
Received 26 March 2024, accepted 11 April 2024, date of publication 18 April 2024, date of current version 26 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3390670

Leaf in Wind Optimization: A New Metaheuristic
Algorithm for Solving Optimization Problems
NING FANG 1 AND QI CAO 2
1School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
2Longyan Tobacco Industrial Company Ltd., Longyan 364021, China

Corresponding author: Qi Cao (caoqi_82@163.com)

ABSTRACT This study introduces a novel metaheuristic algorithm, Leaf in Wind Optimization, inspired by
the natural phenomenon of falling leaves in the wind. The proposed method simulates the motion response
of leaves in varying intensities of wind by establishing models for light wind-driven blades and strong wind-
driven blades. The algorithm incorporates motion modes of linear translation and spiral rotation induced
by wind, offering a hybrid search framework suitable for both strategies. This approach enables enhanced
exploration and exploitation of the search space. The algorithm’s performance was evaluated using three
challenging benchmark test sets, CEC 2017, CEC 2019 and CEC 2022, as well as an engineering practical
problem. Its effectiveness was assessed through comparison with 10 random optimization algorithms,
namely: Tree Seed Algorithm, Multi-Verse Optimizer, Salp Swarm Algorithm, Artificial Ecosystem-based
Optimization, Hunger Games Search, Fox Optimizer, SpiderWasp Optimizer, AOBLMOA, Enhanced Snake
Optimizer, and IbI Logic Algorithm. In the comprehensive testing conducted, the proposed algorithm
consistently outperformed other optimizers in approximately 82% of comparisons. Through examination of
convergence curves and statistical data, it is evident that Leaf in Wind Optimization demonstrates superior
potential compared to the alternative optimizers under consideration.

INDEX TERMS Metaheuristic algorithm, optimization, benchmark functions.

I. INTRODUCTION
Metaheuristic optimization algorithms are effective tools
for addressing optimization problems characterized by high
dimensionality and strong interdependencies [1], [2]. These
algorithms have emerged as prominent approaches in the
field of optimization, employing random processes and
group search strategies to identify approximate solutions
that closely approximate the optimal solution within a rea-
sonable computational timeframe. Consequently, they have
been successfully employed in diverse application domains.
Song et al. introduced the APSO/DU method as a solution
to portfolio optimization problems [3]. Shinde and Pawar
employed the TLBO method to address the Trajectory Opti-
mization of an Industrial Robot problem [4]. Kumar and
Sharma also utilized the TLBO method to tackle the Wind
Farm Layout Optimization Problem [5]. Liu and Zhang

The associate editor coordinating the review of this manuscript and

approving it for publication was Bijoy Chand Chatterjee .

developed an Immersive Intelligent English Teaching (IET)
system by employing the Neural Network (NN) algorithm
of Particle Swarm Optimization (PSO) [6]. Osei-Kawakye
et al. proposed the HPSOCSA-CIS algorithm to solve the
feature selection problem [7]. With the proliferation of data
volume and escalating intricacy of computational tasks, there
is a growing need for enhanced computing efficiency. Opti-
mization algorithms must not only address diverse practical
complex problems [8], [9], [10], but also strive for superior
optimization strategies to minimize computational complex-
ity, expedite convergence, and circumvent local optima.
This is crucial for enhancing computational efficiency and
successfully accomplishing larger and more intricate compu-
tational tasks.

Many novel metaheuristic optimization algorithms have
been developed, drawing inspiration from established algo-
rithms, such as particle swarm optimization (PSO) [11],
Artistic Bee Colony (ABC) [12], and bat-inspired algorithm
(BA) [13]. Researchers have adopted diverse approaches,

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 56291

https://orcid.org/0000-0001-5937-5147
https://orcid.org/0009-0001-6927-9893
https://orcid.org/0000-0002-9363-9289


N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

converting distinct logic, behaviors, and states into search
strategies and employing mathematical models to represent
them [14], [15], [16], [17]. Moreover, the performance of
these newly proposed optimization algorithms continues to
improve. In this vein, Sunday Oladejo et al. introduced
a metaheuristic algorithm called the deep-sleep optimizer
(DSO) [18]. The deep-sleep optimizer emulates the sleep
patterns of humans and replicates the fluctuations in stress
levels during sleep. In their study, Trojovská et al. introduced
the Drawer Algorithm (DA), which simulates the selection of
objects from various drawers to achieve an optimal combina-
tion [19]. Rezvani et al. proposed the Bedbug Metaheuristic
Algorithm (BMHA), which is inspired by the clustering
behavior of bedbugs in nature, both static and dynamic, and
models the social interactions among bedbugs during their
search for food [20]. Givi et al. introduced the Red Panda
Optimization (RPO) algorithm, which emulates the innate
actions of small pandas in their natural habitat, including
foraging and seeking refuge in trees for rest [21].
Natural phenomena offer valuable insights into optimiza-

tion algorithms [22]. Numerous researchers have observed
and translated these phenomena into mathematical models
to optimize problems, yielding highly satisfactory outcomes.
Consequently, these optimization algorithms present influen-
tial concepts that foster the development of novel algorithms.
Several optimization algorithms have been proposed in recent
years, all of which are based on natural phenomena.

The Tree-seed algorithm (TSA) establishes a correspon-
dence between the positions of trees and seeds within a
D-dimensional search space, thereby providing a potential
solution to an optimization problem [23]. Throughout the iter-
ative process, one or more seeds were consistently generated
from the trees and the positions of the trees were substituted
with those of the superior seed positions. The generation of
new seeds in each iteration is regulated by a parameter known
as the search trend control. As the ST value decreases, the rate
of convergence decreases, whereas the capacity for a global
search strengthens.

Cheraghalipour et al. introduced the Tree Growth
Algorithm (TGA) as a means of simulating competitive
dynamics among trees in their quest for light and nutrients
[24]. The algorithm partitions the population into four distinct
groups, with one designated as the ‘‘best tree group.’’ These
superior trees, benefiting from favorable growth conditions,
afforded the opportunity to thrive further. Once their light
requirements are satisfied, their competition shifts towards
acquiring food resources. Given the relatively sluggish
growth rate of trees, those that exhibit robust development
tend to possess greater height and smoother morphology,
ultimately reflecting their advanced age compared with their
counterparts. This phenomenon can be attributed to the decel-
eration of the growth rate in aging trees compared to younger
trees, as well as the intensified competition for nutrients
at the root level. Another group of trees engages in light
intensity competition, whereby they reposition themselves

towards the nearest optimal tree to maximize exposure to
light. Additionally, a subset of weak trees exhibiting slow
growth or other factors outlined in the preceding section was
selectively removed and replaced by forest farmers with new
trees. In the breeding group, the superior trees commence the
process of reproduction and generate new plants because of
their favorable growth. Given their proximity to the mother
tree, they inherit certain factors associated with a specific
location.

Wind-driven optimization (WDO) technology is an iter-
ative heuristic global optimization algorithm that operates
using a population-based approach [25]. Its fundamental prin-
ciple involves the exploration of infinitesimal gas blocks in
one-dimensional space, adhering to Newton’s second law
of motion, which is commonly employed to describe the
movement of gas blocks within Earth’s atmosphere. In con-
trast to particle-based algorithms of similar nature, WDO
incorporates supplementary terms within its velocity update
equations, encompassing forces such as gravity and Cori-
olis forces. This inclusion enhances the resilience of the
algorithm and offers additional flexibility for precise adjust-
ments. According to Bayraktar et al., the conventional Wind
Driven Optimization (WDO) algorithm offers a straight-
forward and efficient metaheuristic optimization approach.
However, the inherent coefficients of the algorithm introduce
unforeseen intricacy, particularly for inexperienced users.
To address this complexity and enable automated coefficient
selection, researchers have proposed an adaptive wind-driven
optimization (AWDO) method [26].

