
Received 16 March 2024, accepted 10 April 2024, date of publication 18 April 2024, date of current version 26 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3390968

Exploring Security Dynamics in SDN Controller
Architectures: Threat Landscape
and Implications
ARUSA KANWAL1, MOHAMMAD NIZAMUDDIN 2, WASEEM IQBAL 3, WAQAS AMAN 4,
YAWAR ABBAS 1, AND SHYNAR MUSSIRALIYEVA5
1Department of Information Security, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
2Department of Engineering, Physics and Technology, Bronx Community College (BCC), The City University of New York, Bronx, NY 10453, USA
3Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, Muscat 123, Oman
4Department of Information Systems, Sultan Qaboos University, Muscat 123, Oman
5Information Systems Department, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan

Corresponding author: Waseem Iqbal (m.waseem@squ.edu.om)

ABSTRACT Software Defined Networking (SDN) has emerged as a new paradigm for managing
heterogeneous networks ranging from enterprises to home network via decoupling the control plane from
the data plane. In the traditional networking landscape, these two planes are tightly bound together inside a
single appliance. The logically centralized and distributed control plane and programmability offer a great
opportunity to improve network security, such as by implementing new mechanisms to detect and mitigate
various threats, and also enable security as a service in an SDN paradigm. Due to the ever increasing and
fast development of SDN, this paper provides an extensive survey of SDN controllers, SDN-related security
threats, and solutions to mitigate the security threats. This study provides a comprehensive survey of 53 SDN
controllers from different aspects, including language, architecture, organization, open source, scalability,
consistency, reliability, API used, library, and their description. We have also provided a detailed security
analysis of SDN architecture with an extensive classification of security threats endangering its different
architectural components and the solutions to effectively mitigate them. This paper also identifies challenges
and promising future directions on SDN deployment, standardization, implementation, and security issues
that should be addressed in this field.

INDEX TERMS Software defined networking (SDN), Openflow, SDN controllers, network operating
system (NOS), scalability, SDN attacks.

I. INTRODUCTION
In the current Information Technology (IT) era, communi-
cation is based on large networks that are geographically
distributed. The distributed approach increases the overall
networking complexity [1]. Current network behavior varies
from a small number of appliances and sensors to a large
number of network devices such as routers and switches.
Fixed-function network devices, such as routers and switches,
are the foundation of traditional networking. Each of these
devices has a specific purpose that works together with the
others and helps to sustain the network. The network speed

The associate editor coordinating the review of this manuscript and

approving it for publication was Maurizio Casoni .

is typically improved if network features are introduced as
hardware constructs. A data center is a physical location
where the organization keeps its mission critical software and
data. A data center’s architecture revolves around a network
of computing and storage facilities, facilitating the delivery
of shared software and data. Routers, switches, firewalls,
disk systems, servers, and application delivery controllers
are all essential components of a data center architecture.
Traditional networking has some drawbacks, such as its
static nature, which conflicts with the complex nature of
today’s server specifications. Because of the complexity of
today’s network, IT finds it difficult to apply a consistent
set of access controls. As a result, traditional policies expose
companies to security breaches as well as regulatory or

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 56517

https://orcid.org/0009-0007-8042-5488
https://orcid.org/0000-0002-3616-2621
https://orcid.org/0000-0002-1579-4857
https://orcid.org/0000-0002-6013-062X
https://orcid.org/0000-0002-8417-4416


A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

non-compliance problems. Managing this complexity via the
traditional networking paradigm is unpropitious in the rapidly
changing networking landscape. As a result, different types
of challenges are produced related to networks, such as the
management of devices, variations, and security attacks in the
network. The networking community came up with a new
networking paradigm known as software-defined networks
(SDN). SDN is a new technology that decouples the control
plane from the data plane, which is tightly bound in traditional
networking devices. Mckeown et al. [2] were the first authors
to introduce the concept of the OpenFlow protocol. Different
IT sectors, such as data centers, academics, government,
and enterprises, have promoted the development of SDN.
The use of developing technologies like 5G, wireless, the
Internet of Things (IoT), and cloud computing can also
be improved by introducing SDN-related solutions. There
has been a significant increase in the implementation and
development of SDN in the current landscape for different
types of networks, such as cellular, wide area, IoT, wireless,
and data centers.

SDN is a technology that solvesmany of the traditional net-
working problems, such as complexity, reliability, security,
etc.; however, SDN technology has its own security threat
vectors. The attack vector poses a significant concern among
the networking industry for its large-scale adaptation.

A. WHY IT IS NEEDED
To the best of our knowledge, we have not seen a comprehen-
sive survey that encompasses all the necessary requirements
for the selection of a controller based on its functional
and specific features. Some researchers have highlighted
the SDN architecture and limited number of controllers
only, whereas other researchers have come up with the
identification of various security attacks on different planes
of the SDN architecture. Therefore, we intend to provide a
consolidated overview of SDN architecture, classification of
SDN controllers, comparison of controllers and OpenFlow
versions, along-with their security attacks and proposed
defense mechanisms available in the literature, as shown in
Table 1. Finally, we presented some open research issues that
will be helpful for academicians and researchers.

B. WHO IT IS INTENDED FOR
This comprehensive survey helps us to address essential ques-
tions such as where, why, and which solutions are the most
suitable to tackle a specific form of attack on the controller
from unlimitedmitigation attacks. On one hand, it encourages
researchers to choose the most appropriate methodology for
the future, while on the other hand, it enables practitioners
to take full advantage of this technology and make SDN
a promising, trustworthy, efficient, and secure architecture
for years to come. The contribution of this research are as
follows:

• A comprehensive survey has been carried out on a total
of 53 SDN controllers with respect to their program-
ming languages, developers, OpenFlow versions, their

architecture, their availability as open source, reliability,
scalability, consistency, API, their available libraries,
benefits and shortcomings, and the year of launch.

• State-of the art security threats, vulnerabilities, and
problems in control, data, and application planes are
extensively analyzed in this survey.

• An up-to-date taxonometric classification of different
security attacks on SDN architecture.

• A comprehensive overview of these attacks with sug-
gested mitigation controls. At the end of each section,
these mitigation strategies are summarized in a table
outlining their problems and solutions.

• Identification of research challenges related to SDN to
recognize potential future research opportunities.

We have adopted the comprehensive literature review
methodology for this study. A comprehensive review uses a
literature reviewmethod that is specific and thorough to avoid
outcome bias. Since it has been shown to be a good tool for
summarizing the existing evidence concerning a technology
and identifying the gaps, we follow this approach to achieve
our goals. We have considered only those papers that provide
adequate information about SDN, SDN controllers, different
types of security threats related to SDN and some solutions
to mitigate the SDN related security threats. This resulted
in a series of SDN related papers published between the
2000 to 2020.

The rest of the paper is organized as follows: In Section II,
we explain a detailed architecture of SDN. Section III is about
the survey methodology, we discussed about the related work
in SDN environment, and how our survey is different from
the existing ones. In Section IV, we provide a comparison
of Openflow versions and a comparison and classification
of SDN controllers. We also discuss a variety of security
threats related to SDN architecture and those faced by
different SDN layers/interfaces. We also suggested potential
solutions to mitigate attacks related to the SDN architecture.
Research challenges are highlighted in Section V. The paper
is concluded in SectionVI. The rest of the paper is as followed
as depicted in Fig. 1.

II. SDN ARCHITECTURE
SDN architecture is based on four features which are
discussed as below.

• Control plane programmability: A lot of efforts have
been made for the programmability of networks. One
example is the concept of active networking that
attempts to control a network in a real-time manner
using software. Some of the solutions related to
active networking are SwitchWare [6], Bird [7], and
Click [8]. In SwitchWare, the network operation can be
dynamically modified by allowing a packet to smoothly
pass through a network. Network devices can also be
programmed by creating software routers, which should
be established on PC hardware like Click and Bird. The
behavior of the network devices can be changed by using
modified versions of different routing software.

56518 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 1. Taxonomy of the paper.

• Control plane and data plane decoupling: The spirit has
been developed in the last era for separating the data and
control planes. In 2004, routing control platform-based
research was proposed by Caesar et al. [9], in which
the path computation complexity can be reduced by
using centralized routing instead of the border gateway
protocol (BGP).

• Forwarding decisions can be based on flow instead
of destination. A flow is broadly defined by a set of
packet field values acting as a match criterion and a
set of actions. In SDN, the packet sequence between
the destination and the source is defined as the flow.
Identical service policies can be received at forwarding
devices during the flow of packet [157].

• Control logic is rearranged as a new entity with the name
of Network Operating System (NOS) or SDN controller.
The purpose of using the NOS and the traditional
operating system is quite similar, as the NOS runs on
commodity server technology, reducing both capital and
operational costs.

This section presents a comprehensive overview of the SDN
architecture that we decomposed into three main layers,
as depicted in Fig. 2; data, control, and application plane.
The main components of SDN architecture are explained as
follows:

A. SOUTHBOUND INTERFACE
Southbound interface behaves as a communication protocol
between the control and the data plane. The interaction
between the control and data planes can be formalized by
using this protocol. The southbound API is part of the
southbound interface and defines the flow rules related to
networking devices.

B. NETWORK DEVICES
Network devices perform packet forwarding. These devices
have defined rules throughwhich the in-coming packet can be
either forwarded, dropped, or rerouted to the destination. The
southbound interface defines these rules, and the controllers

VOLUME 12, 2024 56519



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 2. SDN architecture with its main layers and interfaces: data plane layer, control plane layer, application/management plane layer,
southbound interface, northbound interface, eastbound interface and westbound interface. Infrastructure layer handles the data
processing, control layer governs the rule, and application layer encompasses different business/industrial applications.

install them on forwarding devices by using southbound
protocols.

C. DATA AGENT
SDN southbound interface defines the number of data agents
that might be used in the networking devices for SDN
controller interaction and parules forwarding. ForCES and
the OpenFlow agents are some examples.

D. DATA PLANE
The data plane of SDN works similar to the physical
layer of an OSI model, and it is the bottom layer of the

architecture, consisting of the physical devices that deal
with the data traffic. This plane consists of network devices,
such as firewalls, switches, and IDSs, through which packets
can be defined and forwarded. These network devices are
interconnected through wired or wireless connections.

E. SDN CONTROLLER
The SDN controller acts as the brain of the SDN architec-
ture. Core management functions like synchronization and
management of the devices are provided by the controller.
By using the controllers or northbound API, installation of
applications can be enabled in the data plane.

56520 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

F. CONTROL PLANE
The control plane is an important part of SDN where
the controllers are located. Rules and functionalities for
controlling the network can be implemented by using the
southbound interface through the data plane. A control plane
is used to install or configure some control information.
The control plane does not have all the traffic. Controllers
install or change the flow table, either actively or reactively,
upon the occurrence of some events.When network operation
starts, the controller does not load the flow table with any
rules in a reactive approach. The controller can install rules
into the flow table as packets arrive at switches during the
network operation [158]. The controller can add flow entries
to the flow table in advance for the proactive approach. The
choice of rules is critical for maximizing network efficiency,
especially in large-scale networks like data centers [146].
Management and configuration of controllers are major
functions of the control plane. Instructions can be received
from the application layer and then passed into the network.
Routing protocols such as RIP, OSPF, and BGP are managed
by the control plane with the help of IpV4 & 6.

G. EASTBOUND AND WESTBOUND INTERFACE
It is important to implement the eastbound and westbound
interfaces as the control plane is physically distributed.
The connections between the distributed controllers can be
enabled by using these interfaces.

H. NORTHBOUND INTERFACE
TheNorthboundAPI lies between the application and the con-
trol layers. Applications can be developed by using the SDN
controllers and NOS. Communications between the users and
the forwarding devices can be done through this interface.
The northbound interface can be implemented by using the
common interface of controllers.

I. APPLICATION PLANE
Network applications are included in the application plane.
Different types of application are deployed through which
network management operations can be implemented to
control the functionalities of the applications. Policies can be
defined for the instructions for performing different types of
tasks.

J. APPLICATIONS
Network control logic can be defined by using software
programs. Applications are used in application plane to
access the network through controller API or through
northbound interface respectively. Application modules,
or control programs, are other terms used for controller-based
applications.

III. SURVEY METHODOLOGY
In this section, we describe the main procedures we per-
formed to conduct this review. We adopted the methodology

of comprehensive literature review. A comprehensive review
uses literature review method that are specific and thorough
to avoid the outcome bias. We consider only those articles
that provide adequate information about the SDN, SDN
controllers, different types of security threats related to SDN,
and some solutions to mitigate the SDN related security
threats. The search was conducted for articles published
between the years 2000 and 2023.

A. LITERATURE SURVEY
Current literature provides a spectrum of architectures,
challenges, threats, mitigation controls, and models related
to SDN. Below we present a top-level review of such related
works identified and we also grouped the survey papers.

1) BACKGROUND/ARCHITECTURE
Abbasi et al. [14], provided a detailed description of
software defined cloud computing architecture. They also
discussed the implementation challenges, such as scalability,
programmability, security and interpretability related to
software defined cloud computing and the possible solutions
of the challenges.

A detailed description about the background and structure
of SDN was presented by Zhang et al. [24]. They discussed
about the layers and the technologies related to the layers.
The authors also compares the pros and cons related to those
technologies of each layer. At the end of their research,
they also discussed about open research challenges related to
SDN.

Xia et al. [25] surveyed about the concept and the benefits
of using SDN. The authors provided details by which
performance, innovation and configuration can be improved
for the SDN. The authors also discussed the current research
in the three layers of SDN.

A detailed description about the architecture of Openflow
and SDN is presented in [28]. The authors Jammal et al.
also discussed about the challenges of SDN and their
existing solutions to solve the challenges. Some of the SDN
challenges were based on reliability, performance, security,
low level interface, controller placement, scalability and CPU
limitations. At the end, the authors also discussed latest SDN
tools and their implementations.

Scott-Hayward et al., presented information about the
architecture of SDN in [32]. Their survey was based on both
the areas of industry and research community. They also
discussed about the possible attacks related to SDN and their
possible solutions to protect the system. They also discussed
on methods for improving the network security by using the
SDN architecture characteristics.

Li et al. provided a detailed description related to
background of SDN and Openflow in [33]. They discussed
the different security challenges related to Openflow-based
SDN. These challenges were related to controllers, switches,
channels based on confidentiality, integrity and availability
model. They also explain the existing solutions related to the
categorized challenges.

VOLUME 12, 2024 56521



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

The concept of SDN and its implementation was discussed
by Ahmad et al. [35]. They stressed that scalability and
the robust security can be improved by combining the
network programmability and the control plane. They also
reviewed benefits and the security challenges related to
application, control and data planes. Numerous security
solutions of the challenges related to different planes of SDN
were also underlined. Furthermore, the authors discussed
the techniques that could improve network-wide security of
SDN. Finally, the authors provided a solution based on the
recommendation of International Telecommunication Union.

Feghali et al., discussed the architectural components
of SDN in [37]. They also discussed the communication
protocols, such as Openflow and Opflex. Moreover, the
authors also presented the security issues concerning SDN
communication, component, logging, and audit level. Issues
related to northbound and southbound communication were
discussed at communication level and those related to switch,
controller and application were discussed at component level.
At the end of their survey, the authors discussed some existing
solutions and their limitations to the issues.

In [43], If, Akyildiz et al. provided an overview of
traffic engineering and SDN. Their main focus was on
four attacks: fault tolerance, updates related to topology,
flow management and traffic characterization. The authors
also discussed the tools of traffic engineering that were
used in both academic and industrial settings. The authors
also discussed about the important aspects of scalability,
consistency, and availability in perspective of SDN data
networking. At the end, they explained the methods of traffic
engineering for SDN networks.

