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ABSTRACT Patients’ safety is paramount in the healthcare industry, and reducing medication errors is
essential for improvement. A promising solution to this problem involves the development of automated
systems capable of assisting patients in verifying their pill intake mistakes. This paper investigates a
Pill-Prescription matching task that seeks to associate pills in a multi-pill photo with their corresponding
names in the prescription. We specifically aim to overcome the limitations of existing pill detection methods
when faced with unseen pills, a situation characteristic of zero-shot learning. We propose a novel method
named Zero-PIMA (Zero-shot Pill-Prescription Matching), designed to match pill images with prescription
names effectively, even for pills not included in the training dataset. Zero-PIMA is an end-to-end model
that includes an object localization module to determine and extract features of pill images and a graph
convolutional network to capture the spatial relationship of the pills’ text in the prescription. After that,
we leverage the contrastive learning paradigm to increase the distance between mismatched pill images and
pill name pairs while minimizing the distance between matched pairs. In addition, to deal with the zero-shot
pill detection problem, we leverage pills’ metadata retrieved from the DrugBank database to fine-tune a
pre-trained text encoder, thereby incorporating visual information about pills (e.g., shape, color) into their
names, making them more informative and ultimately enhancing the pill image-name matching accuracy.
Extensive experiments are conducted on our collected real-world VAIPEPP dataset of multi-pill photos
and prescriptions. Through a series of comprehensive experiments, the proposed method outperforms other
methods for both seen and unseen pills in terms of mean average precision. These results indicate that the
proposed method could reduce medication errors and improve patients’ safety.

INDEX TERMS Contrastive learning, graph convolutional network, object detection, pill-prescription
matching, text-image matching, zero-shot learning.

I. INTRODUCTION
Medication is crucial in treating various diseases and
improving patients’ health. However, medication mistakes

The associate editor coordinating the review of this manuscript and

approving it for publication was Yun Lin .

can lead to severe consequences, such as reducing the
effectiveness of treatment, causing adverse effects, and even
leading to death [1], [2], [3], [4]. According to a report
by the United States National Coordinating Council for
Medication Error Reporting and Prevention [5], drug abuse
accounts for one-third of all deaths rather than the illness
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FIGURE 1. Illustration of incorrect pill detection using object detection
models. In the task of pill detection, many pills are similar.

itself. Moreover, in the United States alone, approximately
7, 000 to 9, 000 people die yearly from medication mistakes.
Several factors can lead to drug abuse, including taking
the wrong amount or the wrong kind of medication and
taking pills that are not prescribed. There are numerous
causes of drug abuse, which may originate with the physician
(prescribing error), the pharmacist (preparation error, dis-
pensing error), or the patients themselves (wrong medication
than prescribed) [6], [7]. In literature, considerable efforts
have been dedicated to reducing the drug abuse caused by
the first two groups [8], [9], [10]. However, only a small
number of research has focused on drug abuse by patients
themselves. In underdeveloped nations where regulations and
processes concerning drug usage are not stringent and well-
defined, medication errors caused by patients themselves
occur frequently and become a critical issue, particularly
among elderly patients and children [11], [12]. To this
end, this study is one of the earliest attempts to reduce
patient-caused drug abuse. In particular, we offer an approach
for automatically matching information between pill names
given in the prescription and the pill images presented in a
photo of multi-pill intake, thereby aiding patients in detecting
cases of taking unprescribed pills or mistaking the prescribed
pills. We name our task as Pill-Prescription matching,
which can be defined as follows: Given a snapshot of a
prescription and a photo of all the pills in a pill intake,
match the names of the pills on the prescription and their
corresponding regions in the multi-pill photo.

A. EXISTING APPROACHES AND CHALLENGES
For the task of pill detection, most methods utilize object
detection models [13], [14], [15], [16]. As illustrated in

FIGURE 2. In conventional methods, the first step entails detecting pill
labels (Task 1) and identifying pill names (Task 2) from the multi-pill
photo and prescription text, respectively. Subsequently, the focus shifts to
matching the pill names with their corresponding image labels (Task 3).

Figure 1, this approach encounters several challenges in this
particular task due to numerous pills that look similar in
shape and color. To address this issue, some methods have
attempted to recognize characters printed on the surface of
the pills [17]. However, not all pills have such characters,
reducing the effectiveness of this approach.

For the Pill-Prescription matching task, the conventional
approach breaks into three sub-tasks: detecting the pill
images presented in the provided multi-pill photo, extracting
the pill names described in the prescription, and pill image-
name matching. As shown in Figure 2, pill detection is
typically achieved using object detection techniques. On the
other hand, the extraction of pill names often relies on
optical character recognition techniques for text localization
and recognition and rule-based methods for pill-name
information extraction. Once the pill image labels and pill
names are extracted, they can be matched using rule-based
matching techniques. Despite efforts in pill detection, this
approach suffers from severely inaccurate classification,
as stated previously. Moreover, the problem of pill name
identification is challenging since the name of a pill might
be expressed in numerous ways (e.g., a common pain reliever
might be known as ‘‘Tylenol’’ in one country, ‘‘Paracetamol’’
in another, and ‘‘Acetaminophen’’ in yet others). When
solving the Pill-Prescription matching by decomposing it into
three sub-tasks, the inaccuracies of these single tasks will
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FIGURE 3. Proposed method (1-stage approach) leverages the pill
features obtained through object localization and employs a Graph
Convolutional Network (GCN) to extract pill name features from
prescriptions. The matching process is achieved through contrastive
learning.

accumulate, leading to a degradation in the pill identification
accuracy.

Moreover, the conventional Pill Detection and Pill-
Prescription matching approach fails to handle new pills that
do not appear in the training dataset. It should be noted
that new pills are frequently introduced (According to [18],
an average of 43 new pharmaceuticals have been approved
over a rolling 10-year period); therefore, the limitations of
these methods make it challenging to put into practice. This
necessitates a robust solution that can effectively identify
seen pills (i.e., pills that appeared in the training dataset) and
unseen pills (i.e., pills that have not appeared in the training
dataset).

