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ABSTRACT Cybersecurity in the Internet of Things (IoT) is the practice of implementing measures to
secure networks and connected devices from data breaches, cyber threats, and unauthorized access. It is
essential owing to the increasing interconnectivity of devices, ranging from smart home appliances to
industrial sensors. The potential attack surface expands, necessitating strong cybersecurity measures to
protect sensitive data, ensure privacy, and prevent disruptions to critical services with these increasing
number of IoT devices. Artificial intelligence (AI) technologies, particularly deep learning (DL) and
machine learning (ML) approaches, hold the potential to mitigate and identify cyberattacks on IoT networks.
DL demonstrates promise for effectively preventing and detecting security threats within IoT devices.
Despite the importance of Intrusion Detection Systems (IDS) in maintaining confidentiality by detecting
suspicious activities, classical IDS solutions might face difficulties in the IoT platform. Therefore, this
study presents an Artificial Orca Algorithmwith Ensemble Learning cyberattack detection and classification
(AOAEL-CDC) methodology in an environment of IoT. The presented AOAEL-CDC technique exploited
the feature selection (FS) approach with an ensemble learning approach for cyberattack recognition and
identification in the IoT atmosphere. In the developed AOAEL-CDCmodel, the feature selection takes place
using the AOA technique. For the cyberattack detection process, the ensemble learning process is carried out
by the use of three models such as bidirectional long short-term memory (BiLSTM), gated recurrent unit
(GRU), and extreme learning machine (ELM). Finally, the hyperparameter range of the DL techniques takes
place using the marine predator’s algorithm (MPA). To examine the performance analysis of the AOAEL-
CDC methodology, a series of simulations take place using a benchmark dataset. An extensive comparative
study reported that the BCODL-SDSC technique reaches an effective performance with other models with
a maximum accuracy of 99.31%.

INDEX TERMS Cyberattack, Artificial Orca Algorithm, ensemble learning, hyperparameter tuning, deep
learning.

I. INTRODUCTION
IoT is an effective system for interconnected devices like
actuators and sensors which able to gather data at varying
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speeds. With uncertain sensors and consistent systems,
data collection in reality state is proficient at the highest
level [1]. Every day, IoT is growing rapidly, and assessed
that IoT-based users will be nearly 20.4 billion. Owing to its
outstanding features like automation, trustworthiness, scal-
ability, and sturdiness, IoT has gained huge popularity [2].
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These features can convert the upcoming IoT uses and
improve the quality of service (QoS) that is provided by IoT
uses namely healthcare, smart cities, manufacturing automa-
tion, and smart transports [3]. However, the combination
of IoT through numerous gadgets advances the safety anx-
ieties in IoT uses. IoT connects additional devices via a
central server which grows the confidentiality and safety
anxieties [4]. The assorted and vibrant nature of IoT gadgets
makes them inclined to dissimilar kinds of threats and safety
assaults.

Conventional security models like access control, device
confirmation, malware recognition, and cryptography-based
approaches have been developed beforehand to enlarge the
security of IoT [5]. However, the classification of dissimilar
kinds of cyber threats and safety threats employing these
kinds of models is a challenging task. Besides, numerous
uncertain and dangerous operational issues enhance the secu-
rity threats that weaken the reliability of the IoT model [6].
Present safety methods must be converted to identify new
cyber threats. It needs a smart and intelligent technique to
detect various kinds of threats in IoT namely distributed DoS
(DDoS), jamming, denial of service (DoS), flooding, and
botnet. Artificial intelligence (AI) based models have been
utilized in the design and improvement of a clever attack
recognition technique for safeguarding IoT devices [7]. The
most suitable use of AI model, particularly machine learning
(ML) will aid the investigators in identifying anomalies or
unnecessary malicious actions in the IoT. As an outcome,
it provides a dynamic safety solution that will regularly
improve. Rule-based IDS models have been traditionally
utilized but the difficulty and variety of IoT systems have
reduced their effectiveness [8]. Deep learning (DL) is one of
the techniques that could be utilized to increase the effective-
ness and accuracy of IDS for IoT. To increase the usage of
IDSs in IoT devices using DL and further detect the faults and
powers of these systems, it is highly vital to assess the obtain-
able literature and magazines widely [9]. Particularly, ML or
DL techniques include a set of regulations, approaches, or dif-
ficult relocation functions that remove beneficial insights or
appealing data designs from the safety facts. Therefore, it is
highly probable to employ the subsequent safety methods for
training machines to forecast dangers or threats at a primary
phase [10].
In the context of the Internet of Things (IoT), existing

