
Received 22 March 2024, accepted 13 April 2024, date of publication 17 April 2024, date of current version 26 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3390612

Dynamic Security Analysis on Android:
A Systematic Literature Review
THOMAS SUTTER 1,2, TIMO KEHRER 1, MARC RENNHARD 2, BERNHARD TELLENBACH 3,
AND JACQUES KLEIN 4, (Member, IEEE)
1Institute of Computer Science, University of Bern, 3012 Bern, Switzerland
2Institute of Computer Science, Zürich University of Applied Sciences, 8401 Winterthur, Switzerland
3Armasuisse Science and Technology, Cyber-Defense Campus, 8005 Zürich, Switzerland
4Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, 1855 Luxembourg, Luxembourg

Corresponding author: Thomas Sutter (suth@zhaw.ch)

This work was supported in part by Armasuisse Science and Technology, Cyber-Defense Campus, Switzerland, through the Research
Program Cyberspace by the Project Security Analysis of Firmware of Mobile Devices, under Grant ARAMIS Nr. AR-F03-003.

ABSTRACT Dynamic analysis is a technique that is used to fully understand the internals of a system
at runtime. On Android, dynamic security analysis involves real-time assessment and active adaptation of
an app’s behaviour, and is used for various tasks, including network monitoring, system-call tracing, and
taint analysis. The research on dynamic analysis has made significant progress in the past years. However,
to the best of our knowledge, there is a lack in secondary studies that analyse the novel ideas and common
limitations of current security research. The main aim of this work is to understand dynamic security analysis
research on Android to present the current state of knowledge, highlight research gaps, and provide insights
into the existing body of work in a structured and systematic manner. We conduct a systematic literature
review (SLR) on dynamic security analysis for Android. The systematic review establishes a taxonomy,
defines a classification scheme, and explores the impact of advanced Android app testing tools on security
solutions in software engineering and security research. The study’s key findings centre on tool usage,
research objectives, constraints, and trends. Instrumentation and networkmonitoring tools play a crucial role,
with research goals focused on app security, privacy, malware detection, and software testing automation.
Identified limitations include code coverage constraints, security-related analysis obstacles, app selection
adequacy, and non-deterministic behaviour. Our study results deepen the understanding of dynamic analysis
in Android security research by an in-depth review of 43 publications. The study highlights recurring
limitations with automated testing tools and concerns about detecting or obstructing dynamic analysis.

INDEX TERMS Android, dynamic analysis, security, software testing, vulnerabilities, instrumentation,
fuzzing, monitoring, tracing, machine learning.

I. INTRODUCTION
The smartphone has emerged as one of themost indispensable
devices in our everyday life. Smartphones are equipped to
carry out diverse tasks such as instant messaging, emailing,
navigation, web browsing, capturing photographs, and many
more. Users inadvertently expose substantial amounts of per-
sonal information to software and hardware providers.This
Personally Identifiable Information (PII) includes sensitive
data such as residential addresses, dates of birth, and

The associate editor coordinating the review of this manuscript and

approving it for publication was Peter Langendoerfer .

photos and videos, all of which are commonly stored in
the smartphone’s storage, thereby increasing the risk of
inadvertent exposure to eavesdropping applications.

Several legislative authorities have recognised the
paramount importance of safeguarding PII from exploitation
and misuse by companies and corporations. Consequently,
multiple regulations such asthe European General Data
Protection Regulation (GDPR) [1] and the California
Consumer Privacy Act (CCPA) [2] have been enacted.
In response to these regulations, large tech conglomerates
have gradually imposed more and more stringent restrictions
on the access and usage of PII data.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 57261

https://orcid.org/0000-0003-2649-3299
https://orcid.org/0000-0002-2582-5557
https://orcid.org/0000-0001-5105-3258
https://orcid.org/0000-0002-5008-1107
https://orcid.org/0000-0003-4052-475X
https://orcid.org/0000-0002-6209-9048


T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

Concurrently, for over a decade, researchers have explored
various novel ideas to detect and prevent attacks on Android
and its users to foster smartphone security. In the scientific
literature, there are mainly two classes of approaches for
Android security testing, commonly referred to as static
and dynamic analysis. In static analysis, a program is
examined without actually executing the code in a real or
emulated environment. Instead, the program code is studied
by techniques such as taint analysis (e.g., FlowDroid [3]),
where the data flow of the program under test is examined
to identify potential vulnerabilities or privacy issues. Besides
the general limitations of static analysis [4], one specific
limitation is that certain Android apps incorporate functions
that enable the loading and execution of code at runtime,
rendering it infeasible to statically determine a program’s
behaviour [5]. Dynamic analysis tackles this problem by
executing a program in a monitored environment to collect
runtime data (e.g., memory- and file access, network traffic,
or system call traces [6]) which are then analysed for various
purposes (e.g., to determine if PII is sent to a remote
server [7]). A particular challenge is to guide dynamic
analysis techniques towards an exhaustive exploration of
possible program paths [8], [9], [10], [11], [12]. Hybrid
approaches combine both static and dynamic analyses, and
have been shown to outperform solutions that rely solely on
either of both approaches in certain cases [13].

Either way, there has been a tremendous amount of
publications on Android security research. With the over-
whelming volume of publications, it is time-consuming for
both researchers and practitioners to stay abreast of the
latest cutting-edge techniques, and to identify the most
relevant publications for their research domain or application
context. This calls for a secondary study on Android security
testing for synthesising existing knowledge, identifying
future research directions, and supporting decision-making.
However, previous secondary studies have mainly focused
on reviewing static analysis techniques [14], [15] or specific
research domains, such as mobile malware analysis [16],
[17], [18].

This research paper employs a systematic and retrospective
analysis of articles published in the last five years to provide
a comprehensive overview of the most recent advances in
Android security research, focusing primarily on dynamic
analysis techniques. Our systematic literature review (SLR)
sheds light on innovative testing methods for Android
apps. It highlights the most prevalent trends in dynamic
analysis, including use cases, techniques, datasets, and novel
methods. After applying our SLR inclusion and exclusion
criteria, we obtained 43 publications for which we conducted
an in-depth analysis to answer the following research
questions.

• RQ1 Which novel tools and techniques were published?
We determine for every publication in our corpus if a
novel tool was developed and made publicly available.

• RQ2 What were the underlying objectives and intentions
driving the utilisation of dynamic analysis techniques?

We identify the primary purpose of every publication
and summarise their ideas and findings.

• RQ3 What are the prevalent constraints and shortcom-
ings inherent in the dynamic analysis techniques? To
identify possible open research questions, we investigate
if there are any commonly mentioned limitations or
unresolved challenges, and discuss possible future work
on the topics.

• RQ4 Which areas of research have exhibited prominent
trends and gained significant attention in recent years?
We categorise the literature into topics based on their
research objectives and analyse which open problems
are faced by multiple researchers.

The primary objective of this study is to establish
a thorough understanding of the latest advancements in
dynamic analysis methods and techniques. Key contributions
of this research include the following:

• We construct a taxonomy specifically for Android
dynamic security analysis, categorising publications
based on this taxonomy and the applied dynamic
analysis methods.

• We identify three main security research domains
and classify the selected publications according to
the developed taxonomy and applied dynamic analysis
technique.

• We offer an initial overview of dynamic security
techniques and methodologies for Android by reviewing
330 publications. Subsequently, we focus on a detailed
examination of a selection subset, providing an in-depth
analysis of 43 publications from premier software engi-
neering and security venues, where we comprehensively
list objectives, techniques, and tools.

• We determine trends for dynamic analysis techniques
and identify the most and least common techniques of
the last five years.

In Section II, we first give an overview of methods to test
Android apps dynamically. Section III gives an introduction
into the core concepts of dynamic analysis on Android.
Section IV presents details about the methodology of our
SLR. Section V introduces a taxonomy for dynamic analysis
security research. Sections VI to VIII give an in-depth
review of publications in dynamic analysis. We discuss the
findings from this SLR in Section IX. In Section XI the
threats to validity and open research questions are discussed.
In Section XII related work is presented. Section XIII
concludes this SLR with a short summary of our findings.

II. BACKGROUND ON TESTING ANDROID APPS
It is only logical that automated Android app testing plays
a crucial role in most dynamic security analysis approaches
as it is one of the fundamental building blocks for collecting
data points. To fully grasp the capabilities of an Android
app, it is necessary to interact with the app’s Graphical User
Interface (GUI) as well as with the APIs offered by the
Android framework.

57262 VOLUME 12, 2024



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

TABLE 1. Overview of reviewed publications providing software testing tools for automated Android app testing.

FIGURE 1. Brief overview of interfaces in an Android app.

Android apps make use of a wide variety of interfaces and
can share data via services, content providers, or broadcast
listeners. Figure 1 illustrates an example Android app with
possible communication partners to give an overview of
frequently used interfaces. Android apps can include native
code via the Java Native Interface (JNI) or JavaScript code
via the webview interface as shown in Figure 1. Apps can
directly communicate with companion apps to exchange
data or interact with system services via Inter-Component-
Communication (ICC) and it is as well possible for apps to
use JNI to interact with native system services.

The usage of these interfaces in combination with ICC
oftenmakes an in-depth analysis of Android apps challenging
because these dependent components need to be analysed in
addition to the app under test.

A. TESTING QUALITY METRICS
To evaluate and compare the performance of Android testing
tools, two quality metrics have been primarily used in the

past: code coverage and number of detected faults (crashes
or bugs).
Code coverage is the primarily used metric to measure

which parts of the code have been executed during testing.
In addition to line coverage sometimes the class, activity,
or method coverage are measured as well.
Fault detection is the other main metric applied when

comparing testing tools. It is used to determine if a tool is
capable of generating an input so that the Application under
test (AUT) would crash or enter an unwanted state.

B. STATE-OF-THE-ART ANDROID APP TESTING TOOLS
Many dynamic analysis methods heavily rely on a number
of testing tools from industry and academia. These tools are
often the basis for security researchers to test certain states
of an application. Thus, we give a brief overview of common
Android app testing tools and their limitations in Table 1. The
tools were chosen after a thorough review of publications on
Android app testing, but the list is not comprehensive.

One of the main tools used is Monkey [19]. It sends
pseudo-random streams of user- and system events for testing
and does not track the state of the app, which makes
Monkey a relatively fast and stateless testing tool. Monkey
is actively maintained and considered to be one of the state-
of-the-art testing tools in industry, even though academic
papers have shown better testing performances with other
tools [8], [23], [24].

There have been several studies on enhancing the capabil-
ities of Monkey [8], [21]. Notably, Dong et al. [8] introduced
TimeMachine, which proposes to find pertinent app states by
going back to previously observed states instead of focusing
on following a number of promising states showing better

VOLUME 12, 2024 57263



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

FIGURE 2. Dynamic security analysis techniques.

code coverage. Alternative solutions toMonkey are Stoat [10]
and Sapienz [9] that have comparable performance, but use a
search-/model-based approach.

Many studies in the testing domain mainly focused on
improving testing algorithms to enhance code coverage.
However, Wang et al. [22] demonstrated that solely focusing
on improving the testing algorithms may not be sufficient.
Instead, their approach, named TOLLER, focused on improv-
ing the testing infrastructure, which is often based on UI
Automator [25], to improve the effectiveness of different
testing tools.

Moreover, several machine learning-based solutions have
demonstrated promising testing results and are likely
to outperform Monkey, Stoat, and Sapienz [23], [24].
Notably, Q-Testing by Pan et al. [24], and ARES by
Romdhana et al. [23] are based on the idea of reinforcement
learning (RL) and show promising results.

All of the aforementioned tools can be used to dynamically
test Android apps. It should be mentioned that testing
Android apps dynamically is often limited due to external
dependencies. For instance, a chat application might need
to interact with another chat client to reach some specific
states during testing, or the testing environment might not
send specific system events to the AUT. However, it is
often not possible for researchers to analyse all dependent
components, thus limiting security analysis as wewill discuss
in Section IX.

