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ABSTRACT The transportation sector, a significant contributor to carbon dioxide emissions as of 2020,
confronts a pressing challenge in mitigating pollution. Electric Vehicles (EVs) present a promising solution,
offering a cleaner alternative; however, their limited travel range poses a constraint. Hybrid Electric
Vehicles (HEVs) and Hybrid Energy Storage System Electric Vehicles (HESS EVs) emerge as economically
feasible compromises. Nonetheless, the effective management of energy and the optimization of power
source size remain crucial challenges for both HEVs and HESS EVs. Among various Energy Management
Strategies (EMS), the Fuzzy Logic Controller (FLC) stands out for its performance, simplicity, and real-time
applicability. This article comprehensively explores the diverse applications of FLC as an EMS in both HEVs
and HESS EVs, providing a comparative analysis with other EMS methods and delving into the advantages
and challenges associated with each approach. A detailed examination of various FLC types employed as
EMS has been conducted, drawing insights from a multitude of references. Each class of FLC EMS is
scrutinized, presenting a broad overview of proposed methodologies within each category. By providing
this comprehensive information, the article equips readers with foundational knowledge and insights for the
continued development of FLC EMS in hybrid electric and hybrid energy storage system electric vehicles.

INDEX TERMS Energy management, hybrid vehicle, electric vehicle, fuzzy logic controller, review.

I. INTRODUCTION

As of 2020, the transportation sector contributes signifi-
cantly to carbon dioxide emissions, accounting for up to
35% [1]. Embracing electric vehicles (EVs), which produce
zero pollutants, emerges as a promising avenue to mitigate
pollution in transportation [2], [3], [4]. EVs offer numer-
ous advantages over traditional engine-equipped vehicles,
including lower pollution levels, increased efficiency, and
abundant energy sources [5]. The primary power source in
electric vehicles is a rechargeable battery, restricting the
vehicle’s travel range due to limited battery capacity. For
EVs covering shorter distances, Hybrid Electric Vehicles
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(HEVs) have proven practical [6], exhibiting minimal emis-
sions compared to conventional Internal Combustion Engine
(ICE) vehicles [7]. HEVs employ two or more power sources,
commonly combining an engine with a battery.

Unlike EVs, HEVs bypass challenges such as high prices,
charging infrastructure limitations, extended charging times,
and power interruptions, as revealed in a study by Rajper
and Albrecht [8]. HEVs find applicability in underdeveloped
countries, as exemplified by Mansour and Haddad, who high-
light issues with Lebanon’s EV charging infrastructure [9].
They argue that HEVs, requiring no upfront costs and reduc-
ing greenhouse gas emissions compared to traditional ICE
vehicles, present a pragmatic choice for the average user. This
underscores the environmental benefits and practicality of
HEVs in regions with inadequate EV charging infrastructure.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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FIGURE 1. EMS classification [25].

A study in Bangladesh by Limon et al. further supports HEV's
as a feasible and viable option for emerging nations, con-
tributing to the transition to lower carbon emissions without
substantial increases in infrastructure expenses [10].

Within the realm of engine-battery hybrid vehicles, Plug-
in Hybrid Electric Vehicles (PHEVs) use a larger capacity
battery rechargeable from the grid. Operating primarily in
electric mode when the battery has sufficient energy, PHEVs
rely on various battery types, predominantly Lithium-ion bat-
teries [11]. While Lithium-ion batteries possess high energy
storage density, they exhibit limitations such as low specific
power, limited charging and discharging capability, and a
short service life [12], [13]. Addressing these shortcomings,
an alternative Energy Storage System (ESS) with high power
and current capability becomes imperative. Supercapacitors
(SC) offer high-power density and extended life, serving as a
complementary solution to batteries [14]. According to [15],
battery is a high-energy type ESS which enables longer vehi-
cle traveling distance, and SC is the high-power type ESS
which can handle high load power in the acceleration phase.
Combining the strengths of batteries and supercapacitors,
the Hybrid Energy Storage System (HESS) is proposed. The
Energy Management Strategy (EMS) for HESS aims to har-
ness the characteristics of supercapacitors, mitigating high
current damage to the battery, extending battery life, increas-
ing driving distance, and enhancing energy efficiency [16].
Rimpas et al. assert that implementing HESS in EVs enhances
power supply system performance and maximizes battery life
by minimizing stress on the battery [17]. The HESS concept
was also adopted in the microgrid which combined renewable
energy sources and ESS as in [18], [19], and [20].

The EMS plays a crucial role in both HEVs and HESS EVs
by efficiently distributing energy from multiple sources [21],
[22], [23]. Scholars have proposed various EMS methods,
each designed to optimize energy usage. Panaparambil et al.
categorize the objectives of EMS into four main goals: reduc-
ing pollution and greenhouse effects, ensuring effective and
safe source usage to enhance ESS longevity, improving per-
formance, and enhancing fuel and energy efficiency [24].
In the broader context, EMS methods can be classified into
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three main categories: rule-based, optimization-based, and
learning-based as shown in Fig. 1 [25], [26], [27]. Rule-based
methods include deterministic and fuzzy-logic approaches,
while optimization-based methods encompass online and
offline optimization. Learning-based methods leverage Arti-
ficial Intelligence (AI) and Machine Learning (ML), such as
Neural Networks (NN) and Reinforcement Learning (RL).