Shehadeh introduced a novel metaheuristic optimization
approach known as the Chernobyl Disaster Optimizer (CDO)
[27]. The underlying principles and concepts of this method
are inspired by the catastrophic explosion of the Chernobyl
nuclear reactor core. Within the CDO framework, radioac-
tivity is generated because of nuclear instability, leading to
the emission of various types of radiation from the atomic
nucleus. Among these, the γ , β, and α particles were the most
prevalent. These particles traverse from the point of explo-
sion (high pressure) to the point of lower pressure (human
foothold), posing a significant risk to human health. CDO
exhibits the ability to adhere to the human body following a
nuclear explosion while also simulating the effects of nuclear
radiation.

Luo drew inspiration from the natural water flow pat-
tern and introduced a Water Flow Optimization Algorithm
(WFO) [28]. This algorithm emulates the hydraulic behav-
ior of water particles as they move from higher to lower
ground by employing two operators: 1) laminar flow and 2)
turbulence. Similarly, Shehadeh et al. merged the Gravity
Search Algorithm (GSA) with the Sperm Swarm Opti-
mization (SSO) algorithm to create a hybrid optimization
algorithm known as hybrid sperm swarm optimization and
gravitational search algorithm (HSSOGSA) [29]. The funda-
mental concept of this algorithm entails the amalgamation of
the utilization capability found in SSO and the exploration

56292 VOLUME 12, 2024



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

capability present in GSA, thereby integrating the advantages
of both algorithms. Zhao et al. introduced an optimization
algorithm known as artificial ecosystem-based optimiza-
tion(AEO), which draws inspiration from the energy flow
within Earth’s ecosystems [30]. The AEO, as a population-
based optimization algorithm, emulates three distinct behav-
iors exhibited by living organisms: production, consumption,
and decomposition. In their study, Azizi et al. introduced the
Energy Valley Optimizer (EVO) algorithm, a newly devel-
oped metaheuristic algorithm that draws inspiration from
sophisticated physical principles pertaining to stability and
various particle-decay modes [31].
The author draws inspiration from these algorithms to

utilize the movement patterns of fallen leaves in the wind to
address continuous optimization problems. LiWO emerged
as a sudden epiphany for the author, prompting them to
closely observe the behavior of fallen leaves under windy
conditions. Despite the consistent outcome of leaves descend-
ing to the ground, the varying intensities of gentle or strong
winds result in diverse trajectories that ultimately lead to
their dispersal within a defined spatial range. These phe-
nomena serve as the fundamental basis of LiWO. Within
the LiWO framework, fallen leaves, referred to as candidate
solutions, manifest distinct associations with wind across
various stages of descent, thereby facilitating the enhanced
exploration and exploitation of the search space. The effi-
cacy of LiWO was assessed using an engineering problem
and three arduous benchmarks derived from the Evolution-
ary Computing Conference (CEC), namely CEC 2017, CEC
2019, and CEC 2022. This study aimed to assess the opti-
mization ability of LiWO by comparing it with 10 other
randomly selected optimization techniques. The selected
algorithms for comparison encompass recently published
algorithms as well as algorithms associated with trees. Based
on the analysis of the convergence curve and statistical data,
LiWO emerged as the most promising among the compet-
ing optimizers. The primary contributions of this study are
as follows:

• A novel metaheuristic algorithm, named Leaf in Wind
Optimization (LiWO), was introduced, drawing inspira-
tion from the factors such as wind force, translation, and
rotation that influence the movement of falling leaves in
the wind.

• Drawing upon the observed characteristics of leaf move-
ment, the breeze driven leaf strategy and the strong wind
driven leaf strategy was modeled to effectively complete
global search and local search in LiWO.

• Hybrid search behavior has been proposed, wherein
the movement of individual leaf is comprised of one
or more superimposed simple motions, enabling a
more efficient exploration and utilization of the search
space.

• By utilizing three rigorous CEC benchmarks and an
engineering problem to assess the performance of
LiWO in addressing a variety of optimization prob-
lems with diverse characteristics, experimental findings

demonstrate that LiWO outperforms other comparable
optimization algorithms.

The subsequent section of this article is organized as fol-
lows. The second section presents a comprehensive overview
of the proposed LiWO, encompassing its implications, math-
ematical models, and pseudocode. The third section presents
the results and discussion, wherein the new algorithm
was evaluated on a test set comprising 51 test programs.
By employing an extensive test set encompassing all the gen-
uine parameter single-objective optimization test sets from
CEC2017, CEC2019, CEC2022 and an engineering problem
to validate the algorithm, the likelihood of encountering over-
fitting issues is somewhat mitigated when compared with the
utilization of a limited number of test sets. Finally, Section IV
concludes the paper and offers suggestions for prospective
research.

II. LEAF IN WIND OPTIMIZATION
A. INSPIRATION
Many plant-based optimization algorithms have established
corresponding optimization algorithms by simulating certain
growth characteristics or effects of plants. This indicates
that there are many adaptive or self-regulated phenomena
in natural phenomena. Falling leaves in the wind are one
of the natural phenomena. Under the influence of wind,
falling leaves have obvious dynamic characteristics and can
perfectly complete the process of falling to the ground. This
is inevitably an adaptive motion.

It is imperative to acknowledge the intricate nature of
leaf descent. Indeed, in everyday circumstances, individuals
witness diverse patterns ofmotionwhen releasing lightweight
and delicate objects such as leaves. Occasionally, the trajec-
tory of a descending piece of paper may appear haphazard,
while at other times it exhibits a high degree of regularity.
This can be attributed to the multitude of external forces,
including lift, friction, and gravity, which influence the pro-
cess of leaves descending to the ground. Leaves undergo
continuous postural adjustments and descend from a consid-
erable height under the influence of external forces. The act
of landing represents the ultimate state of a leaf, whereas
falling signifies sequential stages of leaf movement. Drawing
inspiration from this phenomenon, it is plausible to perceive
the descent process as an optimization procedure.

Themotion of the descending foliage demonstrates intrigu-
ing oscillations, rolling, and spiral motions, alongside unpre-
dictable transitions between these phases, encompassing
random occurrences, sudden changes in velocity, and simi-
lar phenomena [32], [33]. Numerous computational methods
exist for replicating the state of falling leaves, with a signifi-
cant portion involving the calculation of forces and moments
exerted on the leaves [34], [35], [36]. In this regard, the leaves
are regarded as rigid entities with a negligible thickness
assumed to be zero, which is solely characterized by their
length and mass. By applying the principles of fluid mechan-
ics, the forces and moments exerted by the wind on the leaves

VOLUME 12, 2024 56293



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

can be determined. Subsequently, the degree of positional and
attitudinal changes in leaves in a three-dimensional space can
be calculated, enabling a comprehensive understanding of the
leaf falling process over time. Optimization problems can be
effectively addressed by simulating diverse leaf movements
during the descent.

B. GENERAL OPTIMIZATION PROBLEMS
Optimization refers to the systematic procedure of identifying
the most favorable solution from a pool of potential solutions
in an optimization problem guided by specific criteria. The
realm of optimization encompasses a variety of problems that
entail either the maximization or minimization of processes.
In the context of Equations (1) and (2), where S denotes
the search space, F,F ∈ S, represents the collection of
satisfactory solutions for S, f denotes the objective function
or fitness, and the act of minimizing or maximizing entails
the identification of X ∈ F . Equations (1) and (2) serve to
define minimization and maximization, respectively.

f (X∗) ≤ f (X ) ∀X ∈ F (1)

f (X∗) ≥ f (X ) ∀X ∈ F (2)

Group optimization technology utilizes a stochastic gen-
eration process to generate a candidate solution Xi, i =

1, 2, . . . ,N , from a search space S, which is bounded by a
lower bound LB and an upper bound UB. The size of the
search space is contingent upon the particular optimization
problem at hand. In addition, specific rules are employed to
facilitate the movement of N individuals within this search
space. Themovement process terminates when either a prede-
termined number of iterations or the convergence conditions
are satisfied. During eachmovement, the global best solution,
Xgb, is determined by applying Equation (3) and Equation (4)
to the population.