History and programmability of SDN networks was
discussed by BA. Nunes et al. in [44]. They explained the
architecture of SDN and the Openflow standards. They also
discussed the testing and implementation alternatives for the
SDN-based services and protocols. They provided the details
about the SDN applications, the advantages, and the research
challenges.

History of SDN and the specification related to Openflow
discussed by Lara et al. [45]. They discussed different
versions of Openflow that existed at that time. The authors
also provided the details about the different applications
related to the presented versions. They also explained the
advantages and the challenges of the SDN-based networks.
At the end, they explained and compared the different
specifications of Openflow networks.

2) SDN RELATED EXISTING SURVEYS
DS. Rana et al. [12], surveyed about the development of
SDN and latest software tools used in SDN, such as ONIX,
Mininet, McNettle and Veriflow. The authors also discussed
about the challenges related to SDN such as reliability,
security, scalability, performance, and low-level interfaces.

In [17], Zhu et al. performed a qualitative comparison for
different SDN controllers and also conducted the quantitative
analysis and bench-marking on SDN controllers. The authors

also provided a comprehensive survey on bench-marking
tools that were used for evaluating the performance of SDN
controllers.

Amin et al. [21], provided a comprehensive survey on
hybrid SDN network. The authors categorized their survey
and discussed about the network deployment, network
management techniques, controllers, security and testing for
hybrid SDN networks.

Evaluation tests for five controllers was performed by
Abdullah et al., in [22]. They also analyzed their performance.
Their comparison was based on end-to-end throughput and
delay. They used different switches in Mininet emulator to
evaluate the performance of each controller to achieve the
results. Their purpose of using different switches is based
on the fact that the throughput and number of switches
are inversely proportional to each other; if one increases
then the other decreases. Finally, their result confirmed that
ONOS and libfluid controllers had lowest and highest delay
respectively as compare to other controllers.

A survey on the challenges related to Internet of Things
(IoT) was performed by Wang and Wu [26]. The authors
discussed about the benefits and shortcomings of IoT.
They also provided the solutions based on fog computing,
NFV, cloud computing, and SDN to solve the mentioned
challenges.

Mekki et al. [153] presents a comprehensive survey of
Software-Defined Networking (SDN) techniques applied to
vehicular networks. The paper major goal was to investigate
the potential benefits, problems, and possibilities provided
by SDN in the context of automotive networks. As a
revolutionary networking architecture, SDN decouples the
network’s control plane from the data plane, allowing for
greater flexibility and adaptability. The authors begin with
an overview of vehicular networks, describing their distinct
traits and problems, such as high mobility, intermittent
connectivity, and varied network topologies. They then look
into the fundamentals of SDN, explaining the architectural
components and essential concepts that distinguish it from
traditional network systems. The authors give case studies,
simulations, and experimental data from various projects and
initiatives in the field throughout the survey, demonstrating
the feasibility and usefulness of SDN-based solutions for
automotive networks.

Maleh et al. [154] presented a detailed examination
of the security aspects associated with Software-Defined
Networking (SDN). The paper begins with an overview of
SDN, emphasising its basic design, which separates the
control plane from the data plane. While SDN provides
network management flexibility and agility, it also brings
additional security risks that traditional networks did not
have. The authors talk about the numerous security threats
that can occur in SDN setups. Among these dangers include
Distributed Denial of Service (DDoS) assaults, unauthorised
access, data breaches, and flow table manipulation. The
authors emphasize the significance of these risks and
their possible influence on network operations through a

56522 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

thorough examination. To address the vulnerabilities in SDN
systems, the paper goes on to list a variety of security
measures andmitigation. These include procedures for access
control and authentication, encryption, flow monitoring,
anomaly detection, and intrusion prevention systems. The
authors thoroughly examine each approach’s effectiveness
in mitigating specific threats, providing significant insights
for network administrators and security practitioners. This
research is a helpful resource for researchers, network
practitioners, and policymakers in their attempts to construct
secure and resilient SDN infrastructures since it provides a
thorough examination of threats, countermeasures, and future
prospects.

Yeganeh and Ganjali [27] focused on the provision of
a comprehensive survey on SDN controllers, which is a
sub-category of distributed SDN. The authors also discussed
about the architecture and the concept of distributed SDN
as compare to traditional SDN. They also provided the
logical and practical classification of SDN. A detailed
survey on SDN was presented by Kreutz et al. [40];
they discussed about the history of SDN and their stan-
dardization activities. They also discussed in detail about
the different SDN layers: Infrastructure, southbound and
northbound interfaces, NOS, network hyper-visors, program-
ming languages, network applications and virtualization.
In addition, the authors discussed some recent research
and the issues related to controllers, resilience, security,
scalability, migration and performance evaluations in SDN
network. A detailed analysis for different SDN controllers
was presented by Shalimov et al. [46]. The authors performed
some efficiency indexes experiments on the controllers and
these indexes were related to security, reliability, scalability
and performance. They developed their own framework with
the title of ‘hcprobe’ for doing experiments on controllers.
The experimental results show that the performance of the
controllers has to be improved in order to work efficiently in
above mentioned indexes.

3) CHALLENGES AND THREATS
In [10], Varadharajan et al. proposed a policy-based security
architecture for SDN, in which they focused on secure
communication between inter and intra domain and detection
and prevention of different types of security attacks in the
networks. The benefit of using this approach was to provide
defense against data flow related attacks which can secure
data plane path and end hosts.

In [11], Sultana et al. main focus was to detect network
intrusion in SDN by using machine learning and deep
learning techniques. The advantage of using their technique
was its efficiency that was used for data taxation and for
evaluation of the network security. The shortcoming of the
paper is its need for an extensive dataset based on the deep
learning technique for the evaluation of the performance of
the methodology.

Alsaeedi et al. [13] provided an overview and the
challenges related to SDN flow control based on network

scalability and performance. In addition, they also addressed
the challenges by improving the scalability and performance
of SDN flow control. The authors summarized the challenges
that required to be further addressed for obtaining a scalable
and adaptive SDN open flow control.

In [16], a detailed survey presented by Yu et al.
on vulnerabilities of SDN and their management solutions
for both industrial and academic research. They compared
and analyzed the detailed solution on the fault tolerance,
fault recovery, fault diagnosis, and monitoring. They also
performed the analysis of solutions that were developed either
in industry or in academic research context. The authors also
suggested some future challenges and emerging trends in the
advancement of SDN.

Wenjuan et al. [152] proposed a novel approach to
enhance the security of Software Defined Networking
(SDN) through the integration of blockchain technology
with collaborative intrusion detection mechanisms. SDN is
a network architecture that allows for centralized control
and programmability of the network, but it faces sig-
nificant security challenges due to its centralized nature.
By harnessing the advantages of blockchain technology,
the proposed system exhibits enhanced resilience, data
integrity, and cooperative defense mechanisms, making it a
valuable contribution to the field of network security in SDN
environments.

In [18], Raghav and Dua discussed about the different
types of threats and a few security flaws at different SDN
layers. This paper mainly focused on the solution provided
by the authors to one of the threats. Their solution was based
on set intersection and did not take much time for conflict
detection.

Raghunath and Krishnan [20] discussed different scenarios
of cross-layered attack on SDN architecture. The authors
also provided a detailed overview of protecting SDN-enabled
network. The authors also provided a comprehensive survey
on different threats related to SDN and their defensive
mechanism to deal with those threats.

Alsmadi et al. surveyed about the security of SDN in [29];
they discussed about the issues and problems related to
SDN. They also provided possible solutions to counter the
problems. Their survey was about the security threats and
their countermeasures, based on three categories: network
intrusion, application trust management, and DDoS attacks.
Based on the issues and countermeasures, the authors also
provided some future directions for SDN security.

Background of SDN and some security challenges related
to SDN was discussed by Bouras et al. [31]. They also
discussed about some existing solutions to mitigate the
challenges. They performed their experiment by attacking the
mobile network an ONOS controller.

Slavov et al. [34] discussed about the benefits and the
different types of vulnerabilities related to SDN. The authors
also discussed the objectives, such as confidentiality, integrity
and availability, which could be protected by keeping
the process of authentication, authorization, repudiation,

VOLUME 12, 2024 56523



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

TABLE 1. Comparison of some existing surveys related to SDN focusing on different parameters inside SDN paradigm.

transparency, resiliency and multi-domain isolation in a right
place.

In [39], Chourishi et al. proposed the three controllers
architectures which was implemented for OpenStack, Open-
flow, and OpenDayLight. The authors also discussed the
issues related to security of SDN and load balancing. Their
contribution was a major milestone in the IT community
by load balancing and network architecture. Architectures
of the SDN and the challenges related to the architecture
were also discussed in [42]. Some of the principles and the
security requirements of the SDN were also presented in this
paper. After performing the experiments, they suggested that
the principles can guarantee a safe implementation of ONF
based architectures. In addition, they presented the analysis
on Openflow version 1.3.5.

In [151], Logeswari et al. main objective was to design
and implement an efficient Intrusion Detection System (IDS)
using machine learning techniques, capable of detecting and
mitigating network intrusions in SDNs. They introduces a
promising approach to tackle security challenges in SDNs.
The integration of multiple machine learning algorithms
allows the system to adapt dynamically and respond
effectively to emerging threats.

In [155], Akhunzada et al. intends to provide an in-depth
review of the security challenges faced by Software Defined

Networks. The authors begin by emphasizing the increasing
popularity of SDN and the fundamental shift in network
management it represents. They underline SDN’s sensitivity
to numerous security risks and their possible impact on
network infrastructure. The study digs into the taxonomy of
security concerns unique to SDN, explaining the many types
and associated hazards. Furthermore, the authors explain the
critical needs for protecting SDN and identify outstanding
concerns that must be addressed. Overall, the introduction
sets the stage for a thorough examination of SDN security
and serves as the foundation for the remaining portions of the
paper.

In [156], Akhunzada et al. addresses security and depend-
ability challenges in software-defined networks. The authors
examine the weaknesses and potential threats in SDNs and
present a comprehensive architecture for ensuring security
and dependability in these networks. They explore the need
for adding security measures at all tiers of the SDN archi-
tecture and show several ideas and techniques for increasing
SDN resilience to assaults. The report also emphasizes
the importance of secure communication and suggests a
secure communication paradigm for SDNs. Furthermore,
the authors thoroughly evaluate their suggested framework
using simulations and real-world experiments to show its
effectiveness in minimizing potential security threats.

56524 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

4) MODEL BASED SDN
A security framework titled as StateFit was presented by RH.
Hwang et al. [15], in which they filtered the traffic at the SDN
data plane. Latency and signaling overhead can be reduced by
using this framework.

In [19], Abdulqadder et al. proposed a multi-level security
mechanism for SDN architecture. Different types of methods
were used to examine the packet flow and get the controller
for further processing. The main aimwas to provide a flexible
packet forwarding mechanism in SDN. In the first step,
users were verified through routers, and policy verification
was done in the next step by using the logic design.
Finally, authentication of controllers were done before the
flow control transmission by using the signature-based
authentication. Their main focus was to improve the security
of SDN environments.

A new framework was proposed by Wang et al. [26] for
SDN environment by joining the SDN technologies and some
security tools with the title of ‘SecControl’. The authors also
evaluated the performance of the framework ‘SecControl’
by implementing the prototype with an Openflow protocol.
The result of their research confirmed that the framework has
worked well with security tools and have defensive response
for SDN networks.

In [41], Lantz et al. described a new prototype for SDN in
which they deployed a network by using Mininet. The results
from the case studies showed that the Mininet is efficient
in perspective of resources and usage of time as compared
to other workflows. Combining the SDN with the Mininet
performed well in the three phases: deployment, sharing and
prototyping.

A Cloud-based SDNwas discussed by Yan et al. [38]. They
provided the details about the new characteristics of DDoS
attacks that were related to the SDN-based cloud computing.
The authors also presented a detailed survey of all the defense
mechanisms against the attacks related to cloud computing.
The solutions against those attacks were classified into three
categories: source-based, network-based, and the destination-
based mechanisms. At the end, the authors discussed the
methods of mitigation of mobile and application level DDoS
attacks.

The attack surface of SDN was examined by Yoon et al.
[150] using an analysis model based on the CIA (confi-
dentiality, integrity and availability) triad. They divide the
assets of the SDN architecture into three categories; control
plane where they create a threat scheme that can target
both the controllers and the application, control channel
and data plane. The authors include a list of potential
vulnerabilities for each attack. At the same time, the authors
reveal 12 previously unreported vulnerabilities. They have
found that the newly discovered vulnerabilities mostly fall
into two categories; controller intrinsic resilience and access
control. The results of this survey demonstrate the need for
improved controller stability in order to secure both its own
sensitive resources and trustworthy applications by using the
strict authentication and authorization mechanisms.

IV. CLASSIFICATION AND COMPARISON OF SDN
CONTROLLERS
In the following subsection IV-A, we conducted a qualitative
comparison among different SDN controllers based on
different features. Description of different SDN controllers
also discussed in subsection IV-B.

A. QUALITATIVE COMPARISON BASED ON
PROGRAMMING LANGUAGES, PROTOCOL VERSION ETC
Comparison among different SDN controllers can be ana-
lyzed based on different features which are mentioned as
below.

1) PLATFORM (PROGRAMMING LANGUAGE)
Different types of programming languages can be used for
writing the controllers operating system. Languages can be
C, C++, C#, Java, R, Python, Ruby, and Go. Some of
the controllers use one programming language to write the
complete controller. However, other controllers use different
languages for different modules of the controller. Therefore,
it is a possibility that controllers which are developed
with different programming languages can have a better
performance on different platforms under special conditions.

2) DEVELOPERS
Different developers like Nicira, Google, Barkeley, Stanford,
Juniper, Big Switch, Cisco, NTT and NEC etc., have
developed multiple SDN controller.

3) OPENFLOW VERSION
Different SDN controllers deploy the different versions
of Openflow. In March 2008, the first version of the
Openflow was released with the title of v 0.2.0. After two
month, in May 2008, two new versions of the Openflow, v
0.8.0 and v 0.8.1, were released. In the subsequent version of
Openflow in Oct 2008, echo request and the reply message
methodology were introduced in v 0.8.2. Few updates were
introduced in the next version of Openflow v 0.8.9 in
December 2008. In July 2009, a new version of Openflow v
0.9.0 was released and in December 2009 the most deployed
v 1.0 was released. After that, a new version of Openflow
v 1.0.0 was released with some new specification. Payload
Ethernet and the 12 header fields were used by different
switches to support the specifications of version 1.0.0. A new
version 1.1.0 was released, as the v 1.0.0 has only one flow
table in a switch but in the new version numerous group and
the flow table were presented in a switch.

In December 2011, v 1.2.0 was released with some
additional features such as option of multiple controllers been
connected to a single switch and the Ipv6 addressing were
included. In June 2012, another version 1.3.0 of Openflow
was introduced. Connections between the controller and
the switch were enabled. Cookies were also added to
those packets which came from switch to the controllers.
In August 2013, v 1.4.0 of Openflow was released which
increased the scalability. In December 2014, v 1.5.0 was

VOLUME 12, 2024 56525



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

released in which the Ingress and Egress tables were
introduced instead of using the input port. Comparison of the
specifications of Openflow versions 1.0.0, 1.1.0, 1.2.0, 1.3.0,
1.4.0, 1.5.0, 1.5.1 and 1.6.0 is shown in Table. 2.

4) ARCHITECTURE
Architecture plays an important role in the SDN paradigm
as the architecture is characterized into two basic types:
distributed and centralized. Distributed and the centralized
controllers can be used for the large and the small area
network respectively. It can be further classified into flat
and hierarchical, in which the root controllers are added in
the hierarchical and equal responsibilities are assigned for
each controller in the flat category. The classification of SDN
controllers based on architecture is shown in Fig. 3.