A review study about the EMS in hybrid vehicles has been
done by some researchers such as [28] and [29]. However,
both of these do not focus on specific EMS methods but
discuss a lot of EMS used in hybrid vehicles. Some studies do
indeed review EMS methods such as low-pass filtering (LPF)
[23], model predictive control (MPC) [30], [31], [32], equiv-
alent consumption minimization strategy (ECMS) [26], and
reinforcement learning (RL) [33]. On the other hand, as the
authors know in the Scopus database, no article discusses
and reviews Fuzzy Logic Controller (FLC) as EMS. Based
on the Scopus database between 2019 to 2023, FLC is one
of the most used EMS methods after the deterministic rule-
based method. Therefore, this study will focus on reviewing
the FLC EMS used in both HEVs and HESS EVs.

This study, rooted in a comprehensive review of liter-
ature from the Scopus database, specifically focuses on
the application of a real-time and practical EMS method:
Fuzzy Logic Controller (FLC). The article aims to contribute
by (1) Reviewing the fundamental principles and architec-
ture of FLC and its application in HEVs and HESS EVs,
(2) Discussing current challenges and limitations associated
with FLC in EMS, and proposing future research directions.
The information presented herein is intended to assist schol-
ars involved in the energy management of HEVs and HESS
EVs in selecting the most suitable FLC EMS method.

The subsequent sections delve into the comparison of
FLC EMS with other methods, a detailed review of FLC
in EMS, a discussion on challenges, limitations, and future
developments, and finally, a conclusion.

Il. REAL-TIME EMS

Real-time Energy Management Strategy (EMS) plays a cru-
cial role in optimizing the performance of Hybrid Electric
Vehicles (HEVs) and Electric Vehicles (EVs) with Hybrid
Energy Storage Systems (HESS EVs). Balancing the energy
distribution in real-time is a complex task, often influenced by
computational constraints. In this section, various real-time
EMS methods, with a particular focus on Fuzzy Logic
Control (FLC), will be discussed.

Panday and Bansal conducted a study comparing
fuzzy-based EMS with other methods, considering struc-
tural complexity, computational time, type of solution, and
the requirement for a priori knowledge [34]. The results,
summarized in Table 1, indicate that FLC exhibits similar per-
formance to Model Predictive Control (MPC) in the first three
criteria. However, FLC requires a priori knowledge, although
not mandatory, which can enhance its results. In comparison,
MPC is more reliant on the system model. Addition-
ally, Xu et al. conducted a performance comparison of
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TABLE 1. EMS methods comparison based on [34].

Methods Structural | Computational | Type of | Requirement of a
complexity time Solution | priori knowledge
Fuzzy Logic Controller (FLC) N S G Y
Genetic Algorithm (GA) Y M G N
Particle Swarm Optimization (PSO) N M G N
Equivalent Consumption Minimization Strategy (ECMS) Y S L N
Pontryagin’s Minimum Principle (PMP) N S L Y
Dynamic Programming (DP) Y M G Y
Model Predictive Control (MPC) N S G N
Stochastic DP (SDP) Y M G N
Neural Network (NN) Y S G Y
TABLE 2. Quantitative comparison of FLC-EMS with some methods.
No Ref Criteria FLC Det. RB DP ECMS MPC PI
1 [36] L/100 km 12.84 12.95
2 [37] L/100 km 22.1 25.43 19.95
3 [38] Efficiency (%) 734 78.7 76.6
4 [39] Integral Square Error (ISE) 0.45 0.52
5 [40] Life cycle cost (0.1$/km) 5.5 5.7 5.7

Fuel economy
5

Real-time
performance

Realization
degree

Computational Computational
burden time

—RB ECMS =———MPC -——PMP

FIGURE 2. EMS performance comparison redrawn from [35].

various EMS methods, scoring them based on fuel economy,
real-time performance, computational time, computational
burden, and realization degree, as illustrated in Fig. 2 [35].
Rule-based methods, including Fuzzy, received the highest
total score, despite concerns about poor fuel economy. This
limitation can be addressed by combining rule-based methods
with optimization techniques. Further comparisons in Table 2
highlight the superior performance of FLC over deterministic
rule-based methods, ECMS, MPC, and Proportional-Integral
(PD). Its performance compared to MPC varies, indicating the
contextual nature of the comparison. Dynamic Programming
(DP), although restricted to simulations due to its complex
structure, serves as a benchmark in EMS evaluations. Mon-
tazeri and Mahmoodi evaluated FLC’s performance against
conventional rule-based EMS in a Toyota Prius, concluding
that the proposed FLC reduced fuel consumption and emis-
sions by approximately ten percent [41].
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Table 3 summarizes the advantages of FLC, highlighting
its similarities and differences with deterministic rule-based
methods and MPC. Both FLC and deterministic rule-based
methods are simple, easy to design, robust, and have low
computational costs. However, they share drawbacks such as
low fuel economy and performance that fall short of global
optimality. In contrast, MPC offers high accuracy, predictive
capability, and near-optimal solutions, but its performance
heavily depends on the system model.