cybersecurity approaches face an abundance of difficulties
that degrade the efficiency of protecting IoT environments.
One remarkable complexity lies in the sheer heterogene-
ity of IoT devices and transmission protocols, resulting in
different data structures and formats. Current cybersecurity
techniques often encounter challenges in adapting to this
heterogeneity, limiting their capability to mitigate and detect
threats across a considerable degree of devices. Furthermore,
the resource-constraint nature of IoT devices makes it chal-
lenging to implement strong security measures, as classical
security protocols may be too computationally intensive for
these devices. Furthermore, the real-time and dynamic nature

of IoT environments demands models that can accurately
and quickly respond to emerging threats, yet several existing
techniques lack the agility required for quick adaptation.
Moreover, the scalability problem arises as IoT environ-
ments continue to extend, putting pressure on cybersecurity
approaches to powerfully handle the complexity and increas-
ing volume of data without adversely affecting performance.
Resolving these problems is crucial for advancing cyberse-
curity in IoT, requiring new techniques that account for the
diverse and dynamic nature of IoT deployments.

To overcome these challenges, hyperparameter tuning and
ensemble learning can be combined with Cybersecurity in
the IoT is grounded in the difficult impediments posed by
the heterogeneous and dynamic nature of IoT ecosystems.
Ensemble learning, with its capability to combine the strength
of multiple models, overcomes the limitation of individual
ML techniques in evolving patterns and capturing the diverse
cyberattacks within IoT environments. The fundamental con-
flicts of IoT, marked by different data sources, device types,
and transmission protocols, demand a more adaptable and
robust defense mechanism. Ensemble learning provides a
potential avenue to enhance the overall accuracy, resilience,
and generalization of cybersecurity algorithms in IoT by
leveraging various perspectives and improving the collective
intelligence of the system. At the same time, hyperparameter
tuning ismotivated by the need for fine-tuningML techniques
to align with the intricacies of cybersecurity and IoT data
requirements. The massive variability in IoT deployments
demands a nuanced adjustment of model configurations to
improve performance. Hyperparameter tuning ensures that
themodels are finely calibrated to certain features of IoT data,
considering factors concluding data diversity, volume, and the
real-time nature of attacks.

This research develops an Artificial Orca Algorithm with
Ensemble Learning-based cyber threat detection and classifi-
cation (AOAEL-CDC) methodology in the IoT environment.
The presented AOAEL-CDC technique exploited the feature
selection (FS) approach with an ensemble learning approach
for cyberattack detection and classification in the IoT atmo-
sphere. In the developed AOAEL-CDC technique, the feature
selection takes place employing the AOA technique. For
cyberattack detection, the ensemble learning method is car-
ried out by the use of three techniques namely bidirectional
long short-term memory (BiLSTM), gated recurrent unit
(GRU), and extreme learning machine (ELM). Finally, the
hyperparameter selection of the DL techniques takes place by
employing the marine predator’s algorithm (MPA). To exam-
ine the performance study of the AOAEL-CDC model,
a series of simulations take place employing a benchmark
dataset.

II. RELATED WORKS
In [11], a firstly influences ML and DL techniques for the
exact removal of vital features from a real-network traffic
dataset of BoT-IoT. Then, the technique measures the effi-
ciency of 10 different ML techniques in identifying malware.
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This study contains 2 single classifiers (KNN and SVM),
8 ensemble classifiers namely Extra Trees, AdaBoost, and
LGBM, as well as 4 DL architectures such as LSTM, GRU,
and RNN. In [12], a method has been proposed by executing
an innovative DL model to identify cyber-attacks besides IoT
methods. Specifically, the developed model combines LSTM
units into a joint of detectors. Then, these units are fused by
utilizing a decision tree (DT) to reach a combined output at
the concluding phase.