5) OPEN SOURCE
open source refers to a source code of any program that is
available for use or modification by users or other developers.
SDN controllers may be differentiated on open source feature
as well.

6) RELIABILITY
Reliability is the degree to which an assessment tool produces
stable and consistent results. Reliability is an important factor
of SDN controllers. The decoupling features of the SDN
technology give us the flexibility of independentmanagement
and development of control plane and data plane. In addition,
two approaches are used for SDN deployment: centralized
and de-centralized [147]. In centralized approach, we have
a single point of failure [148]. To tackle this issue, multiple
SDN controllers are used to provide reliability [148].
However, the de-centralized come up with its own issues.i.e.
consistency.

7) SCALABILITY
Major challenges related to scalability are the control logic
concentration in software controllers and the separation of
data and control planes. Centralized SDN controllers are
high in demand when the size of network is increased,
and, as a result, problem of data overloading can occur.
Communication between the switches and the controllers
can be increased when the size and operating region of
the network are expanded. A single controller may be the
bottleneck in a centralised software defined environment.
Consistency and scalability are the major challenges with this
approach. With a response time of less than 10 milliseconds,
a single NOX SDN controller can handle 30000 flow
initiation requests per second [75]. The message processing
latency becomes a non-negligible factor in overall network
scalability whenever a load on a single controller exceeds its
threshold value [149].

8) CONSISTENCY
Consistency is an important factor of distributed SDN
controllers. Network state consistency and the network

FIGURE 3. Classification of SDN control plane architecture; distributed vs
centralized.

information can be exchanged in physically distributed SDN
controllers.

9) COMPILER
The compatibility of SDN controllers with OS are defined by
the compilers. Some of the major OS are; Linux, Windows,
Ubuntu and MacOS. Linux is one of the most used OS for
SDN controllers.

10) API
Applications like the virtualization, forwarding, and intrusion
detection were created by data planes to facilitate the
controllers in northbound API. Communication between
the routers, switches, and the controllers can be done by
using the southboundAPI.Multiple controllers from different
domains are used to peer with each other by using the west or
east API.

11) LIBRARY
Different types of Openflow libraries are used for different
SDN controllers. Types of different libraries are depicted in
Table 3.

B. SDN CONTROLLERS AND THEIR
ADVANTAGES/DISADVANTAGES
The following paragraph highlight different features of
the available controllers till date. Following parameters
like platform, developers, architecture, reliability, scalability,

56526 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

TABLE 2. Comparison of openflow versions; 1.0.0, 1.1.0, 1.2.0, 1.3.0, 1.4.0, 1.5.0, 1.5.1 and 1.6.0.

consistency, compiler, API and library are the prime focus
surveyed in this section in order to give the readers a complete
picture of the controllers for deployment according to their
scenario/need. A summary of different controllers based on
different features is shown in Table 3.

1) BEEHIVE [85]
Distributed architecture-based open source SDN controller
established in 2016 by NERSC, operates with Openflow
versions 1.0.0 - 1.2.0. It uses Go as programming language,
REST API and Linux OS as a compiler for evaluating
the controller. Beehive SDN controller provide a better
scalability and reliability as it does not have consistency
related challenges. Beehive SDN controller is significantly
effective in designing the control plane, making this as its
main advantage.

2) BEACON [63]
In 2010, an open source SDN controller based on centralized
architecture established by Stanford University, called Bea-
con. Beacon operates with the Openflow version 1.0.0 and
have use the Java programming language. It is not able to
achieve the goals of scalability and consistency however,
it performs well in perspective of reliability. JSpring library,
ad-hoc API and Linux, Windows, MacOS use as compiler to
evaluate the performance of the controller.

3) B4 [5]
In 2013, Google established a physically distributed
architecture-based open source SDN controller. Linux OS
uses as a compiler for evaluating the controller performance.
B4 operates with the Openflow version 1.0.0 and have
use the C and Python as programming language. Its main
advantage is the maximization of the average bandwidth. B4
SDN controller provides greater reliability and scalability
however, the performance is limited in achieving the goal of
consistency.

4) DISCO [64]
DISCO, established by Stanford University in 2014, is based
on physically distributed architecture and is an open source

SDN controller that operates with Openflow version 1.0.0.
The result of the scalability and reliability are achieved
in DISCO SDN controller. Java is use as a programming
language, JVM library, REST API and Linux OS are used
as a compiler for evaluating the performance of controller.
The benefit of DISCO controller is the usage of lightweight
intercontroller channel, which enabled end-to-end services.

5) DCFABRIC [65]
OpenStack Juno established an open source SDN controller
based on Centralized architecture in 2014, which operates
with the Openflow version 1.3.0 using the REST API. The
desirable results of reliability, scalability and consistency can
be attained by DCFabric controller. DCFabric provides high
efficiency in network topology. This is the main benefit as
they use the JavaScript and C as programming language and
Linux OS as compiler for controller evaluation performance.

6) DIFANE [66]
An open source SDN controller, ’DIFANE’, based on
physically distributed architecture was established in 2010.
It operates with theOpenflow version 1.1.0 and use theAdhoc
API for controller evaluation. DIFANE’s performance is
limited in achieving the results of consistency and reliability,
but it attains the results of better scalability.

7) DEVOFLOW [67]
NEC, Arista, and Toroki, in 2010, established an open source
SDN controller ’DevoFlow’. It was based on physically
distributed architecture. It uses the JAVA as programming
language, JVM library for controller evaluation performance
and it operates with the Openflow version 1.1.0. The main
advantage of DevoFlow is that it reduce the chance of
overhead, while the performance is limited in reliability
and consistency. However, it attains the desirable results for
scalability.

8) ELASTICON [68]
In 2014, NSF and IIS established a distributed architecture-
based open source SDN controller ‘ElastiCon’, which
operates with the Openflow version 1.0.0 and use JAVA as a

VOLUME 12, 2024 56527



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

TABLE 3. A detailed summary of SDN controllers-highlighting platform, developers and detailed architecture.

programming language. ElastiCon SDN controller provides
better reliability and scalability. It also provides desirable
results related to consistency-based challenges. ElastiCon
uses the SIGAR andRESTFUL asAPI, andHazelCast library
for performance evaluation.

9) FLOODLIGHT [69]
Floodlight is a physically centralized architecture-based
open source SDN controller developed in 2010 by Big

Switch. Its performance was limited in achieving the results
of reliability. However, it attains the better results of
scalability and consistency. It uses Java as a program-
ming language and operates with the Openflow version
1.1.0. Floodlight uses Java RPC, Rest, Quantum as APIs,
and uses Linux, Windows, MacOS for controller eval-
uation. The main benefit of the Floodlight is its easy
usage. The workflow of the Floodlight controller is shown
in Fig.4.

56528 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

TABLE 3. (Continued.) A detailed summary of SDN controllers-highlighting platform, developers and detailed architecture.

10) FAUCET [70]
Faucet is a centralized architecture-based open source SDN
controller developed by WAND network Research Group
in 2016. The main benefit of Faucet controller is the
implementation of security policies on each access port.
It uses the Python as a programming language, Linux OS as
compiler for performance evaluation, and it operates with the

Openflow version 1.3.0. Faucet does not achieve the desirable
goals of scalability and reliability but it performs well in
perspective of consistency.

11) FLEET [71]
In 2014, distributed architecture-based open source SDN
controller ’Fleet’ was developed, it operates with the

VOLUME 12, 2024 56529



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

TABLE 3. (Continued.) A detailed summary of SDN controllers - highlighting platform, developers and detailed architecture.

FIGURE 4. Work flow of floodlight controller.

Openflow version 1.0.0 and use Python as a programming
language. It use Pycrypto and gmpy2 library, ad-hoc API,
and Linux as OS for controller evaluation performance.
Fleet vastly detect the failures as it provides better results
of reliability but does not achieve the desirable results of
scalability and consistency.

12) FLOWVISOR [72]
Stanford and Nicira developed a centralized architecture-
based open source SDN controller ’FlowVisor’ in 2009, and

have use the JSON API and Linux as OS for controller
performance evaluation. FlowVisor acts as transparent proxy
controller between the physical switches of Openflow and
operates with the Openflow versions 1.0.0 - 1.3.0. FlowVisor
have use C as programming language. Its performance is
limited in achieving the results of reliability and consistency.
The workflow of the flowvisor controller is shown in Fig. 5.

13) HP VAN SDN [73]
In 2013, HP established a distributed architecture-based open
source SDN controller, ’HP VAN SDN’. It has use JAVA as
programming language and works with the Openflow version
1.0.0. HP VAN SDN controller provide better results for
reliability, scalability and consistency as It uses theOpenFlow
library, Linux as OS and RESTful API for performance
evaluation.

14) HELIOS [74]
Distributed architecture-based an open source SDN controller
‘Helios’ was developed by NEC in 2012. The results of
the reliability and consistency are limited by using Helios
controller but provides the better results of scalability. It uses
Thrift RPC library, C as programming language and Linux
as OS for performance evaluation. Helios provides better
results in perspective of low cost, complexity, and energy as
it operates with Openflow version 1.0.0.

56530 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 5. Workflow of flow visor controller.

15) HYPERFLOW [75]
In 2010, University of Toronto developed a physically
distributed architecture-based open source SDN controller,
’Hyperflow’. Hyperflow operates with the Openflow version
1.0.0, have use the C++ as programming language and
Boost serialization library for experiment. The advantage of
HyperFlow is minimizing the cross region control traffic,
also provide the better reliability and scalability however, its
performance is limited in achieving the goals of consistency.

16) JAXON [76]
An open source SDN controller ’Jaxon’ was developed
by Independent Developer in 2013. It does not provide
better results for reliability, scalability and consistency. Jaxon
operates with Openflow version 1.1.0 as it uses Java as
programming language.

17) KANDOO [77]
University of Toronto in 2012 developed physically dis-
tributed architecture-based open source SDN controller
’Kandoo’. Its switches can natively run local control appli-
cations. Kandoo SDN controller operates with Openflow
versions 1.0.0 - 1.2.0. It uses JAVA RPC API, Python,
C and C++ as programming languages and Linux as OS for
experimentation. Its performance is limited with respect to
consistency but provides better results in terms of reliability
and scalability.

18) LOOM [78]
Distributed architecture-based open source SDN controller
was developed in 2016 by Erlang Solutions. Its aim is to
protect the network from the rouge applications. Loom use
Erlang as programming language, SDK lib and operates
with the Openflow version 1.3.0 - 1.4.0. Loom SDN
controller provides good results for scalability, however, its
performance is limited in reliability and consistency. It uses
the JSON API and Linux as OS for performance evaluation.

19) LIBFLUID [79]
An open source SDN controller ’Libfluid’ was established in
2016 by Open networking foundation. It uses the C++ as
programming language. Libfluid has inflexible protocol and

configurable behavior in implementation. Scalability results
are achieved by using LibFluid controller, but its performance
is limited in reliability and consistency. LibFluid have used
Linux, window, MacOS as OS, ROFL lib and C++ API
for experimentation and it works with Openflow versions
1.0.0 - 1.3.0.

20) MCNETTLE [80]
Yale University, in 2012, established an open source SDN
controller ’McNettle’ based on centralized architecture.
It uses the Haskell as programming language, Haskell
standard lib, McNettle API and Linux as OS for controller
performance evaluation and it works with the Openflow
version 1.0.0. The main advantage of McNettle is its high
level expressive language and multicore optimization. Its
performance is limited in reliability and consistency but have
better results of scalability.

21) MUL [81]
MUL is an open source SDN controller based on centralized
multi-threaded architecture. It was developed by Independent
Developers in 2014. MUL is modular, flexible, and easy
to learn. It is limited in consistency but provides better
results of scalability and reliability. It uses C as programming
language. MUL SDN controller works with Openflow
versions 1.0.0 - V 1.4.0 and have used the REST API for
experimentation.

22) MAESTRO
Maestro is a centralized architecture-based open source
SDN controller established in 2010 by Rice University.
Maestro have multi-threaded support and have use the JAVA
as programming language. Its performance is limited in
consistency but provides good results of scalability and
reliability. Maestro operates with Openflow version 1.0.0.
Maestro have used JVM lib, Linux, windows and Mac as OS
and ad-hoc API for performance evaluation.

23) MICROFLOW [82]
MicroFlow is a centralized architecture-based open source
SDN controller. It was established in 2012 by Independent

VOLUME 12, 2024 56531



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

Developers, and works with the Openflow versions
1.0.0 - V 1.5.0. MicroFlow SDN controller performance is
limited in reliability and consistency but it provides good
results of scalability. Microflow have used Linux OS, Socket
API and C as programming language for performance
evaluation.

24) MERIDIAN [83]
Meridian is a centralized architecture-based open source
SDN controller established by IBM in 2013. The main
advantage ofMeridian is themanagement of dynamic updates
related to topology. Meridian have used libvirt, REST API
and Cloud-based OS for experimentation. Meridian SDN
controller provides better results of reliability and scalability.
However, their performance is limited in consistency. It uses
JAVA as programming language and operates with the
Openflow versions 1.0.0 and 1.3.0.

25) NODEFLOW [84]
In 2014, Dreamer Lab developed a centralized architecture-
based open source SDN controller called ’NodeFlow’.
The NodeFlow is lightweight and efficient for real time
applications. NodeFlow SDN controller performance is
limited in perspective of reliability and consistency. However,
it provides better results of scalability. It operates with the
Openflow version 1.0.0. NodeFlow uses libuv, NodeJS API,
and JavaScript as programming language and JSON for
controller performance evaluation.

26) NOX [85]
Nicira and Stanford in 2008 developed an open source SDN
controller ’NOX’. NOX deals with packets payload and
have use the C++ and Python as programming languages.
NOX SDN controller provides good results of reliability,
however, it does not performs well in achieving the results of
consistency and scalability. NOX uses Linux OS, and ad-hoc
API for experimentation and operates with Openflow version
1.0.0.

27) NOX-MT [85]
Physically distributed architecture-based open source SDN
controller ‘NOX-MT’ was established by Big Switch, Nicira,
and University of Toronto in 2011. The main benefit
of NOX-MT is the improvement of response time and
throughput of NOX controller. It uses C++ as programming
language, ASIO lib, ad-hoc API and Linux OS for perfor-
mance evaluation. It operates with the Openflow version
1.0.0. NOX-MT SDN controller provides better result of
reliability, but its performance is limited in consistency and
scalability.

28) ONIX [86]
In 2010, Nicira, NTT and Google established an open source
SDN controller ’ONIX’. ONIX provide solutions to almost
every problem related to network management. ONIX SDN
controller provide better results of reliability and scalability

however, its performance is limited in consistency. It operates
with Openflow version 1.1.0. It uses C++, Python, and JAVA
as programming language, ONIX, NVP, NB API and third
party lib for experimentation. The workflow of the ONIX
Controller is shown in Fig. 6.

29) ONOS [87]
ONOS was developed by AT & T, Cisco, Ericsson, Huawei,
and Google in 2014. It has a distributed architecture. The
results of reliability, scalability, and consistency are achieved
by using ONOS controller as it operates with the Openflow
versions 1.0.0, and V 1.3.0. ONOS provide the results of
throughput in perspective of performance and availability.
It has used Linux, Window, Mac as OS and REST, neutron
API for performance evaluation.

30) OMNI [88]
In 2011, a distributed architecture-based open source SDN
controller ’OMNI’ was established by Federal University
of Rio de Janerio. OMNI blackuce the packet loss rate
and it works with the Openflow version 1.1.0. OMNI SDN
controller have use the OMNI API, Java, and Python as
programming languages and Linux as OS for performance
evaluation. OMNI SDN controller does not provide desirable
results of reliability, scalability and consistency.