Ill. FUZZY LOGIC CONTROLLER EMS

Fuzzy Logic Controller (FLC) is widely used as an Energy
Management Strategy (EMS) in HEVs and HESS EVs. Two
sides classify FLC as an EMS controller. One side classifies
it as conventional fuzzy (also known as basic or traditional),
adaptive fuzzy, and predictive fuzzy [21], [42], [43], [44].
On the other side, the conventional fuzzy is replaced by an
optimized fuzzy while the rest two are the same [25], [45].
Since the conventional and optimized fuzzy have a significant
difference in method and results, they differentiate in this
review. Furthermore, the adoption of predictive fuzzy has
only been used by a few scholars. Hence, it is named a com-
bination which means combining FLC EMS with other EMS
methods. Finally, the FLC EMS in this review is classified as
conventional, optimal, adaptive, and combination.

A. CONVENTIONAL FLC

The conventional FLC method serves as the foundational
approach in energy management strategy (EMS), utilizing
inputs to the FLC to produce desired outputs through fuzzy
reasoning. This method requires applying available knowl-
edge or expertise to design fuzzy memberships and rules [46].
Numerous configurations of conventional FLC EMS have
been proposed in the literature, catering to different vehicle
architectures.
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TABLE 3. The advantages and disadvantages of FLC, Deterministic, and MPC as EMS.

No EMS Methods Advantages

Disadvantages References

1 FLC 1. Robustness

2. Adaptive

3. Good with model uncertainties
and state variation

4. No dependency on the overall
mathematical model

5. Computational efficiency

6. Low complexity

1. Different cycle needs different [21][25][38][46][48]
control parameter
2. Performance far from global

optimum

3. Dependent on membership
function

4. Optimal control is not
guaranteed

5. Designers need skillful
knowledge of the problem

capability
Less computational burden

3. Solution close to global
optimum

4. Ability to tackle constraints in
the control action.

5. High-accuracy online
application

6. No need for full cycle info

2 Deterministic 1. Simplicity 1. Low fuel economy [24][25][46][48][49]
2. Easy to design 2. Requirement in special driving
3. Robust situations
4. Low computation 3. Sub-optimal solution
4. Not accurate
3 MPC 1. Adaptability and high predictive | 1. Require prior cycle information [24][25][50][51][52]

Depend on prediction accuracy
3. Performance heavily relies on
model accuracy

For Hybrid Electric Vehicles (HEVs), the conventional
FLC EMS has been applied by various researchers.
Suhail et al. conducted a comparative study between FLC
and ANFIS, with both employing two inputs (battery State
of Charge - SoC and engine speed) and one output (battery
power) [47]. ANFIS demonstrated superior results, outper-
forming FLC with a small SoC drop. Singh et al. utilized
a Mamdani-type FLC with inputs of torque demand, bat-
tery SoC, and brake demand, resulting in improved fuel
economy by 50.56% according to simulation and Hardware-
in-the-Loop (HIL) testing [53]. Similarly, Ma et al. employed
Mamdani-type FLC with inputs of required torque and
battery SoC, demonstrating a 13.3% reduction in fuel con-
sumption compared to the logic-threshold method [54].

In various HEV configurations, such as through-the-road
hybrid vehicles (TTR HEVs) and fuel cell extended-range
vehicles, conventional FLC has proven effective. Sabri et al.
applied FLC-based EMS in a TTR HEYV, achieving a
62% reduction in fuel consumption compared to rule-based
EMS [22]. Narwade et al. compared FLC and Neural Net-
work (NN) EMS for a two-wheeler TTR parallel HEV,
with NN EMS demonstrating superior performance based
on total energy consumed [55]. Geng et al. proposed FLC
EMS in a fuel cell extended-range vehicle, demonstrating
improved performance in terms of acceleration time and total
mileage [56].