III. DYNAMIC SECURITY ANALYSIS TECHNIQUES
Figure 2 gives an overview of the dynamic analysis tech-
niques for Android with frequently mentioned topics. In this
section, we explain the main concepts of these dynamic
analysis techniques and give practical examples for Android.

A. FUZZING
Fuzzing or fuzz testing feeds the target program with a large
number of inputs to see how the target programs behaves. The
main idea of fuzzing is to send inputs that trigger unexpected
behaviours, program faults or vulnerabilities by sending
random, invalid, or unexpected inputs. Fuzzing techniques
such as concolic execution, probabilistic grammar fuzzing,

mutation-based fuzzing, or search-based fuzzing have widely
been used to detect vulnerabilities and have proven to be
efficient testing methods. For instance, the OSS-Fuzz [26]
project has reported over 25,000 bugs [27] in open-source
projects by fuzzing.

On Android, fuzzing has dominantly been used to test
native components of the operating system as many fuzzing
techniques show excellent results in detecting memory
corruption bugs [26]. Nevertheless, memory-safe languages
such as Java can also undergo fuzzing, as demonstrated
by tools like Jazzer [28]. Erroneous behaviour in these
languages has the potential to result in similar harm as
memory corruption bugs.

B. NETWORK TRAFFIC ANALYSIS
To monitor or intercept the network traffic of an Android
device or app, it is often necessary to reroute the network
traffic over a proxy that is controlled by the analyst. In many
cases it is necessary for the analyst to disable or work
around existing security mechanisms in order to be able to
proxy the traffic create by an Android app. Two of the main
securitymechanisms that researchers need to work around are
Certificate pinning (CP) [29] and Transport Layer Security
(TLS).

Nowadays, Android enforces TLS encryption by default
for network connections of Android apps. To perform a deep
packet inspection, the traffic needs to be redirected over a
proxy. To do so, a common technique is to load a custom
Certificate Authority (CA) into the trusted certificate store of
the device. By installing a custom CA certificate, the network
traffic can be redirected to a proxy without breaking the
TLS encryption, which allows analysts to read or modify the
network packets. However, solely rerouting the traffic is often
not sufficient if the AUT uses CP.

CP is a security practice to prevent man-in-the-middle
attacks on TLS. The main idea of CP is to ensure the
authenticity of digital certificates by including a set of
public key properties (for example, hashes) that the client
(e.g., an Android app or web browser) can verify. When an
app uses CP, solely adding a custom CA certificate isn’t
sufficient to proxy the network traffic because the Android

57264 VOLUME 12, 2024



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

appmight checkwhich CA certificate is used and then refuses
connections (in case a custom CA is detected). Two common
approaches to work around CP on Android are instrumenting
to disable the CP checks during runtime or patching the
Android app to remove the CP checks completely from the
code. As a client-side security mechanism, CP can only
secure the connection and is not resistant to patching the app
or against instrumentation. Therefore, working around CP is
a common technique that researchers need to master in order
to be able to analyse the traffic of an Android app.

C. DYNAMIC TAINT ANALYSIS
In taint analysis, the execution path (flow) of a program is
tracked to identify the propagation of potentially untrusted
or malicious data (tainted flows). To identify such tainted
flows, static analysis uses a set of functions where data enters
the program (sources) and follows the execution path to a
point within the program (sinks) that could cause harm or
unintended behaviour. Taint analysis then attempts to identify
if there is a path from one of the source functions to the sinks.
In case there is a path, the system can further be checked for
inputs that follow the path.

Taint analysis has various use cases. For instance, vul-
nerability detection, where a tainted flow might indicate
a vulnerability. This analysis technique has shown to be
effective for vulnerability detection but has some known
limitations; It is not trivial to define sources and sinks for
all kind of applications, it can be very computation intensive
depending on the size of the program, and it does not
allow to automatically identify if a detected vulnerability is
exploitable.

Dynamic taint analysis is an extension to its static counter-
part and attempts to overcome some of these limitations. For
instance, additional execution paths can be detected during
runtime in caseswhere code is dynamically loaded, which can
help in identifying additional paths. Such additional paths can
lead to previously unseen vulnerabilities. Overall, the main
idea is to use the data collected during runtime to have a more
accurate and powerful taint analysis.

D. MEMORY DECOMPOSITION
Detecting fileless malware, also referred to as memory-only
malware, is one of the objectives of memory-based analysis
techniques [30]. The possibility to read and modify the
memory of a program at runtime opens opportunities for
novel testing methods. The decomposition of the memory at
runtime is often challenging as an in-depth knowledge about
the internal structure of the memory is necessary to fully
understand the state of a program. In addition, the timing of
the analysis is often crucial, as the memory of a program
is frequently changing. Memory-based techniques usually
dump the stack or heap memory of a program at given points
in time to gain additional information about the internal state
of the program. These dumps are then used to facilitate other

dynamic testing techniques or to inject code into the memory
at runtime to trigger specific code blocks.

E. SYSTEM CALLS AND TRACING
System call tracing is a way of collecting run-time informa-
tion about a process. During tracing, system calls and signals
of a process are intercepted and recorded by a tracer. The
main goal of the tracing process is to observe what resources
a process is requesting from the kernel with which arguments.
Commonly used methods for system call tracing on Linux are
the command line tool, strace [31], or the ptrace [32] system
call.

Typical use cases for system call tracing are debugging,
performance analysis, or security auditing. In addition, the
analysis of system calls has been a major subject for many
malware detection systems as we will further discuss in
Section VII.

On Android, apps use mainly IPC events to initiate system
calls. When an app wants to access a system service, it needs
to request the corresponding permissions. In cases, where
the permission was given, an app sends a broadcast message
with an intent action (e.g., ‘‘ACTION_SETTINGS’’) to
request the execution of a system call. Apps on Android are
sandboxed, meaning that based on the permission an app
has, access to specific system services is granted or denied.
The sandbox concept reduces the attack surface significantly,
however, it leads to the fact that system call tracing needs to
consider system events. When an app uses IPC messages to
trigger system calls, the system call is likely executed by a
system service rather than the app itself. Consequently, it is
often necessary to trace parts of the framework in order to
understand which system calls are triggered by an app.

An approach that has been used to trace apps is to attach
strace to the Zygote process [33]. As all app processes are
forks from Zygote on Android, it is possible to use strace
on Zygote to record the traces of an app. However, tracing
Zygote is noisy as it generate a large fraction of records that
are not created by the app itself. Moreover, using strace on
Zygote requires root privileges which might not be available
on all devices.

F. DYNAMIC BINARY INSTRUMENTATION
Dynamic binary instrumentation (DBI) [34], [35], [36],
[37], [38] is a valuable approach for reverse engineering
or security testing Android apps. DBI frameworks are
tools for supplementary analysis, debugging, or profiling,
as well as for incorporating optimisations without the need
to recompile or access to the source code. Instrumentation
can be a powerful tool for reverse engineering, as it allows to
circumvent client-side security checks (e.g., CP).

The key idea of instrumentation is to change the control
flow of the application by injecting assembly instructions
(e.g., JMP), which is often referred to as hooking. DBI
injects code into the running target process to facilitate
the analysis process. Sophisticated DBI frameworks use

VOLUME 12, 2024 57265



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

Just-In-Time (JIT) compilers to update the code at runtime,
which allows the injection at anytime during execution.
Depending on the use case, the control flow is changed so that
it is possible to overwrite existing functions or to monitor the
arguments of a function call.

Many DBI frameworks with support for Android exists.
To name some examples: Frida [36], Valgrind [35],
DynamoRIO [38], or QBDI [37]. Most of these instru-
mentation frameworks allow researchers to inject custom
scripts into the target process at runtime by setting up
some communication channel (e.g., RPC) to a DBI service
running on the target device. An external agent can then
communicate with the DBI service to control the execution
of the instrumented process.

Installing the DBI service often needs privileged access
on the device under test. However, some DBI frameworks
have developed other methods for deployment of the DBI
service that do not need root access. For example, one method
involves the injection of a shared library gadget. In this
approach, the application undergoes a decompilation process,
and subsequently, a shared library containing an initial
call is introduced into the decompiled code. This library
contains all the necessary gadgets to enable code injection
into the application and is loaded upon the application’s
initiation. Acting as a DBI service, the library establishes
communication with an external agent to receive commands.
The decompiled application is then repackaged into an APK
file and signed with a self-signed certificate before being
launched. However, a notable drawback of this method
is that it necessitates modifying the AUT to facilitate
instrumentation.

G. LOG-BASED ANALYSIS
Most applications and services log errors, warnings and
informational events to a log facility. What exactly is logged
is not standardised; however, it is often information that
helps diagnose and reproduce erroneous behaviour of an
application or information that is needed for audit purposes,
e.g. requests for access to protected resources. Therefore, the
extent to which the logs provide insight into the processes
during the execution of the application and whether this
insight is sufficient for the respective analysis goal depends
strongly on the individual application.

OnAndroid, app logs are stored in circular memory buffers
by default and can be access via the command line tool
Logcat [39]. App logs are considered sensitive because they
can contain all kinds of information, including sensitive
data (e.g., device identifiers, passwords, etc.). By default the
access to app logs on Android is only granted to privilege
processes and app logs should only be accessible when an
app is in debug mode.

H. VISUALISATION ASSISTANCE
Visualisation assistance involves utilising tools, techniques,
or technologies to enhance the comprehension and interpre-
tation of data through visual representation. This approach

is employed to communicate and analyse extensive and
intricate information effectively. By visualising data, methods
are applied to simplify complexity and highlight specific
relationships, aiding in a clearer understanding of the
information at hand.

These techniques can support decision making. For
instance, for malware analysts they may help in detecting
specific code patterns that can be used for the classification
of malicious apps.

IV. LITERATURE REVIEW METHODOLOGY
Figure 3 gives an overview of our SLR selection and review-
ing process inspired by the guidelines from Kitchenham
and Brereton [40]. We summarise in Table 2 every step of
the selection process and explain the details of every step
hereafter.

First, we defined the following exclusion and selection
criteria to limit our study to peer-reviewed publications:

1) Language: Papers must be written in English.
2) Time: Only publications published between 2017 to

2023
3) Type of publication: Only peer-reviewed publications

that were published in computer science conferences
or journals. No patents, books, or demo publications.

4) Topic: Publications pertinent to our subject matter,
which revolves around Android dynamic security
analysis. In this context, ‘‘relevance’’ denotes the
degree to which publications align with the specific
focus of our study. Therefore, we will only include
publications that directly contribute to or address
aspects relevant to Android dynamic security analysis.

Secondly, to identify publications pertinent to our topic,
we conducted iterative test searches on Google Scholar.
Through multiple iterations, we identified search terms that
consistently produced relevant outcomes, as evidenced by the
relevance of the first 100 search results. Our primary search
term is ‘‘Android,’’ employed in conjunction with a set of
secondary terms detailed in Table 3.
Third, we conducted keyword searches on Google Scholar

and exported the results to machine-readable files. For this
purpose we use the tool Publish or Perish [41]. Previous
studies [42] have demonstrated that the usage of Google
Scholar is sufficient to find relevant publications from top
computer science conferences and journals. In addition,
using Google Scholar prevents a bias towards a specific
publisher and identifies publications based on a scoring
system.

Fourth, we apply our selection criteria to filter out
irrelevant publications by year, language, and article form
(only peer reviewed articles, no books, etc.) to reduce the
number of search results. Following the application of filter
criteria, we reviewed the top 1,000 search results, scanning
for potentially relevant publications based on their titles and
abstracts. This selection of the initial 1,000 results aimed
to balance comprehensiveness with relevance, taking into
account the practical consideration of managing a sizeable

57266 VOLUME 12, 2024



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

FIGURE 3. Methodology of the systematic literature review.

FIGURE 4. Taxonomy of Android dynamic security analysis research.

dataset for thorough analysis. Additionally, this number
was chosen to ensure a broad exploration of the literature
landscape while maintaining feasibility in terms of manual
screening efforts. As a result, we identified 177 potential
publications.