31) OPENCONTRAIL [89]
OpenContrail is a centralized architecture-based open source
SDN controller developed in 2012 by Juniper. It uses C, C++

and Python as programming languages. Dynamic routing
and trunking are its main advantages. OpenContrail SDN
controller provide better results of reliability, scalability, and
consistency. OpenContrail has used Linux as OS, REST API
for experimentation and operates with the XMPP and BGP.

32) OVS [90]
OVS is an open source SDN controller developed by
independent developer in 2014. Traffic filtration secures by
OVS are its main advantage. OVS controller operates with
OVSDB. It uses C as a programming language, and Linux
as OS for experimentation. OVS SDN controller is not able
to achieve the goals of scalability and reliability however,
it performs well in perspective of consistency.

33) OPENDAYLIGHT [91]
In 2017, Cisco, Ericsson, HP, Intel, and Brocade established
a distributed architecture-based open source SDN controller,
’OpenDaylight’. It uses JAVA as a programming language,
and works with Openflow versions 1.0.0, and 1.3.0. Open-
Daylight SDN controller achieves the desirable results of
reliability, scalability and consistency. OpenDayLight uses
JVM lib as library; REST, RESTCONF, XMPP as APIs, and
Linux, Window as OS for performance evaluation.

34) OPENIRIS [92]
Distributed architecture-based open source SDN controller
’OpenIRIS’ was developed by ETRI, in 2014. It uses JAVA

56532 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 6. Workflow of onix controller.

as a programming language and operates with the Openflow
versions 1.1.0, and V 1.3.0. The main advantage is that
OpenIRIS have lower latency. OpenIRIS uses Loxigen,
REST API and Linux as OS for experimentation. OpenIRIS
controller provides better results of scalability however, its
performance is limited in achieving the desirable results of
reliability and consistency.

35) POF [93]
In 2017, University of science and technology China (USTC),
NSFC, and Huawei developed a centralized architecture-
based open source SDN controller, ‘POF’. It operates with
the Openflow version 1.0.0 and POF-FIS. It uses Java as
a programming language, DPDK lib as library, POF as
API, and Linux as OS for the experimentation. POF SDN
controller provides better results of scalability however, its
performance is limited in achieving the results of reliability
and consistency.

36) PANE [94]
‘PANE’, an open source SDN controller, is developed by
NSF and NDSEG in 2013. It uses Haskell programming
language, Nettle lib as library, and PANE API and windows
as OS for experimentation. PANE SDN controller provides
better results of reliability and consistency, but does not
provide the desirable results of scalability. It operates
with Openflow version 1.0.0. The main advantage of
this controller is that OMNI provides better security and
performance.

37) POX [95]
An open source SDN controller ’POX’ was developed by
Nicira, Barkeley and Stanford, in 2014. The main advantage
of using POX controller is that it easily deploy and test
the SDN applications. POX controller works with Openflow
version 1.0.0. It uses ad-hoc API, Python as programming
language andMacOS as OS for performance evaluation. POX
SDN controller achieve the results of reliability, however
does not provide the desirable results of scalability and
consistency.

38) PROGRAMMEABLEFLOW [2]
Physically centralized architecture-based open source SDN
controller ’Programmeableflow’ was developed by NEC,
in 2010. Programmeableflow use the switches and other
network services to control the entire infrastructure. Its
performance is limited in achieving the results of consistency
and scalability but, it attains the results of better reliability.
The controller operates with Openflow version 1.0.0. It uses
JAVA as a programming language, and control API and Linux
as OS for experimentation.

39) ROSEMARY [96]
In 2014, DARPA and AFRL, established an open source
based SDN controller, ’Rosemary’, based on centralized
architecture. It operates with Openflow versions 1.0.0,
1.3.0 and XMPP. Rosemary performance is limited in
achieving the results of consistency but attains the results
of better reliability and scalability. Rosemary controller uses
Boost lib, ad-hoc API and Linux as OS for performance
evaluation.

40) RAVEL [97]
NSA and NSF developed a centralized architecture-based
open source SDN controller, ’Ravel’ in 2016. Its users can
modify, launch, and switch between the abstractions by using
Ravel controller. Ravel operates with Openflow version 1.0.0,
and have use ad-hoc API. It uses Python as a programming
language, and linux as OS for experimentation. Ravel
achieves the desirable results of scalability and consistency,
however its performance is limited in achieving the results of
reliability.

41) RYU [98]
Logically centralized architecture-based open source SDN
controller, ’Ryu’, was developed in 2017 by NTT. It operates
with the Openflow version 1.1.0. Ryu controller performance
is limited in achieving the results of scalability and consis-
tency, but attains better results in reliability. It uses Python as
programming language, Java RPC as library, Rest, Quantum

VOLUME 12, 2024 56533



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 7. Workflow of routeflow controller.

as APIs, and Linux, Windows, MacOS as OS for controller
evaluation.

42) RUNOS [99]
In 2015, ARCCN established a distributed architecture-based
open source SDN controller, ’RunOS’. It uses C++ as
programming language and operates with Openflow version
1.3.0. It achieves desirable results of reliability, scalability,
and consistency. It uses DPDK, netmap lib as library, REST
API, and Linux as OS for performance evaluation. The main
benefit of using RunOS is that it reduces the equipment costs
and network operation.

43) RAVANA [100]
’Ravana’ is an open source SDN controller that is established
by NSF, ONR, and University of Princeton in 2015.
It supports multi-threaded applications. Ravana works with
Openflow version 1.1.0, It uses parsing lib, Ryu API, C++as
programming language, and Zookeeper for experimentation.
Ravana SDN controller achieves better results of consistency,
but do not achieve desirable results of scalability and
reliability.

44) ROUTEFLOW [101]
RouteFlow is a distributed architecture-based open source
SDN controller established by CPqD in 2012. It deliv-
ers IP routing solutions for the network. It uses C++

as programming language and works with the Openflow
versions 1.1.0 - 1.3.0. It uses the RPC library and Linux as
OS for performance evaluation. RouteFlow SDN controller
provide better results of reliability and scalability. However,
its performance is limited in achieving optimal results of

consistency. The workflow of the Routeflow architecture is
depicted in Fig. 7.

45) RYU NOS [47]
OSRG and NTT developed a logically centralized
architecture-based an open source SDN controller ’Ryu
NOS’, in 2013. Ryu NOS does not require high end switches
because of tunneling based isolation. It uses the LACP
lib, RESTful, ad hoc API and Linux, MacOS as OS for
experimentation. Ryu NOS SDN controller provide better
results of reliability and consistency however, it does not
achieve the desirable results of scalability. Ryu NOS operates
with the Openflow versions 1.0.0 - 1.5.0.

46) SNAC [48]
In 2016, Nicira and Big Switches established a physically
centralized architecture-based open source SDN controller,
’SNAC’. SNAC increases the visibility because it reports
many flow level traffic details over a webUI andHTTP-based
API. It operates with Openflow version 1.0.0. It uses REST
API, C++as programming language, and Linux as OS for
performance evaluation. SNAC SDN controller performance
is limited in achieving the results of consistency but, attains
better results of reliability and scalability.

47) SMARTLIGHT [49]
’SmartLight’ is an open source SDN controller developed by
FCT and EC FP7 in 2014. It operates with the Openflow
version 1.3.0. Smartlight uses the Replication lib, REST
API, Java as programming language, and Linux as OS for
performance evaluation. SmartLight SDN controller achieve
the results of reliability, but does not achieve the desirable
results of scalability and consistency.

56534 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

48) SDX [50]
In 2014, Berkeley and University of Princeton developed a
physically distributed architecture-based open source SDN
controller, ’SDX’. It provides remote control over the traffic.
It uses Python as programming language and operates with
Openflow version 1.1.0. It uses the RESTful API and Linux,
Windows as OS for performance evaluation. SDX SDN
controller provide better results of consistency. However, its
performance is limited in achieving the desirable results of
reliability and scalability.

49) TREMA [51]
NEC developed a centralized architecture-based open source
SDN controller, ’Trema’ in 2013. It only supports Linux-
based applications. Trema operates with Openflow version
V 1.0.0, and have use the Ruby and C as programming
languages. It uses ad-hoc API, OF lib as library, and Linux
as OS for experimentation. Trema achieves desirable results
of scalability and reliability, but lacks to attain better results
of consistency.

50) TINYSDN [52]
’TinySDN’ is an open source SDN controller established by
FAPESP in 2015. It operates with the Openflow version V
1.0.0. TinySDN uses ad-hoc API, C as programming lan-
guage and Linux as OS for performance evaluation. TinySDN
has the capability to perform flexible bit masking. TinySDN
achieves good results of scalability, but its performance is
limited in achieving the goals of scalability and consistency.

51) UNIFIED CONTROLLER [53]
IBM developed an open source SDN controller, ’Unified
controller’, in 2014. It operates with the Openflow version
1.0.0. Unified controller achieves the goals of scalability and
consistency. However, its performance is limited to achieve
sound results of reliability. It uses the REST APIs, and Linux
and window as OS for performance evaluation.

52) YANC [54]
’Yanc’ is a distributed architecture-based open source SDN
controller established by University of Colorado in 2013.
Yanc provides security, congestion control, and load balanc-
ing facility. It uses C++ and C as programming languages,
and operates with the Openflow versions 1.0.0 - 1.3.0.
It uses REST API, libyanc as library, and Linux as OS
for performance evaluation. Yanc provides better results of
scalability, but do not achieve desirable results of consistency
and reliability.

53) ZEROSDN [55]
In 2015, University of Stuttgart developed a distributed
architecture-based open source SDN controller, ’ZeroSDN’.
ZeroSDN controller has a highly modularized and
lightweight aptitude. ZeroSDN achieves desirable results
of consistency, but do not attain appropriate results of

scalability and reliability. ZeroSDN controller operate with
the Openflow versions 1.0.0 - 1.3.0. It uses the REST API,
C++ as programming language, ZeroMQ lib as library, and
Linux as OS for performance evaluation.

C. CLASSIFICATION OF THREATS AND VULNERABILITIES
Security threats are spanned over three layers of SDN and
two layers of their communication channel as shown in Fig. 8.
Different security threats in SDN architecture are divided into
7 major groups: Data leakage, Data modification, Denial of
service, Configuration issues, Compromised and the mali-
cious applications, unauthorized access, and system-level
SDN security as depicted in Fig. 9. Different examples related
to these security issues are also discussed in detailed in the
subsequent sections. Furthermore, a detailed description of
the attacks and network security issues of SDN framework is
also presented.

The security issues classified in Fig. 9 are also mapped
to the SDN architecture in Fig. 10 to highlight the entity
and interface impacted by the attack or vulnerability. It is
worth pointing out that several of these attacks are related
directly to the SDN characteristics such as unauthorized
access and data modification linked with logically centralized
control, malicious application linked with third party network
services, DoS attack linked with open programmable inter-
face and configuration issue threats are linked with switch
management protocol characteristics.

We also mapped these potential SDN attacks to relevant
security concerns.i.e. authentication, secrecy, integrity etc.
as shown in Table 4.

TABLE 4. Mapping of SDN attacks to security concern.

1) UNAUTHORIZED ACCESS
Unauthorized access is a sub-category of access control
and subdivided into two categories: one is unauthorized or
unauthenticated applications and the other one is unautho-
rized Controller hijacking. SDN characteristics are either
described as the centralized controller or as logically central-
ized/distributed controller. There is a possibility in the SDN
functional architecture that the data plane of network can be
accessed by using several controllers. Group of controllers
can be linked with the multiple source applications. One of
the level of network control is that the applications can easily
read or write any state of network when the applications have
some information regarding the controller. If the controller or
application is imitated by any attacker, the network operations
can be easily manipulated and edited by the attackers.

VOLUME 12, 2024 56535



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 8. Security threats in SDN architecture: Security threats are spanned over three
layers of SDN and two layers of their communication channel.

FIGURE 9. Generic SDN attacks.

2) DATA LEAKAGE
Data leakage is subdivided into three sub-categories: cre-
dential management, forwarding policy discovery, and flow
rule discovery. Different type of procedures related to the
packet handling are described in the Openflow specifications.
These procedures are to either drop, forward , or send the
packet to the controllers. By analyzing the processing time
of packets, attackers can easily manage to check the type
of procedure being applied to the packet. For example, the
processing time of packet is less for those packets that
directly pass from input to output port as compared to
those packets which are forwarded to controller for further
processing. Therefore, the sensitive switch configuration is
easily discovered by the attacker. Extra information related
to the network device can be gathered by attackers through
the sets of manufactured packets. Flow request proceed to
the DoS attack by the attackers when they discovered the
controller directed packet type. Data leakage to the DoS
attack relationship is demonstrated in [56]. In the data plane,

credential storage for various networks is one of the major
challenges of the SDN architecture. The attacks related
to the side channel virtual machine in cloud environment
have already been explained. In such an attack, important
information can be extracted and identified from target by
malicious virtual machines [57]. There is a possibility in SDN
that the similar data can be leaked.

We can assume that different customers are allocated
to each entity. So, there is a possibility that the logical
network functionality can be compromised in the case when
the networks and their related credential are not securely
separated.

3) DATA MODIFICATION
Traffic flow in the SDN can be controlled by controller
network devices. The entire system of network can be
controlled whenever the controller is hijacked by the
attackers. Packets can be passed from the networks to the
attacker, if the attacker is able to modify the configuration

56536 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 10. SDN potential attacks and vulnerabilities mapped to the SDN architecture to highlight the entity and interface impacted by the attack or
vulnerability.

of network devices, and additional packets can be inserted
by the attacker. Proper security mechanism between the
components, communication channel, and the interface can
be used when the intermediate entities for virtual network
establishment can be introduced between the data and
control plane [4]. Mutual authentication with the use of
Transport Layer Security (TLS) can be described between
the switches and controllers in the communication channel.
Various attacks can be launched and the controllers imitate
by Man-in-the-Middle (MITM) attackers when TLS is not
adopted by main vendors. For example, connections can be
torn down when the reset messages can be inserted and
the control messages can be manipulated. Security issues
should be avoided when the secure intermediate connection
is established between the data and control plane. MITM
attack occur when the message is interrupted between the
two victims by the attackers and happens only when the
communication endpoint is not authenticated. FlowVisor [58]
is one of the SDN controllers in which data modification
attacks can be launched on entities communication by the
attackers [59].

4) COMPROMISED AND MALICIOUS APPLICATIONS
The controllers describe the key idea for data plane applica-
tions, and the architecture is also combinedwith SDN enabled
third party applications [60]. Malicious applications on the

network are as harmful as the compromised controllers.
Similarly, vulnerabilities can be unintentionally injected to
the system by the buggy and the poorly designed applications,
such as, an application is moved into a dangerous state when
an attacker manipulated the identified bug.

5) DENIAL OF SERVICE
This category is further divided into two sub categories,
Switch Flow Flooding and flood communication between
the controller and switch. Packets can be flooded with
the controller by attackers because of the decision rule
requirement and the communication between the network
devices and the controller. Resources related to the limited
memory available with the flow table is also a type of
infrastructure-level DoS attack [61]. Rule modification and
the fraudulent insertion related DoS attacks are also discussed
in [62].