Alattas and Mardani [13] project a novel structure design
that conveys a stochastic dimension of defining limits
depending on a new adaptive deep learning (ADL) tech-
nique for trademanufacturers like transportation. Then, a new
structure will be intended to include a component of arbi-
trary conflict to define outlines. The executed technique
measured the system of forensic and intrusion detection
systems (IDs) and is dependent on five selected protection
phases. Maghrabi et al. [14] focus on the strategy of the
Golden Jackal Optimizer with DL-based Cyber Threat Detec-
tion and Classification (GJODL-CADC) methodology in the
network of IIoT. The technique uses a GJO-based feature
selection method for classification. Then, the GJODL-CADC
methodology utilizes a hybrid auto-encoder-based deep belief
network (AE-DBN) model. The efficacy of the technique can
be enhanced via a pelican optimizer algorithm (POA).

In [15], the attack recognition method has been devel-
oped for IoT employing Software-defined networks (SDNs).
The SDNs can able to analyze the traffic movement, iden-
tify the anomaly, and block external traffic and source
nodes. A Fuzzy neural network (FNN) based threat recog-
nition method has been considered which is capable of
discovering attacks like middleman, DDoS, side-network,
and mischievous code. Bhattacharjee et al. [16] aim is to
progress a Convolutional Neural Networks (CNNs)-based
IDS to enhance the security of the internet. The suggested IDS
design categorizes all system packet traffic into forms that are
kind or mischievous to classify network intrusions. For the
recommended method, CNNs, DNN, Logistic Regression,
Adaboost, and RF four significant experimental DL methods
have been taken into attention.

In [17], an integrated DL methodology is proposed uti-
lizing Hybrid Dual-Channel CNN (DCCNN) with Spider
Monkey Optimizer (SMO) model namely DCCNN-SMO.
Tawfik et al. [18] developed a method by signifying middle-
ware. ML technique has comprised in the middle-ware to
deliver automatic defense besides cyber-attacks on IoT sys-
tems. A promising technique to protect actual, extremely
exact assaults on SDN-managed IoT systems was devel-
oped. In [19], an innovative model implemented a hybrid
deep learning model, combining Graph Convolutional Long
Short-Term Memory (GC-LSTM) and a deep convolutional
network is presented. Nanjappan et al. [20] propose DeepLG
SecNet, an innovative strategy that utilizes a blend of deep
learning methodologies, such as Long Short-Term Memory
(LSTM) and gated Secure Network (SecNet), along with
Crossover Chaos Game Optimization (CCGO) techniques.

There exists a conspicuous research gap about the effective
integration of ensemble learning approaches. While indi-
vidual ML techniques were utilized for threat mitigation
and anomaly detection in IoT ecosystems, the dynamic and
complex nature of IoT information often results in varied
patterns that may go unnoticed by the singlemodel. Ensemble
learning, which integrates the predictions of multiple models,
has illustrated its efficiency in optimizing overall detection
robustness and accuracy in different domains. But the limited
attention has been paid to exploring the ensemble techniques
for improving cybersecurity measures in IoT environments.
Addressing this gap includes developing new ensemble learn-
ing approaches tailored to the unique challenges confronted
by IoT security, involving the heterogeneity of IoT devices,
the variability in data sources, and the real-time nature of
threats. Moreover, another crucial research gap in the field of
IoT cybersecurity lies in the insufficiency of hyperparameter
tuning methods. Hyperparameter tuning is essential to opti-
mize the performance of ML approaches, yet existing study
often overlooks the nuanced requirement of IoT ecosystems.
The wide variety in data characteristics, IoT deployments,
and transmission protocols requires a tailored technique to
hyperparameter tuning that considers the specificities of IoT
cybersecurity issues.

III. THE PROPOSED MODEL
In this study, we have presented an AOAEL-CDC technique
on the IoT environment. The presented AOAEL-CDC tech-
nique exploited the feature selection (FS) approach with an
ensemble learning approach for cyberattack recognition and
classification in the IoT environment. Fig. 1 demonstrates the
entire procedure of the AOAEL-CDC technique.