Fifth, we review the methodology and results section of the
potential publications to identify articles on Android dynamic

security analysis. In case, we find a fitting article, we conduct
an in-depth review and add it to the SLR.

Sixth, the authors delve into the scope, quality, and
relevance of the publications. This is done to prevent any
potential bias from a single author’s perspective. If a situation
arises where most of the authors identify an inconsistency
in relation to a particular publication, a decision is reached

VOLUME 12, 2024 57267



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

TABLE 2. SLR Methodology for the selection of publications.

TABLE 3. Overview of keywords used for the search process.

regarding its inclusion or exclusion. This determination is
based on a majority vote among the authors.

To identify additional relevant publications, we conducted
a secondary search on top computer science and security
venues to ensure that we do not miss relevant publications.
To do so, we use the computer science bibliography
DLBP [43] as additional data source. Table 5 shows the top
computer science venues according to Google Scholar [44],
[45]. Google Scholar uses as a metric for ranking these
venues, the h5-index. The ranking was retrieved on the
January 31, 2023. Within DLBP, we search for publications
from the top computer science venues listed in Table 5 and
apply the same selection process as with Google Scholar.
As result, we identify 155 publications as potential relevant
for this SLR.

As last step, we perform forward- and backward snow-
balling to include papers with high relevance or novelty.
We include 8 publications by snowballing into the SLR.

V. TAXONOMY OF ANDROID SECURITY RESEARCH
By analysing the publications in our dataset, three primary
research domains can be identified in the realm of dynamic
security analysis of Android Apps: (i) App Security, Privacy
and Compliance, (ii) Malware, and (iii) OS & Framework.
We use these three domains to group research publications
with similar use cases and objectives. Figure 4 illustrates
an overview of our taxonomy. It shows the three main
research domains and their connections to related security
topics. It should be noted that many studies have overlapping
use cases or objectives and may fit into more than one
category. However, we assigned publications to the most
fitting category based on their main use-case or objective.

• App security, privacy and compliance (ASPC) encom-
passes publications that are primarily centred around
the development of innovative techniques for conducting
security testing on Android applications. Furthermore,
it includes publications that explore specific categories
of Android apps, such as, for instance, in-depth analyses
of vulnerabilities in mobile banking apps.

• Malware includes publications on methods for detect-
ing fraudulent or malicious applications and how to
extract or collect features from apps for classification
tasks that can be used for detection techniques.

• OS & Framework (OSF) is mainly about publications
that study the Android framework and its components
from a security perspective. This also includes research
about the security of the Android operating system.

Table 4 lists our 43 papers selected for in-depth review
(s. Section IV) classified by both category and year. 21,
12 and 10 papers fall into the categories (i), (ii) and (iii),
respectively.

In the following Sections VI to VIII, we provide a detailed
overview of the publications grouped by research domains.
We primarily explain the aim and methodology of the
publications. The data source(s) used by the publications,
dynamic analysis techniques, tools used, and other factors
are not explicitly discussed in the text but are recorded in
the tables for the respective subsection. At the end of each
section, we summarise the main takeaways and discuss the
most important limitations.

VI. APP SECURITY, PRIVACY AND COMPLIANCE
RESEARCH
Table 6 shows the list of selected publications for the App
Security, Privacy and Compliance domain.We analysed these
publications in terms of the used dynamic analysis technique,
testingmethodology, data sources, as well as number of tested
apps.

A. NETWORK ANALYSIS
There have been several methods described to test the used
network protocols and to identify implementation errors in

57268 VOLUME 12, 2024



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

TABLE 4. Overview of chosen publications by year and research domain.

TABLE 5. List of top conferences and journals by h5-index.

common security mechanisms such as TLS. In this section
we discuss studies with a strong focus on network analysis
and summarise their objectives and findings.

1) OPEN PORTS
Wu et al. [51] conducted an in-depth study of open ports on
Android. 3,293 users in 136 countries worldwide contributed
to their research by allowing the researchers to continuously
monitor open ports on their smartphones. By installing an
Android network monitoring app the researchers were able to
detect and analyse open ports for vulnerabilities and identi-
fied five vulnerable patterns for open ports. Consequently, the
researchers found vulnerabilities in several popular Android

apps (e.g., Instagram, Samsung Gear, Skype) due to open
ports. Moreover, Wu et al. found out that many of the open
ports are solely from SDKs integrated into these apps, which
raises the concern that the app developers are unaware of
these open ports.

2) SSL/TLS VERIFICATION
SSL/TLS is a fundamental security mechanism that provides
a secure transmission channel. Implementation errors in
SSL/TLS can expose the risk of man-in-the-middle (MITM)
attacks. To counter these implementation error, Google
introduce the network security configuration [89], which
is basically a configuration file for apps to configure the

VOLUME 12, 2024 57269



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

TABLE 6. Overview of selected app security, privacy and compliance publications. I = instrumentation & tracing, N = network analysis, V = visualisation
assistance, L = log-based analysis, D = dynamic taint analysis, M = memory decomposition, F = fuzzing, H = hybrid (static + dynamic), A = automated
testing, SC = source code available, DS = data source, NA = number of tested apps (per experiment), ST = supporting tools, TE = testing environment,
TD = target Description.

SSL/TLS settings, and added additional policies to Google
Play to block insecure apps.

Wang et al. [56] developed DCDroid; a hybrid testing tool
optimised for UI exploration to test 2,213 apps from Google
Play and the 360app [90] store for SSL/TLS bugs. Wang et al.
found 245 (11.07%) apps were actually vulnerable to MITM
attacks due to implementation errors or only opportunistic
security approaches like, for instance, accepting self-signed
certificates.

Similar Liu et al. [48] focused in particular on hybrid
mobile apps and their error-handling code for SSL/TLS.
Testing 13,820 appswith static analysis resulted in 1,360 apps
with potential vulnerabilities. Liu et al. confirmed with
dynamic analysis that 711 apps were exploitable and
demonstrated that MITM attack are still a problem.

Both studies are similar in their methodology and used
hybrid approaches to identify vulnerabilities. First potential
vulnerabilities were identified with static analysis and then
dynamic analysis was used to confirm apps that are truly
vulnerable. Both studies show that SSL/TLS implementation
errors are still common bugs on Android.

3) AUTHENTICATION FUZZING
The MoSSOT [52] tool developed by Shi et al. demonstrates
how to automate the testing of single sign on (SSO)

authentication for Android apps. MoSSOT is a blackbox
approach that uses the PyModel [91] library to generate
formal test cases (state-machine testing) for the OAuth SSO
protocol. Analysing the OAuth protocol is challenging due to
it’s complexity, and moreover, due the fact that the protocol
can be customised. Therefore, Shi et al. developed routines
to dynamically detect SSO logins (at runtime) and to extract
a model from the network requests of an app to determine
app-specific customisation’s.

Using the test cases generated by PyModel allowed
Shi et al. to identify vulnerabilities in the OAuth implemen-
tation of several apps. Evaluating MoSSOT against more
than 500 Android applications from US and Chinese app
markets showed that around 72.4% of the tested applications
incorrectly implemented SSO and were vulnerable to at
least one vulnerability on either the client (app) or server
side. Some of these vulnerabilities were indeed exploitable.
Therefore, Shi et al. illustrated that their fuzzing approach is
effective in identifying issues related to the implementation
of complex authentication protocols in Android apps.

B. DYNAMIC TAINT ANALYSIS
Taint analysis has some limitations when it comes to be
sound, precise, and performing. For instance, the usage
of reflection. in Android apps makes static taint analysis

57270 VOLUME 12, 2024



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

incomplete in terms that it cannot fully determine how
the program is executed at runtime. To overcome such
limitations, dynamic taint analysis can be used to some
extent. For instance, Benz et al. [57] developed a method
based on heap snapshots and extended the static taint analysis
tool FlowDroid [3] to be more efficient. A heap snaphot
contains a representation of the program objects at runtime
at a selected point in time. The challenge when using heap
snapshots is how to determine when to take a snapshot and
to determine which objects can be used to boost the taint
analysis. Benz et al. experimented with different numbers of
snapshots and proposed a method on how and when to use
heap snapshots. In summary, Benz et al. found out that using
multiple snapshots is beneficial for the performance of the
taint analysis and that heap snapshots in general can enhance
the precision of taint analysis.

Similar, Yang et al. [13] developed a hybrid solution,
named FSAFlow, that has better precision than the static
analysis tool FlowDroid or the dynamic approach Taint-
Droid [92]. FSAFlow uses a finite state machine for
monitoring the execution paths of an AUT and provides a
state-reduction strategy to optimise the analysis process.

The usage of memory decomposition techniques like heap
snapshots are novel ideas that might help to further enhance
dynamic taint-analysis. However, not many solutions for
experimentation on Android like FSAFlow exist.

C. PRIVACY AND COMPLIANCE RELATED STUDIES
So far, we have mainly focused on studies that use specific
dynamic analysis techniques to identify vulnerabilities or to
test specific security mechanisms. In this section, we focus
on publications that aim on identifying problems with
regulations or the users privacy.

1) LEAKING PII
There are numerous ways to leak PII data of users. One
of the more obvious ways is to send PII information over
the network to a remote server were it can be used for
various purposes such as, for instance, advertising. Network
traffic is often monitored by researchers and practitioners to
identify privacy violations. Therefore, some apps come-up
with clever solutions to hide their PII data harvesting from
the user.

For instance, Reardon et al. [53] found evidence that some
large Chinese enterprises use covered- or side-channels to
harvest PII (e.g., IMEI). In their study, Reardon et al.
analysed 88,000 Android apps from the USGoogle Play store
and identified various apps that circumvented the Android
permission system. They used static analysis to figure out
which apps should not be able to access specific data (due
a lack of permissions) and then monitored the network traffic
to identify when permission-protected data was sent over the
wire. Using this hybrid observation approach allowed them
to identify various apps that extracted personal information

and are likely not compliant with the FTC or the GDPR as
they have no consent from the users. In any case, the study
shows how far enterprises would go to harvest the PII data
and attempt to stay undetected.

2) USER CONSENT NOT GIVEN
Compliance is a wide topic that needs in-depth knowledge
about regulations and best-practices and it is often challeng-
ing to identify violations without an in-depth analysis. The
Android permission framework facilitates the detection of
breaches in privacy to some extend. In cases where a user has
not provided explicit authorisation for an app, yet access to
data safeguarded by the requisite permission is still obtained,
the occurrence of a violation may be inferred. Violations
can occur through the exploitation of permission system
loopholes or the use of UI dark patterns to deceive users.

A simple way to test for missing user consent was
demonstrated by Nguyen et al. [59]. By just starting an app
and not interacting with it at all, it allowed the researchers to
assume that at no point in time consent was given by the user.
Using a similar approach as Reardon et al. (by monitoring
the network traffic), Nguyen et al. were able to show that the
users consent was often not given before personal data was
sent to third parties. Nguyen et al. analysed 86,163 apps for
their compliance with the GDPR and found out that 24,838
apps did violate the GDPR by sending data to third-parties
when the apps were started (without any user interaction).
Moreover, developers confronted with the violations were
mostly unaware of these violations and showed often a lack in
knowledge about what is considered personal data under the
GDPR. In a different investigation, Papageorgiou et al. [49]
assessed the GDPR compliance of 20 widely-used mobile
health apps, yielding comparable conclusions. Employing
the Fiddler [93] proxy in their research, Papageorgiou et al.
monitored network traffic and identified several instances
where apps violated user privacy by sharing data without
explicit consent.