6) CONFIGURATION ISSUES
Three attacks have been introduced in the sub-section of
Configuration issues. Firstly, those related to the policy
enforcement secondly, concerning the lack of authentication
techniques adoption, and lastly, related to the lack of secure
provision. When the network vulnerabilities are detected, the
protocols and the policies related to the network security
are developed. These policies and the protocols are applied

VOLUME 12, 2024 56537



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 11. An overview of security threats and vulnerabilities related to SDN layers.

to the SDN framework interfaces and the layers. However,
the policies and protocols related to SDN framework are
not applied or restricted without having the knowledge the
security consequences of implementation situations. Policies
implementation should be applied to network operators, and
is an important factor of SDN based network [32]. There is a
possibility that improper and the misuse of the security fea-
tures may affect all the layers of the SDN architecture. When
a secure connection is disabled, different types of attacks
are possible in the SDN framework that will potentially
affect the network functions. Different vulnerabilities can be
introduced when interfaces are opened between the network
components. These vulnerabilities are not only related to
the communication between the data and control plane,
but also related to the compatibility between the different
vendor devices. Dynamic flow policies can be created and the
network can be programmedwhile using the SDN. Therefore,
there is a possibility that the security vulnerabilities can be
introduced. Policy conflicts and associated problems can be
solved by ensuring consistency, and that should be formed
when the policies are installed against the multiple devices
and the applications. [34].

7) SYSTEM LEVEL SDN SECURITY ISSUES
Different types of SDN related security concerns are pre-
sented at the system-level. A major concern of SDN, related
to the industry, is the auditing procedure. The procedure

of network operation and compliance are dynamically
able to provide the network devices inventory control.
There are two modes in which the Openflow switches
can operate: fail-standalone and the fail-secure mode [32].
From operational point of view, it is difficult for any
operator to understand what type of mode is used when the
connection is interrupted through the switch. In the context
of auditing and the accountability, operational information
retrieval andmanagement is also one of the critical procedure.
To access the resources, techniques are required to be
implemented which can increase the network complexity and
manageability. Integrity, confidentiality and the availability
are the main properties to secure the communication between
the networks. Authentication, authorization and encryption
are used as supporting factors to support the properties of
Confidentiality, Integrity and Availability (CIA). A network
can be formed by combining the properties of CIA, in which
the devices, data and communication can be protected from
malicious attacks. Vulnerabilities and the challenges related
to the SDN network can also be displayed in this attack
category. Security attacks on different SDN layers are also
shown in Fig. 11.

D. SECURITY SOLUTIONS FOR SDN CHALLENGES
As illustrated in Fig. 9, there are seven types of SDN security
attacks. Different solutions were proposed to mitigate the
problems of SDN security attacks. In this section, we presents

56538 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 12. Summary of security solutions to mitigate the security threats related to different layers/interfaces (data layer, control
layer, application layer, northbound interface and southbound interface) of SDN.

VOLUME 12, 2024 56539



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

potential solutions to address them. Mitigating security
concerns and a comparison of related works at different
SDN layers are also presented in Fig. 12, that reflects the
significant attention that has been recorded by the security
issues in configuration, unauthorized access, and the DoS
attacks. We also observed that the solution of the SDN
security issues also affect the SDN layers, with the data
layer being the least modified one because of the strong
concentration on the software solutions. In the following
sub-sections, we also provide an overview of the possible
solutions relevant to SDN security.

1) UNAUTHORIZED ACCESS
A summary of the mitigation solutions to address ‘‘Unautho-
rized access’’ against the different SDN layers is presented
in Fig.13. A Hybrid control model-based solution for the
unauthorized access was proposed in [102] that improved
network efficiency and reduced congestion at the controller.
TLS is used to secure the central and distributed control
elements. Requests between the network devices have been
securely transmitted by using the signature algorithm. In their
paper, system requires a centralized trust manager and for
securing the system a result signature checking has been
introduced. In [103], the authors presented a newmechanism,
Byzantine, through which the SDN structure was secured by
using the multiple controllers on each network elements. Cost
efficient assignment algorithms are used to minimize the fault
tolerance of Byzantine mechanism.

In [104], a new SDN setup based mechanism, with
switches and the controllers, was proposed for solving the
problems of authentication and authorization of applications.
Working of the middle management is divided between the
switch fabric and the root controller. Moreover, security is
provided at the middle management controller to minimize
the effect of compromised applications. In [105], the authors
identified the problem of full privilege to every application
without providing any protection. The PermOF-based solu-
tion was proposed by the authors to implement the set of
permissions at the API level. By using their mechanism, the
network can be protected from the control plane attacks. The
permission system concept was also extended in [106], where
the authors presented mechanism of Operation Checkpoint,
which was implemented and designed on the SDN controller
floodlight. Initially, a set of permissions was defined by the
authors through which controller and the applications can be
subscribed with each other. Profile of the malicious activities
for the application layer based attacks were maintained by
using the unauthorized operation logs. A new mechanism
SE floodlight was proposed by Stanford Institute in [107],
[108]. Northbound API was digitally authenticated in SE
floodlight mechanism and security enforcement kernel was
introduced. SEK digitally verifies the administrator at run
time by presigning the java class applications. A host-
level access control, AuthFlow, solution was proposed for
the unauthorized access in [109], where an authenticator,

Openflow controller and the radius server were used to
implement the mechanism Authflow. AuthFlow is used for
the authentication and the access control of the applications.
Traffic was controlled by the controller based on the response
of authentication.

2) MALICIOUS/COMPROMISED APPLICATIONS
Connection establishment and authentication must be per-
formed between the application and the controller before
exchanging the messages to avoid the implementation of
any type of malicious application. Different types of solu-
tions were proposed to mitigate the malicious applications’
concern. A summary of related solutions are presented in
Fig. 14 that are proposed to address the ‘‘Malicious and
Compromised Applications’’ issues at different SDN layers.
FortNOX, a security enforcement kernel-based solution, was
proposed to solve the issue of malicious applications in [110].
Role-based authentication was implemented in FortNOX
mechanism for authorization of Openflow applications. Flow
rule insertion with the possible conflicts can be handled by
enforcement engine of FortNOX and the authorization of
the author security is the main factor that is used to accept
or reject the rule. FortNOX is also able to detects the flow
rules that are in conflict with each other. If the new flow
rule is requested with a lower priority or a higher priority,
then the existing flow rule can be ignored or can be replaced
respectively. Priority enforcement and the identification of
application-based issues were not resolved in FortNOX.

A secure and robust network operating system,
ROSEMARY [96], was proposed to address malicious
applications. It can be used to strengthen the security of
control plane. Micro-NOS based architecture was proposed
by author as a solution to solve the issue of malicious
applications. Control plane can be protected from any
malicious application and the vulnerability by running the
Openflow application within the instance of ROSEMARY.
The solution separates the NOS and the network applications.
Network resources used by any application can be monitored
and controlled. LegoSDN an isolation layer between the
SDN applications based solution was proposed by authors
in [111], to avoid crashing of SDN application and the SDN
controllers. Automatic updates can be enforced by using the
network wide transaction system of LegoSDNwhereas, crash
events can be detected and overcome by fault tolerance layer.
Third party network services’ issues were also protected by
LegoSDN.

3) DOS ATTACK
Decoupling of control and data plane can lead to DoS attacks
on the controller. Different solutions have been proposed
to solve the issue of DoS attack on SDN layers. A short
summary of the solutions are presented in Fig. 15 to mitigate
the SDN security issue of ‘‘DoS Attack’’ against the different
SDN layers.

The DoS attack workflow is shown in Fig. 16. From the
starting point, a packet will be received by the openflow

56540 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 13. Summary of security solutions to mitigate the SDN security issue of unauthorized access: securing distributed control [102], byzantine
resilient [103], authentication for resilience [104], PermOF [105], operation checkpoint [106], SE FloodLight [107], [108], AuthFlow [109].

switch and will be checked against the flow rule of the table.
If there is no match in the table for that particular packet,
switch will send a request to SDN controller to create a new
rule for that flow. Afterwards, SDN controller will respond
by sending a new forwarding rule for that flow. On the other
hand, if there is a match in the table for packet, the switch
will forward that packet according to the existing flow rules.
Therefore, packet passing the NAT gateway will move toward
the online services. In an alternative scenario, the switch will
mirror each received packet to the IDS. The IDS will then
analyze the packets to assess the occurrence of DoS attack.

If the packet comes under the category of DoS attack, the IDS
notifies the SDN controller about the attack. Furthermore,
SDN controller will send the blocking flow rule to the switch.
The switch will then mitigated the attack by removing all the
packets as per the new installed blocking rule.

AVANT GUARDA, a control and data plane communica-
tion based solution was proposed in [112]. It uses a migration
tool to limit the requests that were sent to the control plane.
The Migration tool was used to remove the TCP sessions that
failed at the data plane before sending any notification to the
control plane in TCP SYN flood attack. Network flexibility

VOLUME 12, 2024 56541



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 14. Summary of security solutions to mitigate the SDN security issue of malicious and compromised application; FortNOX [110], ROSEMARY [96],
LegoSDN [111].

can be improved by providing the solution of CPRecovery
in [113]. When an external attacker overcomes the NOS,
CPRecovery provides a continuous transition from failed
controllers to the backup. A defensive approach, based on
source address validation, to protect the system against the
IP Spoofing was proposed in [114], called VAVE. Protection
against the IP Spoofing can be provided by doing the traffic
analysis of SDN and dynamically updating the rule. If an
incoming packet is not matched against the rule of Openflow,
the source address can be validated by sending that Openflow
switch to the controller. And, if any type of spoofing is
detected, the traffic can be stopped from the source address
by installing the rules at the switch. VAVE can be used for
protection of the data layer against the DoS attack. In [57],
ident++ protocol based solution was proposed for the DoS
attack challenges produced by congestion in the network
management.

Users and the end host play the role of network
administrators in the implementation of network security
applications. SDN attacks can be overcome in the solution
by using the SDN characteristics. The possibility of a DoS
attack can be decreased by using the distributed control and
the dynamic flow table. In [115], an extended version of
the IEEE 802.1X-based solution, FlowNAC, was proposed
to solve the issue of SDN-related DoS attacks. Incoming
frames from the user can be categorized and evaluated using
the FlowNAC solution. In [116], a cloud-based solution,
CloudWatcher, was proposed to monitor the security of the
cloud SDN environment. DaMask is presented as a solution

for SDN-related DoS attacks [117]. DaMask is divided
into two subsections, DaMask-D and DaMask-M, and is
used for detection and mitigation purposes, respectively.
In DaMask-D, the dataset shift problem can be addressed
by using the graphical model of probabilistic interference.
Countermeasures for different attacks can be matched in
DaMask-M, and the new countermeasure can also be regular
black in it. The workflow of the solution DaMask is shown
in Fig. 17. By using a combination of a correlator and
monitor, a new solution was proposed by Chin et al., in [118],
for protection against a SYN flood attacks. The working
of correlator and the monitor are similar as the former is
used in DaMask-M and the latter in DaMask-D. Another
solution, based on the traffic flow algorithm, FlowTrApp,
was proposed in [119]. In FlowTrApp, the flow duration
and the flow rate were used to control the traffic flow.
The attacker was not blocked on the first attempt but was
instead blocked for sending malicious traffic that was not
matched with any traffic pattern. An IDS-based solution was
proposed by Hu et al. [120], in which network attacks can be
detected by using the event processing engine. The engine
is comprised of an event bus, channel, sub controller, and
hyper controller. Sub-controllers can be organized by the
hyper-controller, and any type of malicious traffic can be
detected and sent through the event bus and event channel.
Skowyra proposed a new solution, learning IDS, in [121].
It provides a response to malicious intents by changing the
network states. Server survival time can be extended in a
DoS attack by introducing the balancing method proposed by

56542 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 15. Summary of solutions to mitigate SDN security issues of DoS; AVANT-GUARD [112], CPRecovery [113],
VAVE [114],Delegating Network Security [57], FlowNAC [115], CloudWatcher [116], DaMask [117], Chin et al. [118],
FlowTrApp [119], Hu et al. [120] Learning IDS [121], Belyaev et al. [122], SHDA [123].

VOLUME 12, 2024 56543



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 15. (Continued.) Summary of solutions to mitigate SDN security issues of DoS; AVANT-GUARD [112], CPRecovery [113], VAVE [114],Delegating
Network Security [57], FlowNAC [115], CloudWatcher [116], DaMask [117], Chin et al. [118], FlowTrApp [119], Hu et al. [120] Learning IDS [121],
Belyaev et al. [122], SHDA [123].

FIGURE 16. Activity diagram showing the sequence of DoS attack on controllers.

Belyaev et al., in [122]. The routing table can be overcome
by a balancing algorithm whenever there is an attack on
the server. Traffic can be distributed by using the shortest
path route of the Bellman-Ford algorithm. A solution for
the HTTP-based DoS attack on the application layer was
proposed by SHDA in [123].

4) SYSTEM LEVEL SDN SECURITY
Different types of solutions have been proposed to securely
implement the SDN paradigm. A summary of the solutions
to mitigate the issue of ‘‘System level SDN Security’’ against
the different SDN layers is presented in Fig. 18. A Network
debugging based prototype solution was proposed in [124].
The solution provides root causes and bug identification using
event chain reconstruction. Network debugging and auditing
requirements can be supported by using this solution. Host
identity protocol and IPSec encapsulating security protocol

were combined to propose a new solution for OFHIP in [125].
As a benefit of OFHIP, secure mobility can be enabled,
and OpenFlow problems can be avoided. Mobility can be
supported between the networks by enabling the Openflow
switches in OFHIP and securely changing their IP addresses.
Mobile network-based SDN issues were solved by authors
in [126], in which the issues, threats, and attacks were
considered in solutions along with the OFHIP work. IP-based
attacks can be presented, analyzed, and detected by using
the architecture of secure control channels. A secure solution
was proposed in which the control channel was combined
with the mobile network to protect against spoofing,
eavesdropping, and replay attacks. The security enforcement
kernel FortNOX, along with the application development
framework-based solution FRESCO, was proposed in [127].
Design and the development of the security modules are the
core ideas behind the solution of FRESCO, which can be

56544 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 17. Detailed work flow of DaMask.

combined with the OpenFlow applications. Threats can be
detected and mitigated by deploying the reusable module
library. Solutions were presented to identify the different
environments in which the SDN was installed.