A. AOA FEATURE SELECTION
In the presented AOAEL-CDC technique, the feature selec-
tion takes place by employing the AOA technique. The
Swarm Intelligence (SI) Algorithm has gained more attention
in recent years [21]. The authors developed these proce-
dures imitating orcas in their existing atmosphere. Presently,
to include the cultural measurement of orcas, AOA has been
crossed by the cultural algorithm (CA) to progress a system
termed OCA. The orca’s social organization contains numer-
ous clans comprising in their turn pods. All these occurrences
are performed in an algorithm termed the Artificial Orcas
algorithm (AOA). This algorithm is monitored by a ruler
which is measured as the best individual in the pod. Addi-
tionally, every hierarchical structure stage is prominent by a
grade of nearness. The pods are nearer to themselves when
compared to the clans. AOA is presented by creating an
outstanding stability among dual significant stages of evolu-
tionary procedures namely search diversification and search
intensification.

fgroup = fmin + (fmax − fmin) (1)

vtpi = vt−1
pi + fi×Dp + fc × Dc + fpop×Dpop (2)

x tpi = x t−1
pi + vtpi (3)
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FIGURE 1. The overall process of the AOAEL-CDC technique.

x ttemp,pi = A× sin
(
2 × 5

L
× x t−1

pi

)
× cos

(
2 × 5

T
× tx

)
(4)

x tm,p =

∑j=n
j=1 xtemp,pj

n
(5)

x tpi = x∗
p − β × x tm,p (6)

x tnew,pi =
γ×xpoprand1 + ω×x tcrand2

2
(7)

From the above-mentioned equation, t denotes the existing
iteration. x tpi represents the individual at position i in the
pod p.vtpi signifies the speed of the individual at position
i.fmin and fmax denotes the minimal and maximal frequencies,
respectively, and are employed to make a random frequency
fgroup. It is noticeable that the cluster relates either to p, c,
or pop to define the frequency. α, γ , and ω are said to be
random numbers in interval [0,1]. The populace levels are
correspondingly detached by distances of Dp,Dc, and Dpop
that are definite as below.

−Dp =

∣∣∣x t−1
pi − x∗

p

∣∣∣ whereas x∗
p is the matriarch of the pod

to which x t−1
pi belongs.

−Dc =

∣∣∣x t−1
pi − x∗

c

∣∣∣ where x∗
c is the matriarch of the clan

to that x t−1
pi belongs.

−Dpop =

∣∣∣x t−1
pi − x∗

pop

∣∣∣ where x∗
pop is the matriarch of the

population.
For the strategy of hunting, A is a parameter based on the

problem exhibiting, L is a parameter demonstrating the wave
length and T is an experimental parameter that signifies the
wave period at the time of chasing action. x tnew,pi denotes
the novel solution of the individual i in the pod p.x tpop,rand1
signifies the arbitrary individual, rand1 and x tc,rand2 is an
arbitrary individual in the clan c of the present pod at location
rand2.
Analysis of AOAComplexity: TCAOA denotes the operations

count offered in Eq. (8) based on the maximal iterations
count MaxIter , n is the population size and #pods is a pods
count. It is noticeable that the sorting technique utilized in
the system is heapsort and its computation complexity is
O(nlogn).

TCAOA =

MaxIter∑
i=1

(ntogn+ n+ #pods+ n) (8)

nlogn operation is required for Instruction 3, n operation
for Instructions 4 and 6, and #pods operation for Instruction
5. As the dimension of the population n = #clans× #pods×

#orcas, n > #pods, we determine that:
TCAOA <

∑MaxIter
i=1 (nlogn+3n) and so the AOA compu-

tation complexity is O(MaxIter × nlogn)
In the AOA methodology, the goals are combined into a

single main formulation such that a present weight classifies
every objective position [22]. In this manuscript, we assume
a fitness function (FF) that integrates both goals of FS as
displayed in Eq. (9).

Fitness (X) = α · E (X) + β ∗

(
1 −

|R|

|N |

)
(9)

where Fitness(X) indicates the fitness value of a subset
X ,E(X ) denotes the error rate of classification by using the
nominated features, |R| and |N | are the selected count features
and original features count respectively, α and β represents
the measures of the classification error and decline ratio,
correspondingly, where α ∈ [0, 1] and β = (1 − α).

B. ENSEMBLE LEARNING PROCESS
For the cyberattack detection process, the ensemble-learning
process is carried out by the use of three models namely
BiLSTM, GRU, and ELM.

1) BiLSTM MODEL
LSTM neural networks are a simulated DL model that
depends upon recurrent neural networks (RNNs) [23]. This
method disables the vanishing gradient issue of RNNs. This
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FIGURE 2. Architecture of BiLSTM.

method has been commonly employed for time sequence data
forecasts and attained outstanding outcomes.