3) IDENTIFYING SENSITIVE INPUTS
Andow et al. [46] introduced a method for the inadvertent
disclosure of user inputs, such as account passwords.
UiRef represents a hybrid approach, wherein static analysis
for the identification of application layouts is used, and
subsequently dynamic analysis through on-device rendering
of these layouts. The efficacy of UiRef was assessed across
a corpus of 50,162 applications sourced from the PlayDrone
dataset [94], an archival collection of the Google Play Store
circa 2014. The method proficiently segregated user inputs
into a taxonomy of nine distinct categories, each signifying
a particular class of sensitive information. The empirical
outcomes of this study underscore the recurrent necessity
of user input for critical data within Android apps and
underscore the feasibility of detecting such inputs by means
of information extraction from the GUI.

VOLUME 12, 2024 57271



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

D. SOFTWARE DECOMPOSITION ANALYSIS
One of the concerns that have been raised by researchers is
the inclusion of advertising third-party libraries into Android
apps as it might expose users to additional security and
privacy risks.While the inclusion of such libraries is perfectly
legitimate - after all, financing an app through advertising is a
valid business model - the legally compliant implementation
of the associated data collection is not easy. In addition,
for financial reasons, there is an incentive to go as far
as is permissible. Because crossing the line is therefore
likely, there is a lot of related work on detecting the use
of such libraries. In general, these works focus on novel
methods for software decomposition analysis (e.g., detection
of used library versions) or on identifying the implications
of the integration of a specific third-party library (e.g., policy
violations). Thus, in this section we focus on publications that
use dynamic analysis approaches to identify Android libraries
and their implications for software engineering.

1) ANALYTICS LIBRARIES
Liu et al. [58] analysed eight widely used analytic libraries on
a set of 300 popular apps from Google Play and Chinese app
markets. To gather the necessary data for their study, Liu et al.
instrumented API endpoints in combination with static taint
analysis to monitor the access to PII. Consequently, their
investigation revealed instances wherein certain analytic
libraries were inadvertently disclosing PII. This study thus
substantiates the notion that the incorporation of analytic
libraries carries noteworthy implications for application
developers. Moreover, it underscores the potential lack of
awareness among app developers concerning these associated
risks.

2) THIRD-PARTY LIBRARY PERMISSIONS
Starting with Android version 6, app developers are required
to request dangerous permissions at runtime. However, it is
not possible for users to figure out what part of the code
of an application requested the permission - code from a
third-party library or code from the author of the appli-
cation. This fact lead Diamantaris et al. [54] to study how
frequently third-party libraries would request permissions.
Their approach, named Reaper, is able to trace permissions
in realtime in order to map which permissions are used
by third-party libraries. Diamantaris et al. evaluated Reaper
on 5,000 apps and found out that 65% of the permissions
were requested by third-party libraries and that 37.3% of
the evaluated libraries have connections to ads, tracking, and
analytics.

E. RESEARCH WITH FOCUS ON SPECIFIC GROUPS OF
APPS
Testing Android apps for specific security claims often
requires to combine several analysis techniques. For instance,
the combination of network monitoring techniques together
with DBI is primarily used to trigger specific features within

the code or to monitor what is sent over the network. To give
some more examples, we present publications that focus on
analysing a specific group of apps as their main objective.

1) MOBILE WEB BROWSERS
Luo et al. [50] developed a test suite with 395 test cases
for mobile web browsers. Their goal was to evaluate the
security-mechanism support of the 20 most popular Android
mobile web browsers. To dynamically test these mobile
browsers, Luo et al. used Hindsight [95]; A tool, which is able
to install and control an Android mobile browsers. As result,
Luo et al. found out that most browsers have continuously
added more support for security-mechanisms over the years
but need more time to adjust than traditional web browser
on desktop computers. They discovered as well a lack in
anti-clickjacking directives in many browsers and concluded
that the use of mobile browsers is less secure than that of
desktop browsers overall.

2) ONLINE APP GENERATORS
In recent years, there was a demand in no-code and low-code
technologies that allow users without technical knowledge
to create their own software. Such technologies usually use
pre-defined code blocks and are limited in their functionality.
However, users can configure these modules to build simple
software modules which makes them an alternative to hire
a professional software developer. On Android, there have
been companies offering no-code or low-code online tools to
develop simple apps. When using such online generators, the
users trust that these generators construct secure code.

Oltrogge et al. [47] questioned how secure the apps
generated by these online generators were and conducted an
in-depth examination of their security methods. Analysing
2,291,898 apps Oltrogge et al. found out that around 11.1%
of the apps in their dataset were generated with online
generators. Oltrogge et al. analysed the network traffic and
file access of these generated apps. Their findings show
that some apps use dynamically loaded configuration files at
runtime. These configuration files were sent in some cases
via HTTP in plain without any protection, leading to potential
reconfiguration vulnerabilities. Oltrogge et al. conclude that
the usage of online generators has a negative effect on the
security of the ecosystem because as these generators produce
the same code blocks for thousands of apps, one security
vulnerability can lead to affect thousands of generated apps.
However, in contrast, the security of the ecosystem can be
positively influenced in case were these online generators
have high security standards. Consequently, the online
generator service is responsible to generate secure code.

3) OBFUSCATED AND PACKED APPS
App developers often rely on app packers to hinder reverse
engineering and to enhance the security of their apps
in general. Packers usually encrypt strings and obfuscate
the apps code. They also try to hinder dynamic analysis

57272 VOLUME 12, 2024



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

by introducing runtime checks to prevent debugging or
instrumentation. For app developers, it is often opaque what
is actually packed into their app, as many packer services are
closed source.

To gain more transparency and figure out what is actually
integrated, Dong et al. [60] studied seven commercial app
packers (free versions), that were used on billions of apps.
Reverse engineering these apps to figure out what protection
mechanisms (e.g., anti-reversing techniques) these packers
integrate is challenging and time consuming. To efficiently
analyse the apps, Dong et al. developed a tool, PackDiff,
to efficiently analyse the protection mechanisms and to
monitor the packers. Examining 200 apps from these seven
packers showed that the majority of packers introduced
performance and compatibility issues. Moreover, Dong et al.
found out that some packers were collecting unnecessary
data, such as device information (e.g., MAC address, device
model, system version) and app permissions, which lets open
the question if these services respect the privacy of their
users. To conclude, the study by Dong et al. demonstrates that
transparency should be a key factor for integrating packers
into an app as these packers might have unexpected side-
effects.

F. SUMMARY AND MAIN FINDINGS
Dynamic analysis is used for various purposes as we have
discussed in the last sections. The objectives are mainly
to identify vulnerabilities and privacy related concerns.
We summarised in Table 6 the used dynamic analysis tech-
niques and testing methodologies. As shown, the majority of
publications use instrumentation, tracing and network traffic
analysis for their research as these techniques are reasonable
to understand what data an Android app is processing.

To analyse the network traffic, most researchers rely on
proxy tools such as mitmproxy, burp and fiddler. When
it comes to instrumentation tooling most researchers rely
on custom tools or use the Xposed and Frida frameworks.
Instrumentation is mainly used in combination with other
analysis techniques to circumvent security checks or to hook
Java APIs that might allow to monitor the leakage of privacy
related data. In addition, for unpacking and repacking of apps
researchers mainly use the apktool.

Publications in this domain mainly use up-to-date indus-
trial apps for their studies. The primary data source are apps
downloaded from app stores (mainly Google Play) rather
than using any datasets of existing studies. The selection of
apps differs widely in terms of the chosen app categories and
number of apps. However, all of the selected publications rely
on blackbox testing for their studies. We now summarise the
most frequently mentioned limitations for the App Security,
Privacy and Compliance domain:

1) LIMITATIONS INTRODUCED BY AUTOMATED TESTING
TOOLS
As previously mentioned in Section II, a well known
limitation is the fact that the automated testing tools might not

reach the desired state of an app. Researchers were well aware
of this fact and would often develop custom or enhancement
tools for automated testing.

2) LIMITATIONS BY STATIC ANALYSIS TOOLS
Hybrid analysis solutions frequently mention that their
solutions rely on the reliability of the static analysis tools.
Thus, limitations of the static analysis tools would often apply
as well for hybrid analysis.

3) SECURITY MEASURES DETECT OR HINDER THE DYNAMIC
ANALYSIS
Android apps might implement security mechanisms (e.g.,
root- or re-package detection) to prevent the dynamic analysis
(e.g., instrumentation) of an app. These hardened apps require
extra effort of the researchers (e.g., manual analysis) to be
tested. Thus, researchers would exclude sometimes these
apps from their studies if they are not mandatory for their
objectives.

4) OBFUSCATION MIGHT INTRODUCE FALSE NEGATIVES
Especially when it comes to analysing network traffic,
a general concern and limitation is the obfuscation of the data
in transit. Cases where the traffic is encoded or encrypted
with an unknown mechanisms might lead to the fact that the
researchers would miss the transmission of interesting data.

5) APP SELECTION NOT REPRESENTATIVE
The selected apps for evaluating the solution (or building the
ground truth) might not be representative for all Android apps
or versions. Selections are mainly made by downloading apps
from an app store, and shared datasets are not frequently
used in this domain. As a result, making a fair and sound
comparison is often impossible, and the study results are
not comparable. Moreover, the dependency on external
components (e.g., server) hinders the repeatability of many
experiments.

VII. MALWARE RESEARCH
One of the main use cases for static and dynamic analysis
is the examination and detection of fraudulent apps (mainly
referred to as malware). The definition of what is considered
to be malware is often blur. Solely analysing the capabilities
of a program is not sufficient to determine if an application
is considered malicious or not. As malware has many
facets and uses similar or even the same capabilities as
genuine programs, it is often hard to categorising malware.
Consequently, different classification definitions for malware
exist. For instance, CARO [96], MAEC [97], the Kaspersky
classification schema [98], or the Google Play Protect
schema [99]. These standards have their own definitions on
how to categorise and identify malware. For this study, when
we talk about a specific malware type we refer mainly to the
definitions by the Google Play Protect schema for Potentially
Harmful Applications (PHAs).

VOLUME 12, 2024 57273



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

TABLE 7. Overview of the selected publications in the malware research domain. I = Instrumentation & tracing, N = network analysis, V = visualisation
assistance, L = log-based Analysis, D = dynamic taint analysis, M = memory decomposition, F = fuzzing, H = hybrid (static + dynamic), A = automated
testing, SC = source code available, DS = data source, NA = Number of tested apps (genuine/malicious), ST = supporting tools, TE = testing environment,
TD = target description.

Table 7 summarises the features of 12 distinct publications,
encapsulating the employed tools, datasets, and methodolo-
gies. This analysis serves to delineate the manner in which
dynamic analysis has been harnessed for the purpose of
malware detection. In the following, we review the selected
publications and discuss their objectives and methodology to
further understand the researchers motives to use dynamic
analysis. We group publications in this domain by their
main detection techniques (e.g., tracing) to give a more
comprehensive overview of the domain but it should be
noted that many solutions use several detection techniques
in combination, thus rendering the grouping inherently
imperfect.

A. TRACE-BASED DETECTION
Malware detection based on system call logs is a form of
behavioural model analysis. The key idea behind such detec-
tion mechanisms is that malicious behaviour is represented
by a sequence of system calls. It is based on the assumption
that genuine and malicious apps have distinguishable system
call sequences. Identifying the potential malicious sequences
is subject to research and many classification systems and
models have been proposed. For instance, Bernardi et al. [69]

proposed to collect information from processes to abstract
a detection model. Such a detection model is then used to
identify the malware family of a sample.

B. MACHINE LEARNING-BASED DETECTION
Comprehensive investigations have concentrated on the
examination of ML algorithms employed and the subsequent
comparison of their performances [16], [17], [100]. Never-
theless, in order to address the research questions pertaining
to this domain of research, our focus lies on publications that
present innovative concepts for dynamic analysis techniques,
rather than solely evaluating their performance against
existing methods.

1) NEURAL NETWORKS AND DEEP LEARNING-BASED
DETECTION
Predominantly employed attributes for the training of
machine learning-based classifiers geared towards malware
detection encompass permissions, logs of function call
activities (referred to as API logs), and records of intent
actions or events. These attributes are typically collected
during runtime, followed by the application of selection
algorithms to gauge the significance of each attribute. The

57274 VOLUME 12, 2024



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

adoption of a feature selection algorithm is intended to ensure
the inclusion of solely the most pertinent attributes, thereby
optimising the classification process.