5) CONFIGURATION ISSUES
Three types of attacks have been introduced in the sub-section
of this threat category related to policy enforcement, lack
of authentication technique adoption, and lack of secure
provision. Different solutions have been proposed to solve
the issue of SDN configuration. The proposed solution was
further divided into five sections as follows, also depicted in
Fig. 19:

1) Detection of network errors
2) Real time Policy Checking
3) Language based resolution
4) Consistent Abstraction/Network View
5) Formal Verification Method

a: DETECTION OF NETWORK ERRORS
Application correctness can be checked by combining the
symbolic execution with modeling checks in a solution called
NICE [128]. This solution is used when a network state
reaches a conflicting position. A new mechanism, Flow
Checker, for the network errors was proposed in [129],
in which the reconfiguration of an intra-switch of flow
table can be tested by using the binary decision diagram.
Flover, proposed in [130], verifies flow policies usingmodulo
theories and assertion sets. The response time of the controller
can be improved by using batch mode with the SDN
controller Flover. Configuration problems in the network

can be detected by using a static analysis approach in
Anteater [131]. Verification of the data plane can be done
by using these solutions against the configuration issues. The
execution time of the corresponding system and the time
required to find the problems can range from seconds to
hours.

b: REAL TIME POLICY CHECKING
A new solution VeriFlow was proposed in [132], in which
the verification of flow rules can be made before they
reach any network state. Loops can be detected from
the path and the routing tables by modeling a graph in
VeriFlow. The main objective of using this solution is
to detect real-time network traffic, and the performance
can be checked within seconds. Real-time networking is a
collection of hardware and software devices that respond in
real time. The NetPlumber tool [133] can be used to check
the policies of real-time applications. The authors previous
work based on the header space analysis was improved in
NetPlumber to validate real-time updates using dependency
graphs. An SDN-based firewall was proposed in [134]. In this
proposal, the resolution algorithm and conflict detection can
be developed by applying the HSA methods. SDN firewalls
can be potentially bypassed by using the switches in the flow
entries. The flow space can be checked, and the flow rules
can be authorized by using the flow graph in the solution.
The flow path of the conflicting part can be blocked by
using the denying flow rule. A prototype of the solution
was implemented in the firewall application of the floodlight
controller. The major limitation of this solution is that it
only works on rewriting the actions of the flow. Violations

VOLUME 12, 2024 56545



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 18. Summary of solutions to mitigate the system level SDN security; debugger for SDN [124], OFHIP [125], Secure SDMN [126], FRESCO [127].

of the firewall policies can be solved by using the solution
of FlowGuard, proposed in [135] and [136], through which
the network flow paths can be checked when the updates
are performed. Violations related to the real time and the
automatic resolution was also supported in the solution of
FlowGuard. Five different strategies were used to achieve
the goal of policy checking: rejection of the flow, removal
of the flow, rejection can be updated, dependency breaking,
and blockage of packets. Gaps between the network and
the theoretical model can be linked by conducting further
deployment experiments.

c: LANGUAGE-BASED RESOLUTION
Conflicts of the policies resolved by designing northbound
API-based solution as proposed in Frenetic [137]. Network
switches were programmed using the centralized controller
methodology. Initially, the flow rules were installed in the
switches by using the instructions of the controller, and later,
the flow rules were changed to the policies at run time. Flow
rule-based policy was implemented in the NOX controller
in [138]. Access control in NOXwas enforced on the external
sources in the network isolation’s. Policy conflict resolution
was introduced between the control and application layers by
providing verification and validation at the controller level.
Policy conflicts were also avoided by simplifying the network
programming.

d: CONSISTENT ABSTRACTION/NETWORK VIEW
Uncertainty of the configuration issues related to SDN was
solved by discussing the abstraction for the flows and the
per-packet consistency in [139]. The purpose of using the
per-packet was that every packet would either use the new
policies or the old policies, but not both at the same time.
An overview of the per-packet consistency was described by
using the per-flow consistency. A layer-based solution for
policymanagement was proposed in [140]. The dependencies
of the intra-table were solved at the data layer, inter-
applications’ at the control layer, and inter or intra-flow
rules’ at the application layer. A huge set of dependencies
on the multiple layers was solved by dealing with the
corresponding flow rules. Scalability for large networks or
applications can be maintained by using conflict resolution
policies. A mis-configuration of the network state can be
detected by performing dedicated processing at the switch
level. In [141], a new solution was proposed for the network
view in which the performance of the SDN configuration was
not compromised. An architecture based on the shared data
was proposed by authors rather than using and implementing
the techniques of policy conflict resolution.

e: FORMAL VERIFICATION METHOD
Different solutions have been proposed under the category
of formal verification methods. The basic purpose is to

56546 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

FIGURE 19. Summary of solutions to mitigate configuration issues related to security threats; NICE [128],
FlowChecker [129], Flover [130], Anteater [131], Veriflow [132], NetPlumber [133], Security Enhanced Firewall [134],
FlowGuard [135], [136], Frenetic [137], Flow based policy [138], Consistent updates [139], LPM [140], Shablack Data
Store [141], Splendid Isolation [142], Verificare [143], Machine Verified SDN [144], VeriCon [23].

VOLUME 12, 2024 56547



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

secure and save the control plane from the operating
environment. A solution,’splendid isolation’ was proposed
by authors in [142]. Its basic purpose is to verify the
traffic that flows around the network slices. Network slices
can be defined by using the programming abstraction. The
work used FlowViSor controller as a transparent proxy
between the switches and the controller, but the solution was
unable to provide security or proof of correctness for the
Flowvisor. A verification tool-based solution, Verificare, was
proposed by authors in [143]. Verificare is a combination
of verification and the development of network correctness,
convergence, and network-related mobility characteristics.
An operational model of an openflow-based solution was
proposed by the authors in [144]. The run-time system
and the verified compiler were developed by using the
solution, and the first machine-verified controller for the
SDN was also implemented by using the method in [144].
Infinite state safety for the SDN program was verified
by using the VeriCon solution in [23]. The main topic
of the research is verification issues and network state
consistency. Detection and verification tools were developed
in the real-time network. The future research is based on
designing these detection and verification tools for SDN
deployment instead of using them for the OpenFlow-based
implementation.

V. DISCUSSION AND OPEN RESEARCH CHALLENGES
A. DISCUSSION

• As shown in Table 1, we provided a consolidated
overview of SDN architecture, classification of con-
trollers, comparison of controllers, and open flow
visualizations, along with their security attacks and
proposed defense mechanisms.

• Presented a qualitative comparison among different
SDN controllers based on different features, i.e.,
programming language, developer, open-flow version,
architecture. reliability, scalability, consistency, com-
piler, API, and library. So, a researcher or reader has
the information about controllers in one place instead
of searching it on a browser, which is time-consuming.
There are dozens of controllers that can be used, but
there is no best controller; it all depends on the user
requirements. The recommendation for the beginner is
to use the POX and floodlight that will give them an
idea of Openflow-SDN. ONOS and ODL have the latest
features. Ryu can be used for prototyping because it
is very straightforward and easy to program. ONOS
can be used if anyone wants to get closer to telco
deployments, which are a bit more complex but more
realistic. OpenDaylight is too complex as a first step,
as its architecture is too generalized, and it is difficult
to model new modules if anyone is new to SDN.

• We have highlighted security vulnerabilities in Fig. 11
and their security solutions in Fig. 12 for the application,
control, and data plane of the SDN. The most vulnerable
component in SDN architecture is the control plane. As a

result, the vulnerability of controllers has already been
explored and studied from various perspectives, includ-
ing controller protection from applications, controller
scalability and availability, resilience, and security from
DoS and DDoS attacks. Although security programs are
designed and introduced, the security of the applica-
tionÂ itself is a challenge. Furthermore, the optional use
of TLS and DTLS in Openflow violates connectivity
confidentiality between controllers and switches. With
the gradual implementation of SDN technologies, it is
very likely that new security threats will arise.

B. OPEN RESEARCH CHALLENGES
There are still potential and vital research areas that need
attention before SDN can be commercially deployed. Some
of the related research challenges are:

1) SDN STANDARDIZATION
Openflow is the actual source on which the SDN is
implemented. Another SDN framework was released by
IETF [145]. Network Functions Virtualization (NFV) was
proposed to the ETSI Industry Specification Group (ISG) for
NFV, which is highly complementary to SDN. A compre-
hensive comparison must be conducted among the different
SDN implementations. Different types of projects use the
same method to solve the same problem in the control
layer, but a reliable solution has not yet been implemented.
Therefore, different working groups, like the ONF and CSA
alliance, should work together to design a standard protocol
that will work for both the southbound and northbound
interfaces.

2) ENHANCEMENT OF COMMUNICATION
TTLS is optional while its version is still not specified. It is
not available for the northbound interface and is demanded
to be explored. The lack of TLS usage may allow an attacker
to attack the controller and launch various types of attacks.
TLS can also be used for mutual authentication to validate
each component’s identity and prevent attackers from linking
switches and rogue controllers.

3) SDN IMPLEMENTATION
Network security is one of the critical challenges related to
SDN that requires serious attention. The integrity of data
flow is not safe between SDN controllers and switches,
such as an attacker can corrupt the network by acting as
an SDN controller. Therefore, new strategies need to be
introduced to provide security in the SDN environment.
Moreover, we need to implement a standard programming
language that will work for all instead of using different
programming languages. One more drawback related to the
SDN architecture is the storage and overhead, as a longer
header is used for matching in the Openflow version 1.0-1.6.
The performance of the SDN is also affected when the proxy
is used excessively between the controller and the switching
devices.

56548 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

4) MACHINE LEARNING - AN INSTRUMENT TO AUGMENT
SDN SECURITY
Recently, machine learning (ML) and data mining tech-
niques have played an essential role in the detection and
classification of intrusion attacks. Several machine learning
studies have been conducted in different domains [30], [36].
However, only a few of these are implemented on SDN.
There are many issues that can influence machine learning
models’ performance, such as the feature selection methods,
the data set, etc. However, there is no related work that
performs a systematic analysis of these machine-learning
techniques. It is important to perform a methodical analysis
of the popular approaches for detecting attacks in SDN
and provide bench-marking analysis of traditional machine-
learning-based approaches. Also, it is needed to provide a
feature analysis of the input feature space of the dataset and
recommendations for a reliable intrusion detection system.

5) SDN INTEGRITY
There are two bridge layers: the northbound and southbound
interfaces. The basic responsibilities of the northbound
inter-faces are relatively unclear, and it is also the least
explored part of the SDN architecture. Learning from
the southbound interface development, it is important to
resolve the issues related to the communication between
the controller and network applications. There are different
APIs that are used in controller implementation. Therefore,
desirable flexibility can be achieved by implementing them
within the software system.

VI. CONCLUSION
Software-defined networking, the new revolutionary
network-working technology, has emerged as a new paradigm
for managing heterogeneous networks ranging from small
homes to enterprises’ networks. The logically centralized and
distributed control plane and programmability offer a great
opportunity to improve network security by implementing
new mechanisms to detect and mitigate the various threats
and also enable security as a service in the SDN paradigm.
However, there are boundless security problems with each
layer of SDN. To acquaint readers with the knowledgeable
insight of controllers and to present a detailed picture
of the security challenges of SDN and security solutions
presented till date, this survey endeavors to fill in the
research gaps as presented in Table 1 and provide all in
one package. We also highlighted the SDN architecture,
controllers, security threats, and different types of attacks
present at different layers of the SDN. In addition, we have
also presented some research solutions to address some of
the security issues introduced by the SDN, i.e., how potential
damage from amalicious application can be controlled.Work
on these issues is being encouraged by the increasing security
focus of industry-sponsored standardization and research
groups. Finally, the paper concludes with a few open research
challenges related to the SDN implementation, deployment,
and standardization.

ACKNOWLEDGMENT
The authors would like to thank the National University of
Sciences and Technology for providing the adequate facilities
to carry out this research.

REFERENCES
[1] F. Bannour, S. Souihi, andA.Mellouk, ‘‘Distributed SDN control: Survey,

taxonomy, and challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 333–354, 1st Quart., 2018.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[3] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, and N. Karri, ‘‘Ananta:
Cloud scale load balancing,’’ inProc. ACMSIGCOMMConf. SIGCOMM,
Aug. 2013, pp. 207–218.

[4] S. Natarajan, A. Ramaiah, and M. Mathen, ‘‘A software defined cloud-
gateway automation system using OpenFlow,’’ in Proc. IEEE 2nd Int.
Conf. Cloud Netw. (CloudNet), Nov. 2013, pp. 219–226.

[5] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, and J. Zolla, ‘‘B4: Experience with a
globally-deployed software defined WAN,’’ ACM SIGCOMM Comput.
Commun. Rev., vol. 43, no. 4, pp. 3–14, 2013.

[6] J.M. Smith, D. J. Farber, C. A. Gunter, S.M. Nettles, D. C. Feldmeier, and
W. D. Sincoskie, ‘‘SwitchWare: Accelerating network evolution,’’ CIS
Dept., Univ. Pennsylvania, Philadelphia, PA, USA, White Paper, 1996.

[7] O. Filip. (2017). The BIRD Internet RoutingDaemon. [Online]. Available:
http://bird.network.cz/

[8] R. Morris, E. Kohler, J. Jannotti, andM. F. Kaashoek, ‘‘The click modular
router,’’ ACM SIGOPS Operating Syst. Rev., vol. 33, no. 5, pp. 217–231,
Dec. 1999.

[9] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. V. D. Merwe, ‘‘Design and implementation of a routing control
platform,’’ in Proc. 2nd Int. Conf. Netw. Syst. Design Implement., vol. 2,
2005, pp. 15–28.

[10] V. Varadharajan, K. Karmakar, U. Tupakula, and M. Hitchens, ‘‘A policy-
based security architecture for software-defined networks,’’ IEEE Trans.
Inf. Forensics Security, vol. 14, no. 4, pp. 897–912, Apr. 2019.

[11] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, ‘‘Survey on
SDN based network intrusion detection system using machine learning
approaches,’’ Peer-to-Peer Netw. Appl., vol. 12, no. 2, pp. 493–501,
Mar. 2019.

[12] D. S. Rana, S. A. Dhondiyal, and S. K. Chamoli, ‘‘Software defined
networking (SDN) challenges, issues and solution,’’ Int. J. Comput. Sci.
Eng., vol. 7, no. 1, pp. 884–889, Jan. 2019.

[13] M. Alsaeedi, M.M.Mohamad, and A. A. Al-Roubaiey, ‘‘Toward adaptive
and scalable OpenFlow-SDN flow control: A survey,’’ IEEE Access,
vol. 7, pp. 107346–107379, 2019.

[14] A. A. Abbasi, A. Abbasi, S. Shamshirband, A. T. Chronopoulos,
V. Persico, and A. Pescapè, ‘‘Software-defined cloud computing: A sys-
tematic review on latest trends and developments,’’ IEEE Access, vol. 7,
pp. 93294–93314, 2019.

[15] R.-H. Hwang, V.-L. Nguyen, and P.-C. Lin, ‘‘StateFit: A security
framework for SDN programmable data plane model,’’ in Proc. 15th
Int. Symp. Pervasive Syst., Algorithms Netw. (I-SPAN), Oct. 2018,
pp. 168–173.

[16] Y. Yu, X. Li, X. Leng, L. Song, K. Bu, Y. Chen, J. Yang, L. Zhang,
K. Cheng, andX. Xiao, ‘‘Fault management in software-defined network-
ing: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 349–392,
1st Quart., 2019.

[17] L. Zhu, M. M. Karim, K. Sharif, F. Li, X. Du, and M. Guizani,
‘‘SDN controllers: Benchmarking & performance evaluation,’’ 2019,
arXiv:1902.04491.

[18] P. Raghav and A. Dua, ‘‘Enhancing flow security in Ryu controller
through set operations,’’ in Proc. 3rd IEEE Int. Conf. Comput. Commun.
(ICCC), Dec. 2017, pp. 1265–1269.

[19] I. H. Abdulqadder, D. Zou, I. T. Aziz, and B. Yuan, ‘‘Modeling
software defined security using multi-level security mechanism for SDN
environment,’’ in Proc. IEEE 17th Int. Conf. Commun. Technol. (ICCT),
Oct. 2017, pp. 1342–1346.

VOLUME 12, 2024 56549



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

[20] K. Raghunath and P. Krishnan, ‘‘Towards a secure SDN architecture,’’
in Proc. 9th Int. Conf. Comput., Commun. Netw. Technol. (ICCCNT),
Jul. 2018, pp. 1–7.

[21] R. Amin, M. Reisslein, and N. Shah, ‘‘Hybrid SDN networks: A survey
of existing approaches,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp. 3259–3306, 4th Quart., 2018.

[22] M. Z. Abdullah, N. A. Al-awad, and F. W. Hussein, ‘‘Performance
comparison and evaluation of different software defined networks
controllers,’’ Int. J. Comput. Netw. Technol., vol. 6, no. 2, pp. 36–41,
May 2018.

[23] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky, ‘‘VeriCon: Towards verifying controller
programs in software-defined networks,’’ in Proc. 35th ACM SIGPLAN
Conf. Program. Lang., Design Implement., 2014, pp. 282–293.

[24] Z. Zhang, H. Li, S. Dong, and L. Hu, ‘‘Software defined networking
(SDN) research review,’’ in Proc. Int. Conf. Mech., Electron., Control
Autom. Eng., 2018, pp. 291–300.

[25] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, ‘‘A survey on
software-defined networking,’’ IEEE Commun. Surveys Tuts., vol. 17,
no. 1, pp. 27–51, 1st Quart., 2015.