Researchers have extensively employed conventional FL.C
as an Energy Management Strategy (EMS) in Fuel-cell
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vehicles, exemplified by studies such as [57], [58], [59],
and [60]. Lin et al. applied FLC EMS in a hybrid Fuel Cell
and Supercapacitor Electric Vehicle (FCHEV), introducing
switching control to safeguard the Supercapacitor (SC) within
a defined operational range [57]. Additionally, a moving
average filter was implemented to reduce charge rates and
protect the Fuel Cell (FC). The Mamdani-type FLC, manually
designed with rules, utilized delta-power and SC State of
Charge (SoC) as input, producing an output scaling factor for
FC power. In comparison with PI and power follower con-
trol, this approach demonstrated a remarkable 13.15% and
9.18% reduction in fuel consumption, respectively. Song et al.
similarly adopted FLC EMS in an FCHEV combining FC
and battery components [58]. Utilizing Hardware-in-the-
Loop (HIL) testing, they concluded that, compared to power
follower control, FLC EMS exhibited superior adaptability
to varying driving conditions. Shen et al. proposed FLC
EMS for a hybrid fuel-cell and battery system, incorporating
a unique Variable Structure Battery (VSB) to substitute a
bidirectional DC converter for the battery [59]. The conven-
tional FLC, with inputs of power demand, FC power, and
battery SoC, yielded FC delta-power as the output, show-
casing the ability to smooth FC power and maintain high
efficiency. Authors in [60] proposed FLC EMS in FC-battery
EV in combination with model predictive direct torque con-
trol (MPDTC) as motor speed control. The FLC uses the
Mamdani type to input battery SoC and load power. Whereas
the output is a power reference for the fuel cell. They conclude
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FIGURE 3. Conventional FLC-EMS redrawn from [65].

that the proposed EMS method can keep the battery SoC
under safe limits.

In the context of Electric Vehicles (EVs) equipped with
Hybrid Energy Storage Systems (HESS), Keskin and Urazel
introduced FLC EMS for EVs with batteries and Superca-
pacitors (SCs), considering battery degradation [61]. This
Mamdani-type fuzzy system, designed manually, utilized
power demand, battery SoC, and SC SoC as inputs, gen-
erating power allocation for the battery as the output.
Comparative analysis with battery-only and logic thresh-
old methods indicated the proposed FLC EMS as more
effective in reducing peak current while ensuring minimum
battery SoC usage. A similar approach was adopted by [62]
considering the effects of motor control.

Conventional FLC was also deployed in configurations
involving three power sources which are FC, battery, and SC,
as evidenced by studies such as [63] and [64]. Kamoona et al.
utilized a dual-level controller EMS, employing FLC and
Artificial Neural Network (ANN) in high-level control, and a
Proportional-Integral (PI) controller tuned by Particle Swarm
Optimization (PSO) in low-level control [63]. The FLC, with
inputs of load power and battery State of Charge (SoC), pro-
duced FC power reference, subsequently used to train ANN
for EMS. Comparisons in low-level control demonstrated
nearly identical results between FLC and ANN. Similarly,
authors in [64] presented an EV structure with a direct con-
nection of SC, emphasizing its high efficiency for SC charge,
acting as an energy buffer, and contributing to a 13.54%
increase in fuel efficiency, as validated through experimen-
tal testing. Some studies combined conventional FLC with
traction motor control, as exemplified by [65], [66], and [67].
In [65], the FLC received inputs of load current, battery SoC,
and SC SoC, producing reference currents for FC, battery
(B), and SC, depicted in Fig. 3. The Sliding Mode Con-
trol (SMC) method was employed to regulate the converters
of FC, B, and SC. The proposed method claimed a 29%
reduction in hydrogen consumption. In [66], inputs of the
Vehicle Dynamics Controller (VDC), Vehicle Speed Con-
troller (VSC), and motor current were utilized, with outputs
being battery and SC power references. The control utilized
the PI algorithm and SMC in motor control, showcasing
fast and high performance under various speeds and system
dynamics. A concept similar to [66], with a change in motor
control to Backstepping-Direct Torque Control (BS-DTC),
was proposed by [67].
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B. OPTIMAL FLC

In contrast to conventional FLC, which requires expert
knowledge for designing membership functions and rules,
the optimized or optimal FLC method employs optimization
techniques to enhance performance. This approach addresses
the time-consuming nature and non-guaranteed optimality
of conventional FLC. Researchers, such as those in [68]
and [69], have demonstrated that optimization methods can
improve FLC EMS’s efficiency compared to conventional
approaches. The configuration of optimal FLC shares similar-
ities with conventional FLC, differing primarily in the utiliza-
tion of optimization methods to find optimal memberships
and/or rule bases for the fuzzy system.

Particle Swarm Optimization (PSO) and Genetic Algorithm
(GA) are the most employed optimization methods for
fine-tuning FLC EMS based on the literature. Researchers,
such as Jia et al. applied PSO to optimize a series FLC
(SFLC) for hybrid Fuel Cell (FC) and battery systems,
achieving mileage improvements [70]. Tifour et al. opti-
mized Sugeno-type FLC using PSO for hybrid FCHEVs,
showcasing improvements in fuel economy and overall
efficiency [71].

GA has also been extensively used in optimizing FLC
EMS. Wang et al. utilized GA to optimize fuzzy membership
functions, aiming to minimize energy loss [72]. Similarly,
authors in [73] employed GA to optimize FLC for a hybrid
fuel cell vehicle, enhancing fuel economy, vehicle perfor-
mance, and optimal energy distribution. Eckert et al. utilized
GA to optimize FLC EMS for Electric Vehicles (EVs) with
battery and Supercapacitors (SC), achieving efficient HESS
configurations [74]. They use three objective functions which
are minimize HESS mass, maximize driving range, and max-
imize performance. After simulation testing, they concluded
that the HESS configuration is more efficient using a smaller
SC with a high-capacity battery.