Xgb = min{f (Xi)} (3)

Xgb = max{f (Xi)} (4)

In a broad context, the maximization problem can be
transformed into a minimization problem using Equation (5).
Consequently, the ensuing discourse focuses on minimizing
this problem.

Xgb = max{f (Xi)} = min{−f (Xi)} (5)

C. ALGORITHM
This section presents leaf optimization algorithms that draw
inspiration from leaf movement. In this context, the solu-
tion space is utilized as the domain for leaf motion, with
each leaf representing an individual engaged in optimization.
In practical scenarios, various factors, including gravity and
wind, contribute to the diverse movements of the leaves,
such as fluttering, rolling, and spiraling. However, within the
optimized motion space, our focus is solely on the influence
of wind, as we posit it to be the primary factor responsible for
the continuous movement of leaves in space. When leaves

manifest sporadically within a dynamic environment, two
distinct types of winds emerge: mild breeze and forceful gust.
These winds materialize haphazardly, propelling the motion
of the leaves, albeit never concurrently.

Let X denote the set of all leaves, N denote the total
count of leaves, and D represent the dimensionality of the
leaf motion space, which corresponds to the dimensionality
of the solution vector for the optimization problem. The
interrelations among these three variables are expressed as
Equation (6). Leaves exhibit continuous movement owing to
the impact of either mild or intense winds, with the origin
of the wind being the highest fitness position Xgb attained
by the leaves during their motion, while intense winds are
assumed to be randomly generated within the spatial domain.
The subsequent sections present a separate introduction to the
distinct impacts of the two wind types on the leaves.

X =


X1
X2
...

XN

 =


x11 x21 · · · xD1
x12 x22 · · · xD2
...

...
...

...

x1N x2N · · · xDN

 (6)

1) BREEZE DRIVEN LEAF STRATEGY
In the presence of a mild breeze, the wind force Dtwind
uniformly impacts all the leaves and can be mathematically
represented as.

Dtwind = Xgb − Xm1 (7)

where Xm1 represents randomly selected leaves.
Wind force Dtwind serves as a representation of both the

direction and distance that each individual leaf traverses.
To accurately depict the inherent randomness in the motion of
each leaf, Equation (8) is employed to update the positional
coordinates of the leaves.

X1
new = Xi + r1 · Dtwind (8)

where r1 denotes a uniformly distributed random variable
in the interval [0, 1], Xi represents the i-th leaf, and X1

new
represents the updated position of the i-th leaf resulting from
the impact of a mild breeze.

Leaves propelled by a mild breeze exhibit both trans-
lational and spiral motions. However, spiral motion was
not observed in any dimension within the multidimensional
space. To account for this, a probability mechanism was
introduced. When the probability p1 = 0.1, Equations (9)
and (10) are employed to signify that the i-th leaf, following
the translational motion induced by Equation (8), experiences
spiral motion in the j-th dimension as a result of the influence
exerted by the gentle breeze.

x1,jnew = x1,jnew + C1 · d swind · sin(ϕ) · ϕ (9)

d swind =

∣∣∣x jgb − x jm2

∣∣∣ (10)

where ϕ is a uniformly distributed random number within
the interval [0, 2π ], denoting the deviation in the rotational

56294 VOLUME 12, 2024



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

motion of the leaf. Xm2 signifies other leaves that are ran-
domly chosen, whereas d swind represents the magnitude of the
impact of the breeze on the spiral motion in the j-th dimen-
sion.C1 is the factor that determines the adaptive amplitude of
movement, which is determined by Equations (11) and (12).

C1 = exp(ω5) − 1 (11)

ω = ωmax − t · ((ωmax − ωmin)/Tmax) (12)

where ωmax takes the value of 0.9 while ωmin is assigned
a value of 0, with these specific values being derived from
the numerical parameters utilized in the classical Particle
Swarm Optimization (PSO) [11] algorithm to characterize
the adaptive adjustment mechanism. t represents the current
number of iterations, and Tmax represents the total number of
iterations.

If the j-th dimension of the newly calculated position X1
new

surpasses the range of the search space, the data in that
particular dimension will be reverted back to its initial state
prior to the movement, as depicted in Equation (13).

x1,jnew = x ji (13)

2) STRONG WIND DRIVEN LEAF STRATEGY
In contrast to the effect of gentle breezes on foliage, it has
been postulated that the repercussions of forceful winds on
leaves manifest in the alteration of a specific unidimensional
spatial location. It should be noted that not all dimensions
were affected, but only one dimension. Initially, the unaltered
state of the novel position of the i-th leaf is maintained.

X2
new = Xi (14)

Next, a dimension j impacted by strong winds was chosen
at random, causing the position x2,jnew of the leaves to experi-
ence a unidirectional displacement. The resulting movement
can be represented using Equations (15) and (16):

x2,jnew = x2,jnew + d stwind · r2 (15)

d stwind = x jm3
− x ji (16)

where r2 is a uniformly distributed random number within the
range of [0, 1], and d stwind represents the magnitude of strong
winds influenced by the i-th leaf and other randomly selected
leaves Xm3 .

To ensure the preservation of leaf position diversity in the
face of strong winds, a probability mechanism was employed
to randomly reset the position in the j-th dimension, as shown
in Equation (17).

x2,jnew =

{
LBj + r3 · (UBj − LBj) if r4 < p2
x2,jnew otherwise

(17)

where p2 represents the reset probability, with a value of
0.1. r3 and r4 are two uniformly distributed random numbers
within the interval [0, 1].

FIGURE 1. Flowchart of LiWO.

3) FLOWCHART
This section presents the fundamental procedure for LiWO.
LiWO employs only two strategies for updating the leaf
positions, rendering the overall algorithm process relatively
straightforward. Initially, all leaves are uniformly distributed
within the search space; thus, Equation (18) is employed for
the initialization of the leaf positions.

Xi = LB+ r5 · (UB− LB) (18)

where r5 is a uniformly distributed random numbers within
the [0, 1] interval.

Figure 1 illustrates the comprehensive procedure for
LiWO.

During each iteration, the leaves in space are subjected
to the influence of strong and gentle winds, which occur
randomly through a probabilistic mechanism. Assuming a
probability p3 of generating a gentle breeze with a specific
value of 0.3, the new position of the leaves will be updated in
a random manner, following Equation (19).

Xnew =

{
X1
new if r6 < p3
X2
new otherwise

(19)

where r6 is a uniformly distributed random numbers within
the [0, 1] interval.

VOLUME 12, 2024 56295



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

The determination of the final update method for the leaf
position is based on the fitness value, as illustrated in the
subsequent equation.

Xi =

{
Xnew if f (Xnew) < f (Xi)
Xi otherwise

(20)

The update rule for the global optimal solution resembles
the update method employed for leaf position, as depicted in
the subsequent equation.

Xgb =

{
Xnew if f (Xnew) < f (Xgb)
Xgb otherwise

(21)

The pseudocode of LiWO is as follows in Algorithm 1.

