scatter diagram of bounding box width and height from
training dataset.

B. DATA AUGMENTATION
Data augmentation, achieved through various transforma-
tions such as translation, reflection, rotation, warping,
scaling, color space shifting, and cropping are usually applied
to enhance the training sample diversity. This further leads
to faster convergence, reduced overfitting, and improved
generalization, especially when training neural networks
with limited datasets. We employed several augmentation
methods in our study. The number of images employed for
segmentation task has been expanded from 1,267 to 7,620,
while for feature extraction, it has increased from 20,793
to 55,837, as shown in Table 1.

C. EXPERIMENTAL SETUP
We conducted experiments using NVIDIA GeForce
GTX 2080 Ti GPUs on a workstation running the Linux
Ubuntu 16.04 LTS operating system. To create the software
environment for DL, we utilized Python and PyTorch [66].
Stochastic gradient descent (SGD) served as the optimization
algorithm across all experiments, ensuring efficient training
and convergence of the models.

IV. EXPERIMENTS
In this section, we present a comprehensive examination of
the essential components of deep FR, focusing particularly
on segmentation and feature extractionmodels, and exploring
their applicability for the identification of pufferfish.

A. SEGMENTATION EXPERIMENTS
For the segmentation experiments, we used a training dataset
consisting of 30 distinct Takifugu bimaculatus fish, with
a total number of 1,267 images. For instance segmenta-
tion, we assessed the performance of Mask R-CNN [55]
and Mask Scoring R-CNN [56]. For semantic segmenta-
tion, we explored the effectiveness of DeepLabV3+ [54],
PSPNet [50], FCN-8 [47], and SegNet [48].A learning rate
of 0.0025 was applied to Mask R-CNN and Mask Scoring
R-CNN, while the remaining models were configured with
a learning rate of 0.01. These settings were carefully
chosen to optimize the training process and achieve optimal
segmentation results.

1) PERFORMANCE METRICS
We use the standard COCO metrics to assess the model
performance in terms of segmentation accuracy, which
include Mean Pixel Accuracy (MPA) and Mean Intersection
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FIGURE 3. Two different sets of anchor boxes.

over Union (MIoU) [67]. MPA measures the proportion
of correctly classified pixels across all classes, and MIoU
calculates the ratio between the intersection and union of the
ground truth and predicted segmentation. The equations for
MPA and MIoU are as follows:

MPA =
1

k + 1

k∑
i=0

pii∑k
j=0 pij

MIoU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

2) ANCHOR SIZE
Anchor box selection is a process of choosing predefined
bounding boxes with different sizes and ratios, serving as
a reference to object detection in CNN models such as
Mask R-CNN and Mask Scoring R-CNN. By selecting an
appropriate set of anchors, we can improve both the speed
and accuracy of our models. For performance optimization
of Mask R-CNN and Mask Scoring R-CNN, we conducted
an evaluation of choosing the optimal anchor size, following
a K-means clustering approach to cluster the bounding boxes
of objects, inspired by YOLO [68]. The clustering process
helped to identify suitable anchor box sizes and propose
potential regions, which in turn guided a more accurate object
localization.

We randomly selected 2000 (width, height) data points
and depicted the scatter diagram in Fig. 2. It can be seen

TABLE 2. MPA and MIoU of two different sets of anchor boxes.

TABLE 3. Quantitative performance analysis of image segmentation
models with different backbone networks.

FIGURE 4. Visual comparison of image segmentation models using
different backbone networks.

that the height data is mainly grouped at 400, while width
data is clustered at 300-400 and 900-1200. Based on the
clustering results, we derived two sets of anchor boxes: one
with the sizes (32,128,256,512,600) and the other with sizes
(128,256,512,600,680), and both with aspect ratio set to
(0.5,1.8,2.5), as shown in Fig. 3. After 10, 000 iterations of
training, we observed that the first anchor box set delivered
marginally better results in terms of MPA and MIoU,
as detailed in Table 2. This suggests us to apply the first
anchor box set configuration with size (32,128,256,512,600)
and aspect ratio (0.5,1.8,2.5) in both Mask R-CNN and Mask
Scoring R-CNN models.