It contains memory cells, memory blocks, and gate units.
A cell state keeps data. The technique utilizes these kinds
of gates to keep and procedure the related data. These gates
will learn what data must be maintained and then ignored.
An input gate defines which data must be inserted into a cell
state. The output gate offers outputs. A forget gate defines
which data should be maintained from a preceding layer.
Fig. 2 depicts the infrastructure of BiLSTM.

During this study, a BiLSTM method based upon conven-
tional LSTM neural networks has been projected to forecast
hydroelectric power depending on multi-variable inputs. The
BI-LSTM reflects past and upcoming layers to enhance fore-
cast accuracy. Whereas normal LSTMs reflect only past
states, BiLSTM reflects both future and past states. Converse
LSTMs utilize upcoming data and forward LSTMs utilize
past data. The BiLSTM attains superior accurateness when
compared to LSTM because it uses past as well as future data.
Eqs. (10) to (15) arithmetically define the connection among
weighted outputs and inputs:

Ot = σ (ϕozt−1 + Voxt + κo) (10)

It = σ (ϕizt−1 + Vixt + κb) (11)

Ft = σ
(
ϕf zt−1 + Vf xt + κf

)
(12)

Ŝt = tanh (ϕzt−1 + Vxt + b) (13)

St = Ft ⊙ St−1 + it ⊙ Ŝt (14)

zt = Ot ⊙ tanh (St) (15)

where Ft ,Ot , and It denote the forget output and input gates,
xt and zt signify an input and output state at time t, St repre-
sents the memory cell, Ŝt refers to the novel value of memory
cells, ϕi, ϕo, and ϕf denotes the weight matrixes of the hidden
layer (HL), and Vo,Vi,Vf represents the weights consistent
with input data, and f , I , 0: corresponds to the forget, input,
and output gate.

A BiLSTM system contains both forward and backward
LSTMs which can route the data in both ways. In forward,
computations are executed from time 1 to t . While in back-
ward, calculation executes from time t to 1.

2) GRU MODEL
GRU is a novel structure prepared to find out the problem of
vanishing or exploding gradient [24]. The updated structure
of LSTM is termed GRU. To control the data movement,
GRUs too have a gate structure like LSTM. But, GRU wants
an output gate, permitting the content to be completely open.
The GRU has only dual gates such as reset and update gates.
The forget and input gates of the LSTM structure are unified
into the 2nd gate. When equated with LSTM, GRUs have a
simple framework and few limits, which will enhance the
solution.

The GRU formula is expressed below:

rt = sigm (Wxrxt +Whrht−1 + br ) (16)

zt = sigm (Wxzxt +Whzht−1 + bz) (17)

h̃t = tanh (Wxhxt +Whh (rt ⊙ ht−1) + bh) (18)

ht = zt ⊙ ht−1 + (1 − zt) ⊙ h̃t ) (19)

where x denotes the input vector and ht is the output vector, rt
signifies the reset gate and zt refers to the update gate. Parallel
to LSTM, ‘b’ refers to biases, and ′W ′ for weight. While
sigm denotes the activation sigmoid function and tanh refers
to the tangent function. Both structures of LSTM and GRU
can able to handle the long dependency. But, there are few
variants in terms of performance. In this research, we used
both structures to estimate howwell they categorized network
traffic.

3) ELM MODEL
The fundamental components of ELM comprise HL, input,
and output layers. During the training period, the HL neuron
is not to be optimized [25]. This neuron can never refurbished
and arbitrarily distributed. Input is connected to HL with
random weight (wi) and the bias (bj) whereby computational
and time complexities are undermined compared to BPNN
and ANN. When compared to BPNN, ELM is faster. In com-
parison with gradient-based approaches, Non-gradient-based
ELM has the best generalization performance and prevents
overfitting, local minima, and invalid learning rates. The out-
put functions of ELM with hidden nodes (L) for the training
set R = {(Xi, ti)}, i = 1, 2, . . . , n are given below:

f (R) =

L∑
j=1

βjH (X) = tj (20)

In Eq. (20), the weight matrices amongst HLs and output
layers are represented as β = β1, β2, . . . , βL , and the target
matrix of the training dataset is denoted by r = r1, r2, . . . , rL .
The output of HL is determined by using Eq. (21):

H =


G(w1, b1,X1) · · · G(wL , bL ,X1)
G(w1, b1,X2) · · · G(wL , bL ,X2)

...
...