Fig. 4 illustrates an optimal FLC EMS proposed by [75],
showcasing the integration of GA for enhanced perfor-
mance. Ye et al. conducted a comparative study between
various FLC-based EMS methods, including FLC, FLC-GA,
FLC-PSO, and Dynamic Programming (DP) as a benchmark,
applied to EVs with battery and SC [74]. The results indicated
that FLC-GA exhibited lower and more stable peak currents
compared to FLC-PSO, with only a 0.6% deviation compared
to DP. Table 4 provides an overview of some improved PSO
and GA methods used to optimize FLC EMS. Other opti-
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TABLE 4. Some PSO and GA improvement method to Optimize FLC EMS.

No Ref Opt. Method Remark
1 [75] Non-sorted Genetic Algorithm (NSGA) Combine for optimal EMS and HESS sizing
2 [78] Chaotic improved generalized particle swarm | Fuzzy type-2, offline optimization
optimization (CIGPSO) Better in reducing energy consumption compared to conventional and
multi-objective PSO
3 [79] Iterative modified PSO (IMPSO) Fuzzy type-2, online optimization using the cloud system
Better in reducing battery loss compared to rule-based and conventional
FLC
4 [80] Chaos-enhanced accelerated particle swarm | Back-to-back competitive learning mechanisms (BCLM) to select the best
optimization (CAPSO) of two FLCs used. The best FLC will continue to work while the others
will be trained with CAPSO.
Improve fuel economy compared to rule-based and conventional FLC
5 [81] Improved quantum-GA (IQGA) Reduce fuel consumption by 5.17% compared to conventional FLC

mization methods are also used to optimize FLC for example
Differential Evolution Algorithm (DEA) [76], rule-learning
from Dynamic Programming [77], etc.

To improve the optimality in the unknown drive cycle
and to add the robustness of the optimal FLC, researchers
combine some driving cycles in the training step as in [82].
They combine three drive cycles and apply optimization using
the Genetic Simulated Annealing Algorithm (GASA). The
cooling load is also considered in this study. Finally, they
conclude that the proposed method is better than rule-based
and adaptive-ECMS (A-ECMS). The same concept was used
by [83] with the NSGA-III optimization method.

The optimization method besides optimizing FL.C, can be
used to find the optimal HESS sizing. The component size
in both HEV and HESS EVs is important since it affects
the vehicle mass, performance, and price. Herrera et al.
combined two FLCs for EMS in a hybrid bus, utilizing GA
multi-objective optimization to achieve optimal sizing and
operation of the Energy Storage System (ESS) [84]. The
simulation testing shows that the proposed method can reduce
the daily operational cost and fuel consumption by up to 15%
and 19%, respectively. Silva et al. use the same concept with
an interactive adaptive weight genetic algorithm (i-AWGA)
[85]. From the cost analysis, they conclude that the proposed
system can reduce up to 63.59% of the cost-to-autonomy
ratio. Whereas authors in [86] expand the study using a
dual-HESS system with FLC EMS optimized by i-AWGA.
The vehicle structure is it has front and rear propulsion
systems in front and rear wheels respectively. Three FLC
EMS are employed, one for power sharing between front and
rear propulsion, whereas two others for each HESS. Com-
pared with a similar EV with a single HESS and optimized
under the same driving conditions, dual HESS can increase
driving range and battery life by up to 19.57% and 22.88%,
respectively.

C. ADAPTIVE FLC

In the realm of Energy Management Strategy (EMS), Fuzzy
Logic Controllers (FLC) exhibit adaptability within oper-
ational ranges but face limitations dictated by factors like
membership limits. Recognizing the need for tailored rules
for different driving profiles, the adaptive FLC as EMS
emerges. This section delves into the four categories of adap-
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FIGURE 5. Adaptive FLC EMS classification.

tive FLC: Powering-Braking-Based, Road-Condition-Based,
Driving-Conditions-Based, and Online-Based, illustrated in
Fig. 5.

One approach involves distinct fuzzy matrix rules for pow-
ering and braking conditions, depicted in Fig. 6. Authors
in [87] employ FLC-charge and FLC-discharge controllers
for Electric Vehicles (EVs) with hybrid battery and Super-
capacitors (SC), dynamically distributing power based on
load power, battery SoC, and SC SoC. This adaptive scheme,
utilizing particle filters for battery SoC estimation, enhances
performance by minimizing charge and discharge currents.
Lu, et al. implement dual FLCs for powering and braking in a
hybrid battery-flywheel system, optimizing the scaling factor
for battery power [88]. Xu et.al. extends this concept to par-
allel hybrid engines and batteries, using a double FLC EMS
to distribute powering and braking torque efficiently [89].
The study incorporates Genetic Algorithms (GA) to opti-
mize FLC rules, demonstrating performance comparable to
Dynamic Programming (DP) and surpassing rule-based and
single-FLC methods. Additionally, Zhang et al. introduce
two distinct fuzzy rules for charge and discharge modes,
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FIGURE 6. Adaptive FLC EMS: powering-braking-based [87].

enabling efficient power provision during discharge and
smooth battery charging during regenerative braking [16].
Simulation results highlight superior energy consumption
metrics compared to rule-based and conventional fuzzy
approaches in terms of Energy Consumption (kJ) by 2.4%
and 1.28% respectively. The same concept as in [16] is also
used by [90]. Whereas [91] combines this Adaptive-FLC
mechanism with MPC in a hierarchical coordinated EMS.
They conclude that this structure improves the performance
including time response, error reduction, and stability.