B. PROPOSED SOLUTION
In this work, we focus on zero-shot learning for the
Pill-Prescription matching problem and propose Zero-PIMA
(Zero-shot PIll-Prescription MAtching),1 a novel approach
that can accurately match pill images in a multi-pill intake
photo and their corresponding names in the prescription even
if the pills have not appeared in the training dataset. Our main
idea lies in two points as follows:
1) To increase the overall accuracy of the Pill-Prescription

matching problem, we propose an end-to-end deep
learning model (Figure 3) that integrates the pill image
localization, pill name extraction, and matching phases

1In our previous work [19], we proposed a pill-prescription matching
approach, called PIMA. However, that solution did not address the pill
localization problem (i.e., The pill images had to be cropped before being
fed into the model). It also could not handle unseen pill images.

altogether. In this way, we are able to avoid the error
accumulation issue associated with the conventional
approach. To be more specific, we first employ an object
localization module to determine and extract features
of pill images. Meanwhile, a Graph Convolutional
Network (GCN) is leveraged to capture the spatial rela-
tionship of text boxes in the prescription and highlight
those containing pill names. After that, we leverage the
contrastive learning paradigm to increase the distance
between mismatched pill image and pill name pairs
while minimizing the distance between matched pairs.

2) To identify unseen pills, we utilize the pills’ metadata
(i.e., shape, color), which is obtained from theDrugBank
database [20]. The DrugBank database is a central
repository storing data about almost all pills. Thus,
leveraging this source allows us to retrieve information
about unseen pills. This metadata is combined with
the pill names to train a text embedding model. These
text features are then aligned with the visual features
of the pills. When an unseen pill appears, although
its exact name may be unknown, its visual attributes
like shape and color enable us to cross-reference and
accurately identify it to the corresponding pill name in
the prescription.

C. CONTRIBUTIONS
The main contributions of this paper are three-fold as
follows:

• Problem Definition and Solution Zero-PIMA: We
highlight the importance of the patient-caused drug
abuse issue and define the Pill-Prescription match-
ing problem. We then propose a novel end-to-end
approach for handling the zero-shot learning for
the Pill-Prescription matching problem. The proposed
method leverages the GCN and Contrastive Learning to
match pill images in a multi-pill intake photo and pill
names in a prescription for both seen and unseen pills
accurately.

• Dataset Construction:We provide a real-world dataset
consisting of 2,156 multi-pill photos corresponding to
1,527 prescriptions. To the best of our knowledge, this
dataset is the first one capturing the prescriptions and
corresponding pill images.

• Accurate Detection: We perform extensive experi-
ments to evaluate the performance of the proposed
method and compare it with benchmark models. Exper-
imental results demonstrate that the proposed method
improves the accuracy in both seen and unseen pills on
mean Average Precision (mAP) compared to the other
methods.

The remainder of this paper is organized as follows: Firstly,
we briefly summarize relevant works in Section II. We then
present the details of the proposed method in Section III and
evaluate its performance in Section IV. Section V concludes
the paper and introduces our future direction.
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II. RELATED WORK
In this section, we introduce traditional Object Detection
methods and Zero-shot Object Detection methods in Sec-
tions II-A and II-B, respectively, emphasizing this critical
computer vision task’s enhancement through deep learning.
Following this, we explore related work on Pill Recognition
and Pill Detection in Sections II-C and II-D, respectively.

A. TRADITIONAL OBJECT DETECTION
Object detection is a well-established research task in
computer vision, and there have been many successful
methods proposed in literature. One of the earliest and most
widely used approaches is the Viola-Jones method [21],
which uses Haar-like features and a cascade of classifiers
to detect objects. More recently, the development of deep
learning has led to significant progress in object detection,
with methods such as Region-based Convolutional Neural
Network (R-CNN) [22], Fast R-CNN [23], and Faster R-
CNN [24] achieving excellent performance on popular
benchmark datasets such as Microsoft Common Objects
in COntext (MS-COCO) [25] and PASCAL Visual Object
Classes (PASCAL VOC) [26]. Other notable approaches
include You Only Look Once (YOLO) [27], Single Shot
multibox Detector (SSD) [28], and RetinaNet [29], which
are designed for real-time object detection and have achieved
competitive results. Additionally, there have been efforts
to improve object detection by incorporating attention
mechanisms, such as in the recent work on DEtection
TRansformer (DETR) [30], which uses a transformer-based
architecture to directly output object detections without the
need for anchor boxes.

B. ZERO-SHOT OBJECT DETECTION
Zero-Shot object Detection (ZSD) has emerged as a
cutting-edge trend in modern object detection, aiming to
detect objects beyond predefined categories. This field poses
unique challenges, particularly in aligning visual features
with semantic representations of objects. Bansal et al. [31]
laid the groundwork for ZSD by adapting visual-semantic
embeddings, highlighting the necessity of effectively distin-
guishing between background and unseen classes through
models aware of the background context. Rahman et al. [32]
further advanced ZSD with an enhanced visual-semantic
alignment technique, employing a polarity loss function
to improve discrimination between positive and negative
predictions significantly. More recently, the advent of vision-
language pre-training has led to ZSD being conceptualized as
an image-text matching problem [33], [34], [35], leveraging
large-scale image-text data to expand the number of training
classes. Inspired by these methods, this research utilizes a
pre-trained vision-language model for unseen pill detection.
However, since the pre-trained model primarily focuses on
standard image and text pairs, we fine-tune it on the proposed
pill dataset.

C. PILL RECOGNITION
Since accurate identification of pills is important for patients’
safety and healthcare delivery, advance in computer vision
techniques and deep learning has led to an increasing interest
in developing automated systems for pill identification.
Wong et al. [36] proposed a deep learning model using a deep
convolutional network [37] for automatic pill identification
and verification that outperformed existing methods, using
pill images captured with mobile phones under unconstrained
environments. While this approach offers potential accuracy,
its computational intensity and the need for extensive training
data are notable drawbacks. Ling et al. [17] proposed a
pill image recognition approach using a light-weight W2-
net for segmentation and a multi-stream deep network. Their
two-stage training methodology with Batch All and Batch
Hard strategies aimed to handle the hard samples taken
under less controlled imaging conditions. However, this
method uses pill images taken in laboratory settings, and
the pills need to have imprinted pill codes marked on their
surfaces. Besides that, we introduced a new approach named
PIKA (which stands for Pill Identification with medical
Knowledge grAph) [38] to enhance pill recognition accuracy
under practical conditions. This approach leveraged external
knowledge, specifically prescriptions, to model the implicit
association between pills. By employing a walk-based graph
embedding model, it extracted relational features from pills
and merged them with image-based visual features to achieve
the final classification.