...

G(w1, b1,Xn) · · · G(wL , bL ,Xn)


β = (HTH )−1HT (21)
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The activation functions concerning weight, bias, and input
are represented as ‘G’. The activation functions adopted are
Gaussian, Sigmoidal, Fourier series, andHard limit functions.
Here, a sigmoidal function is assumed as an activation func-
tion.

G (wi, bi,Xi) =
1

1 + e−(wx+b) (22)

The desired output of ELM can be defined as.

Ttest = Hβ (23)

C. MPA-BASED HYPERPARAMETER TUNING
Finally, the hyperparameter selection of the DL models takes
place utilizing MPA. MPA has been proposed meta-heuristic
methodology that imitates the relationship between prey and
predator [26]. MPA’s foremost goal is to search for food,
whereas a hunter closely hunts for food and prey. MPA
algorithm was proposed by considering predator as well as
prey as the best solution. This algorithm begins with an
initialized stage and then passes by other 3 stages with esteem
to the normal speed between predator and prey.

• Initialize stage: This stage offers an arbitrary set of solu-
tions for prey as well as predator through the following
formulation:

U = Lower + rand1 × (UpperLower) (24)

where the Upper denotes the upper and Lower signifies
the lower bound in the hunt space, rand1 refers to a
random vector ∈ the interval of (0, 1). Affording to the
above formulation, the early positions of predator and
prey can be determined as follows:

Elite =


U1
11 U1

12 · · · U1
1d

U1
21 U1

22 · · · U1
2d

· · · · · · · · · · · ·

U1
n1 U1

n2 · · · U1
nd

 ,

U =


U11 U12 · · · U1d
U21 U22 · · · U2d
· · · · · · · · · · · ·

Un1 Un2 · · · Und

 , (25)

whereas the Elite matrix denotes the best predator.
• Stage 1: The exploration stage has been executed to
determine the search space after the beginning. So in
MPA, for the 1st third of the complete iterations, (i.e.,
1
3 tmax). Therefore the prey location is updated which
depends upon the following equations.

Si = RB ⊗ (Elitei − RB ⊗ Ui), i = 1, 2, . . . , n (26)

Ui = Ui + P.R⊗ Si (27)

whereas R∈ [0, 1] signifies the arbitrary vector drawn
from an even distribution and P= 0.5 refers to a constant
number. RB denotes to motion of Brownian. ⊗ desig-
nates the procedure of unit-wise multiplication.

• Stage 2: The predator or prey starts using the finest place
that identifies for their foods. Phase 2 is implemented

in the 2nd third of the complete iterations count when
1
3 tmax < t < 2

3 tmax. It separated the agents for dual
splits and expressed in Eqs. (28) and (29) to match the
motion of the 1st half (prey) and the 2nd half (predator)
is expressed in Eqs. (32) and (33) as below.

Si = RL ⊗ (Elitei − RL ⊗ Ui), i = 1, 2, . . . , n/2 (28)

Ui = Ui + P.R⊗ Si (29)

whereas RL has arbitrary numbers that obey Lévy dis-
tribution. Eq. (28) and (29) are executed in the 1st half
which signifies the exploitation. Whereas the 2nd half
does the following expressions.

Si = RB ⊗ (RB ⊗ Elitei − Ui), i = 1, 2, . . . , n/2 (30)

Uj = Elitei + P.CF ⊗ Sj,CF = (1 −
t

tmax
)

(
2 t
tmax

)
(31)

where CF denotes the parameter that manages the step
size of flow for the predator.

• Stage 3: This phase implemented on the last third of the
iteration counts (t > 2

3 tmax) depends upon the following
formulation:

Si = RL ⊗ (RL ⊗ Elitei − Ui), i = 1, 2, . . . , n (32)

Ui = Elitei + P.CF ⊗ Si,CF = (1 −
t

tmax
)

(
2 t
tmax

)
(33)

• Fish Aggregating Devices and EddyFormation Effect:
Exterior effects from the atmosphere, like Fish Aggre-
gating Devices (FADs) or eddy formation effects, are
measured to evade the local optimal solution. It is exe-
cuted as below:

Ui

=

{
Ui+CF [Umin+R⊗ (Umax−Umin)]⊗Wr5<FAD
Uj + [FAD(1 − r) + r](Ur1 − Ur2)r5 > FAD

(34)

From the above-mentioned expression, FAD= 0.2, and
W is a dual solution (0 or 1) that parallels to random
solution. If it is fewer than 0.2, then it is transformed
to 0 whereas the arbitrary solution converts 1 when the
solution is higher than 0.2. The r ∈ [0, 1]signifies the
random number r1, and r2 denotes the random index.