The adaptive FL.C based on the road conditions is proposed
by [92] depicted in Fig. 7. The road conditions, are catego-
rized profiles into urban, road, and highway. This approach
employs Genetic Algorithms (GA) to optimize fuzzy rule
sets offline, dynamically adapting to driving conditions by
segmenting power demand. The same concept is proposed
by [93], [94], and [95] leverage Neural Networks (NN) for
driving cycle recognition. Zhang et al. utilize GA to optimize
FLC rules [94]. The proposed adaptive FLC reduces fuel
consumption and enhances stability, showcasing adaptability
across diverse driving cycles. Moreover, the authors in [96]
incorporate a Contour Positioning System (CPS) to deter-
mine route slope, utilizing FLC to adjust power distribution
between the battery and supercapacitor. Simulations con-
firm performance enhancements in a Hybrid Energy Storage
System (HESS) for Electric Vehicles (EVs).

Authors [97] introduce a multimode-FLC (MFLC) for
a hybrid tractor, adjusting fuzzy rules based on prede-
fined operational (driving) conditions. Operational condition
recognition using Fuzzy C-means (FCM) enables MFLC to
achieve up to a 13% reduction in power consumption com-
pared to thermostat control strategy (TCS). Additionally, [98]
emphasizes data-driven methods, utilizing real driving data
to predict roads and optimize fuel efficiency. The simulation
validates fuel savings of up to 16% in residential districts.
Furthermore, Hussan et al. adopt FLC for voltage regulation
in a hybrid system with fuel cells, batteries, and superca-
pacitors [99]. Classifying rules based on driving conditions
like normal, acceleration, deceleration, uphill, and downbhill,
the proposed FLC outperforms Proportional-Integral (PI) and
Sliding Mode Control (SMC) methods in voltage regulation,
energy management, and reference tracking.

The last, online adaptation is proposed by [100] which
uses the FLC Sugeno type as EMS for a hybrid tram of
battery and SC. The weighting rule of FLC is optimized
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management

using a hyper-spherical search algorithm online; therefore,
its weight dynamically changes. Through the simulation, they
validate that the proposed method can reduce the battery peak
current by 31.02% and increase the tram mileage by 22.45%
compared to FLC with a fixed weight scheme.

D. COMBINATION

The FLC EMS also combined with other methods to improve
its performance. This part is divided into three combinations:
FLC and frequency decoupling, FLC and NN, and others.
More details about each will be discussed in this part.

1) FLC AND FREQUENCY DECOUPLING
The frequency decoupling mostly combined with FLC for
EMS is a low-pass filter (LPF) and wavelet transform (WT).
Zhang and Li present an experimentally validated system
for semi-active battery-supercapacitor EVs, as depicted in
Fig. 8 [101]. The LPF segregates low-frequency power for
the battery and high-frequency power for the supercapaci-
tor. The FLC regulates power distribution based on State of
Charge (SoC) discrepancies, exhibiting a reduction in battery
capacity size by up to 78.62%. Similarly, [102] integrates
FLC and LPF, managing SC State of Charge (SoC) and power
ratios. High-Frequency power is directed to the supercapaci-
tor, achieving battery degradation assurance, and validating
the proposed HESS architecture through Hardware-in-the-
Loop (HIL) simulations. In the fully active parallel topology
of EVs with batteries and SCs, [103] and [104] leverage
FLC combined with LPF, showcasing a reduction in battery
RMS current and optimal SC utilization. Fuzzy Type-2 EMS,
incorporating LPF, is also explored by [105] and [106], high-
lighting the ability to handle fuzzy rule uncertainties.
Combining FLC with Wavelet Transform (WT) yields
improved performance in [107], [108], and [109]. Wang et al.
employ a Mamdani-type FLC with three inputs, achieving
optimal power allocation for batteries through WT-RB [107].
Simulations and Hardware-in-the-Loop (HIL) tests confirm
superior efficiency, improving by up to 14.89%. Authors
in [108] utilize a three-layered approach, optimizing Hybrid
Energy Storage Systems (HESS) parameters based on driving
cycles, segmenting low and high-frequency power demands
through WT, and distributing power through FLC-EMS.
The integrated EMS minimizes energy consumption by
6.54% compared to WT-based-only systems, demonstrat-
ing extended battery life. Moreover, [109] proposes a
two-step EMS employing adaptive LPF based on FLC and
a power-sharing algorithm based on WT and FLC. The
adaptive LPF utilizes FLC for cut-off frequency adjustment,
providing power to SC, while the remaining power is directed
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FIGURE 8. FLC combined with LPF proposed by [101].

to the second step where WT and FLC distribute power to
FC and battery. Simulation and experimental results exhibit a
7.94% reduction in fuel consumption compared to the Equiv-
alent Consumption Minimization Strategy (ECMS).