Algorithm 1 Pseudocode of LiWO
Start LiWO
1. Set the number of leaves (N ) and the total number of

iterations (Tmax)
2. Initialization process of leaves’ locations X
3. For t = 1: Tmax
4. Update Xgb according to Eq.21
5. If rand < p1
6. For i = 1: N
7. Calculate new location of the ith leaf using Eq. 8
8. For j = 1: D
9. If rand < p2
10. Calculate new location of the ith leaf using

Eq.9
11. End If
12. End for
13. End for
14. Else
15. For i = 1: N
16. Assign new location of the ith leaf using Eq.14
17. Randomly choose j and calculate new location

of the jth dimension of the ith leaf using Eq.15
18. If rand < p3
19. Calculate new location of the jth dimension of

the ith using Eq.17
20. End if
21. End for
22. End if
23. Calculate fitness values for all new leaves
24. Update X according to Eq.20
25. End for
End LiWO

4) COMPUTATIONAL COMPLEXITY
The computational complexity of the LiWO is primarily
contingent on the computational complexity of its fitness
function. The fitness function was evaluated during the pop-
ulation initialization and leaf-position update stages. During
initialization, the fitness function is computed approximately
N times, with a complexity denoted as O(N ). Complexity

arising solely from the fitness function was not considered
in this analysis. The computational complexity of the fitness
function during the leaf position update stage is contingent
on both the total number of iterations Tmax executed by
the algorithm and the population size N represented by the
number of leaves. Within each iteration of Tmax, the number
of function calculations induced by N leaves leads to the
complexity of O(N × Tmax) for the updated solution. The
cumulative computational complexity, encompassing both
the initialization and update processes, amounts to O(N ×

(Tmax + 1)) for LiWO. The subsequent chapters will employ
diverse benchmark functions to assess and validate the effi-
cacy of LiWO.

III. SIMULATION AND ANALYSIS
A. SIMULATION SETTINGS
This section presents a comprehensive analysis of the
LiWO algorithm. In the present study, 51 benchmark test
sets comprising real parameter single-objective optimization
problems were sourced from the CEC2017, CEC2019, and
CEC2022 test sets to validate the algorithm. These test sets
have gained significant popularity for evaluating the efficacy
of optimization algorithms. Specifically, the CEC2017 test
set consisted of 29 benchmarks, CEC2019 test set encom-
passed 10 benchmarks, and CEC2022 test set comprised
12 benchmarks. To facilitate the presentation of the out-
comes, the benchmark function of the CEC2017 test set was
labeled as AF1-AF29. Specifically, AF1 and AF2 represent
unimodal functions, AF3-AF9 denote multimodal functions,
AF10-AF19 signify hybrid functions, and AF20-AF29 cor-
respond to composite functions. Similarly, the benchmark
function for the CEC2019 test set is denoted as BF1-BF10.
Furthermore, the CEC2022 test set function is designated
as CF1-CF12, where CF1 represents a unimodal function,
CF2-CF5 represent multimodal functions, CF6-CF8 denote
mixed functions, and CF9-CF12 correspond to composite and
multimodal functions. Unimodal functions are distinguished
by the absence of local minima with only a global minimum
present, thereby serving as a means of assessing the conver-
gence capability of the algorithm. Conversely, multimodal
functions possess local extremumpoints, which are employed
to evaluate the capacity of the algorithm to escape from local
optima. A mixed function, on the other hand, encompasses
three or more benchmark functions following rotation or dis-
placement, with each sub function being assigned a specific
weight. Composite functions exhibit the distinctive feature
of comprising a minimum of three mixed or benchmark
functions that undergo rotation and shifting operations. Each
subfunction within the composite function is accompanied by
an added bias value and weight. Consequently, the presence
of these composite functions increases the complexity of the
optimization algorithm.

The experiments were carried out using MATLAB
R2020a on a personal computer equipped with an Intel
(R) Core (TM) i5-7200U CPU @ 2.50GHz 2.71 GHz

56296 VOLUME 12, 2024



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

and a Microsoft Windows 10 Enterprise 64-bit operating
system.

For the algorithm validation, 30 independent runs were
conducted to account for the randomness of the algorithm.
The conclusions were derived from the results of these runs,
including the best solution (BEST), mean (AVG), and stan-
dard deviation (STD) obtained for each iteration. This study
examines the various dimensions of the test set functions,
including the 10, 30, 50, and 100 dimensions of the CEC2017
test set, the 10 dimensions of the CEC2019 test set, and the
10 and 20 dimensions of the CEC2022 test set. To ensure
fairness in the comparison, each run sets the population size
and maximum function computation times of all algorithms
to 30 and 5000 × 30, respectively. Consequently, each itera-
tion consisted of only 30 function computations, equivalent to
the particle swarm size, resulting in a total of 5000 iterations.

To ascertain the superiority of the algorithm, a compar-
ative analysis was conducted using ten recently published
algorithms: Tree-seed algorithm (TSA) [23], Multi-verse
optimizer (MVO) [37], Salp swarm algorithm (SSA) [38],
Artificial ecosystem-based optimization (AEO) [30], Hunger
games search (HGS) [39], Fox optimizer (FOX). [40], Spider
wasp optimizer (SWO) [17], AOBLMOA [41], Enhanced
snake optimizer (ESO) [42], and IbI Logics Algorithm (ILA)
[14]. It is important to note that the source code for each
algorithm has been made publicly available by its respective
authors. The parameters utilized during the computation pro-
cess are derived from the original code, with specific values
detailed in Table 1.

B. OPTIMIZATION ACCURACY
All the comparison algorithms were implemented on three
test set functions, and the results of 30 runs, which can
be obtained in the supplementary file, were subjected to
Wilcoxon signed-rank tests. The test results with the signif-
icance levels of α = 0.05are displayed in Tables 2-4, with
’+’, ’≈’, and ’-’ denoting the superiority, approximation,
and inferiority of our proposed method compared with the
comparison method, respectively. The statistical frequencies
of these three outcomes are provided below the tables in
the format of ‘Win/Similar/Loss’ format. The dimensions of
the test function are denoted as D10, D20, D30, D50, and
D100 in the table. Based on the comparative findings, it is
evident that the LiWO algorithm demonstrates commendable
performance across all three test sets.

On the CEC2017 test set, the LiWO algorithm
achieved 246 victories, 42 draws, and only two losses on
the 10-dimensional dataset, demonstrating a noteworthy
enhancement in the performance of the LiWO algorithm
on low-dimensional data. In the results obtained with a
dimension of 30, the LiWO algorithm secured 250 victo-
ries, 26 draws, and 14 losses against its opponent, thereby
attaining a substantial improvement in performance. Further-
more, as dimensionality increases, the frequency of draws
experiences a significant decrease, whereas the number of

TABLE 1. The algorithm information and parameter settings.

losses exhibits a slight increase. The aforementioned obser-
vation suggests that, as the dimensionality increases, the
optimization of the test function becomes more challenging,
thereby facilitating a clearer assessment of the relative merits
and drawbacks of different algorithms. In the case of a
50-dimensional scenario, the LiWO algorithm emerged vic-
torious in 245 instances, achieved a draw in 29 instances, and
suffered defeat in 16. Similarly, in the 100-dimensional sce-
nario, the LiWO algorithm secured victory in 231 instances,
experienced a draw in 14 instances, and encountered a defeat
in 45 instances. In terms of various dimensions and functions,
the LiWO algorithm demonstrates superior performance
compared to the other algorithms employed for comparison,
thereby signifying a substantial enhancement in performance
on the CEC2017 test set. Upon closer examination, the SWO
algorithm exhibited commendable competitiveness among all
the algorithms utilized for comparison. Notably, the LiWO
algorithm performed comparably well in numerous test func-
tions, with a slight increase in the number of successes as
the dimensionality increased. This observation suggests that
the LiWO algorithm possesses advantages over the SWO
algorithm in the lower to medium dimensions. Furthermore,
the test results of the MVO, AEO, SSA, and FOX algo-
rithms exhibited marginal enhancements in the context of
100 dimensions. This observation further substantiates the

VOLUME 12, 2024 56297



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

TABLE 2. Wilcoxon’s Signed Rank test under the CEC2017 benchmarks.

TABLE 3. Wilcoxon’s Signed Rank test under the CEC2019 benchmarks.

notion that each optimization algorithm possesses distinct
suitability, thereby affirming the theory that there are no
universally superior solutions.