[26] L. Wang and D. Wu, ‘‘SecControl: Bridging the gap between security
tools and SDN controllers,’’ in Proc. Int. Conf. Secur. Privacy Commun.
Syst., 2017, pp. 11–31.

[27] S. H. Yeganeh and Y. Ganjali, ‘‘Beehive: Simple distributed programming
in software-defined networks,’’ in Proc. Symp. SDN Res., Mar. 2016,
pp. 1–4.

[28] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, ‘‘Software defined
networking: State of the art and research challenges,’’ Comput. Netw.,
vol. 72, pp. 74–98, Oct. 2014.

[29] I. Alsmadi andD. Xu, ‘‘Security of software defined networks: A survey,’’
Comput. Secur., vol. 53, no. 1, pp. 79–108, Sep. 2015.

[30] S. Dev, B. Wen, Y. H. Lee, and S. Winkler, ‘‘Ground-based image
analysis: A tutorial on machine-learning techniques and applications,’’
IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 79–93, Jun. 2016.

[31] C. Bouras, A. Kollia, and A. Papazois, ‘‘Teaching 5G networks using the
ONOS SDN controller,’’ in Proc. 9th Int. Conf. Ubiquitous Future Netw.
(ICUFN), Jul. 2017, pp. 312–317.

[32] S. Scott-Hayward, S. Natarajan, and S. Sezer, ‘‘A survey of security in
software defined networks,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 623–654, 1st Quart., 2016.

[33] W. Li,W.Meng, and L. F. Kwok, ‘‘A survey on OpenFlow-based software
defined networks: Security challenges and countermeasures,’’ J. Netw.
Comput. Appl., vol. 68, pp. 126–139, Jun. 2016.

[34] K. Slavov, D. Migault, and M. Pourzandi, ‘‘Identifying and addressing
the vulnerabilities and security issues of SDN,’’ Ericsson Technol. Rev.,
vol. 92, no. 7, pp. 1–12, 2015.

[35] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, ‘‘Security in software
defined networks: A survey,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4,
pp. 2317–2346, 4th Quart., 2015.

[36] C. S. Nwosu, S. Dev, P. Bhardwaj, B. Veeravalli, and D. John, ‘‘Predicting
stroke from electronic health records,’’ inProc. 41st Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc. (EMBC), Jul. 2019, pp. 5704–5707.

[37] A. Feghali, R. Kilany, and M. Chamoun, ‘‘SDN security problems and
solutions analysis,’’ in Proc. Int. Conf. Protocol Eng. (ICPE) Int. Conf.
New Technol. Distrib. Syst. (NTDS), Jul. 2015, pp. 1–5.

[38] Q. Yan, F. R. Yu, Q. Gong, and J. Li, ‘‘Software-defined networking
(SDN) and distributed denial of service (DDoS) attacks in cloud comput-
ing environments: A survey, some research issues, and challenges,’’ IEEE
Commun. Surveys Tuts., vol. 18, no. 1, pp. 602–622, 1st Quart., 2016.

[39] D. Chourishi, A. Miri, M. Milic, and S. Ismaeel, ‘‘Role-based multiple
controllers for load balancing and security in SDN,’’ in Proc. IEEE
Canada Int. Humanitarian Technol. Conf. (IHTC), May 2015, pp. 1–4.

[40] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, ‘‘Software-defined networking: A comprehensive
survey,’’ 2014, arXiv:1406.0440.

[41] B. Lantz, B. Heller, and N. McKeown, ‘‘A network in a laptop:
Rapid prototyping for software-defined networks,’’ in Proc. 9th ACM
SIGCOMM Workshop Hot Topics Netw., Oct. 2010, p. 19.

[42] Principles and Practices for Securing Software Defined Networks, Open
Netw. Found., Palo Alto, CA, USA, 2015.

[43] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, ‘‘A roadmap for
traffic engineering in SDN-OpenFlow networks,’’Comput. Netw., vol. 71,
pp. 1–30, Oct. 2014.

[44] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, ‘‘A survey of software-defined networking: Past, present,
and future of programmable networks,’’ IEEE Commun. Surveys Tuts.,
vol. 16, no. 3, pp. 1617–1634, 3rd Quart., 2014.

[45] A. Lara, A. Kolasani, and B. Ramamurthy, ‘‘Network innovation using
OpenFlow: A survey,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 1,
pp. 493–512, 1st Quart., 2014.

[46] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
‘‘Advanced study of SDN/OpenFlow controllers,’’ in Proc. 9th Central
Eastern Eur. Softw. Eng. Conf. Russia, Oct. 2013, p. 1.

[47] Ryu NOS: SDN Controllers. Accessed: Nov. 19, 2013. [Online].
Available: https://osrg.github.io/ryu/

[48] OpenFlow Controller: SNAC (Simple Network Access Control).
Accessed: Sep. 2011. [Online]. Available: https://groups.geni.net/geni/
raw-attachment/wiki/GEC9DemoSummary/SNAC-poster-gec9-final.pdf

[49] F. Botelho, A. Bessani, F. M. V. Ramos, and P. Ferreira, ‘‘SMaRtLight:
A practical fault-tolerant SDN controller,’’ 2014, arXiv:1407.6062.

[50] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett,
‘‘SDX: A software defined Internet exchange,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 4, pp. 551–562, 2014.

[51] Thomas. (2012). Trema: SDN Controller. [Online]. Available:
https://trema.github.io/trema/

[52] B. T. de Oliveira, C. B. Margi, and L. B. Gabriel, ‘‘TinySDN: Enabling
multiple controllers for software-defined wireless sensor networks,’’ in
Proc. IEEE Latin-America Conf. Commun. (LATINCOM), Nov. 2014,
pp. 1229–1237.

[53] S. Racherla, D. Cain, S. Irwin, P. Ljungstrøm, P. Patil, and A.M. Tarenzio,
Implementing IBM Software Defined Network for Virtual Environments.
Brazil: IBM BlackBooks, 2014.

[54] M. Monaco, O. Michel, and E. Keller, ‘‘Applying operating system
principles to SDN controller design,’’ in Proc. 12th ACM Workshop Hot
Topics Netw., Nov. 2013, pp. 1–7.

[55] ZeroSDN: SDNController. [Online]. Available: https://zerosdn.github.io/
[56] S. Shin and G. Gu, ‘‘Attacking software-defined networks: A first

feasibility study,’’ in Proc. 2nd ACM SIGCOMM Workshop Hot Topics
Softw. Defined Netw., Aug. 2013, pp. 165–166.

[57] J. Naous, R. Stutsman, D. Mazieres, N. McKeown, and N. Zeldovich,
‘‘Delegating network security with more information,’’ in Proc. 1st ACM
Workshop Res. Enterprise Netw., Aug. 2009, pp. 19–26.

[58] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, ‘‘Flowvisor: A network virtualization
layer,’’ OpenFlow Switch Consortium, vol. 1, p. 132, Oct. 2009.

[59] V. T. Costa and L. H. M. K. Costa, ‘‘Vulnerability study of FlowVisor-
based virtualized network environments,’’ in Proc. 2nd Workshop
Network Virtualization Intelligence Future Internet, Rio de Janeiro,
Brazil, 2013.

[60] Hewlett Packard Company. (2014). SDN Dev Center: Unlock Network
Innovation. [Online]. Available: https://www.hp.com/go/ sdndevcenter

[61] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao, ‘‘Are we ready for
SDN? Implementation challenges for software-defined networks,’’ IEEE
Commun. Mag., vol. 51, no. 7, pp. 36–43, Jul. 2013.

[62] K. Benton, L. J. Camp, and C. Small, ‘‘OpenFlow vulnerability
assessment,’’ in Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw.
Defined Netw., 2013, pp. 151–152.

[63] D. Erickson, ‘‘The Beacon OpenFlow controller,’’ in Proc. 2nd ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw., Aug. 2013,
pp. 13–18.

[64] K. Phemius, M. Bouet, and J. Leguay, ‘‘DISCO: Distributed multi-
domain SDN controllers,’’ in Proc. IEEE Netw. Operations Manage.
Symp. (NOMS), May 2014, pp. 1–4.

[65] DC-Fabric Controller. Accessed: 2019. [Online]. Available:
https://wiki.openstack.org/wiki/DCFabric-neutron-plugin

[66] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, ‘‘Scalable flow-based
networking with DIFANE,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 4, pp. 351–362, Aug. 2010.

[67] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, ‘‘DevoFlow: Scaling flow management for high-
performance networks,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 41, no. 4, pp. 254–265, 2011.

56550 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

[68] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. R. Kompella,
‘‘ElastiCon; An elastic distributed SDN controller,’’ in Proc. ACM/IEEE
Symp. Architectures Netw. Commun. Syst. (ANCS), Oct. 2014, pp. 17–27.

[69] V. B. Harkal and A. A. Deshmukh, ‘‘Software defined networking with
floodlight controller,’’ Int. J. Comput. Appl., vol. 975, p. 8887, Jul. 2016.

[70] J. Bailey and S. Stuart, ‘‘Faucet: Deploying SDN in the enterprise,’’
Queue, vol. 14, no. 5, pp. 54–68, Oct. 2016.

[71] S. Matsumoto, S. Hitz, and A. Perrig, ‘‘Fleet: Defending SDNs from
malicious administrators,’’ in Proc. 3rd Workshop Hot Topics Softw.
Defined Netw., Aug. 2014, pp. 103–108.

[72] FlowVisor: SDN Controller. Accessed: 2009. [Online]. Available:
https://searchnetworking.techtarget.com/definit

[73] Virtual Application Networks SDN Controller, Hewlett Packard,
Palo Alto, CA, USA, 2016.

[74] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya,
Y. Fainman, G. Papen, and A. Vahdat, ‘‘Helios: A hybrid electrical/optical
switch architecture for modular data centers,’’ ACM SIGCOMM Comput.
Commun. Rev., vol. 41, no. 4, pp. 339–350, 2011.

[75] A. Tootoonchian and Y. Ganjali, ‘‘HyperFlow: A distributed control plane
for OpenFlow,’’ in Proc. Internet Netw. Manage. Conf. Res. Enterprise
Netw., 2010, pp. 1–3.

[76] (2013). Jaxon. [Online]. Available: http://jaxon.onuos.org/
[77] S. H. Yeganeh and Y. Ganjali, ‘‘Kandoo: A framework for efficient and

scalable offloading of control applications,’’ in Proc. 1st Workshop Hot
Topics Softw. Defined Netw., Aug. 2012, pp. 19–24.

[78] LOOM: SDN Controller. Accessed: 2016. [Online]. Available:
https://wiki.sdn.ieee.org/display/sdn/LOOM

[79] A. Vidal. (2015). LibFluid: SDN Controller. [Online]. Available:
https://wiki.sdn.ieee.org/display/sdn/libfluid

[80] A. Voellmy and J. Wang, ‘‘Scalable software defined network con-
trollers,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4,
pp. 289–290, Sep. 2012.

[81] OpenMul: SDN Controller. Accessed: 2015. [Online]. Available:
http://www.openmul.org/

[82] R. Narayanan, S. Kotha, G. Lin, A. Khan, S. Rizvi, W. Javed, H. Khan,
and S. A. Khayam, ‘‘Macroflows andmicroflows: Enabling rapid network
innovation through a split SDN data plane,’’ inProc. Eur. Workshop Softw.
Defined Netw., Oct. 2012, pp. 79–84.

[83] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang,
‘‘Meridian: An SDN platform for cloud network services,’’ IEEE
Commun. Mag., vol. 51, no. 2, pp. 120–127, Feb. 2013.

[84] Node Flow: SDN Controller. Accessed: 2019. [Online]. Available:
https://www.oreilly.com/library/view/software-defined-networking-
with/9781783984282/a6393111-31f5-4de6-bc44-b926ac108e44.xhtml

[85] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, ‘‘NOX: Towards an operating system for networks,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110,
Jul. 2008.

[86] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, ‘‘Onix:
A distributed control platform for large-scale production networks,’’ in
Proc. OSDI, vol. 10, 2010, pp. 1–6.

[87] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. OConnor, P. Radoslavov,W. Snow, and G. Parulkar, ‘‘ONOS:
Towards an open, distributed SDN OS,’’ in Proc. ACM 3rd Workshop Hot
Topics Softw. Defined Netw., 2014, pp. 1–6.

[88] D. M. F. Mattos, N. C. Fernandes, V. T. da Costa, L. P. Cardoso,
M. E. M. Campista, L. H. M. K. Costa, and O. C. M. B. Duarte, ‘‘OMNI:
OpenFlow Management infrastructure,’’ in Proc. Int. Conf. Netw. Future,
Nov. 2011, pp. 52–56.

[89] Open Contrail: SDN Controller. Accessed: 2019. [Online]. Available:
https://www.sdxcentral.com/networking/sdn/definitions/juniper-
contrail-controller/

[90] OVS: SDN Controller. Accessed: 2014. [Online]. Available:
https://www.openvswitch.org

[91] J. Medved, R. Varga, A. Tkacik, and K. Gray, ‘‘OpenDaylight: Towards
a model-driven SDN controller architecture,’’ in Proc. IEEE Int. Symp.
World Wireless, Mobile Multimedia Netw., Jun. 2014, pp. 1–6.

[92] B. Lee, S. H. Park, J. Shin, and S. Yang, ‘‘IRIS: The OpenFlow-
based recursive SDN controller,’’ in Proc. 16th Int. Conf. Adv. Commun.
Technol., Feb. 2014, pp. 1227–1231.

[93] S. Li, D. Hu, W. Fang, S. Ma, C. Chen, H. Huang, and Z. Zhu, ‘‘Protocol
oblivious forwarding (POF): Software-defined networkingwith enhanced
programmability,’’ IEEE Netw., vol. 31, no. 2, pp. 58–66, Mar. 2017.

[94] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
‘‘Participatory networking: An API for application control of SDNs,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 327–338,
Oct. 2013.

[95] S. Kaur, J. Singh, and N. S. Ghumman, ‘‘Network programmability using
POX controller,’’ in Proc. ICCCS Int. Conf. Commun., Comput. Syst.,
vol. 138, 2014, p. 70.

[96] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, ‘‘Rosemary: A robust, secure, and high-
performance network operating system,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Nov. 2014, pp. 78–89.

[97] A. Wang, X. Mei, J. Croft, M. Caesar, and B. Godfrey, ‘‘Ravel:
A database-defined network,’’ in Proc. Symp. SDN Res., Mar. 2016, p. 5.

[98] Ryu: SDN Controller. Accessed: 2015. [Online]. Available:
https://osrg.github.io/ryu/

[99] A. Shalimov, S. Nizovtsev, D. Morkovnik, and R. Smeliansky, ‘‘The
Runos OpenFlow controller,’’ in Proc. 4th Eur. Workshop Softw. Defined
Netw., Sep. 2015, pp. 103–104.

[100] N. Katta, H. Zhang, M. Freedman, and J. Rexford, ‘‘Ravana: Controller
fault-tolerance in software-defined networking,’’ in Proc. 1st ACM
SIGCOMM Symp. Softw. Defined Netw. Res., Jun. 2015, p. 4.

[101] A. Vidal, F. Verdi, E. L. Fernandes, C. E. Rothenberg, andM. R. Salvador,
‘‘Building upon RouteFlow: A SDN development experience,’’ in
Proc. 31st Simpsio Brasileiro de Blackes Computadores (SBRC), 2013,
pp. 879–892.

[102] O.M. Othman andK. Okamura, ‘‘Securing distributed control of software
defined networks,’’ Int. J. Comput. Sci. Netw. Secur., vol. 13, no. 9,
pp. 5–14, 2013.