D. PILL DETECTION
The current state-of-the-art on the pill detection task is
still immature, with previous studies relying on traditional
object detection models. Kwon et al. [13] proposed a
regional deep learning algorithm to improve pill detection
performance with limited training data. The method detects
the location and type of individual pills in an image with
multiple pills by limiting the training data to single-pill
images. A two-step detection method based on Mask R-
CNN [39] is used to improve local detection performance,
where the first step detects only the number and area of
pills in the image, and the second step detects the type of
the corresponding pill. However, the reliance on single-pill
images during training in this method limits the model’s
capability to generalize to situations where multiple pills are
present in an image. In our previous work [19], we were the
first to investigate the Pill-Prescription matching problem,
called PIMA (PIll-Prescription MAtching). We exploited
the contrastive learning paradigm to contrast pill images
and names, i.e., minimizing the distance of a pill image
and its corresponding name while maximizing those of
mismatched pill image-name, thereby, enhance the matching
accuracy. However, since this approach did not address the
pill localization problem, the pill images had to be cropped
before being fed into the model. In addition, it could not
handle unseen pill images.
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III. PROPOSED METHOD: ZERO-PIMA
We propose Zero-PIMA (Zero-shot PIll-Prescription
MAtching), a novel approach in dealing with the Zero-
shot Pill-Prescription matching problem. We first provide a
broad outline of Zero-PIMA in Section III-A. We then delve
deeper into Zero-PIMA’smodules in Sections III-B and III-C.
Finally, we elaborate on the proposed learning objectives in
Section III-D, which plays a crucial role in enhancing the
overall performance of the proposed method.

A. OVERVIEW
In this paper, we address the challenge of matching a set
of pill images P = {p1, p2, . . . , pM } (M is the number
of pill objects) with their corresponding prescription names
S = {s1, s2, . . . , sN } (N is the number of texts) extracted
from textual prescriptions. The proposed method formulates
the matching task as an optimization problem, aiming to
find a mapping function f : P → S that maximizes
the accuracy and relevance of the pill-to-prescription name
associations. We introduce constraints to ensure uniqueness
and completeness in the matching process, where each pill
is associated with no more than one prescription name.
The proposed method leverages extracted features from
both modalities to calculate similarity scores, facilitating the
optimal pairing of pills with their respective prescription
names.

We observe that themost challenging issues in handling the
Pill-Prescription matching problem lie in the cases where (1)
the pills to be identified have similar external appearances
to others and (2) the pills were unseen in the training data.
To tackle the first issue, we argue that it is insufficient
to identify pills using only their visual information. There-
fore, instead of decomposing the Pill-Prescription matching
problem into three sub-tasks (i.e., pill detection, pill name
extraction, and pill image-name matching), we combine all
three into an end-to-endmodel and leverage information from
extracted pill names to improve the pill image recognition
accuracy, and vice versa. To address the second issue which
entails coping with unseen pills, we utilize the metadata
information (i.e., shape, color) retrieved from the DrugBank
database [20]. This information is employed with the pill
names to train the text embedding model. Thus, we can
associate the name of each pill with its metadata, enhancing
the deterministic nature of the pill names and, therefore, more
effectively addressing the unseen pill issue.

Figure 4(a) illustrates the overview of the proposed
model comprising three modules: Pill Detector, Prescription
Recognizer, and Learning Objectives. The Pill Detector
leverages the object detection technique to identify pills
in the input image. Specifically, this module receives a
multi-pill photo and produces the bounding boxes (enclosing
pill objects) associated with their identities. We leverage
a Convolutional Neural Network (CNN) as a backbone to
extract features and a Region Proposal Network to suggest

the objects’ locations. ThePrescription Recognizer is respon-
sible for extracting textual information from a prescription.
We employ a Transformer encoder to generate embeddings
of the texts. Furthermore, we use a Graph Convolutional
Network (GCN) to capture spatial relationships among the
text boxes and highlight those representing pill names.
To enrich the information of the pill names’ text embeddings
and better handle the unseen pill cases, we leverage pills’
metadata (i.e., shape, color) retrieved from the DrugBank
database to finetune the pre-trained text embeddings. The
visual representations of the pill images (extracted by the Pill
Detector) and textual features of pill names (generated by
the Prescription Recognizer) are then projected onto a shared
space and used as the inputs of the Pill-Prescription alignment
in the Learning Objectives module. The Pill-Prescription
alignment consists of a contrastive loss function aiming to
establish associations between the pill name features and their
corresponding pill image representation. The intuition behind
the contrastive loss is to minimize the distance between
features representing a pill image and its corresponding
name while maximizing the distance between those depicting
non-corresponding pill images and names. Furthermore,
to enhance the deterministic of the features generated by
the Pill Detector and Prescription Recognizer, we employ
two losses in our learning objectives: Pill Detection loss
and Prescription Recognizer loss. The former is responsible
for detecting and localizing pill objects within the multi-
pill photo, while the latter is to determine the text boxes
containing pill names in the prescription.

B. PILL DETECTOR
The Pill Detector module is responsible for localizing pills
and generating the representation for each pill in themulti-pill
photo. For this purpose, in this work, we leverage Faster R-
CNN [24] as the backbone model. However, it is worth noting
that any other object detection technique can also be used
as the Pill Detector. Figure 5 depicts the architecture of the
Faster R-CNNwith themain components of a CNN backbone
for extracting a feature map of the input multi-pill photo
and a Regions Proposal Network (RPN) for determining
potential Region of Interest (RoI). The outputs of these two
components are then used as inputs for the RoI pooling
layer. The RoI pooling layer generates a representation
for each RoI proposed by the RPN based on the feature
map received from the CNN. To achieve at the same time
two goals: (1) accurately determining the locations (i.e.,
bounding boxes’ coordinates) of the objects, and (2) filtering
out only those containing pill objects, we employ two loss
functions: classification and bounding-box regression. Note
that instead of using multi-class classification loss as in other
object detection tasks, we use a binary classification loss to
distinguish between the pill and non-pill objects. In this way,
during the inference stage, we can filter out only bounding
boxes that likely contain pills to perform the Pill-Prescription
matching task. In addition, only pill-containing bounding
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FIGURE 4. Overview of Zero-PIMA. (a) Illustration of the Zero-PIMA architecture consists of three modules: Pill Detector, Prescription Recognizer, and
Learning Objectives. Pill Detector is responsible for localizing and extracting visual information from a multi-pill photo. Pill Prescription Recognizer
utilizes a Graph Convolutional Network to highlight the text boxes likely to be pill names and a pill-enhanced text embedding to learn representations of
pill names. Finally, textual and visual data are fed into the Pill-Prescription alignment in the Learning Objective module to produce a text-image retrieval
result. (b) Semantic contrastive loss is applied to integrate pills’ metadata into the pill names’ embeddings.

boxes are sent to the Pill-Prescription alignment during the
training phase to enhance the training speed and matching
precision.