In the CEC2019 test set, the testing dimension was limited
to 10 dimensions. The LiWO algorithm exhibited remarkable
performance enhancement on this test set, as evidenced by

56298 VOLUME 12, 2024



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

TABLE 4. Wilcoxon’s Signed Rank test under the CEC2022 benchmarks.

its 77 victories, 23 ties, and 0 losses compared with other
methods. Notably, the SWO algorithm continued to demon-
strate robust competitiveness, although the LiWO algorithm
narrowly surpassed its performance. It is worth mentioning
that the alternative algorithms can only achieve compa-
rable results to the LiWO algorithm for a maximum of
three functions. In the CEC2022 test set, 240 comparisons
were conducted, wherein 189 comparisons resulted in wins,
40 comparisons were deemed similar, and only 11 compar-
isons were found to be inferior to their respective opponents.
Notably, the LiWO algorithm exhibited commendable perfor-
mance on the CEC2022 dataset.

Furthermore, Tables 2-4 assessed the algorithm’s opti-
mization capabilities across dimensions of 10, 20, 30, 50,
and 100. As the dimensions escalate and optimization chal-
lenges become more complex, algorithm scalability becomes
a crucial factor. While the SWO algorithm exhibits notable
strengths in this regard, the LiWO algorithm also shows
competitive performance and delivers superior optimization
outcomes in certain functions, including AF9, AF17, AF29,
BF10, and CF10.

In conclusion, considering the aspect of optimization
accuracy, the LiWO algorithm demonstrated significant com-
petitiveness in effectively addressing unimodal, multimodal,
mixed, and composite functions, exhibiting a commendable
overall performance.

C. CONVERGENCE ANALYSIS
To gain a comprehensive understanding of the efficacy of
the LiWO algorithm, the 30-dimensional outcomes of the
CEC2017 test set were specifically chosen for examination.
Table 5 presents the mean and standard deviation of the
global optimal solution for each algorithm executed 30 times,
whereas the bottom of the table displays the mean rank
obtained from the Friedman test. Remarkably, the LiWO
algorithm achieved the lowest mean rank value among all
the algorithms, signifying that our proposed approach out-
performed the other comparative algorithms in a statistically
significant manner. This outcome aligns with the results

of the Wilcoxon signed-rank test. Based on the findings
presented in Table 5, it is evident that AF1 and AF2 in
the CEC2017 test set function are unimodal functions. The
LiWO algorithm can identify the optimal solution for AF1
multiple times within 30 operations, indicating its suitability
for addressing functions resembling AF1. Conversely, the
performance of the LiWO algorithm on AF2 was not opti-
mal. Conversely, the SSA exhibits contrasting characteristics,
repeatedly attaining the optimal solution for AF2, but failing
to do so for AF1. The AF3-AF9 function is classified as
a multimodal function, and the LiWO algorithm demon-
strates a commendable performance in solving it. Although
many algorithms are capable of achieving optimal results,
our algorithm also achieves results that closely approximates
the best solution for functions in which the optimal solution
has not been obtained. On the other hand, the AF10-AF19
functions are categorized as mixed functions, and their opti-
mal solutions pose greater difficulty compared to the previous
functions. The LiWO algorithm exhibited relatively strong
convergence, as evidenced by the superiority of its average of
30 obtained solutions over most comparison algorithms. The
comparison algorithms demonstrated their efficacy in han-
dling mixed functions and exhibited exceptional performance
in certain functions. The composite function AF20-AF29
poses the highest level of difficulty among all functions,
making it challenging to attain the optimal solution through
comparative methods. Among the discovered optimal solu-
tions, the LiWO algorithm outperformed other algorithms.
In terms of the standard deviation, the TSA algorithm dis-
plays remarkable convergence ability, indicating its strong
convergence capacity, although its optimization ability is not
exceptional. Furthermore, the MVO, SSA, SWO, ESO, and
ILA algorithms demonstrated efficacy in achieving favorable
outcomes on specific test functions. In conclusion, we assert
that the LiWO algorithm is highly competitive.

This part presents the convergence curves of the pro-
posed LiWO algorithm and 10 other optimizers for four
categories of test functions (Figure 2): unimodal, multimodal,
hybrid, and composite. These test functions are defined

VOLUME 12, 2024 56299



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

TABLE 5. Optimization results for CEC2017 test suit with dimension of 30.

in 30 dimensions. An analysis of the convergence curve
reveals that the LiWO algorithm initially lacks strong com-
petitiveness within approximately 100 iterations. However,
it gradually demonstrates promising optimization capability
in subsequent iterations, leading to improved function-
optimal solutions. During the iterative process, the algorithms

exhibited distinct trajectories for obtaining the global best
solution. For instance, SSA demonstrates a step-like opti-
mization process, whereas the MVO algorithm shows a
step-like descent process in the later stages of iteration. This
descent process suggests that the population particles of the
MVO algorithm encounter spatial positions that effectively

56300 VOLUME 12, 2024



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

TABLE 5. (Continued.) Optimization results for CEC2017 test suit with dimension of 30.

guide the search. The majority of the algorithms demonstrate
a relatively straightforward decline during the convergence
process, devoid of notable fluctuations post-convergence. The
convergence of the LiWO algorithm displays minimal dispar-
ity when confronted with unimodal, multimodal, mixed, and

composite functions, all of which exhibit seamless downward
trajectories. This observation further suggests that the LiWO
algorithm possesses a certain level of universality, rendering
it capable of effectively addressing a wide range of function-
optimization problems.

VOLUME 12, 2024 56301



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

FIGURE 2. The convergence curves of LiWO and the other 10 metaheuristic algorithms on CEC2017 test suit with dimension of 30.

56302 VOLUME 12, 2024



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

FIGURE 2. (Continued.) The convergence curves of LiWO and the other 10 metaheuristic algorithms on CEC2017 test suit with dimension of 30.

D. STATISTICAL RESULTS
Box plots are commonly employed to visualize the discrete
distribution of data, with their primary benefit being their
resistance to the influence of outliers. In Figure 3, statisti-
cal box plots are depicted for the 29 functions within the
30 dimensions of the CEC2017 test set. These plots illustrate
the distribution of outcomes obtained from 11 algorithms
applied to a specific problem, thereby facilitating an exam-
ination of algorithm stability. These examples encompass
a variety of functions, including unimodal and multimodal
functions as well as hybrid and composite functions. As the
complexity of the functions increases, the accuracy of the
convergence results for all the algorithms becomes more
dispersed. Among the depicted graphs, LiWO demonstrates
superior optimization performance, as indicated by its lower
box-plot positions. Specifically, the third to ninth graphs in
Figure 3 represent box plots of multimodal functions char-
acterized by intricate topological structures that contribute to
the emergence of an unstable state in the distribution of results
across all algorithms. The box plots presented in subsequent
sections reveal that certain algorithms may yield solutions
of notably inferior quality. For instance, the FOX algorithm
exhibits substantial deviations from the optimal solution on
AF26, whereas the AOBLMOA algorithm demonstrates sig-
nificant deviations on AF17, and the ILA algorithm exhibits
notable deviations on AF29. In contrast, the box plot for
LiWO displays a flat shape and occupies the lowest position,
indicating superior robustness and stability.

E. PARAMETER SENSITIVITY
This section presents an analysis of the influence exerted
by three primary parameters -p1, p2, and p3, on the perfor-
mance of the algorithm. It is important to note that all three
parameters have probabilistic connotations. Consequently,
to assess the efficacy of the optimization algorithm in opti-
mizing diverse functions across varying values, ten potential
values were chosen for each parameter. The convergence
sensitivity of the algorithm was analyzed using the unimodal
function F1, multimodal function F4, mixed function F11,
and composite function F21 based on the CEC 2017 test
suite. The test suite encompasses four distinct dimensions:
D=10, D=30, D=50, and D=100, allowing for the cal-
culation of the impact of various parameter values. The
remaining parameters remained unchanged from those in
the previous configuration. Considering the diverse levels
of impact exerted by dimensions and functional types on
function optimization, Equations (22) - (24) are employed
to standardize the errors of each optimization outcome and
aggregate a cumulative sum of errors. This outcome can
aid in the selection of suitable parameter values, and the
corresponding calculation results are presented in Tables 6–8.