[103] H. Li, P. Li, S. Guo, and S. Yu, ‘‘Byzantine-resilient secure software-
defined networks with multiple controllers,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2014, pp. 695–700.

[104] D. Yu, A. W. Moore, C. Hall, and R. Anderson, ‘‘Authentication for
resilience: The case of SDN,’’ in Proc. Int. Workshop Secur. Protocols,
2013, pp. 39–44.

[105] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang, ‘‘Towards a secure
controller platform for OpenFlow applications,’’ in Proc. 2nd ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw., Aug. 2013,
pp. 171–172.

[106] S. Scott-Hayward, C. Kane, and S. Sezer, ‘‘OperationCheckpoint: SDN
application control,’’ in Proc. IEEE 22nd Int. Conf. Netw. Protocols,
Oct. 2014, pp. 618–623.

[107] OpenFlowSec. Security Enhanced Floodlight. Accessed: 2014. [Online].
Available: https://www.openflowsec.org

[108] P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran,
‘‘Securing the software defined network control layer,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2015, pp. 1–15.

[109] D. M. Ferrazani Mattos and O. C. M. B. Duarte, ‘‘AuthFlow: Authenti-
cation and access control mechanism for software defined networking,’’
Ann. Telecommun., vol. 71, nos. 11–12, pp. 607–615, Dec. 2016.

[110] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu,
‘‘A security enforcement kernel for OpenFlow networks,’’ in Proc. 1st
Workshop Hot Topics Softw. Defined Netw., Aug. 2012, pp. 121–126.

[111] B. Chandrasekaran and T. Benson, ‘‘Tolerating SDN application failures
with LegoSDN,’’ in Proc. 13th ACM Workshop Hot Topics Netw.,
Oct. 2014, p. 22.

[112] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, ‘‘AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined
networks,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), 2013, pp. 413–424.

[113] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, ‘‘A replication
component for resilient OpenFlow-based networking,’’ in Proc. IEEE
Netw. Operations Manage. Symp., Apr. 2012, pp. 933–939.

[114] G. Yao, J. Bi, and P. Xiao, ‘‘Source address validation solution with
OpenFlow/NOX architecture,’’ in Proc. 19th IEEE Int. Conf. Netw.
Protocols, Oct. 2011, pp. 7–12.

[115] J. Matias, J. Garay, A. Mendiola, N. Toledo, and E. Jacob, ‘‘FlowNAC:
Flow-based network access control,’’ in Proc. 3rd Eur. Workshop Softw.
Defined Netw., Sep. 2014, pp. 79–84.

[116] S. Shin and G. Gu, ‘‘CloudWatcher: Network security monitoring using
OpenFlow in dynamic clouds? Networks (or: How to provide security
monitoring as a service in clouds?),’’ in Proc. 20th IEEE Int. Conf. Netw.
Protocols (ICNP), Oct. 2012, pp. 1–6.

[117] B. Wang, Y. Zheng, and W. Lou, ‘‘DDoS attack protection in the era of
cloud computing,’’ in Proc. Int. Conf. Comput. Netw., 2015, pp. 659–664.

VOLUME 12, 2024 56551



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

[118] T. Chin, X. Mountrouidou, X. Li, and K. Xiong, ‘‘An SDN-supported
collaborative approach for DDoS flooding detection and containment,’’
in Proc. IEEE Mil. Commun. Conf. (MILCOM), Oct. 2015, pp. 659–664.

[119] C. Buragohain and N. Medhi, ‘‘FlowTrApp: An SDN based architecture
for DDoS attack detection and mitigation in data centers,’’ in Proc. 3rd
Int. Conf. Signal Process. Integr. Netw. (SPIN), Feb. 2016, pp. 519–524.

[120] Y.-L. Hu,W.-B. Su, L.-Y.Wu, Y. Huang, and S.-Y. Kuo, ‘‘Design of event-
based intrusion detection system on OpenFlow network,’’ in Proc. 43rd
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2013,
pp. 1–2.

[121] R. Skowyra, S. Bahargam, and A. Bestavros, ‘‘Software-defined IDS
for securing embedded mobile devices,’’ in Proc. IEEE High Perform.
Extreme Comput. Conf. (HPEC), Sep. 2013, pp. 1–7.

[122] M. Belyaev and S. Gaivoronski, ‘‘Towards load balancing in SDN-
networks,’’ in Proc. Int. Sci. Technol. Conf., Modern Netw. Technol.
(MoNeTeC), 2014, pp. 1–6.

[123] K. Hong, Y. Kim, H. Choi, and J. Park, ‘‘SDN-assisted slow HTTP DDoS
attack defensemethod,’’ IEEECommun. Lett., vol. 22, no. 4, pp. 688–691,
Apr. 2018.

[124] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
‘‘Where is the debugger for my software-defined network?’’ in Proc. 1st
Workshop Hot Topics Softw. Defined Netw., Aug. 2012, pp. 55–60.

[125] S. Namal, I. Ahmad, A. Gurtov, and M. Ylianttila, ‘‘Enabling secure
mobility with OpenFlow,’’ in Proc. IEEE SDN Future Netw. Services
(SDN4FNS), Nov. 2013, pp. 1–5.

[126] M. Liyanage, M. Ylianttila, and A. Gurtov, ‘‘Securing the control channel
of software-defined mobile networks,’’ in Proc. IEEE Int. Symp. World
Wireless, Mobile Multimedia Netw., Jun. 2014, pp. 1–6.

[127] S. W. Shin, P. Porras, V. Yegneswara, M. Fong, G. Gu, and M. Tyson,
‘‘FRESCO: Modular composable security services for software-defined
networks,’’ in Proc. 20th Annu. Netw. Distrib. Syst. Secur. Symp., 2013,
pp. 1–16.

[128] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, ‘‘A NICE
way to test OpenFlow applications,’’ in Proc. Symp. Netw. Syst. Design
Implement., 2012, p. 10.

[129] E. Al-Shaer and S. Al-Haj, ‘‘FlowChecker: Configuration analysis and
verification of federated OpenFlow infrastructures,’’ in Proc. 3rd ACM
Workshop Assurable Usable Secur. Configuration, Oct. 2010, pp. 37–44.

[130] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, ‘‘Model checking
invariant security properties in OpenFlow,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2013, pp. 1974–1979.

[131] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and
S. T. King, ‘‘Debugging the data plane with anteater,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, pp. 290–301, Oct. 2011.

[132] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, ‘‘VeriFlow: Verifying
network wide invariants in real time,’’ ACM SIGCOMM Comput.
Commun. Rev., vol. 42, no. 4, pp. 467–472, 2012.

[133] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, ‘‘Real time network policy checking using header space
analysis,’’ in Proc. 10th USENIX Symp. Netw. Syst. Design Implement.,
2013, pp. 99–112.

[134] J. Wang, Y. Wang, H. Hu, Q. Sun, H. Shi, and L. Zeng, ‘‘Towards a
security-enhanced firewall application for OpenFlow networks,’’ in Proc.
Int. Symp. Cyberspace Saf. Secur., 2013, pp. 92–103.

[135] H. Hu, G. J. Ahn, W. Han, and Z. Zhao, ‘‘Towards a reliable SDN
firewall,’’ in Proc. Open Netw. Summit, Santa Clara, CA, USA, 2014.

[136] H.Hu,W.Han, G.-J. Ahn, and Z. Zhao, ‘‘FLOWGUARD:Building robust
firewalls for software-defined networks,’’ in Proc. 3rd Workshop Hot
Topics Softw. Defined Netw., Aug. 2014, pp. 97–102.

[137] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, ‘‘Frenetic: A network programming language,’’
ACM SIGPLAN Notices, vol. 46, no. 9, pp. 279–291, 2011.

[138] T. Hinrichs, N. Gude, M. Casado, J. Mitchell, and S. Shenker,
‘‘Expressing and enforcing flow based network security policies,’’ in
Proc. ACM SIGPlan, vol. 9, 2008.

[139] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, ‘‘Consistent updates
for software-defined networks: Change you can believe in!’’ in Proc. 10th
ACM Workshop Hot Topics Netw., Nov. 2011, pp. 1–6.

[140] W. Han, H. Hu, and G. J. Ahn, ‘‘LPM: Layeblack policy management
for software defined networks,’’ in Data and Applications Security and
Privacy. CA, USA: USENIX Association, 2014, pp. 356–363.

[141] F. A. Botelho, F. M. V. Ramos, D. Kreutz, and A. N. Bessani, ‘‘On the
feasibility of a consistent and fault-tolerant data store for SDNs,’’ in Proc.
2nd Eur. Workshop Softw. Defined Netw., Oct. 2013, pp. 38–43.

[142] S. Gutz, A. Story, C. Schlesinger, and N. Foster, ‘‘Splendid isolation:
A slice abstraction for software-defined networks,’’ inProc. 1st Workshop
Hot Topics Softw. Defined Netw., Aug. 2012, pp. 79–84.

[143] R. W. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury, ‘‘Verifiably-safe
software-defined networks for CPS,’’ in Proc. 2nd ACM Int. Conf. High
Confidence Networked Syst., Apr. 2013, pp. 101–110.

[144] A. Guha, M. Reitblatt, and N. Foster, ‘‘Machine-verified network
controllers,’’ ACM SIGPLAN Notices, vol. 48, no. 6, pp. 483–494,
Jun. 2013.

[145] T. Nadeau and P. Pan. (2011). Framework for Software Defined Networks.
Internet Draft. [Online]. Available: http://tools.ietf.org/id/draft-nadeau-
sdn-framework-01.txt

[146] B. Isyaku, M. S. M. Zahid, M. B. Kamat, K. A. Bakar, and F. A. Ghaleb,
‘‘Software defined networking flow table management of OpenFlow
switches performance and security challenges: A survey,’’ Future
Internet, vol. 12, no. 9, p. 147, Aug. 2020.

[147] O. Blial, M. B. Mamoun, and R. Benaini, ‘‘An overview on SDN
architectures with multiple controllers,’’ J. Comput. Netw. Commun.,
vol. 2016, pp. 1–8, 2016.

[148] D. K. Ryait and M. Sharma, ‘‘Significance of controller in software
defined networks,’’ in Proc. IEEE 15th Int. Conf. Ind. Inf. Syst. (ICIIS),
Nov. 2020, pp. 561–566.

[149] G. Yao, J. Bi, Y. Li, and L. Guo, ‘‘On the capacitated controller placement
problem in software defined networks,’’ IEEE Commun. Lett., vol. 18,
no. 8, pp. 1339–1342, Aug. 2014.

[150] C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, V. Yegneswaran, P. Porras,
and G. Gu, ‘‘Flow wars: Systemizing the attack surface and defenses
in software-defined networks,’’ IEEE/ACM Trans. Netw., vol. 25, no. 6,
pp. 3514–3530, Dec. 2017.

[151] G. Logeswari, S. Bose, and T. Anitha, ‘‘An intrusion detection system for
SDN using machine learning,’’ Intell. Autom. Soft Comput., vol. 35, no. 1,
pp. 867–880, 2023.

[152] W. Li, Y. Wang, W. Meng, J. Li, and C. Su, ‘‘BlockCSDN: Towards
blockchain-based collaborative intrusion detection in software defined
networking,’’ IEICE Trans. Inf. Syst., vol. 105, no. 2, pp. 272–279, 2022.

[153] T. Mekki, I. Jabri, A. Rachedi, and L. Chaari, ‘‘Software-defined net-
working in vehicular networks: A survey,’’ Trans. Emerg. Telecommun.
Technol., vol. 33, no. 10, p. 4265, 2022.

[154] Y. Maleh, Y. Qasmaoui, K. El Gholami, Y. Sadqi, and S. Mounir,
‘‘A comprehensive survey on SDN security: Threats, mitigations, and
future directions,’’ J. Reliable Intell. Environ., vol. 9, no. 2, pp. 201–239,
Jun. 2023.

[155] A. Akhunzada, E. Ahmed, A. Ghani, M. K. Khan, M. Imran, and
S. Guizani, ‘‘Securing software defined networks: Taxonomy, require-
ments, and open issues,’’ IEEE Commun. Mag., vol. 53, no. 4, pp. 36–44,
Apr. 2015.

[156] A. Akhunzada, A. Gani, N. B. Anuar, A. Abdelaziz, M. K. Khan,
A. Hayat, and S. U. Khan, ‘‘Secure and dependable software defined
networks,’’ J. Netw. Comput. Appl., vol. 61, pp. 199–221, Feb. 2016.

[157] M. Safdar, Y. Abbas, W. Iqbal, M. Y. Umair, and A. Wakeel, ‘‘ARP
overhead reduction framework for software defined data centers,’’
J. Netw. Syst. Manage., vol. 30, no. 3, p. 50, Jul. 2022.

[158] W. Iqbal, H. Abbas, M. Daneshmand, B. Rauf, and Y. A. Bangash,
‘‘An in-depth analysis of IoT security requirements, challenges, and their
countermeasures via software-defined security,’’ IEEE Internet Things J.,
vol. 7, no. 10, pp. 10250–10276, Oct. 2020.

ARUSA KANWAL is currently a Lecturer with
the Department of Information Security, National
University of Sciences and Technology (NUST),
Pakistan. Her research interests include but not
limited to image processing, machine learning,
information security, and secure systems.

56552 VOLUME 12, 2024



A. Kanwal et al.: Exploring Security Dynamics in SDN Controller Architectures

MOHAMMAD NIZAMUDDIN is currently an
Assistant Professor with the Cybersecurity Pro-
gram, Department of Engineering, Physics, and
Technology, Bronx Community College (BCC),
City University of New York (CUNY). His
research interests include cybersecurity, data sci-
ence, machine learning, quantum computing,
cloud computing, and algorithm development and
time series analysis, with a specific focus on
satellite data. He is actively involved in developing

optical network architectures, conducting equipment testing, and imple-
menting synchronization across diverse network infrastructures, particularly
focusing on fiber optic equipment. In addition to his research pursuits,
he contributes to BCC/CUNY’s academic community by serving on both
the curriculum committee and senate committee. With 22 years of teaching
experience, he has imparted knowledge in electrical engineering and
cybersecurity courses across various CUNY colleges.

WASEEM IQBAL received the bachelor’s degree
in computer sciences from the Department
of Computer Science, University of Peshawar,
in 2008, and the master’s degree in information
security and the Ph.D. degree from the National
University of Sciences and Technology (NUST),
Pakistan, in 2012. He is currently an Academician,
a Researcher, a Security Professional and Industry
Consultant. He has authored over 70 scientific
research articles in prestigious international

journals (ISI-indexed) and conferences. His professional services include,
but not limited to industry consultation, a workshops organizer/resource
person, a technical program committee member, a conference chief
organizer, an invited speaker, and a reviewer of several international
conferences. He is and has served as a guest editor for various journals.

WAQAS AMAN is currently an Assistant Profes-
sor with the Department of Information Systems,
Sultan Qaboos University, Oman. His research
interests include security in IoT-based smart
critical infrastructure, security architecture and
design, security and privacy concerns in big
data, runtime ontologies, software security test-
ing and assurance, information security educa-
tion and awareness, adaptive security, and risk
management.

YAWAR ABBAS is currently an Associate Pro-
fessor with the Department of Computer Software
Engineering, National University of Sciences
and Technology (NUST). His research interests
include software defined networking, software
defined storage, AI, ML, wireless sensor net-
works, formal methods in software engineering,
information security, cloud computing, data center
networking, the IoT, security in SDN, WSN, and
the smart IoT.

SHYNAR MUSSIRALIYEVA is currently the
Head of the Information Systems and Cyberse-
curity Department, Al-Farabi Kazakh National
University, Kazakhstan. Her research interests
include machine learning, cybersecurity, and
mathematical modeling.

VOLUME 12, 2024 56553