In their study [72], Alzaylaeea et al. undertook an in-depth
analysis of API call logs and permissions for the purpose
of training a deep neural network classifier, denominated
as DL-Droid, employing Droidbot and Monkey as testing
tools, DL-Droid exhibited superior performance compared to
five alternative machine learning-based detection solutions,
as demonstrated on a dataset comprising 31,125 Android
applications. Alzaylaeea et al. operationalized the InfoGain
feature ranking algorithm from the WEKA toolkit as their
selectionmechanism. Concurrently, D’Angelo et al. proposed
an alternate approach leveraging API call logs [73]. Their
innovation revolves around the conversion of API call
sequences into sparse matrices, a distinctive strategy they
deem sufficiently distinctive for app fingerprinting. Subse-
quently, D’Angelo et al. explored the conversion of these
app fingerprints into two-dimensional matrices, denoted as
API images, which were then employed as input for training
a neural network equipped with autoencoders, aimed at
classifying instances of malware.

Cai et al. [65] (Droidcat) measured execution traces (rela-
tive occurrence frequencies and distribution) to characterise
malicious apps. As result, Cai et al. defined three dimensions
for possible dynamic features: structure, ICC, and security.
For every of these three dimensions, they identified metrics
that then were used as features for a Random Forest classifier.
Droidcat is insofar a novel approach as it showed good results
on obfuscated apps without using system calls as features.

2) LINEAR SUPPORT VECTOR MACHINE-BASED DETECTION
Arshad et al. [66] performed manual user testing in order
to collect accurate system call logs. Their solution, called
SAMADroid, performs a hybrid analysis using a Support
Vector Machine (SVM) classifier. SAMADroid traced ten
different system calls (open, ioctl, brk, read, write, close,
sendto, sendmsg, recvfrom, recvmsg) and combined them
with static features (mainly permissions and API calls) to
create feature vectors. Evaluating their approach on the
Drebin [101] dataset with four different classifiers (SVM,
random forest, decision tree, and naives bayes) showed that
SVM and random forest performed best in their experiment.

3) ENSEMBLE LEARNING-BASED DETECTION
It is often challenging for researchers to decide which
classifier performs best overall for detection purposes. Thus,
Feng et al. [68] experimented how ensemble learning could
be applied. In their study, Feng et al. tested on two distinct
datasets the outcome of ensemble learning with majority
voting and stacking to develop a tool called EnDroid.
Stacking uses a meta-classifier to better generalise a model.
It performed on both datasets better than using a single
classifier or majority voting. As feature vectors for the
ensemble learning were the dynamic features provided by

Droidbox in combination with system call logs provided by
strace used. Feng et al. used the chi-square method for feature
selection and evaluated their approach on two datasets of
8,806/5,213 and 5,000/5,000 apps.

C. MEMORY-BASED DETECTION
Pattern or signature matching has been used for decades to
detect vulnerabilities or malware samples. Many anti-virus
solutions use textual or binary signatures to detect known
malware patterns, for example, by using YARA [102].
In such cases, a malware analyst generates unique signatures
for specific malware attributes, such as textual features,
that are then used to identify the sample during scanning.
Using these signatures, anti-virus scanners can fast and
reliably detect known malicious files. Pattern matching (e.g.,
by hashing) is often trivial to circumvent by adversaries
because many pattern-matching algorithms can only detect
previously known patterns and lack the capability of detecting
novel, previously unseen attack patterns. To overcome such
limitations, more sophisticated dynamic analysis approaches
were proposed.

As an illustration, Zhang et al. [75] employed the concep-
tual framework of object reference graph birthmarks (ORGB)
in their research endeavors. Their method, referred to as
DAMBA, derives its analytical foundation from heap dumps.
In the context of their experimentation, heap memory snap-
shots are captured at the time when malicious code is loaded
into memory. These heap memory snapshots encompass a
comprehensive repertoire of insights pertaining to the Java
objects instantiated during runtime. Such insights encompass
diverse relationship attributes including the referee, referrer,
and reference time. Zhang et al. harnessed this repository of
information to construct an object reference graph (ORG),
whereupon they formulated an algorithm tailored to the
detection of subgraph isomorphism. Their approach core lies
in the discernment of recognisable patterns characteristic
of known malware lineages, even in the face of code
obfuscation. This discernment is facilitated by means of
ORGB-to-ORG comparisons. To this end, Zhang et al.
developed a dedicated algorithm for the task of subgraph
matching and demonstrate applicability with high accuracy.

D. RUNTIME VISUALISATION
In general, most ML classifiers are not capable of giving
details on why a specific app was classified as malicious
because ML algorithms are widely seen as blackbox models.
This limitation leads to the fact that the localisation of
malicious features or code within an app is less discussed
even when it is crucial for analysts to check whether the
classification is correct.

Lorenzo et al. [74] propose a system (VizMal) to address
exactly this localisation limitations; helping analysts to
identify when malicious behaviour occurs. Using a Long
Short-Term Memory (LSTM) neuronal network trained
on execution traces, Lorenzo et al. proposed a graphical

VOLUME 12, 2024 57275



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

representation of traces over time that allows to identify
malicious behaviour during runtime. Their system VizMal
classifies traces and generates images from the output to help
analysts detect the exact time when a malicious trace was
detected.

E. REFLECTION & DYNAMIC CODE LOADING
In Java, the reflection and classloader APIs allow an app to
load and execute code during run-time from various sources,
such as, for example, strings, files, or remote servers. Loading
code at run-time allows app developers to implement plugin
systems and to optimise the performance of an app. Even
though Google discourages the usage of dynamically loaded
code (DCL) [103], it is a widely used on Android. It’s
a well-known fact that malware developers use DCL to
circumvent detection–mainly by static analysis tools. State-
of-the-art static analysis tools are capable of analysing if
specific Java APIs for reflection or class loading are used
to some extent, however, they often lack the capabilities to
analyse what is loaded during run-time. This is mainly due
to the fact, that the code might only get downloaded when
triggered or the code is obfuscated and only accessible after
loading into the memory.

Another problem that arises with DCL is the possibility
for privilege escalation vulnerabilities. Threat actors might
hijack files before loading and inject code to elevate their
privileges. Beginning with Android 14, additional security
controls for DCL on Android 14 [104] were introduced,
which enforce that all dynamically loaded files need to be
flagged as read-only in order to be allowed to get loaded into
the memory.

The detection of DCL can help analysts to reveal hidden
code. For instance, Ahmad et al. [70] developed StaDART,
a tool for the purpose of detecting DCL calls in Android
apps. StaDART uses method call graphs to detect malware
that loads code during run-time. Using Droidbot as testing
tool, StaDART combines static- and dynamic techniques to
analyse the arguments of Java reflection calls. They key idea
of StaDART is to create a method call-graph (MCG) with
static analysis tools and extend the MCG during dynamic
analysis. The resulting MCG is then analysed to detect
malicious behaviour.

It is crucial for malware analysts that the potential
malicious functionality is executed during dynamic analysis.
Since all testing tools have limited code coverage, the
methods of interest might not get executed at testing and the
malicious behaviour stays undetected. As mentioned before,
one of such methods of interest might be the execution
of reflection API calls as it is a known technique to hide
potential malicious program code. Gajrani et al. developed
EspyDroid+ [71] with the objective in mind that reflection
API calls might be missed during testing. A principal
ambition underlying their endeavour was the formulation of
a tool equipped to engage with reflection calls throughout
testing procedures. Central to their approach is the strategic

slicing of execution paths that do not lead in a reflection API,
thus rendering their method promising in that it facilitates
the manipulation of app behaviour, propelling the invocation
of reflection calls during testing. Evidently, EspyDroid+
possesses the potential to unveil previously concealed code
segments and thereby boasts the capacity to enhance the
coverage of code segments activated during runtime.

F. ANONMALY-BASED DETECTION
Suárez-Tangil et al. [78] experimented with an anomaly
detection approaches. Subsequently, they devised a detection
model named CoME, which harnessed the principles of
multivariate statistical network monitoring (MSNM) to
discern deviations from the norm within the behaviour of
the Android mediaserver. Their idea was to extract data for
detection by monitoring Android with CopperDroid [105].
The mediaserver was often a target for attacks in the past
and Suárez-Tangil et al. demonstrated with CoME that it is
possible to detect mediaserver exploits, which could led to
detection of malicious apps attempting to exploit specific
Android services.

As most anomaly detection models, one of the main
limitation of CoME is that the model needs to be trained on
a normality model of the service before it is able to detect
unusual behaviour. However, the development of anomaly
detection methods is not as common as classical malware
detection approaches but shows promising results for novel
defence mechanisms.

G. LONGITUDINAL STUDIES
Cai et al. [76] examined the structure of 15,451 benign and
15,183 malicious apps in a longitudinal study to characterise
how benign and malicious apps behave on different Android
versions over a time span of eight years. Analysing static- and
dynamic features of malicious apps gave them unique insight
into how frequent different Android components or features
were use in benign or malicious apps. Cai et al. found out
that callbacks were not often invoked in malicious apps or
that the amount of third party code is not a good metric for
classification as there seems no major difference in between
benign- and malicious samples.

H. SUMMARY AND MAIN FINDINGS
6 of the malware publications used ML techniques. In gen-
eral, the usage of ML is much more common than in the other
two research domains. As shown in Table 7, all of the selected
publications built their detectionmethods based on automated
testing tools. The researchers in this domain are well ware
of the limitations of tools such as Monkey. To overcome
some of these limitations, the usage of customised automation
scripts, extended testing tools, or the combination of multiple
automated testing tools is common.

Moreover, we analysed the number of apps used for
evaluation and report in Table 7 which datasets or sources
were used.Mainly apps from theDrebin, Genoma, Androzoo,
VirusShare, and Contagion datasets were use in combinations

57276 VOLUME 12, 2024



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

with apps from the Google Play Store. The number of used
apps varies and usually similar numbers of genuine and
malicious apps were selected for the evaluations. We now
summarise some key limitations of dynamic analysis in the
malware domain.

1) LACK IN LONG-TERM TESTING
We considered for how long researchers would test individual
apps with dynamic analysis and none of the selected publi-
cations tested for more than three hours. It is a well known
fact that malware uses conditional checks (triggers), such as
time- or location checks [106], to circumvent detection by
static analysis tools. Thus, it is therefore surprising that most
detection solutions do not apply long-term dynamic analysis
testing. In-the-lab experiments would mainly rely on testing
times below ten minutes, which is likely due to the high
time-effort necessary to scale automated tests over days or
even weeks.

2) TRIGGERING MALICIOUS BEHAVIOUR
The limitations introduced by the used automated testing
tools greatly limits the trust in the detection methods.
Researchers would often need to run an apps several times
to trigger malicious behaviour, which limits reproducible.
Another concern is the fact that the testing environment might
influence the AUT in a way that would prevent the app from
executing it’s malicious behaviour.

VIII. ANDROID OS AND FRAMEWORK RESEARCH
In this section, we will discuss novel analysis techniques
that focus on examining the Android OS and parts of
the framework for security purposes with dynamic analysis
techniques. Table 8 shows an overview of chosen publications
for this research domain.

A. FUZZING OS AND FRAMEWORK COMPONENTS
Analysing the framework’s permission is a challenging task
as there are several hurdles to overcome. 1) Permissions
frequently change from one Android version to another,
making it elaborate to keep track of new permissions as
there exists over 600 permissions [107] by default. 2) The
framework itself is a large code base which makes it
challenging to map the guarded functions to the specific
permissions and to verify that the guarded function cannot be
reached without having the correct permissions at runtime.
3) Smartphone vendors customise the Android framework
and integrate custom permissions into the framework which
makes it challenging to have generic tooling.