Assuming that there are M pill objects in the input
multi-pill photo denoted by {p1, . . . , pM }, the Pill Detector
will produce M feature vectors {ie1, . . . , i

e
M }, where iei

represents the visual feature of pill pi (i = 1, . . . ,M ). These
feature vectors are then projected onto the same hyperplane
with their counterparts in the prescription via a projection
layer, resulting in the final representation of the pills as
Ip = {ip1, . . . , i

p
M }.

C. PRESCRIPTION RECOGNIZER
The Prescription Recognizer aims to localize the text boxes
containing pill names and generate their text embeddings.
To accomplish this, we design a module consisting of
three components: Text Recognition, Transformer-based
Text Embedding, and Graph Neural Network-based Pseudo
Classifier. Initially, the Text Recognition localizes the text
boxes bounding texts in the prescription and extracts the
texts. Let us denote by {b1, . . . , bN } the coordinates of the

FIGURE 5. Architecture of Faster R-CNN-based pill recognizer. The CNN
backbone extracts the feature map from the input multi-pill photo.
Region Proposal Network (RPN) identifies potential Regions of Interest
(RoI) where the pills are located. Feature maps derived from RoI pooling
are then used to detect and match pills to their respective prescriptions.

text boxes and {s1, . . . , sN } the corresponding texts (N is the
number of texts in the prescription), then texts {s1, . . . , sN }
are sent to the Transformer-based text embedding model [40]
to produce text embedding vectors {te1, . . . , t

e
N }. The text
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Algorithm 1 Algorithm for Learning Embedded Vectors of
the Prescription Graph (Forward Propagation).
Input: Prescription graph G = {V ,E}; input attribute
{tev,∀v ∈ V }, t

e is a text embedding; depth K ; weight matrix
Wk ,∀k ∈ {1, · · · ,K }; non-linear function σ ; differentiable
aggregator functions AGGREGATEk , ∀k ∈ {1, · · · ,K },
neighboring vertices VN : v→ 2V .
Output: Feature vectors zv,∀v ∈ V .
1: h0v ← tev,∀v ∈ V
2: for k = 1 · · ·K do
3: for v ∈ V do
4: hkVN (v)

← AGGREGATEk
({
hk−1u ,∀u ∈ VN (v)

})
5: hkv = σ

(
W k
·MEAN

(
hk−1v ,hkVN (v)

))
6: end for
7: hkv ← hkv/

∥∥hkv∥∥2 ,∀v ∈ V
8: end for
9: zv← hKv ,∀v ∈ V

embedding vectors are then utilized in two ways: Firstly,
in conjunction with the coordinates {b1, . . . , bN } of the text
boxes, {te1, . . . , t

e
N } are used to construct a graph representing

the spatial relationship between them. The representation
generated by a graph neural network is then fed into the
pseudo-classifier to highlight text boxes containing pill
names; Secondly, the text embedding vectors are sent to the
Pill-Prescription alignment to perform the matching of pills’
images and names.

1) TRANSFORMER-BASED TEXT EMBEDDING
We leverage the Transformer encoder to learn the text
embeddings. Given a text si = [w(i)

1 , . . . ,w(i)
li ] extracted

from the prescription, where w(i)
t (t = 1, . . . , li) represents

the t-th token of si, then the text embedding of si,
denoted by tei , is obtained by feeding [w(i)

1 , . . . ,w(i)
li ] into

a transformer encoder. To enrich the information of the
produced embeddings, we apply transfer learning to fine-tune
the pre-trained text embeddings using the pills’ metadata
obtained from the DrugBank database [20]. The metadata
consists of the color and shape of the pill. Specifically,
we employ contrastive learning to contrast pill names and
metadata, i.e., minimizing the distance between the name
and metadata of the same pill and increasing it for distinct
pills. The details of the contrastive loss are described in
Section III-D4. Finally, we leverage a fully connected layer
with skip-connection to project the text embeddings onto the
same hyper-plane as their counterparts in the pill images.
The final representations of the N text boxes are denoted by
T p = {tp1, · · · , t

p
N }.

2) GRAPH NEURAL NETWORK-BASED PSEUDO CLASSIFIER
Prescriptions typically contain lots of noisy information, such
as date, diagnosis, and note; identifying text boxes containing

pill names is essential for the PIMA. Particularly for Zero-
PIMA, where unseen pills have not been trained with their
names, filtering out pill names from prescriptions helps
reduce the misidentification of unseen pills with other texts
(not pill names) in the prescription. To this end, our idea is to
leverage the GCN to model the spatial relationship between
text boxes in the prescription, differentiating between pill
names and those that are not. We construct an unweighted
graph G = {V ,E} with the vertices V = {v1, . . . , vN }
representing the text boxes and the edges reflecting their
relative positions in the prescription. To be more specific,
each vertex vi is associated with the attribue of its text
embedding tei , and two vertices vi and vj are connected
if one of them is the box with the shortest horizontal (or
vertical) distance to the other. In this work, we leverage
GraphSAGE [41], to convert from graph space to vector
space. Any other GCN model can be used for this purpose,
but investigating them is beyond the scope of this paper. The
details of the forward propagation process in the prescription
graph learning are presented in Algorithm 1. For each vertex
vi, we generate a graph embedding vector zvi that combines its
textual information and relationship with neighbors withinK -
hops. This graph representation vector is then passed through
the sigmoid activation function and the classifier to produce
the classification result. The resulting vector g = (g1, . . . gN )
represents the probabilities for each text box to contain a pill
name, i.e., gi demonstrating the probability that the i-th text
box contains a pill name. This pseudo-classifier is trained via
a classification loss (see Section III-D for the details).

Finally, the pseudo classification result is multiplied by
the text embeddings to obtain the weighted version, T p

′

=

{g1t
p
1, . . . , gN t

p
N }, which emphasizes the most probable pill

name while dimming the others.