TE(v) =

fN∑
i=1

DN∑
j=1

1fi,j(v)/1f max
i,j (22)

1fi,j(v) =

(
1

Nrun

Nrun∑
k=1

fi,j,k (v)

)
− f ∗

i (23)

VOLUME 12, 2024 56303



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

FIGURE 3. Box plot of the CEC2017 test suit with dimension 30.

56304 VOLUME 12, 2024



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

FIGURE 3. (Continued.) Box plot of the CEC2017 test suit with dimension 30.

TABLE 6. Normalized error sum for four types of functions with different
values of p1.

TABLE 7. Normalized error sum for four types of functions with different
values of p2.

1f max
i,j = max(1fi,j(v)) (24)

where v represents the parameter value, 1fi,j(v) represents
the difference between the average optimal solution and the
optimal solution of the function after 30 runs under the v
parameter, f ∗

i represents the optimal solution of the i-th func-
tion, and 1f max

i,j represents the maximum difference obtained
under different v.

Table 6 presents the comprehensive variation in the param-
eter p1 across various values. The findings reveal that
deviation is minimized when p1 assumes a value of 0.1.
Notably, the test outcome with an p1 value of 0.05 exhibits a
significantly higher deviation compared to that with a value of

0.1, thereby suggesting the indispensability of spiral motion
throughout the optimization process. Moreover, the value of
0.1 further signifies that the occurrence of spiral motion does
not necessitate frequent repetition, aligning with the observed
behavior of falling leaves in real-life scenarios.

Table 7 presents the comprehensive variation in param-
eter p2 across various values, revealing that p2 attains the
lowest normalization error when set to 0.1. p2, denoting the
reset probability, serves to enhance population diversity and
prevent the algorithm from converging to local minima. The
experimental results further underscore the significance of the
reset operation.

Table 8 presents the comprehensive variation in the param-
eter p3 across various values. The findings revealed that p3
attains the lowest normalization error at a value of 0.3. p3
denotes the probability of a gentle breeze being employed to
enhance the exploration capability of the algorithm. A value
of 0.3 signifies the necessity for the algorithm to sustain a
consistent level of global exploration throughout the entire
optimization duration, while ensuring that the local utilization
surpasses the exploration capacity of the tested function.

F. TIME CONSUMPTION ANALYSIS
In order to elucidate the time complexity of the LiWO
algorithm, the total time required for evaluating 10 bench-
mark functions BF1-BF10 on the CEC2019 test suite is
normalized by the maximum time consumption. The nor-
malized data is depicted in Figure 4. Analysis of the figure

VOLUME 12, 2024 56305



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

TABLE 8. Normalized error sum for four types of functions with different
values of p3.

FIGURE 4. Bar plot of the time consumptions under CEC2019 test suit.

FIGURE 5. Exploration and exploitation of LiWO on AF1 of CEC2017.

reveals that the time consumption of the LiWO algorithm
is comparable to that of the SWO and TSA algorithms, but
significantly greater than that of the AOBLMOA and ILA
algorithms. This suggests that the LiWO algorithm exhibits
competitive computational complexity.

G. EXPLORATION AND EXPLOITATION ANALYSIS
This section examines the exploration and exploitation per-
formance of the LiWO algorithm using the unimodal function
AF1 and mixed function AF22 from the CEC2017 test set
as case studies. Figures 5 and 6 depict the distribution of
exploration and exploitation [43] within the population of
the LiWO algorithm over the course of the iteration period.
The unimodal function AF1 demonstrates a rapid increase in
development proportion, suggesting strong exploitation capa-
bility of the algorithm. Conversely, the composite function
F22 shows a gradual decrease in exploration proportion, indi-
cating proficient global exploration ability of the algorithm.

FIGURE 6. Exploration and exploitation of LiWO on AF22 of CEC2017.

TABLE 9. Comparison for the GTCD Problem.

H. CONSTRAINED OPTIMIZATION PROBLEM
Gas transmission compressor design (GTCD) [41] is a
real-world constrained optimization problem that optimizes
the design of the gas transmission compressor and involves
four design variables and one constraint condition. Its math-
ematical model is as follows:

min f (x) = 8.61 × 105x1/21 x2x
−2/3
3 x−1/2

4 + 3.69 × 104x3

+ 7.72 × 108x−1
1 x0.2192 − 765.43 × 106x−1

1 (25)

s.t. g(x) = x4x
−2
2 + x−2

2 − 1 ≤ 0 (26)

where design variable ranges are 20 ≤ x1 ≤ 50, 1 ≤ x2 ≤ 10,
20 ≤ x3 ≤ 50, 0.1 ≤ x4 ≤ 60.
Table 9 presents the algorithms employed for calculating

the optimal, average and standard deviation values related to
the GTCD problem. The results indicate that the LiWO, TSA,
AEO, SWO, and AOBLMOA algorithms achieved the opti-
mal value compared to other results. Among these, the LiWO,
SWO, and AOBLMOA algorithms obtained the optimal aver-
age value. Additionally, LiWO demonstrated the best stan-
dard deviation value. Therefore, LiWO demonstrates notable
competitiveness in addressing engineering application
issues.

56306 VOLUME 12, 2024



N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

IV. CONCLUSION
This study introduced LiWO, a novel metaheuristic algorithm
rooted in a natural phenomenon, to address continuous opti-
mization problems. The algorithm utilizes factors such as
wind force, translation, and rotation that influence the move-
ment of fallen leaves in the wind to inform the movement of
population particles. The physical model of leaf trajectory is
translated into a motion model of particles within the solution
space. Drawing upon the observed characteristics of leaf
movement, the algorithm incorporates the Breeze-driven leaf
strategy and the Strong Wind-driven leaf strategy to effec-
tively blend the two approaches and achieve the optimization
goal. Utilizing three iterations of the computational evo-
lutionary computation benchmarks, specifically CEC 2017,
CEC 2019, and CEC 2022, in conjunction with ten prominent
optimization algorithms, this study assesses the efficacy and
efficiency of the LiWO algorithm. Across all comparative
analyses, LiWO demonstrated a success rate of 82% and a
failure rate of merely 6%. Furthermore, the LiWO algorithm
successfully attained the optimal value in a constrained opti-
mization process test. While LiWO has demonstrated strong
optimization competitiveness, opportunities for improvement
remain in optimizing mixed and higher dimensional func-
tions. Our future research will concentrate on establishing a
hierarchical process for leaf falling and incorporating addi-
tional physical models that impact leaf falling. Furthermore,
our researchwill also prioritize the development of binary and
multi-objective variants of LiWO to enhance its performance
evaluation.

REFERENCES
[1] M. Quiroz-Castellanos, L. G. de la Fraga, A. Lara, L. Trujillo,

and O. Schütze, ‘‘Numerical and evolutionary optimization 2021,’’
Math. Comput. Appl., vol. 28, no. 3, pp. 71–73, May 2023, doi:
10.3390/mca28030071.

[2] A. M. Deaconu, D. T. Cotfas, and P. A. Cotfas, ‘‘Advanced optimization
methods and applications,’’ Mathematics, vol. 11, no. 9, pp. 2205–2211,
May 2023, doi: 10.3390/math11092205.

[3] Y. Song, Y. Liu, H. Chen, and W. Deng, ‘‘A multi-strategy adaptive
particle swarm optimization algorithm for solving optimization problem,’’
Electronics, vol. 12, no. 3, pp. 491–505, Jan. 2023, doi: 10.3390/electron-
ics12030491.

[4] V. B. Shinde and P. J. Pawar, ‘‘Trajectory optimization of an industrial robot
using teaching-learning-based optimization,’’ in Advanced Engineering
Optimization Through Intelligent Techniques (Lecture Notes in Mechan-
ical Engineering), R. V. Rao and J. Taler, Eds. Singapore: Springer, 2023,
pp. 677–686, doi: 10.1007/978-981-19-9285-8_63.