Generating tests to detect permission re-delegation vulner-
abilities is challenging as the Android framework is too large
to be instrumented with standard tools. Therefore, several
researchers have proposed solutions for test generation and
fuzzing. For instance, Demissie et al. [80] used a combina-
tion of genetic algorithms, natural language processing, and
instrumentation for test generation.

The Dynamo tool [85] takes a different approach by
developing a testing service as a standalone fuzzing app.
Their approach uses Frida in combination with their fuzzing
app to test the API of the framework. This approach allows to
fuzz-test the API at runtime and in parallel on several devices.
Limitations of Dawoud et al. approach are: the analysis is
time-consuming (multiple weeks), needs root rights on the
testing device, and has an unknown error rate as there exists so
far no ground truth for the exact number of framework APIs
and their permissions.

1) NATIVE SYSTEM SERVICES
Liu et al. [81] developed a fuzzer, named Fans, for Android
native system services. On Android, system services are
mainly implemented in Java or C++ and we differentiate
between native (implemented in C++) and normal system
services (implemented in Java). One of the challenges
Liu et al. address is how to extract the interfaces of native
system services and perform generative fuzzing on these
interfaces. Fans was able to identify 30 unique vulnerabilities
in native system services during a 30 days fuzzing run.
In addition, 138 unique Java exceptions were found, which
could indicate further vulnerabilities. These results emphasis
that fuzzing on Android is an effective but performance and
engineering intense way of finding vulnerabilities.

2) TRUSTED EXECUTION ENVIRONMENTS
ManyAndroid components are not simple to test as there exist
no public available tools for the dynamic analysis that could
be used out of the box. Therefore, researchers often develop
their own tools for analysing specific components and make
them publicly available for other researchers. This is insofar
important as many of the security-critical components, such
as for instance, trusted execution environments (TEE), are
usually closed-source and can only be tested in black-box
settings, whichmakes fuzzing these components challenging.

Trusted execution environments are in particular inter-
esting for security research as many fundamental security
concepts rely on them to execute cryptographic functions
securely (e.g., secure boot). As TEEs are widely used in
billions of Android devices, it is important that TEEs are
independently tested to detect vulnerabilities and make them
more secure. As most Android devices are based on ARM
technology, TEE implementations based on TrustZone are
frequent.

To test TEEs, Harrison et al. [82] developed PartEmu,
an emulator capable of emulating TEE implementations
based ARM’s TrustZone. By developing their own emu-
lator (based on QEMU and PANDA), Harrison and
Vijayakumar et al. were able to apply feedback-driven
fuzz-testing (using AFL) to identify vulnerabilities in four
different implementations of TrustZone. Several of the found
vulnerabilities are not theoretical and could be exploited
by adversaries, demonstrating that testing these close-source
components is feasible and important.

VOLUME 12, 2024 57277



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

TABLE 8. Overview of selected OS & framework publications. I = instrumentation & tracing, N = network analysis, V = visualisation assistance,
L = log-based analysis, D = dynamic taint analysis, M = memory decomposition, F = fuzzing, H = hybrid (static + dynamic), A = automated
testing, SC = source code available, DS = data source, NA = number of tested android apps, ST = supporting tools, TE = testing
environment, TD = target description.

B. KERNEL AND DRIVER TESTING
Kernel vulnerabilities have often high severity as they might
give an attacker privileged access rights. Thus, kernel security
is an important research domain that focus on specific
mitigation techniques for securing the kernels APIs such as
system calls.

For instance, a recent study by Hung et al. [79] introduce
a novel method to minimise the attack surface of kernel
modules. As kernel modules such as drivers are often
developed by third party vendors it is challenging to test
and secure them effectively against adversaries. Therefore,
Hung et al. developed Sifter, a filter based approach to
mitigate kernel module vulnerabilities. Surprisingly, filter
policies seem to be an effective way to mitigate attacks as
Hung et al. showed that implementing a filter system could
defeat many system call based exploits without any prior
knowledge about the exploits.

Pustogarov et al. [83] describes another method to analyse
kernel drivers by loading them into a so called evasion kernel.
On Android, many drivers are loadable Linux modules. Test-
ing Linux drivers come often with the hurdle that researchers
need to possess the hardware to fully test a driver at runtime.
Pustogarov et al. tested the possibility of loading drivers from
foreign hosts into a Linux kernel to test the drivers without
having to rely on the hardware. Their analysis tool, Easier,
inherits routines to handle incompatibilities or dependencies
on soft- and hardware requirements. Combining fuzzing and
symbolic execution techniques, Easier demonstrates that it is
feasible to test Android drivers with an evasion kernel method
to some extend; 48/62 (77%) drivers from three Android
kernels were successfully tested.

C. DETECTING INSTRUMENTATION
Cutting-edge fortification techniques employed in Android
apps, such as obfuscation and packers, often impose a
substantial time investment when attempting to comprehend
the inner workings of an Android app through reverse
engineering. Furthermore, analysts commonly rely on tools
like Frida and Xposed for instrumentation, aiding in the
reversal process. Nonetheless, as these tools have become
frequently used, applications have started implementing
detection mechanisms in an endeavour to thwart instru-
mentation. For example, Soriano-Salvador and Guardiola-
Múzquiz [86] describe diverse Frida detection methods, such
as inspecting loaded libraries, verifying package signatures,
and detecting artefacts in both disk and memory.

Instrumentation techniques are mainly executed in the
user-world. Thus, making it possible for other applications
to detect them. To overcome the possibility for detection,
Druffel and Heid [84] propose to use a kernel model, called
DaVinci, for instrumentation instead. Using a kernel module
has the benefit that apps executed in the user-world are
unlikely to detect the instrumentation because of the lack in
privileges and the possibility of the kernel to better hide its
activities. However, the main disadvantage is that the analyst
needs root access to load the kernel module, which is in some
cases not feasible. DaVinci include a couple of techniques to
hide its present. For instance, filtering network traffic, hiding
specific files, and creating virtual filesystem overlays.

D. SUMMARY AND MAIN FINDINGS
The usage of fuzzing techniques is common in this domain
as most of the selected publications have a strong focus

57278 VOLUME 12, 2024



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

on developing and applying fuzzing techniques to native
Android services. The research targets have a broader scope
than in the other domains because the Android OS and
framework have a large number of components that are
interesting for security research and are not solely focused
onAndroid apps. However, analysing the Android framework
and it’s permission system seems to be one of the frequently
discussed topics and there have been various ideas to
further enhance existing permission mapping techniques.
Following we discuss the common limitations of the selected
publications of this domain.

1) HARDWARE/VENDOR SUPPORT
A common limitation that researcher face, is that it is often
necessary for them to invest significant amount of time to
develop supporting tools in order to test specific components
for their research. The lack of public documentation and the
nature of close-source software often makes it challenging to
develop these tools. In addition, it was frequently mentioned
that vendor customisation’s makes it elaborate to support
different devices or versions.

2) LIMITED FUZZING SUPPORT
Most studies are focusing to test existing software compo-
nents and do not have access to the source-code. The lack
of source-code access limits the usage of specific fuzzing
techniques (e.g., coverage-guided fuzzing).

3) PERFORMANCE AND REPRODUCIBILITY
Implementing custom tools for instrumentation or other
analysing techniques often introduces a runtime overhead,
which many researchers see as limiting factor of their studies.
In addition, as the testing of specific software components
can be non-deterministic the results some experiments might
change over time and are not repeatable which greatly limits
the possibility to replicate the studies results.

4) LACK OF PUBLIC EXPLOITS/VULNERABILITIES FOR
VERIFICATION
Studies that attempt to enhance existing security controls
mostly have the problem that their approach needs to be tested
against exploits to evaluate if their new security control is
effective. However, collecting enough fitting exploits is often
not trivial, due the lack of public disclosed exploits, which
makes it often not possible to really evaluate how effective
these novel ideas are in practice.

IX. DISCUSSION
In this Systematic Literature Review (SLR), we provide an
overview of the current state of research in the domain of
dynamic analysis applied to the Android platform, with a
specific focus on publications employing dynamic analysis
for security research. To answer our research questions, it is
assumed that the reviewed publications are representative.
Our examination encompassed 43 publications, wherein
we sought to identify innovative methodologies, tools, and

conceptual frameworks. Additionally, we aimed to elucidate
common limitations and identify research gaps within the
field. The establishment of a taxonomy and a classification
scheme, detailed in Section V, enabled the categorisation of
identified works into three primary research domains.

To assemble our dataset, we conducted searches on
the Google Scholar and DLPB databases, targeting
peer-reviewed conferences and journals as delineated in
Section IV. Figure 7 presents a visual representation of the
distribution of publications across various conferences and
journals, offering a comprehensive overview of the selected
venues. In total, our inclusive approach covered publications
from 28 distinct venues, comprising 13 journals and 15
conferences.
RQ1 Which novel tools and techniques were published?
Instrumentation and monitoring tools are the primary

focal point within the community’s interest. The community
concentrates on the advancement of custom-made instrumen-
tation tools or the adoption of pre-existing solutions for the
purpose of measurement and tracing. Tables 1 and 6 to 8,
present an overview of cutting-edge publications alongside
the designations of newly formulated dynamic analysis
solutions and tools. In contrast to static analysis, which
exhibits frequent utilisation of specific tools in research
endeavours, the realm of dynamic analysis in the context of
Android security lacks a dominant set of supportive tools.
Prominent among the dynamic analysis tools repeatedly
referenced are Frida, XPOSED, mitmproxy, and fiddler.
Nonetheless, a majority of publications rely upon automated
software testing tools, with Monkey serving as the principal
choice for testing purposes.

Moreover, we list which of the novel tools were made
publicly available and which datasets or sources were used
for the evaluation of the studies.

Frida, XPOSED, mitmproxy, and fiddler are commonly
used pre-existing testing tools for security analysis
purposes. Monkey is still one of the most prominent
solutions applied as testing tool, despite the fact that other
testing solutions exist.

RQ2 What were the underlying objectives and intentions
driving the utilisation of dynamic analysis techniques?

We developed a taxonomy and classified the publications
into three main security research domains. For every domain,
topics and objectives were summarised and overview was
illustrated (see Figure 4). The number of reviewed and
selected papers shows clearly that most research in the past
years have focused on app security and especially onmalware
detection techniques.

Dynamic analysis techniques are mainly applied to
overcome limitations by static analysis techniques or to
gain a more in-depth view of the internal behaviour of an
Android system.

VOLUME 12, 2024 57279



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

FIGURE 5. Venn diagram of selected publications and their applied dynamic analysis techniques.

FIGURE 6. Distribution of evaluated Android apps for the selected publications. Note: Only publications shown that evaluate Android apps and one
outliner (with 2,291,898 apps) was removed due to space restrictions.

RQ3 What are the prevalent constraints and short-comings
inherent in the dynamic analysis techniques?

To answer this question, we listed for every research
domain the most frequently mentioned limitations (see sec-
tions VI-F, VII-H and VIII-D)). We summarise the main
shortcomings and concerns overall as follows.

• Limited code coverage. Several studies attempt to
overcome this shortcoming by implementing additional
testing routes. However, the majority of studies relies on
existing automated testing tools and is well aware of the
fact that these tools have limited testing abilities.

• Security measures hinder the analysis. Client hard-
ening techniques, such as packing and obfuscation

are common problems that researchers face and have
to overcome. In cases, where the aim of the study
is not focused on these hardened apps, they are
frequently removed from studies. Mainly, because the
ratio between effort and gain is too small for the
researchers.

• Selection of apps might not be sufficient. The major-
ity of research endeavours depend upon applications
sourced from the Google Play Store. Additionally,
a subset of applications extracted from research datasets,
is incorporated into the analysis. Due to uncertainty
regarding the adequacy of the chosen subset with respect
to the research aims, it is commonly acknowledged

57280 VOLUME 12, 2024



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

FIGURE 7. Distribution conferences and journals for the publication
selection.

that the efficacy of the devised methodology may
not be universally transferable to alternative Android
applications.