D. LEARNING OBJECTIVES
We observe that the accuracy of the Zero-PIMA depends
on four factors: (1) Localizing and extracting meaningful
information about pill images, (2) Identifying and generating
informative representations of pill names, (3)Matching pill
images and names from the extracted ones, and (4) Capability
in dealing with unseen pills whose images were unseen in
the training process. To accomplish the first objective, rather
than considering it as a multi-label classification, we instead
utilize a binary classification loss to distinguish between
the pill and non-pill bounding boxes (Section III-D1). For
the second goal, we adopt GCN to model the spatial
correlation between text boxes and design a cross-entropy
loss to highlight boxes containing pill names (Section III-D2).
The third objective is attained through a contrastive loss
that compares the visual features of pill images and text
embeddings extracted from the prescription (Section III-D3).
Finally, we achieve the last goal using a semantic contrastive
loss to finetune pre-trained text embeddings to capture better
textual information from pill names (Section III-D4).
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1) PILL DETECTOR LOSS
We adopt the multi-task loss following Faster-RCNN [24],
which consists of a classification lossLcls and regression loss
Lreg to train the Pill Detector. Specifically, we define the Pill
Detector’s loss as follows:

LPD =
1
Ncls

∑
i

Lcls
(
pi, p∗i

)
+ γ

1
Nreg

∑
i

p∗i Lreg
(
ti, t∗i

)
,

(1)

where i represents the index of an anchor in the mini-batch,
and pi the predicted probability that the anchor contains a
pill object. The ground-truth label denoted as p∗i , is set to
1 if the anchor represents a pill object and 0 otherwise. ti
is a vector that represents the coordinates of the predicted
anchor, while t∗i represents the ground-truth bounding box
coordinates associated with the pill. The classification loss
Lcls is computed over two classes (pill and non-pill objects),
while the regression loss Lreg is calculated using the formula
Lreg(ti, t∗i ) = R(ti − t∗i ), where R represents the robust
loss function (smooth L1) defined in [23]. Both losses are
normalized by Ncls and Nreg and weighted by a balancing
parameter γ , where Ncls is the mini-batch size and Nreg is the
number of anchor locations.

2) PRESCRIPTION RECOGNIZER LOSS
We utilize the binary cross-entropy loss to identify whether a
text box contains a pill name. We observe that the number of
text boxes with pill names is significantly smaller than those
without pill names. For this reason, we employ the following
weighted cross-entropy loss to mitigate the bias:

LPR = −
1
N

N∑
i=1

wi
[
yilog (gi)+ (1− yi) log (1− gi)

]
, (2)

where yi and gi represent the ground-truth label and the
predicted result concerning a text box si, respectively, and wi
represents the ratio of text boxes with the label of (1 − yi).
To be more specific, let Npill be the number of text boxes with
a pill name, and N the total number of text boxes, then wi is
determined as follows:

wi =


1−

Npill

N
, if text box si contains a pill name,

Npill

N
, otherwise.

3) PILL-PRESCRIPTION CONTRASTIVE LOSS
This loss aims to model the cross-modal relationship between
two modalities: pill image and pill name. The principle
is to encourage the distance between representations of
mismatched pill image and pill name pairs (a pill image and a
name that do not correspond to the same medication), while
minimizing those of the matched pairs (a pill image and its
correct name, indicating they represent the samemedication).
Specifically, let ipi and t

p
j be the representations of a pill image

pi and a pill name sj, respectively, then their similarity is

defined by the cosine similarity as follows:

S
(
ipi , t

p
j

)
=

ipi · t
p
j

max
(∥∥ipi ∥∥2 · ∥∥∥tpj ∥∥∥2 , ε

) ,

where ε is a small offset responsible for avoiding the zero
division problem. The learning objectiveLPPC consists of two
contrastive terms LI→T and LT→I . The former is an image-
to-text contrastive loss responsible for aligning the pill image
corresponding to a given pill name, while the latter is a text-
to-image contrastive loss responsible for matching the pill
name with a given pill image. Details of the Pill-Prescription
contrastive loss are as follows:

LI→T = −
1
M

M∑
i=1

log
exp

(
S

(
ipi , t

p
i

)+
/τ

)
∑Npill

j=1 exp
(
S

(
ipi , t

p
j

)−
/τ

) ,

LT→I = −
1

Npill

Npill∑
i=1

log
exp

(
S

(
tpi , i

p
i

)+
/τ

)
∑M

j=1 exp
(
S

(
tpi , i

p
j

)−
/τ

) ,

LPPC = LI→T + LT→I , (3)

where M is the number of pill images, Npill is the
number of pill names, the symbol ‘‘+’’ represents a
pair of samples that are similar, while the symbol ‘‘−’’
represents a pair of samples that are dissimilar, and τ is
a temperature hyperparameter controlling the scaling of
the distances between representations in the loss function.
A lower temperature increases sensitivity, enhancing the
distinction between positive and negative pairs, while a
higher temperature reduces sensitivity, making the model less
reactive to differences in similarity scores.

4) TEXT EMBEDDING’S FINETUNING LOSS
For realizing Zero-PIMA, matching unseen pills with their
corresponding names in the prescription is one of the most
crucial challenges. Obviously, in the cases of unseen pills,
their pill images and names have not been included in the
training data; relying on the visual appearance derived from
the pill object image and the textual information learned
from the prescription is insufficient for matching, as neither
has been previously learned. To this end, we propose
incorporating the metadata (i.e., color, shape) of pills
retrieved from DrugBank [20] into their names. In this
manner, the representations of pill names extracted from the
prescription convey not only the textual information (from the
name) but also the appearance indication (from the metadata)
of pills, thereby improving the accuracy of pill image-
names matching, particularly in the case of unseen pills.
We employ a semantic contrastive loss to contrast pill names
with the pills’ metadata to minimize the distance between
representations of a name (en) and metadata (em) belonging
to the same pill while maximizing those of different pills.
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FIGURE 6. Representative examples from our VAIPEPP dataset. It was
collected in real-world scenarios, where samples were taken in
unconstrained environments.

TABLE 1. Comparison of the NIH and CURE datasets with our VAIPEPP
dataset.

Details of the text embedding’s finetuning loss are as follows:

LSC = −
1
P

P∑
i=1

log
exp

(
S

(
eni , e

m
i

)+
/τ

)
∑P

j=1 exp
(
S

(
eni , e

m
j

)−
/τ

) , (4)

where P is the number of pill name-metadata pairs, S denotes
the cosine similarity, the symbol ‘‘+’’ represents a pair of
samples that are similar, while the symbol ‘‘−’’ represents
a pair of samples that are dissimilar, and τ is a temperature
hyperparameter.