2) FLC AND NN (ANFIS)

The fusion of FLC and Neural Networks (NN) results in
Adaptive Neuro-Fuzzy Inference Systems (ANFIS), com-
bining learning capabilities with fuzzy logic adaptability.
Authors in [110], [111], and [112] exemplify ANFIS appli-
cation in EMS for hybrid electric buses and parallel hybrid
Electric Vehicles (EVs). Reference [110] employs iterative
Dynamic Programming (DP) to train ANFIS for EMS in a
hybrid electric bus, demonstrating superiority over ECMS
and rule-based methods in simulations and experiments.
Authors of [111] train ANFIS to mimic ECMS as EMS
for a hybrid bus, showcasing lower fuel consumption than
ECMS itself through simulations and HIL testing. Whereas
Gao et al. utilize logic threshold EMS to train ANFIS
for a parallel hybrid EV with a DC-motor traction motor,
achieving improved performance in simulation tests [112].
Authors in [113] propose a unique HESS EV configuration
to increase kinetic energy utilization with ANFIS EMS. The
ESS used are FC, battery, and SC. The DC generator is
added to the front wheels to increase the regenerative braking
energy absorption. The simulation shows that this system
with ANFIS EMS gives an efficiency of up to 98.2%.

3) OTHER APPROACHES

Fu et al. employ GA to optimize the membership function
of FLC-EMS for a hybrid FC, battery, and ultra-capacitor
system, considering fuel economy and FC lifespan [114].
The combination with LPF and WT results in a 4.4% reduc-
tion in hydrogen consumption compared to conventional
FLC-EMS. Yang et al. combine FLC optimized by PSO, and
wavelet transform for a hybrid tramway [115]. Utilizing PSO
to tune FLC membership functions, coupled with wavelet
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transforms, the proposed method reduces operational costs by
up to 5.19%. Zhang et al. integrate Wavelet Transform (WT),
Neural Networks (NN), and optimal FLC EMS for hybrid
battery and SC vehicles, depicted in Fig. 9 [116]. WT extracts
battery power demand, NN processes real-time application
data, and PSO optimizes FLC membership functions. Exper-
imental testing concludes that the proposed method reduces
battery life costs by 18% and enhances regenerative braking
energy recovery by 44.22%. Guo et al. combine FLC with
Reinforcement Learning (RL) in a hybrid FC and battery
EV [117]. The proposed Fuzzy-Reinforce utilizes Policy
Gradient Reinforcement Learning (PGRL), demonstrating
stability, speed, and lower hydrogen consumption compared
to traditional RL in Hardware-in-the-Loop (HIL) simula-
tions. Matignom et al. synthesize learning-based, rule-based,
and optimization-based EMS strategies into an integrated
EMS [118]. Utilizing Fuzzy C-means for driving pattern
recognition, fuzzy rule-based methods, and online Pontrya-
gin’s minimum principle (PMP) optimization, the proposed
strategy achieves performance close to optimal offline strate-
gies. This diverse spectrum of hybrid approaches illustrates
the versatility and adaptability of FLC in combination with
other techniques to optimize EMS for various hybrid and
electric vehicle applications.

IV. DISCUSSION AND FUTURE DEVELOPMENT

There are different functionalities of EMS in HEV and
HESS EV. In Hybrid Electric Vehicles (HEVs), where both
conventional engines and electric powertrains coexist, FLC
EMS designs cater to diverse operational modes and energy
sources. Challenges include ensuring seamless transitions
between power sources and optimizing energy utilization
in dynamic driving conditions. In Hybrid Energy Storage
Systems of Electric Vehicle (HESS EV), with a primary
focus on electric propulsion, FLC EMS navigates the intrica-
cies of managing energy from batteries and supercapacitors.
Challenges involve addressing high-frequency load demands
and preserving the lifespan of responsive but aging ESS
components like Fuel Cells (FC) and batteries.

A. FLC EMS PERFORMANCE INSIGHTS
In the application of FLC EMS, four predominant
approaches are identified: conventional, optimal, adaptive,
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FIGURE 10. FLC EMS classification.

and combination. Conventional FLC relies on manual tun-
ing, predominantly using Mamdani-type fuzzy logic. Inputs,
often load power and State of Charge (SoC), dictate the
output—power reference for Energy Storage Systems (ESS).
To overcome tuning challenges and achieve optimal results,
optimization methods like Particle Swarm Optimization
(PSO) and Genetic Algorithm (GA) are frequently employed
known as optimal FLC. There are also a lot of objective
functions used such as increasing mileage, reducing fuel
consumption, reducing energy consumption, reducing energy
loss, etc.