• Non-deterministic behaviour. Researchers are well
aware that Android apps have dependencies and might
react differently between test runs depending on the
environment or network conditions. Moreover, it is
a wide concern that malicious apps might behave
differently when tested on an emulator.

One of the most common mentioned shortcomings is the
limitations introduced by automated testing tools or the
concern that the dynamic analysis is detected or hindered
by the AUT.

RQ4 Which areas of research have exhibited prominent
trends and gained significant attention in the recent years?

To better answer this question, we illustrate an overview
of used dynamic analysis methodologies in Figure 5. The
venn diagram shows an overview of the selected publications
and the applied dynamic analysis techniques. It can be seen
that Instrumentation & Tracing are most commonly used,
followed by network- and log-based analysis approaches.
Surprisingly, fuzzing techniques are not that popular when
it comes to analysing Android apps. We assume this is due
the fact that fuzzing native code is said to be a more effective
way to detect memory corruption bugs than to fuzz Java code,
where memory corruption vulnerabilities are unlikely to be
found. In addition, publications that use the heap memory or
visualisation approaches are less common.

Furthermore, Figure 6 illustrated the distribution of
evaluated Android apps of the selected publications. It shows
that the number of apps varies but the majority of publications
used between 1 and 18k of Android apps and the median

is 1,564. The highest number of evaluated apps was used by
Oltrogge et al. [47] with 2,291,898 apps.

Instrumentation & Tracing are the most widely applied
dynamic analysis techniques for Android in the past
years. It is mainly applied in combination with network
traffic and log-based analysis techniques.

X. FUTURE DIRECTIONS AND RECOMMENDATIONS
Based on the reviewed papers, we discuss where researchers
see potential for future work. We summarise the main
directions and trends frequently mentioned by researchers as
follows:

• Evasion: Techniques that change the behaviour of the
AUT pose significant limitations for many security
studies on Android. Especially, for theMalware research
domain where advisories often attempt to hide their
activities. Methods that are able to detect evasion tech-
niques hold still considerable potential to significantly
impact the field for both researchers and practitioners.

• Context-awareness: Privacy and vulnerability method-
ologies frequently employ black-box models, rendering
them context-unaware; in other words, they lack meta-
data about the AUT. For example, the purpose of the
app is typically unknown before testing. Consequently,
many methodologies are tailored for specific sets of
apps but falter in generalisation. For instance, techniques
utilising risk metrics for mobile health apps may not be
suitable for analysing social media apps. Overall, there
appears to be significant potential in methodologies
capable of context awareness and generalisation in this
field, especially because many studies focus on similar
approaches on different data samples.

• Machine-Learning: One evident trend observed across
all three research domains is the utilisation of ML-based
techniques. The use of ML is particularly intriguing
for the testing domain described in Section II, as there
are already tools like Q-Testing [24] demonstrating
superior code coverage compared to their predecessors.
We believe it is likely that this trend will continue to
influence security testing in the near future.

One aspect left open for future work in our study is the
in-depth analysis of the root causes for certain limitations.
Given that common limitations across all research domains
have been identified, it would make sense to further extend
our work into an in-depth analysis of common root causes
and potential solutions.

A. ETHICAL CONSIDERATIONS
As certain tools or methods can be misused for illegal
or unethical purposes, such as unauthorised access to an
Android app or exploiting PII for monetary gain, it is
pertinent to consider how researchers report their security
findings. While our study does not primarily focus on this
aspect, we will discuss some ethical considerations in this

VOLUME 12, 2024 57281



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

section for the sake of completeness, leaving a detailed
analysis for future research.

Based on Section VI the research community in this
particular field has a strong focus on studies that research on
the ethically and legality of certain privacy or data collecting
aspects, for instance, how PII is used in general. Studies in
this field often discuss and report their findings and give
recommendations.

The focus of other domains (see Sections VI and VII)
may place less emphasis on ethical considerations, but from
our perspective, responsibility in action is still crucial. For
example, researchers often adhere to responsible disclosure
practices or intentionally omit certain details in their publi-
cations to prevent the abuse of their methods. However, upon
reviewing the publications, it is evident that there is in general
a lack of proactive discussion on the potential abuse of the
developed methods or tools, which we consider an area for
potential improvement in future studies.

B. RECOMMENDATIONS
We propose certain key points to help researchers in using
dynamic security analysis for their studies in the following.

• Multiple testing tools:Monkey-based and manual test-
ing are frequently used in studies, despite the fact that the
latest software testing tools for Android show superior
code coverage compared to Monkey– This might be due
to the ease of setting up Monkey, but it can greatly
limit the exploration space. Therefore, we recommend
the usage of multiple tools in combination to further
strengthen the automated testing of Android apps.

• Multiple test runs: Given that non-deterministic
behaviour can influence the testing of Android apps, it is
crucial to establish a baseline through multiple test runs
to minimise the margin of error in the results. While
most reviewed publications suggest testing duration’s
ranging from 5 to 60 minutes, it is advisable to aim
for a minimum of 60 minutes per test run, or to target
a specific level of code coverage as an alternative
approach.

• App selection:Well-established and frequently updated
projects, that allow the open and free sharing of Android
apps for research (like, for instance, Androzoo [108]),
should be used in favour of creating custom, closed-
source, or outdated datasets for studies. This allows the
research to be reproducible to a certain degree and helps
studies compare their results.

XI. THREATS TO VALIDITY
A systematic literature review gives only insights into a small
subset of available publications and has a limited scope.
We reviewed in this SLR publications using or developing
dynamic analysis techniques for Android. To the best of
our knowledge, we critically selected only publications that
have novel and innovative approaches from top computer
science conferences or journals. As described in Section IV,
we followed strictly the defined SLR methodology and

included only publications according to our selection criteria.
Nevertheless, since our search strategy is based on keywords
and snowballing references, it is possible that we may have
missed some relevant publications. In addition, since some of
the selection criteria are relative to the reviewers assessments,
it is as well possible that we have made errors in the selection
process by including or excluding some primary publications.

We used Google Scholar and the DBLP computer sci-
ence bibliography to prevent a bias towards one of the
computer science conferences or journals. We conducted a
backward and forward reference search to identify additional
publications and several reviewers have crossed-checked
the included/excluded publications to minimise the risk of
errors. We selected 43 publications, which is a reasonable
size for an SLR in software engineering as discussed by
Wang et al. [109]. Figure 7 shows the distribution of the
venues they were published in. It can be seen that even
if some publication venues are more strongly represented,
there is no specific preference for certain publication venues.
A possible bias due to the focus on individual venues
can therefore be ruled out. However, one limitation of our
selection process is that less common tools, frameworks,
techniques, or theoretical approaches might not have been
found by our keyword based search. Thus, certain topics
might not be discussed in-detail due to their frequency in the
dataset.

XII. RELATED WORK
To the best of our knowledge, there has not been any
systematic literature review or survey focusing on Android
dynamic security analysis. Our study is the first to system-
atically analyse dynamic security testing. However, several
secondary studies exists with a focus on static analysis,
malware or vulnerability detection and following we discuss
some selected studies.
Security Testing. Li et al. [14] conducted a systematic

literature review of static analysis techniques for Android
app analysis. Their work has a strong focus on static
analysis concepts and their implementation for security
research on Android apps. Li et al. reviewed 124 research
publications and explained many still state-of-the-art static
analysis techniques.

Senanayake et al. [110] studied 118 papers that focus on
Android source code vulnerability detection. The authors
evaluate the effectiveness of existing vulnerability detection
techniques and tools and investigate mainly ML-based
methods. Comparable Garg and Baliyan [111] have reviewed
papers from 2013 to 2020 to identify the state-of-the-art
vulnerability detection approaches for Android.
Android malware analysis. There have been several

systematic literature reviews about different aspects of
Android malware detection techniques [16], [17], [100],
[112], [112], [113], [114], [115], [116], [117], [118]. For
instance, Senanayake et al. [16] wrote about ML techniques
in general, whereas Liu et al. [100] and Qiu et al. [112]
focused on comparing deep learning detection techniques.

57282 VOLUME 12, 2024



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

Pan et al. [17] set their research focus on static-analysis
techniques. Ehsan et al. [114] also analysed static-analysis
techniques but set their main objective on studying methods
that use app permissions for detection.

In contrast, Yan and Yan [116] carried out a systematic
review of articles that focus on dynamic malware detection
techniques. More recently, Sharma and Rattan [113] analysed
380 research articles and identified the most common
static and dynamic features used for detection. In addition,
the paper analysed as well the used ML algorithms and
compared their performance over the years on the Drebin
dataset. Similarly, Dave and Rathod [115] reviewed articles
from 2017 to 2020 and assessed which features were mainly
used in previous studies and Acharya et al. [118] studied
malware articles with an emphasis on stealth techniques.

Razgallah et al. [117] examined peer-reviewed publica-
tions from 2009 to 2020, analysing 22 articles to compare
their methodologies. From their analysis, the researchers
identified ways to improve the tools, methods, and evaluation
approaches used in these articles, and they summarised their
findings in 16 recommendations for future research on the
topic.
Privacy and third-party libraries. As discussed in

Section VI-D, there have been several studies on third-party
library detection and the implications on privacy and
security of using third-party libraries in Android apps.
Zhan et al. [119] identified 74 articles and analysed the
articles in four research dimensions (research objectives,
targeted libraries, type of third-party libraries, type of pro-
gram analysis). They reviewed research articles from 2012 to
2020 and they came to the conclusion that current research on
third-party vulnerability detection is very limited. In addition,
future research should focus more on the detection of native
third-party libraries and their isolation approaches from the
main app.
GUI-based test automation for Android. Nie et al. [120]

identified themain research communities with publications in
graphical user interface testing. Within their study, Nie et al.
selected 114 primary research articles and determined the
most influential authors by calculating and adjusting citation
scores. Kong et al. [121] reviewed user interface testing
approaches until 2016 and found out that most publications
in their literature selection used real devices for testing.

Nass et al. [122] studied a set of 49 publications for
graphical user interface testing approaches. Their systematic
literature review identified the main challenges that have
been reported by researchers in the past twenty years.
Demonstrating that some of the challenges for GUI-based
test automation are still unsolved and relevant for web- and
mobile applications.

XIII. CONCLUSION
In this systematic literature review (SLR), we conducted
a thorough exploration of dynamic analysis in Android
security research, illuminating significant trends and key
aspects within the field. We give an overview of the applied

analysis techniques in the field and show which techniques
are frequently combined. By meticulously examining 43
carefully selected publications from diverse venues, we iden-
tified and analysed innovative methodologies, tools, and
ideas related to dynamic analysis for security purposes.
The development of a taxonomy yielded three primary
research domains, providing a structured framework for
comprehending the dynamic analysis landscape in Android
security.

1) App Security, Privacy and Compliance.
2) Malware Research Domain. Publications in this

domain have a strong focus on malware detection,
evasion or reverse-engineering techniques.

3) Android OS and Framework. Publications in this
domain primarily revolve around kernel testing,
fuzzing OS components, and detection methods for
instrumentation.

To give an overview of the latest research and analysis
techniques for these domains, we examined 21 publications
for the first domain, 12 for the second, and 11 for the third
domain.

In general, the research objectives observed across
the selected publications predominantly revolve around
enhancing app security, detecting malware, and automating
software testing. For each research line, we pinpointed and
summarised main challenges and areas ripe for improve-
ment, including code coverage, security measures impeding
analysis, representative datasets, and the handling of non-
deterministic behaviour.

The analysis of dynamic analysis techniques revealed that
instrumentation & tracing stands out as the prevailing choice,
often complemented by other methodologies. Notably,
fuzzing techniques have seen limited adoption in Android app
research, potentially due to their constrained effectiveness
when applied to Java code. However, we anticipate a potential
shift in this landscape as fuzzing techniques demonstrate
improvements across various research domains.