[5] M. Kumar and A. Sharma, ‘‘Wind farm layout optimization problem using
teaching-learning-based optimization algorithm,’’ in Communication and
Intelligent Systems (Lecture Notes in Networks and Systems), vol. 689,
H. Sharma, V. Shrivastava, K. K. Bharti, and L. Wang, Eds. Singapore:
Springer, 2023, pp. 151–170, doi: 10.1007/978-981-99-2322-9_12.

[6] Y. Liu and C. Zhang, ‘‘Neural network algorithm based on particle swarm
optimization and design of immersive intelligent English teaching in col-
lege English teaching system,’’ in Proc. Int. Conf. Distrib. Comput. Electr.
Circuits Electron. (ICDCECE), Apr. 2023, pp. 1–6, doi: 10.1109/ICD-
CECE57866.2023.10151018.

[7] J. Osei-kwakye, F. Han, A. A. Amponsah, Q.-H. Ling, and T. A. Abeo,
‘‘A diversity enhanced hybrid particle swarm optimization and crow search
algorithm for feature selection,’’ Int. J. Speech Technol., vol. 53, no. 17,
pp. 20535–20560, Sep. 2023, doi: 10.1007/s10489-023-04519-2.

[8] N. D. Hieu, M. V. Linh, and P. D. Phong, ‘‘A co-optimization algorithm uti-
lizing particle swarm optimization for linguistic time series,’’Mathematics,
vol. 11, no. 7, pp. 1597–1610, Mar. 2023, doi: 10.3390/math11071597.

[9] K. Rajesh Kumar and M. Vijayakumar, ‘‘Optimization of cognitive fem-
tocell network via oppositional beetle swarm optimization algorithm,’’
Intell. Autom. Soft Comput., vol. 36, no. 1, pp. 819–832, 2023, doi:
10.32604/iasc.2023.030961.

[10] S. Kankilic and E. Karpat, ‘‘Optimization of multilayer absorbers using
the bald eagle optimization algorithm,’’ Appl. Sci., vol. 13, no. 18,
pp. 10301–10317, Sep. 2023, doi: 10.3390/app131810301.

[11] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc.
IEEE ICNN, vol. 4, Perth, WA, USA, Jan. 1995, pp. 1942–1948, doi:
10.1109/ICNN.1995.488968.

[12] D. Karaboga and B. Basturk, ‘‘On the performance of artificial bee
colony (ABC) algorithm,’’ Appl. Soft Comput., vol. 8, no. 1, pp. 687–697,
Jan. 2008, doi: 10.1016/j.asoc.2007.05.007.

[13] A. H. Gandomi, X.-S. Yang, A. H. Alavi, and S. Talatahari, ‘‘Bat algorithm
for constrained optimization tasks,’’ Neural Comput. Appl., vol. 22, no. 6,
pp. 1239–1255, May 2013, doi: 10.1007/s00521-012-1028-9.

[14] M. Mirrashid and H. Naderpour, ‘‘Incomprehensible but intelligible-in-
time logics: Theory and optimization algorithm,’’ Knowl.-Based Syst.,
vol. 264, Mar. 2023, Art. no. 110305, doi: 10.1016/j.knosys.2023.110305.

[15] P. Trojovsky, M. Dehghani, and E. Milkova, ‘‘Language education
optimization: A new human-based metaheuristic algorithm for solving
optimization problems,’’ Comput. Model. Eng. Sci., vol. 136, no. 2,
pp. 1527–1573, 2023, doi: 10.32604/cmes.2023.025908.

[16] Y. Lin, A. A. Heidari, S. Wang, H. Chen, and Y. Zhang, ‘‘An enhanced
hunger games search optimization with application to constrained engi-
neering optimization problems,’’ Biomimetics, vol. 8, no. 5, pp. 441–477,
Sep. 2023, doi: 10.3390/biomimetics8050441.

[17] M. Abdel-Basset, R. Mohamed, M. Jameel, and M. Abouhawwash, ‘‘Spi-
der wasp optimizer: A novel meta-heuristic optimization algorithm,’’
Artif. Intell. Rev., vol. 56, no. 10, pp. 11675–11738, Oct. 2023, doi:
10.1007/s10462-023-10446-y.

[18] S. O. Oladejo, S. O. Ekwe, L. A. Akinyemi, and S. A. Mirjalili, ‘‘The deep
sleep optimizer: A human-based metaheuristic approach,’’ IEEE Access,
vol. 11, pp. 83639–83665, 2023, doi: 10.1109/ACCESS.2023.3298105.

[19] E. Trojovská, M. Dehghani, and V. Leiva, ‘‘Drawer algorithm: A new
metaheuristic approach for solving optimization problems in engineering,’’
Biomimetics, vol. 8, no. 2, pp. 239–273, Jun. 2023, doi: 10.3390/biomimet-
ics8020239.

[20] K. Rezvani, A. Gaffari, and M. R. E. Dishabi, ‘‘The bedbug meta-heuristic
algorithm to solve optimization problems,’’ J. Bionic Eng., vol. 20, no. 5,
pp. 2465–2485, Sep. 2023, doi: 10.1007/s42235-023-00356-8.

[21] H. Givi, M. Dehghani, and S. Hubálovský, ‘‘Red panda optimiza-
tion algorithm: An effective bio-inspired metaheuristic algorithm for
solving engineering optimization problems,’’ IEEE Access, vol. 11,
pp. 57203–57227, 2023, doi: 10.1109/ACCESS.2023.3283422.

[22] S. Akyol and B. Alatas, ‘‘Plant intelligence based metaheuristic optimiza-
tion algorithms,’’ Artif. Intell. Rev., vol. 47, no. 4, pp. 417–462, Apr. 2017,
doi: 10.1007/s10462-016-9486-6.

[23] M. S. Kiran, ‘‘TSA: Tree-seed algorithm for continuous optimization,’’
Exp. Syst. Appl., vol. 42, no. 19, pp. 6686–6698, Nov. 2015, doi:
10.1016/j.eswa.2015.04.055.

[24] A. Cheraghalipour, M. Hajiaghaei-Keshteli, and M. M. Paydar, ‘‘Tree
growth algorithm (TGA): A novel approach for solving optimization
problems,’’ Eng. Appl. Artif. Intell., vol. 72, pp. 393–414, Jun. 2018, doi:
10.1016/j.engappai.2018.04.021.

[25] Z. Bayraktar, M. Komurcu, J. A. Bossard, and D. H. Werner, ‘‘The wind
driven optimization technique and its application in electromagnetics,’’
IEEE Trans. Antennas Propag., vol. 61, no. 5, pp. 2745–2757, May 2013,
doi: 10.1109/TAP.2013.2238654.

[26] Z. Bayraktar and M. Komurcu, ‘‘Adaptive wind driven optimization,’’ in
Proc. 9th EAI Int. Conf. Bio-Inspired Inf. Commun. Technol., New York,
NY, USA, 2016, pp. 124–127, doi: 10.4108/eai.3-12-2015.2262424.

[27] H. A. Shehadeh, ‘‘Chernobyl disaster optimizer (CDO): A novel meta-
heuristic method for global optimization,’’ Neural Comput. Appl., vol. 35,
no. 15, pp. 10733–10749, May 2023, doi: 10.1007/s00521-023-08261-1.

[28] K. Luo, ‘‘Water flow optimizer: A nature-inspired evolutionary algorithm
for global optimization,’’ IEEE Trans. Cybern., vol. 52, no. 8,
pp. 7753–7764, Aug. 2022, doi: 10.1109/TCYB.2021.3049607.

[29] H. A. Shehadeh, ‘‘A hybrid sperm swarm optimization and gravitational
search algorithm (HSSOGSA) for global optimization,’’ Neural Comput.
Appl., vol. 33, no. 18, pp. 11739–11752, Sep. 2021, doi: 10.1007/s00521-
021-05880-4.