• Marine memory: Marine hunters are the main feature
and aid in holding an optimum solution quickly as well
as preventing local solutions. It keeps preceding the
best solution of a previous iteration, and evaluating by
present ones; the solution is changed depending upon
the finest one during the comparison step.

The fitness selection is the significant factor manipulat-
ing the solution in the MPA technique. The hyperparameter
selection procedure includes the solution encode method to
assess the efficiency of candidate solutions. During this study,
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TABLE 1. Details on dataset.

MPAmethodology reflects accuracy as the foremost norm for
designing the FF, which is expressed below.

Fitness = max (P) (35)

P =
TP

TP+ FP
(36)

From the above-mentioned formulation, FP and TP repre-
sent the false and true positive values.

IV. PERFORMANCE VALIDATION
The proposed model is simulated using the Python 3.8.5 tool.
The proposed model is experimented on PC i5-8600k,
GeForce 1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB
HDD. The performance validation of the AOAEL-CDC
methodology has been verified using the UNSW dataset [27],
including 6000 instances and 6 classes as described in
Table 1. Among the obtainable 49 features, the AOAEL-CDC
model has been nominated for 28 features.

Fig. 3 displays the classifier outcomes of the AOAEL-CDC
system below the test dataset. Figs. 3a-3b represents the
confusion matrix acquired by the AOAEL-CDC methodol-
ogy at 70:30 of TRPH/TSPH. This figure signified that the
AOAEL-CDC method can be precisely recognized and cat-
egorized with 6 class labels. Next, Fig. 3c displays the PR
study of the AOAEL-CDC algorithm. The figure described
that the AOAEL-CDC technique attains excellent PR anal-
ysis in every class. Lastly, Fig. 3d authorizes the ROC
study of the AOAEL-CDC methodology. The figure shows
that the AOAEL-CDC technique offers effective results with
improved ROC values below diverse classes.

Table 2, the overall cyberattack detection analysis of the
AOAEL-CDC system with 70:30 of TRPH/TSPH. Fig. 4
illustrates the classifier analysis of the AOAEL-CDC tech-
nique on 70% of TRPH. The simulation values inferred
that the AOAEL-CDC model has effective detection under
six classes. With normal class, the AOAEL-CDC technique
has obtained anaccuy of 99.52%, precn of 99.14%, recal of
98.01%, Fscore of 98.57%, and AUCscore of 98.92%. In addi-
tion, in the DoS class, the AOAEL-CDC system provides
accuy of 99%, precn of 96.51%, recal of 97.36%, Fscore
of 96.93%, and AUCscore of 98.34%. Moreover, based on
generic class, the AOAEL-CDC method attains anaccuy of
99.10%, precn of 97.22%, recal of 97.22%, Fscore of 97.22%,
and AUCscore of 98.34%, correspondingly.

FIGURE 3. (a-b) Confusion matrices of 70:30 TRPH/TSPH (c) PR curve and
(d) ROC curve.

TABLE 2. Cyberattack detection analysis of AOAEL-CDC model under
70:30 of TRPH/TSPH.

Fig. 5 shows the classifier analysis of the AOAEL-CDC
method with 30% of TSPH. The experimental findings
displayed that the AOAEL-CDC methodology can be an
efficient detection of six classes. According to normal class,
the AOAEL-CDC technique gets anaccuy of 99.72%, precn
of 99.66%, recal of 98.64%, Fscore of 99.15%, and AUCscore
of 99.29%. Similarly, with the DoS class, the AOAEL-CDC
system obtains accuy of 98.89%, precn of 97.16%, recal of
96.55%, Fscore of 96.86%, and AUCscore of 97.97%. Besides,
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FIGURE 4. Cyberattack detection analysis of AOAEL-CDC system on 70%
of TRPH.

FIGURE 5. Cyberattack detection analysis of the AOAEL-CDC model under
30% of TSPH.