3) NETWORK ARCHITECTURE
Several ablation experiments were conducted to assess the
impact of backbone networks. We tested performance of
ResNet_50, ResNet_101, MobileNet, ShuffleNet on Mask
Scoring R-CNN, ResNet_50, ResNet_101 on Mask R-CNN,
and ResNet_101, MobileNet, DRN on DeepLabV3+ respec-
tively. The quantitative data and visual representations are
presented in Table 3 and Fig. 4 respectively. Note that the
order of pictures in Fig. 4 is aligned with the sequence
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in Table 3, arranged from left to right and top to bottom.
All backbone networks were pre-trained in advance. Further-
more, Table 3 also includes results from PSPNet, FCN-8 and
SegNet, which are optimized without any modifications of
underlying backbone network.

For instance segmentation tasks, Mask Scoring R-CNN
demonstrates only a marginal performance gain over Mask
R-CNN across all backbone networks, likely due to the fact
that segmentation of single object has limited sensitivity
to a more precise scoring function. Additionally, Mask
Scoring R-CNN has yielded a larger number of model
parameters due to its additional prediction branch. For seman-
tic segmentation, DeepLabV3+ based on a ResNet_101
backbone network achieved the highest MPA and MIoU
at 99.49% and 98.56%, respectively. It’s worth noting that
DeepLabV3+ maintains an efficient average processing time
of 0.034 seconds. Conversely, MobileNet, while offering the
fastest processing speed and smallest model size, sacrifices
performance in terms of MPA andMIoU. PSPNet and FCN-8
are not efficient in terms of both speed andmodel size, despite
their high MPA and MIoU. As a result, DeepLabV3+ has
been selected as the segmentation model for our application.

B. FEATURE EXTRACTION EXPERIMENTS
1) TRADITIONAL FEATURE EXTRACTION
We first applied traditional methods such as LBP [31],
GLCM [58], and Gabor [57] for feature extraction. These
classical feature extraction methods require no training pro-
cedures, and the parameter configuration during experimental
setup can be directly derived from empirical studies. Among
these approaches, Gabor performs best in comparison to other
methods. However, its accuracy in feature extraction stands
merely at 50.31%, and the method demands considerable
computational time. The experimental results are depicted
in Table 4.

TABLE 4. Experimental results of 3 traditional methods: LBP, GLCM, and
Gabor.

2) LOSS FUNCTION IN CNNs
During the feature extraction process using CNNs, training
the network is an initial step. Subsequently, the validation
step is performed on a verification set. In our experiments,
we utilized the LFW-style dataset [69], which consists
of 4, 158 pairs of sample images. We employed the ten-fold
cross-validation approach on the test dataset. In each trial,
we randomly selected nine folds for training and allocating
the remaining fold for testing. The final accuracy results were
obtained by averaging the accuracy across ten distinct trials.

To assess the resemblance between pairs of images,
we measured the Euclidean distance value for each pair.

TABLE 5. Various backbone networks and their performance across
different loss functions.

TABLE 6. The ResNet_50_rc structure is composed of building blocks,
each detailed within brackets alongside the respective stack counts.
Downsampling is performed at four stages with a stride of 2.

TABLE 7. Results using 7 × 3 rectangular kernels in stages 1 to 4 of
ResNet50.

We categorized each image pair as either similar or dissimilar,
based on a predetermined threshold value s. For each image
pair, this process yields one of four outcomes: a True
Positive (TP) if the pair is correctly identified as similar,
a True Negative (TN) if the pair is correctly identified as
dissimilar, a False Positive (FP) if the pair is misclassified as
similar, and a False Negative (FN) if the pair is misclassified
as dissimilar. The accuracy is calculated by the ratio of the
sum of TP and TN to the overall number of pairs, represented
by the equation:

ACC =
TP+ TN

TP+ TN + FP+ FN

In our feature extraction experiments, we focused on
assessing the impact of different loss functions while
keeping the backbone network architecture consistent. The
backbone networks selected for these experiments were
ResNet_50, ResNet_101, IR_50 and IRSE_50, where IR_50
and IRSE_50 are minor modifications of ResNet_50.
We tested the following loss functions: Angular Softmax
Loss [60], Large Margin Cosine Loss [61], and Additive
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TABLE 8. A summary of recognition results on the pufferfish dataset.

Angular Margin Loss [59] to compare their performance. The
ablation study results presented in Table 5 indicate that most
state-of-the-art CNNs are robust to perform feature extraction
task with the loss functions assessed in this study. Note that
the threshold value referenced in Table 5 corresponds to the
aforementioned Euclidean distance value.