VOLUME 12, 2024 56307

http://dx.doi.org/10.3390/mca28030071
http://dx.doi.org/10.3390/math11092205
http://dx.doi.org/10.3390/electronics12030491
http://dx.doi.org/10.3390/electronics12030491
http://dx.doi.org/10.1007/978-981-19-9285-8_63
http://dx.doi.org/10.1007/978-981-99-2322-9_12
http://dx.doi.org/10.1109/ICDCECE57866.2023.10151018
http://dx.doi.org/10.1109/ICDCECE57866.2023.10151018
http://dx.doi.org/10.1007/s10489-023-04519-2
http://dx.doi.org/10.3390/math11071597
http://dx.doi.org/10.32604/iasc.2023.030961
http://dx.doi.org/10.3390/app131810301
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1007/s00521-012-1028-9
http://dx.doi.org/10.1016/j.knosys.2023.110305
http://dx.doi.org/10.32604/cmes.2023.025908
http://dx.doi.org/10.3390/biomimetics8050441
http://dx.doi.org/10.1007/s10462-023-10446-y
http://dx.doi.org/10.1109/ACCESS.2023.3298105
http://dx.doi.org/10.3390/biomimetics8020239
http://dx.doi.org/10.3390/biomimetics8020239
http://dx.doi.org/10.1007/s42235-023-00356-8
http://dx.doi.org/10.1109/ACCESS.2023.3283422
http://dx.doi.org/10.1007/s10462-016-9486-6
http://dx.doi.org/10.1016/j.eswa.2015.04.055
http://dx.doi.org/10.1016/j.engappai.2018.04.021
http://dx.doi.org/10.1109/TAP.2013.2238654
http://dx.doi.org/10.4108/eai.3-12-2015.2262424
http://dx.doi.org/10.1007/s00521-023-08261-1
http://dx.doi.org/10.1109/TCYB.2021.3049607
http://dx.doi.org/10.1007/s00521-021-05880-4
http://dx.doi.org/10.1007/s00521-021-05880-4


N. Fang, Q. Cao: Leaf in Wind Optimization: A New Metaheuristic Algorithm

[30] W. Zhao, L. Wang, and Z. Zhang, ‘‘Artificial ecosystem-based optimiza-
tion: A novel nature-inspired meta-heuristic algorithm,’’ Neural Comput.
Appl., vol. 32, no. 13, pp. 9383–9425, Jul. 2020, doi: 10.1007/s00521-019-
04452-x.

[31] M. Azizi, U. Aickelin, H. A. Khorshidi, and M. B. Shishehgarkhaneh,
‘‘Energy valley optimizer: A novel metaheuristic algorithm for global
and engineering optimization,’’ Sci. Rep., vol. 13, no. 1, pp. 226–248,
Jan. 2023, doi: 10.1038/s41598-022-27344-y.

[32] Y. Tanabe and K. Kaneko, ‘‘Behavior of a falling paper,’’ Phys. Rev.
Lett., vol. 73, no. 10, pp. 1372–1375, Sep. 1994, doi: 10.1103/phys-
revlett.73.1372.

[33] H. Zhong, S. Chen, and C. Lee, ‘‘Experimental study of freely falling thin
disks: Transition from planar zigzag to spiral,’’ Phys. Fluids, vol. 23, no. 1,
pp. 11702–11706, Jan. 2011, doi: 10.1063/1.3541844.

[34] C. Li, J. Qian, R. Tong, J. Chang, and J. Zhang, ‘‘GPU based real-time
simulation of massive falling leaves,’’ Comput. Vis. Media, vol. 1, no. 4,
pp. 351–358, Dec. 2015, doi: 10.1007/s41095-015-0025-1.

[35] T. Martin, N. Umetani, and B. Bickel, ‘‘OmniAD: Data-driven omni-
directional aerodynamics,’’ ACM Trans. Graph., vol. 34, no. 4, pp. 1–12,
Jul. 2015, doi: 10.1145/2766919.

[36] E. Quigley, Y. Yu, J. Huang, W. Lin, and R. Fedkiw, ‘‘Real-time interac-
tive tree animation,’’ IEEE Trans. Vis. Comput. Graphics, vol. 24, no. 5,
pp. 1717–1727, May 2018, doi: 10.1109/TVCG.2017.2661308.

[37] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, ‘‘Multi-verse optimizer:
A nature-inspired algorithm for global optimization,’’ Neural Comput.
Appl., vol. 27, no. 2, pp. 495–513, Feb. 2016, doi: 10.1007/s00521-015-
1870-7.

[38] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and
S. M. Mirjalili, ‘‘Salp swarm algorithm: A bio-inspired optimizer for
engineering design problems,’’ Adv. Eng. Softw., vol. 114, pp. 163–191,
Dec. 2017, doi: 10.1016/j.advengsoft.2017.07.002.

[39] Y. Yang, H. Chen, A. A. Heidari, and A. H. Gandomi, ‘‘Hunger games
search: Visions, conception, implementation, deep analysis, perspectives,
and towards performance shifts,’’ Expert Syst. Appl., vol. 177, Sep. 2021,
Art. no. 114864, doi: 10.1016/j.eswa.2021.114864.

[40] H. Mohammed and T. Rashid, ‘‘FOX: A FOX-inspired optimization
algorithm,’’ Int. J. Speech Technol., vol. 53, no. 1, pp. 1030–1050,
Jan. 2023, doi: 10.1007/s10489-022-03533-0.

[41] Y. Zhao, C. Huang, M. Zhang, and Y. Cui, ‘‘AOBLMOA: A hybrid
biomimetic optimization algorithm for numerical optimization and engi-
neering design problems,’’ Biomimetics, vol. 8, no. 4, pp. 381–420,
Aug. 2023, doi: 10.3390/biomimetics8040381.

[42] L. Yao, P. Yuan, C.-Y. Tsai, T. Zhang, Y. Lu, and S. Ding,
‘‘ESO: An enhanced snake optimizer for real-world engineering prob-
lems,’’ Exp. Syst. Appl., vol. 230, Nov. 2023, Art. no. 120594, doi:
10.1016/j.eswa.2023.120594.

[43] K. Hussain, M. N. M. Salleh, S. Cheng, and Y. Shi, ‘‘On the explo-
ration and exploitation in popular swarm-based metaheuristic algorithms,’’
Neural Comput. Appl., vol. 31, no. 11, pp. 7665–7683, Nov. 2019, doi:
10.1007/s00521-018-3592-0.

NING FANG received the B.S. and Ph.D. degrees
in electronic and information engineering from
Beihang University, Beijing, China, in 2002 and
2007, respectively.

She is currently with the School of Electronic
and Information Engineering, Beihang University.
Her research interests include pattern recognition,
evolutionary algorithms, and combinatorial opti-
mization and their applications.

QI CAO received the bachelor’s degree from
Wuhan Polytechnic University, in 2004. He is
currently the Deputy Chief Engineer of Longyan
Tobacco Industry Company Ltd. He mainly
engages in industrial automation and information
construction and enterprise digital transformation.

56308 VOLUME 12, 2024

http://dx.doi.org/10.1007/s00521-019-04452-x
http://dx.doi.org/10.1007/s00521-019-04452-x
http://dx.doi.org/10.1038/s41598-022-27344-y
http://dx.doi.org/10.1103/physrevlett.73.1372
http://dx.doi.org/10.1103/physrevlett.73.1372
http://dx.doi.org/10.1063/1.3541844
http://dx.doi.org/10.1007/s41095-015-0025-1
http://dx.doi.org/10.1145/2766919
http://dx.doi.org/10.1109/TVCG.2017.2661308
http://dx.doi.org/10.1007/s00521-015-1870-7
http://dx.doi.org/10.1007/s00521-015-1870-7
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002
http://dx.doi.org/10.1016/j.eswa.2021.114864
http://dx.doi.org/10.1007/s10489-022-03533-0
http://dx.doi.org/10.3390/biomimetics8040381
http://dx.doi.org/10.1016/j.eswa.2023.120594
http://dx.doi.org/10.1007/s00521-018-3592-0