The overall loss of the proposed model is determined by
the weighted sum of all learning objectives (Eqn. 1, Eqn. 2,
Eqn. 3, and Eqn. 4), which can be expressed as follows:

LTotal = λ1LPD + λ2LPR + λ3LPPC + λ4LSC, (5)

where λ1, λ2, λ3, and λ4 are balance coefficients.

IV. EXPERIMENTS
In this section, we introduce a thorough evaluation of
the proposed method, Zero-PIMA, through comprehensive
experiments. We compare Zero-PIMA with other object
detection models and text-image retrieval methods under
consistent experimental conditions. Additionally, we perform
in-depth ablation studies to gain clearer insights into the key
characteristics of Zero-PIMA.

To the best of our knowledge, previous studies addressing
the Pill Detection problem have been restricted to datasets
captured in laboratory environments with limited environ-
mental conditions such as lighting, angle, and zoom level
(e.g., NIH dataset [42]), typically containing only one pill per

TABLE 2. Example of illustration and pharmaceutical form details
(‘‘AMOXICILLIN 500mg’’ in this case).

photo (e.g., CURE dataset [17]). As a result, these datasets do
not accurately reflect reality, where patients may be taking
multiple pills simultaneously to treat various symptoms.
This limitation makes existing models less suitable for
identifying pills in real-world medication photos taken by
patients. In addition, it has been noted that there is a lack
of publicly available datasets featuring pill images taken
during actual patient consumption as well as corresponding
prescription information. To fill in this gap, we devoted our
efforts to building an open, large-scale dataset containing
multi-pill photos and prescriptions called the VAIPEPill
and VAIPEPrescription datasets,2 respectively. For Zero-PIMA,
we selected a portion of these two datasets, referred to as
VAIPEPP. It consists of 2,156 multi-pill photos matching
1,527 prescriptions across 4 different templates. These were
collected from anonymous patients at leading hospitals in
Vietnam between 2021 and 2022. Following a thorough
review for privacy concerns, the data were annotated by
human annotators, with each prescription assigned relevant
information. The pill intakes for each prescription were
divided into morning, noon, and evening portions, with
approximately five images taken for each portion. Figure 6
shows several representative examples from the dataset.
Table 1 provides a summary of the meta-data details for
the NIH [42], CURE [17], and the VAIPEPP datasets. The
VAIPEPP dataset was constructed with a more flexible pro-
cedure, allowing fewer restrictions than the two conventional
datasets, NIH andCURE.Due to this advantage, the VAIPEPP
dataset demonstrates exceptional generalization capabilities,
making it a trustworthy data source for training generic pill
detection models.

A. CUSTOM DATASET
Furthermore, as a part of the data collection, we gathered
and analyzed pill metadata from the DrugBank database [20].
This processed metadata includes various characteristics of
the pills, including color and shape. However, due to resource
constraints, we could only extract information for the pills
collected in the VAIPEPP dataset. Table 2 gives an example
of a pill and its corresponding metadata obtained from the
DrugBank database.

2The dataset is made public from our project Web page at
https://vaipe.org/##resource.
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TABLE 3. Details of the data partition.

TABLE 4. Evaluation metrics.

B. EVALUATION METHODOLOGY
1) DATA SPLIT
We take a systematic approach to split the VAIPEPP dataset
into two distinct categories: seen classes (Dstest ⊆ Dtrain)
and unseen classes (Dutest ∩ Dtrain = ∅), where Dtrain,
Dstest, and Dutest are training set, test set for seen classes,
and test set for unseen classes, respectively. Our criteria
for categorization are based on the frequency of each pill
class in the collected prescriptions. Specifically, pills that
are often prescribed are assigned to the seen classes, while
those with a low occurrence frequency are placed in the
unseen classes. Further details regarding this data split
are demonstrated in Table 3. This data split allows us to
evaluate the performance of the proposed model on both
seen and unseen classes, providing a more comprehensive
understanding of the model’s generalization ability to new
classes.

2) EVALUATION METRICS
We evaluate the performance of the proposed Zero-PIMA and
other benchmarks using theAverage Precision (AP) andmean
Average Precision (mAP) metrics, which are commonly
employed to assess the performance of object detection tasks.
The AP metric measures the area under the Precision-Recall
curve given an Intersection over Union (IoU) threshold.
The IoU (defined as IoU = Intersection area

Union area ) is the ratio of
the overlapping region of a predicted bounding box and
the corresponding ground truth to their intersecting union
area. The choice of an IoU threshold determines whether a
prediction is classified as a True Positive or a False Positive,
thus impacting the AP results. To provide a comprehensive
evaluation, we specifically use two settings of IoU thresholds:
0.50 and 0.75, denoted as AP50 and AP75, respectively. These
measurements provide valuable insights into the model’s
performance across different levels of bounding-box overlap.

Additionally, the mAP is a comprehensive performance
measure that takes into account the AP values within a
specific range of IoU thresholds. In the following evaluation,
we calculate mAP by averaging the AP values obtained for
all classes, where the IoU thresholds range from 0.50 to
0.95 with an increment of 0.05. The evaluation metrics used
for all experiments are summarized in Table 4.

3) BENCHMARK MODELS
In our evaluation, we compare the proposed Zero-PIMAwith
benchmark models on two distinct tasks: pill detection and
pill-prescription matching.

For the first task, we evaluate the most popular object
detection models.

• Faster R-CNN model [24]. An object detection model
that improves on Fast R-CNN [23] by utilizing RPNwith
the CNN model.

• YOLOv8-S/M/L models [43]. The small/medium/large
variants of the YOLO series is optimized for real-time
object detection.

• YOLOv8-L+RTDETR model [43]. Combines the large
variant of YOLOv8 with Real-Time DEtection TRans-
former (RTDETR) as a decoder, aiming to leverage the
speed and accuracy of YOLO along with the efficient
multiscale processing of DETR [30].

• RTDETR-L model [44]. A variant of DETR opti-
mized for real-time object detection, leveraging vision
transformers to process multiscale features efficiently
by decoupling intra-scale interaction and cross-scale
fusion.