The experimental results lead to several important obser-
vations: Firstly, deeper and larger neural networks in general
yield better performance, i.e., ResNet_101 consistently
achieved a high ACC value that exceeds 99.9%. Secondly,
ResNet_50 backbone using AAML is the fastest method
to learn representative features. In contrast, ResNet_101
using LMCL requires the longest time. Finally, AAML is
outperformed than LMCL for most backbone networks, with
IRSE_50 being the exception.

Observing from a time perspective, ResNet_50 with the
AAML loss function was the most efficient, requiring only
0.21 seconds to extract the features of a single image. On the
contrary, ResNet_101 with the LMCL loss function was the
most time-intensive, demanding a total of 0.41 seconds to
perform feature extraction for a single image.

When considering the model size, ResNet_50, IR_50,
and IRSE_50 exhibit similar dimensions, all approximately
around 250M. However, ResNet_101 exhibits a slightly
larger size of 323M.

3) CONVOLUTIONAL KERNELS
Inspired by the observations of rectangular patterns on puffer-
fish back skin, we hypothesized that employing rectangular
convolutional kernels, as opposed to the conventional square-
shaped kernels, might lead to more efficient and precise
feature representation. Our study integrated 7×3 rectangular
convolutional kernel with padding dimensions 3 × 1 and a
stride of 2, into different stages of ResNet_50, as shown
in Table 6. Surprisingly, the application of rectangular
convolutional kernels resulted in only marginal performance
improvements or, in some cases, even a decrease in accuracy,
as demonstrated in Table 7.

C. FishIR: A DL BASED PUFFERFISH RECOGNITION
ARCHITECTURE
In this Section, we present a DL framework named FishIR
(Fish Individual Recognition) based on the extensive study

of essential building blocks of deep FR. This framework
is composed of four deep FR stages, while tailored by
incorporating enhanced segmentation and feature extraction
methods for pufferfish identification. Fig. 5 shows the
architecture of the proposed FishIR framework.

FIGURE 5. Architecture of FishIR: an individual pufferfish recognition
system.

We have selected DeepLabV3+ coupled with ResNet_50
as the backbone network for feature extraction in our
segmentation model. The pre-trained model parameters were
utilized to initialize weights. The performance evaluation
of this model was conducted using three distinct loss
functions. To evaluate the model, we use TPR (true pos-
itive rate) and FPR (false positive rate) metrics from the
confusion matrix. The experimental results are summarized
in Table 8.

FPR =
FP

TN + FP
; TPR =

TP
TP+ FN

We can draw several conclusions from the experimental
results. First, network architectures affect speed more than
accuracy. Secondly, the efficiency in learning representative
features can vary depending on the choice of loss functions,
and AAML performs the best for individual pufferfish
recognition tasks among all tested loss functions. Last
while not least, our experiments demonstrate that FishIR
is highly effective in the precise recognition of individual
pufferfish based on the analysis of their unique back skin
patterns.
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V. CONCLUSION
This study presents FishIR, a novel DL framework tailored
to recognize individual pufferfish of the species Takifugu
bimaculatus, which are native to the East China Sea. This
system incorporates principles from face recognition tech-
niques by leveraging unique back skin texture patterns as key
biological traits and achieved significant performance proved
by experimental results. To facilitate identity recognition,
we constructed a collection of annotated and augmented
images of Takifugu bimaculatus, which is accessible for
scholarly use upon request. Our methodology entailed
a comprehensive evaluation of fundamental components
of deep Face Recognition (deep FR), with a particular
focus on segmentation and extraction models, to gauge
their effectiveness in pufferfish identification. As a result,
we introduced FishIR (Fish Individual Recognition), a novel
system that integrates the four fundamental stages of deep
FR technology while incorporating advanced segmentation
and feature extraction techniques tailored for pufferfish
identification.

Our experiments show that training a facial recognition
model on pufferfish images enables accurate individual
pufferfish identification without physical intervention. The
experimental results could inspire further research efforts in
applying deep learning and facial recognition mechanisms
in animal ecology, identify recognition and marine science.
It could open up new research areas requiring long-term
monitoring of individual animals, such as studying feeding
behavior, disease detection, and social interactions.

In future work, we aim to test the model’s ability to
recognize individuals in the wild environment. We also
plan to examine potential improvements in performance by
incorporating other critical variants. Finally, we would like to
test the generalizability of the concept to other species beyond
pufferfish.
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