The unpredictable drive cycle makes the optimal FLC EMS
which is tuned based on the specific driving cycle cannot give
optimal results in different drive cycles. To handle this issue,
adaptive FLC EMS is proposed. Different adaptive method
is proposed by scholars. This review is categorized into four
classes which are: powering-braking-based, road-condition-
based, driving conditions-based, and online-based. For more
details, see the adaptive FLC section. The road condition and
driving condition have an impact on the powering and brak-
ing. Therefore, the right choice of powering-braking-based
can accommodate both road-condition-based and driving
condition-based. Whereas the online mechanism is the best
one if the infrastructure is available.

The last way is by combining FLC with another method.
In this way, there is a lot of combination of FLC methods
proposed by the researcher. Most of them, which the authors
can find are in combination with frequency decoupling such
as LPF and WT. Power sharing or energy management from
FLC cannot handle high-frequency load which affects the
aging of low response ESS such as FC and battery. There-
fore, the frequency decoupling is added to help distribute
load power into the right ESS with the load power fre-
quency. Another combination of FLC is with NN to form
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Advantages: Advantages: Advantages: Advantages:

Simple Optimal result in Adaptable with Eliminate FLC issues
specific drive cycle, no different track such as frequency
need for manual tuning constraints

Disadvantages: Disadvantages: Disadvantages: Disadvantages:

Suboptimal The optimization More rules is required Complex depends on

performance, time- process is time- the combined method

consuming for tuning consuming

ANFIS. Which is a fuzzy inference that can be trained. The
ANFIS also used to accommodate the realization of high
computational EMS such as DP and ECMS. Finally, there is
also a combination of FLC, optimization algorithm, adaptive
mechanism, and frequency decoupling method.

In contrast to conventional FL.C, optimal FLC yields supe-
rior outcomes. However, it’s tracking-dependent, making
consistent performance challenging across various tracks.
Adaptive FLC, by dynamically altering fuzzy rules, tackles
this limitation effectively. Fig. 10 illustrates the categoriza-
tion of FLC and highlights its benefits and drawbacks in
HEVs and HESS EVs applications.

B. FUTURE DIRECTIONS

The development of FLC EMS will be focused on opti-
mal, adaptive, and combination forms. In the adaptive form,
although can adapt to many conditions, it requires a lot
of rules. Therefore, it requires a high specification of the
processor. The solution to solve it is to improve the opti-
mal and combination FLC EMS. The optimal FLC can
be improved with any new optimization method that can
perform more powerfully and accommodate multi-objective
functions. The optimal FLC also can be trained with a lot of
drive cycles to make it optimal in most of the drive cycles
which can perform like the adaptive FLC but with fewer
rules. The combination with another method also can improve
FLC EMS performance without significantly increasing its
computational time.

Advancements in communication paradigms, particu-
larly Vehicle-to-Everything (V2X) technologies, present
opportunities for enhancing FLC EMS. V2X encom-
passes Vehicle-to-Vehicle (V2V), Vehicle-to-Device (V2D),
Vehicle-to-Infrastructure (V2I), Vehicle-to-Grid (V2G),
Vehicle-to-Pedestrian (V2P), and Vehicle-to-Network (V2N)
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subsystems [119]. Leveraging V2X can facilitate real-time
optimization by reducing computing loads and ensuring FL.C
EMS is continually updated with optimal results. This can
solve the adaptive FLC problem regarding the computational
time.

Future developments could explore synergies between
FLC EMS and V2X technologies, allowing vehicles to
communicate operational status and receive real-time traf-
fic updates. Such integration holds promise for achieving
enhanced energy efficiency, reduced fuel consumption, and
minimized component damage. As research progresses,
addressing challenges in hardware implementation becomes
crucial. Bridging the gap between simulation, Hardware-
in-the-Loop (HIL) techniques, and full-scale prototypes are
essential to validate FLC EMS designs in practical scenarios.

V. CONCLUSION

In summary, this review highlights the adaptability and effec-
tiveness of the Fuzzy Logic Controller (FLC) as an Energy
Management Strategy (EMS) for Hybrid Electric Vehicles
(HEVs) and Hybrid Energy Storage Systems Electric Vehi-
cles (HESS EVs). The analysis of conventional, optimal,
adaptive, and combination FLC methods reveals specific
strengths and limitations. The conventional method is sim-
ple but suboptimal, the optimal method excels in specific
scenarios but lacks versatility, and the adaptive method,
despite its complexity, offers track-independent adaptability
and enhanced performance. The combination method shows
promise in addressing FLC limitations, especially concerning
frequency constraints. This review is a valuable resource for
researchers exploring energy management in EVs, particu-
larly with FLC. Future research should focus on practical
FLC implementation and real-world performance assess-
ments to advance Hybrid Energy Storage Systems (HESS)
and contribute to sustainable transportation solutions. Under-
standing the nuances of different vehicle architectures is
crucial for shaping the future of electric and hybrid vehicle
technology. The continuous refinement of FLC methodolo-
gies holds significant promise for achieving efficient and
eco-friendly transportation solutions.
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