Concerning the second task, we compare Zero-PIMA
with two baselines following the conventional approach.
Specifically, we choose Faster R-CNN as the pill detection
backbone and CLIP (Contrastive Language-Image Pre-
Training) [45] as the multi-modal vision and language model
and create two variants. The first one, denoted as Faster-
CLIP, combines Faster R-CNN and vanilla CLIP, while the
second, denoted as Faster-CLIP (Text-finetuned), replaces
vanilla CLIP by our text embedding model.

• Faster-CLIP model. We integrate the Faster R-CNN
model with the CLIP model [45]. CLIP is a versatile
model that handles a wide range of tasks by incorpo-
rating both visual and textual inputs. By combining the
Faster R-CNN model with CLIP, we leverage the object
localization results obtained from the Faster R-CNN as
input for the CLIP model during vision-language tasks.
The primary aim of the Faster-CLIP model is to explore
the benefits of incorporating CLIP’s vision-language
capabilities for the Pill-Prescription matching task.

• Faster-CLIP (Text-finetuned) model. We explore the
implementation of text fine-tuning to enhance the
performance of the Faster-CLIP model further. The
objective of the Faster-CLIP (Text-finetuned) model
is to leverage textual information to improve the
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TABLE 5. Experiment results of the proposed method compared to other methods. Best results in each task are highlighted in bold, while overall best
results are underlined.

object recognition performance and refine the joint
vision-language representation of the model.

4) IMPLEMENTATION DETAILS
In our implementation, we ensure consistency using various
pre-trained CNN models as the backbone network (i.e.,
MobileNetV3 [46], Residual Network (ResNet50) [47],
Cross Stage Partial Network (CSPNet) [48], and High
Performance GPU Network (HGNetV2) [44]). Within the
pill-prescription matching task, we utilize pre-trained text
embeddings, specifically MiniLM L12 multilingual [49], for
both the proposed model and the comparison benchmarks.
The input configurations for all models adhere to the require-
ments of the original architecture, while other parameters
are fine-tuned for optimal performance. All implementations
are performed using the PyTorch framework, and training
is conducted for 100 epochs on a machine equipped with
an NVIDIA V100 GPU (32 GB memory) and an Intel(R)
Xeon(R) Gold 6248 CPU @ 2.50 GHz.
ProposedModel:We implement the proposedmodel based

on the description provided in Section III.We use a projection
layer consisting of two fully connected layers with Gaussian
Error Linear Units (GELU) activation [50]. The input pill
image size for the model is set to 224 × 224 × 3. The
output dimension is set to 1 × 256, effectively capturing
both visual and textual features. We compute contrastive
loss in Eqn. 3 and Eqn. 4 by using all image and text
pairs within a batch. The temperature hyperparameters in
the contrastive loss are set to 1 for simplicity. The balance
coefficients in Eqn. 5 are set equally to 1. For optimization,
we employ AdamW [51] with an initial learning rate of
2.0 × 10−5. During the training phase, we set the batch size
to 8 to ensure efficient utilization of computational resources.

To achieve optimal results, we carefully consider the model
complexity and available training data size when selecting the
hyperparameters.

C. BENCHMARK COMPARISON RESULTS
From now on, to ease the presentation, we use terms ‘‘seen
accuracy’’ and ‘‘unseen accuracy’’ to indicate the accuracy
of the models regarding the seen and unseen pill classes,
respectively. Table 5 represents the accuracy of the proposed
Zero-PIMA and the comparison benchmarks. We can see
that Zero-PIMA outperformed the others in terms of all the
evaluation metrics.

The experiment results, shown in Table 5, distinctly
showcase the superiority of the proposed Zero-PIMAmethod
over existing methods in pill detection and prescription
matching tasks. Notably, the proposed method achieved the
highest performance metrics, with its best results being
underlined and highlighted in bold across both seen and
unseen accuracy categories, specifically in terms of mAP,
AP50, and AP75.

For the pill detection task, various methods have been used
to evaluate the proposed dataset in the seen pill detection
scenario. The comparison of Faster R-CNN, YOLO, and
RTDETR approaches revealed notable differences in their
performance metrics. Faster R-CNN showed the highest
accuracy in AP50 with 83.99%, while YOLOv8, particularly
its large version (YOLOv8-L), outperformed others in mAP
with 61.28%. Although RTDETR is one of the leading
real-time object detection methods, the results only achieved
59.28% in mAP. In contrast to all models for pill detection
tasks, the proposed method Zero-PIMA showed superiority,
particularly when utilizing a ResNet50 backbone, marking a
new benchmark with an mAP of 68.71%, AP50 of 95.79%,
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TABLE 6. Ablation study on different components of the proposed model
on the unseen set. Best results are highlighted in bold.

FIGURE 7. First 50 epochs of ablation study on different components of
the proposed model on the unseen set (Table 6).

and AP75 of 80.91% in seen pill detection. In the more
challenging pill prescription matching task, the proposed
method again proved its efficacy, significantly improving the
unseen accuracy metrics to mAP of 65.63%, AP50 of 87.80%,
and AP75 of 78.07%, utilizing the ResNet50 backbone.
These results validated the proposedmethod’s capability to

effectively bridge the gap between seen and unseen data per-
formance, highlighting its potential for practical applications
in the pharmaceutical field, where accurate detection and
matching are crucial. Integrating advanced neural network
architectures makes Zero-PIMA a promising approach for
future research and application in pill identification and
matching systems.

D. ABLATION STUDY
We conducte a series of excision experiments as part of an
ablation study to evaluate the effectiveness of the proposed
model in the unseen scenario (Dutest ∩ Dtrain = ∅).
MobileNetV3 [46] is employed as the CNN backbone for all
these experiments.

1) ASSESSING THE IMPACT OF COMPONENT REMOVAL ON
MODEL EFFECTIVENESS
First, we aim to evaluate the impact of removing the Graph
module and Text fine-tuning on the effectiveness of the
proposed model. The results are presented in Table 6.
In the absence of the Graph module and Text fine-tuning
(Exp1), the mAP achieved only 24.49%. However, when

TABLE 7. Ablation study on different strategies involving the Graph
module on the unseen set. Best results are highlighted in bold.

FIGURE 8. Ablation study on the impact of training pill metadata
coverage on the unseen set.

the Graph module (Exp2) was integrated, there was a
significant increase in the mAP accuracy, rising by 26.57%.
This clearly illustrated the substantial impact of the Graph
module. When Text fine-tuning was performed without
the Graph module (Exp3), the mAP showed a significant
improvement of 38.83% compared to Exp1. However, the
highest accuracy was achieved when the Graph module
was added in combination (Exp4). Furthermore, Figure 7
illustrates that the model converged at a faster rate when the
Graph module was present.