FIGURE 6. Accuy curve of the AOAEL-CDC algorithm.

on generic class, the AOAEL-CDC algorithm offers accuy of
99.22%, precn of 97.48%, recal of 98.10%, Fscore of 97.79%,
and AUCscore of 98.78%, respectively.

The accuy curves for training (TR) and validation (VL)
displayed in Fig. 6 for the AOAEL-CDC algorithm provide
valued insights into its effectiveness on diverse epochs.

FIGURE 7. Loss curve of the AOAEL-CDC model.

TABLE 3. Comparison analysis of the AOAEL-CDC system with other
algorithms.

Mainly, it can be a constant upgrading in both TR and TS
accuy with increased epochs, representing the proficiency of
the model to learn and recognize the patterns at both data of
TR and TS. The improving trend in TS accuy underscores the
adaptability of the model to the TR dataset and its ability to
produce correct predictions on unnoticed data, emphasizing
the capabilities of robust generalization.

Fig. 7 exhibits a wide-ranging overview of the TR and
TS loss values for the AOAEL-CDC technique in different
epochs. The TR loss reliably diminishes as the model refines
its weights to reduce the classification error rate under both
datasets. The loss curves demonstrate the model’s alignment
with the TR data, underscoring its ability for effectively cap-
turing patterns. Significant is the incessant enhancement of
parameters in the AOAEL-CDC system, targeted at minimal-
izing discrepancies among predictions and actual TR labels.

The comparison analysis of the AOAEL-CDC technique is
demonstrated in Table 3 and Fig. 8 [28]. The acquired conse-
quence implies the GA-LR and TS-RF methods demonstrate
poorer performance. Simultaneously, the LSO-FNN and
RHF-ANN algorithms illustrate relatively boosted results.
Meanwhile, the RHF-ANN, EAFS-RF, SCM3-RF, and
BHPO-MLPAD models depict reasonable results. However,
the AOAEL-CDC technique exhibits better performance with
a greater accuy of 99.31%, precn of 97.96%, recal of 97.96%,
and Fscore of 97.96%.
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FIGURE 8. Comparison analysis of the AOAEL-CDC model with other
techniques.

TABLE 4. CT analysis of the AOAEL-CDC model with other systems.

FIGURE 9. CT analysis of the AOAEL-CDC model with other algorithms.

In Table 4 and Fig. 9, the comparative computational time
(CT) analysis of the AOAEL-CDC methodology is notice-
ably described. These simulation findings display that the
EAFS-RF and SCM3-RF technique reveals increased perfor-
mance. Concurrently, the LSO-FNN and TS-RF algorithms
get moderately closed outcomes. Then, the GA-LR, RHF-
ANN, and BHPO-MLPAD methods show better outcomes.
However, the AOAEL-CDC system achieves higher perfor-
mance with a minimum CT of 0.80s respectively.

Thus, the AOAEL-CDC technique can be utilized for
enhanced cybersecurity in the IoT platform.

V. CONCLUSION
In this study, we have presented an AOAEL-CDC tech-
nique on the IoT environment. The presented AOAEL-CDC
technique exploited the FS approach with an ensemble learn-
ing approach for cyberattack recognition and classification
in an environment of IoT. In the developed AOAEL-CDC
technique, the feature selection takes place by employing
the AOA technique. For the cyberattack detection process,
the ensemble learning process is carried out by the use of
three models namely BiLSTM, GRU, and ELM. Finally,
the hyperparameter selection of the DL models takes place
utilizing MPA. To examine the performance analysis of the
AOAEL-CDC technique, a series of simulations take place on
the UNSW-NB15 dataset. The extensive simulation analysis
concluded that the AOAEL-CDC technique reaches a higher
accuracy of 99.31%

Future work in the realm of Cybersecurity in the IoT must
focus on developing adaptive and context-aware security
architectures. This involves the exploration ofML approaches
like unsupervised and reinforcement learning, to optimize
threat mitigation and anomaly detection abilities. Further-
more, there is a need for standardized security protocols
that can be seamlessly operated into varied IoT devices,
ensuring a robust and consistent security posture. The com-
bination of blockchain technology to protect data exchanges
and IoT transactions, along with the development of privacy-
preserving systems, will be vital for addressing emerging
problems.
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