2) EVALUATING THE EFFECTIVENESS OF VARIOUS
STRATEGIES FOR INCORPORATING THE GRAPH MODULE
We use various strategies to combine different Graph module
approaches, as presented in Section III. Table 7 presents
the results of using learnable or threshold-based strategies.
The learnable approach involves directly multiplying the
values from the Graph module with text embeddings, while a
threshold-based approach selects text embeddings that meet
the pre-set threshold α. The results demonstrated that both
approaches yielded similar results. However, the learnable
approach exhibited automatic efficiency on the data, whereas
selecting the threshold relied on the distribution of each
dataset, which may have led to differences or the loss of text
containing pill names in prescriptions.

3) IMPACT OF TRAINING PILL METADATA COVERAGE ON
THE UNSEEN SET
Next, we aim to investigate the impact of the coverage of pill
metadata on the detection performance of the proposedmodel
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FIGURE 9. Visualization of some predictions for unseen pill detection. Each column presents the prescription, the ground-truth pill images, and the
predictions.

on the unseen set. To achieve this, we evaluate the percentage
of pill metadata covering the unseen set. The results shown
in Figure 8 demonstrate that as the coverage of pill metadata
decreased, the detection performance of the proposed model
on the unseen set also decreased. However, we found that
the Graph module, which we analyzed in the experiment of
removing the Graph module in Section IV-D1, allowed the
proposed model to detect pills even with limited information
on the unseen set based on the prescription information.
It is important to emphasize that the Graph module helped
improve the accuracy of the proposed model in recognizing
pills.

4) IMPACT OF DIFFERENT TRAINING PILL METADATA
Finally, we aim to evaluate the impact of different training
pill metadata on the final result. Specifically, we examine
the importance of shape and color information during the
text fine-tuning process. The results presented in Table 8
demonstrate that both shape and color information signif-
icantly contributed to the final result. This ablation study
holds significance as it emphasizes the need to consider

TABLE 8. Ablation study on the involvement of different training pill
metadata on the unseen set. Best results are highlighted in bold.

different types of information when training models for
pill recognition. We note that pills exhibit various shapes
and colors, and this information is crucial for accurate
identification. By including shape and color information in
the training process, the proposed model learned to recognize
unseen pills more accurately.

E. MODEL COMPLEXITY
Table 9 shows the complexity comparison between Zero-
PIMA, Faster R-CNN, and Faster-CLIP. We observed that
Faster R-CNN, which processes only pill images, had the
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TABLE 9. Number of parameters and average inference time per sample.
Faster R-CNN is designed to process only pill images, whereas Faster-CLIP
and Zero-PIMA are intended to handle both pill images and their
corresponding prescriptions.

lowest number of parameters and the fastest inference times.
In contrast, pill-prescription tasks, which require processing
both the pill image and its corresponding prescription,
lead to longer processing times for Zero-PIMA and Faster-
CLIP. However, Zero-PIMA exhibited fewer parameters and
achieved slightly faster inference times than Faster-CLIP.
Comparing Zero-PIMA to Faster R-CNN, the parameter
increase was just 1.15 M, indicating that integrating the GCN
module into Zero-PIMA did not complicate the model.

F. QUALITATIVE VISUALIZATION
The visualizations in Figure 9 offer valuable insights into
the proposed model’s predictive capabilities and limitations.
Figure 9(a) showcases instances where the model excels,
accurately predicting the identification of various pills. These
successes are notably attributed to the distinct variations in
shape and color among the pills. Such results underscore the
model’s proficiency in recognizing and distinguishing pills
based on these two critical features. Conversely, Figure 9(b)
highlights scenarios where the model encounters difficulties.
A recurring challenge arises when themodel is presentedwith
pills that have similar colors but differ in size—for example,
between ‘‘MYPARA 500 500 mg’’ and ‘‘MEDIPLEX
800 mg’’ or ‘‘MILURIT 300 mg’’ and ‘‘COLCHICIN
1 mg’’. In these instances, the model struggles to differentiate
between the pills, leading to misidentifications accurately.
This limitation is further compounded by errors in detecting
pills against complex backgrounds, where parts of the
background can be mistaken for the pills themselves or
obscure their visibility.

G. DISCUSSION
A notable limitation of this research is the reliance on four
prescription templates, all formatted as lists. This structure
allows the GCN module to excel in extracting the correct pill
names from prescriptions. However, it may be a challenge to
extract the pill namewhen prescriptions are presented in table
formats. The accurate extraction of pill names is especially
critical in cases of unseen pill detection, where the text and
pills have not been previously matched during the training
phase.

Moreover, in unseen scenarios, the proposed model’s
reliance on shape and color for pill identification may lead
to inaccuracies when pills within the same prescription have
similar appearances in terms of color and size. Such a narrow
focus can lead to the failure of detection.

Furthermore, this research identifies a critical failure
point in cases of incorrect pill localization. Mislocalization
directly impacts the matching process, leading to incor-
rect identifications. This highlights a significant area for
improvement in future model iterations, suggesting a need for
enhanced localization techniques or incorporating additional
distinguishing features beyond shape and color to improve
accuracy and reliability in pill identification, particularly in
challenging or unseen scenarios.

V. CONCLUSION
In this paper, we proposed a novel method for solving the
zero-shot pill recognition and prescription matching task
using GCN and Contrastive learning. The proposed method
was evaluated on a real-world dataset that included actually
prescribed pills. In addition to the proposed method, we also
fine-tuned text embedding with pill metadata for the purpose
of recognizing pills that were not included in the training data.
The results showed that the proposed method outperformed
other approaches in both seen and unseen accuracy in terms
of mAP. We have made the source code for the proposed
Zero-PIMA method available,3 which can be accessed for
further research and development in this domain.

For future work, we plan to explore the relationships
among pills and consider additional attributes in the pre-
scription, such as dosage quantities, to further enhance the
accuracy of pill identification and detection. By incorporating
these factors, we aim to improve the robustness and reliability
of the proposed model in real-world scenarios. Furthermore,
we envision deploying the proposed method in practical
settings to assist healthcare professionals and patients in
accurately identifying and matching the prescribed pills.
This deployment can provide valuable support in healthcare
services, ensuring the safe and effective use of medications.
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