As a comprehensive resource, this study offers valuable
insights for researchers and practitioners in the domain.
It serves as a reference point for prevailing trends, challenges,
and potential directions for future studies, providing added
value to the ongoing discourse in dynamic analysis for
Android security.

REFERENCES
[1] Proton AG. (2023). Complete Guide to GDPR Compliance. MISC.

Accessed: Apr. 26, 2023. [Online]. Available: https://gdpr.eu/
[2] PState of California Department of Justice. (2023). California Consumer

Privacy Act (CCPA). MISC. Accessed: Apr. 26, 2023. [Online].
Available: https://www.oag.ca.gov/privacy/ccpa

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, ‘‘FlowDroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for Android apps,’’
ACM SIGPLAN Notices, vol. 49, no. 6, pp. 259–269, 2014.

[4] L. Wartschinski, Y. Noller, T. Vogel, T. Kehrer, and L. Grunske,
‘‘VUDENC: Vulnerability detection with deep learning on a natural
codebase for Python,’’ Inf. Softw. Technol., vol. 144, Apr. 2022,
Art. no. 106809.

VOLUME 12, 2024 57283



T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

[5] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, and
F. Massacci, ‘‘StaDynA: Addressing the problem of dynamic code
updates in the security analysis of Android applications,’’ in Proc.
5th ACM Conf. Data Appl. Secur. Privacy. New York, NY, USA:
Association for Computing Machinery, Mar. 2015, pp. 37–48, doi:
10.1145/2699026.2699105.

[6] S. Kumar, D. Mishra, B. Panda, and S. K. Shukla, ‘‘InviSeal: A stealthy
dynamic analysis framework for Android systems,’’ Digital Threats,
vol. 4, no. 1, pp. 1–13, Mar. 2023, doi: 10.1145/3567599.

[7] A. Lyons, J. Gamba, A. Shawaga, J. Reardon, J. Tapiador, S. Egelman,
and N. Vallina-Rodriguez, ‘‘Log: It’s big, it’s heavy, it’s filled
with personal data! Measuring the logging of sensitive information
in the Android ecosystem,’’ in Proc. Usenix Secur. Symp., 2023,
pp. 2115–2132.

[8] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, ‘‘Time-travel
testing of Android apps,’’ in Proc. IEEE/ACM 42nd Int. Conf. Softw.
Eng. (ICSE), Oct. 2020, pp. 481–492, doi: 10.1145/3377811.3380402.
[Online]. Available: https://github.com/DroidTest/TimeMachine

[9] K. Mao, M. Harman, and Y. Jia, ‘‘Sapienz: Multi-objective automated
testing for Android applications,’’ in Proc. 25th Int. Symp. Softw. Test.
Anal. New York, NY, USA: Association for Computing Machinery,
Jul. 2016, pp. 94–105, doi: 10.1145/2931037.2931054.

[10] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, ‘‘Guided, stochastic model-based GUI testing of Android apps,’’
in Proc. 11th Joint Meeting Found. Softw. Eng. New York, NY, USA:
Association for Computing Machinery, Aug. 2017, pp. 245–256, doi:
10.1145/3106237.3106298.

[11] S. R. Choudhary, A. Gorla, andA. Orso, ‘‘Automated test input generation
for Android: Are we there yet? (E),’’ in Proc. 30th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), Nov. 2015, pp. 429–440.

[12] M. Almeida, M. Bilal, A. Finamore, I. Leontiadis, Y. Grunenberger,
M. Varvello, and J. Blackburn, ‘‘CHIMP: Crowdsourcing human
inputs for mobile phones,’’ in Proc. World Wide Web Conf., 2018,
pp. 45–54.

[13] Z. Yang, Z. Yuan, S. Jin, X. Chen, L. Sun, X. Du, W. Li, and H. Zhang,
‘‘FSAFlow: Lightweight and fast dynamic path tracking and control
for privacy protection on Android using hybrid analysis with state-
reduction strategy,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2022,
pp. 2114–2129.

[14] L. Li, T. F. Bissyande, M. Papadakis, S. Rasthofer, A. Bartel,
D. Octeau, J. Klein, and L. Traon, ‘‘Static analysis of Android apps:
A systematic literature review,’’ Inf. Softw. Technol., vol. 88, pp. 67–95,
Aug. 2017.

[15] Z. Wu, X. Chen, and S. U.-J. Lee, ‘‘A systematic literature review
on Android-specific smells,’’ J. Syst. Softw., vol. 201, Jul. 2023,
Art. no. 111677. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0164121223000729

[16] J. Senanayake, H. Kalutarage, and M. O. Al-Kadri, ‘‘Android mobile
malware detection using machine learning: A systematic review,’’
Electronics, vol. 10, no. 13, p. 160, 2021. [Online]. Available:
https://www.mdpi.com/2079-9292/10/13/1606

[17] Y. Pan, X. Ge, C. Fang, and Y. Fan, ‘‘A systematic literature review of
Android malware detection using static analysis,’’ IEEE Access, vol. 8,
pp. 116363–116379, 2020.

[18] H. Rathore, S. Chari, N. Verma, S. K. Sahay, and M. Sewak, ‘‘Android
malware detection based on static analysis and data mining techniques:
A systematic literature review,’’ in Broadband Communications, Net-
works, and Systems, W. Wang and J. Wu, Eds. Cham, Switzerland:
Springer, 2023, pp. 51–71.

[19] Google. (2023). UI/Application Exerciser Monkey. MISC. Accessed:
Apr. 26, 2023. [Online]. Available: https://developer.android.com/studio/
test/monkey.html

[20] A. Pilgun, O. Gadyatskaya, Y. Zhauniarovich, S. Dashevskyi,
A. Kushniarou, and S. Mauw, ‘‘Fine-grained code coverage measurement
in automated black-box Android testing,’’ ACM Trans. Softw. Eng.
Methodol., vol. 29, no. 4, pp. 1–35, Oct. 2020. [Online]. Available:
https://github.com/pilgun/acvtool

[21] H. Zheng, D. Li, B. Liang, X. Zeng, W. Zheng, Y. Deng, W. Lam,
W. Yang, and T. Xie, ‘‘Automated test input generation for Android:
Towards getting there in an industrial case,’’ in Proc. IEEE/ACM 39th
Int. Conf. Softw. Eng., Softw. Eng. Pract. Track (ICSE-SEIP), May 2017,
pp. 253–262.

[22] W. Wang, W. Lam, and T. Xie, ‘‘An infrastructure approach to
improving effectiveness of Android UI testing tools,’’ in Proc. 30th
ACM SIGSOFT Int. Symp. Softw. Test. Anal. New York, NY, USA:
Association for Computing Machinery, Jul. 2021, pp. 165–176, doi:
10.1145/3460319.3464828.

[23] A. Romdhana, A. Merlo, M. Ceccato, and P. Tonella, ‘‘Deep reinforce-
ment learning for black-box testing of Android apps,’’ ACM Trans. Softw.
Eng.Methodol., vol. 31, no. 4, pp. 1–29, Jul. 2022, doi: 10.1145/3502868.

[24] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, ‘‘Reinforcement
learning based curiosity-driven testing of Android applications,’’ in Proc.
29th ACM SIGSOFT Int. Symp. Softw. Test. Anal. New York, NY, USA:
Association for Computing Machinery, Jul. 2020, pp. 153–164, doi:
10.1145/3395363.3397354.

[25] Google. (2023). Write Automated Tests With UI Automator. MISC.
Accessed: Apr. 26, 2023. [Online]. Available: https://developer.
android.com/training/testing/other-components/ui-automator

[26] Google. (2023). OSS-FUZZ: Continuous Fuzzing for Open Source
Software. MISC. Accessed: Apr. 26, 2023. [Online]. Available:
https://github.com/google/oss-fuzz

[27] Google. (Mar. 2021). Fuzzing Java in OSS-FUZZ. MISC. Accessed:
Apr. 26, 2023. https://security.googleblog.com/2021/03/fuzzing-java-in-
oss-fuzz.html

[28] (2023). Jazzer. MISC. Accessed: Jan. 31, 2023. [Online]. Available:
https://github.com/CodeIntelligenceTesting/jazzer

[29] (2023). OWASP: Certificate and Public Key Pinning. MISC.
Accessed: Jan. 31, 2023. [Online]. Available: https://owasp.org/www-
community/controls/Certificate_and_Public_Key_Pinning

[30] I. Kara, ‘‘Fileless malware threats: Recent advances, analysis approach
through memory forensics and research challenges,’’ Exp. Syst.
Appl., vol. 214, Mar. 2023, Art. no. 119133. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417422021510

[31] Strace.io. (2023). Strace—Linux Syscall Tracer. MISC. Accessed:
Apr. 26, 2023. [Online]. Available: https://strace.io/

[32] Man7.org. (2023). Ptrace—Linux Manual Page. MISC. Accessed:
Apr. 26, 2023. [Online]. Available: https://man7.org/linux/man-
pages/man2/ptrace.2.html

[33] (2023). Android Developer: Share Memory. MISC. Accessed:
Jan. 31, 2023. [Online]. Available: https://developer.android.com/topic/
performance/memory-overview#SharingRAM

[34] B. Buddhdev, R. Bhan, M. S. Gaur, and V. Laxmi, ‘‘DynaDroid: Dynamic
binary instrumentation based app behavior monitoring framework,’’
in Proc. 8th Int. Conf. Secur. Inf. Netw. New York, NY, USA:
Association for Computing Machinery, Sep. 2015, pp. 322–325, doi:
10.1145/2799979.2800036.

[35] N. Nethercote and J. Seward, ‘‘Valgrind: A framework for heavyweight
dynamic binary instrumentation,’’ ACM SIGPLAN Notices, vol. 42, no. 6,
pp. 89–100, Jun. 2007, doi: 10.1145/1273442.1250746.

[36] O. A. V. Ravnås and H. Sørbø. (Jul. 2014). Frida Source Code. [Online].
Available: https://github.com/frida/frida

[37] Quarkslab. (2023). Quarkslab Dynamic Binary Instrumentation.
MISC. Accessed: Apr. 26, 2023. [Online]. Available:
https://qbdi.quarkslab.com/#about

[38] MIT. (2023). Dynamorio. MISC. Accessed: Apr. 26, 2023. [Online].
Available: https://dynamorio.org/

[39] Google. (2023). Logcat Command-Line Tool. MISC. Accessed: Apr. 26,
2023. [Online]. Available: https://developer.android.com/tools/logcat

[40] B. Kitchenham and P. Brereton, ‘‘A systematic review of systematic
review process research in software engineering,’’ Inf. Softw. Technol.,
vol. 55, no. 12, pp. 2049–2075, Dec. 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584913001560

[41] Anne-Wil Harzing. (2022). Publish or Perish. MISC. Accessed: Apr. 26,
2023. [Online]. Available: https://harzing.com/resources/publish-or-
perish/

[42] A. Yasin, R. Fatima, L. Wen, W. Afzal, M. Azhar, and R. Torkar,
‘‘On using grey literature and Google scholar in systematic lit-
erature reviews in software engineering,’’ IEEE Access, vol. 8,
pp. 36226–36243, 2020.

[43] (2023).DBLPComputer Science Bibliography. MISC. Accessed: Jan. 31,
2023. [Online]. Available: https://dblp.org/xml/release/

[44] (2023). Google Scholar: Top Publications Software Systems. MISC.
Accessed: Jan. 31, 2023. [Online]. Available: https://scholar.google.
com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems

57284 VOLUME 12, 2024

http://dx.doi.org/10.1145/2699026.2699105
http://dx.doi.org/10.1145/3567599
http://dx.doi.org/10.1145/3377811.3380402
http://dx.doi.org/10.1145/2931037.2931054
http://dx.doi.org/10.1145/3106237.3106298
http://dx.doi.org/10.1145/3460319.3464828
http://dx.doi.org/10.1145/3502868
http://dx.doi.org/10.1145/3395363.3397354
http://dx.doi.org/10.1145/2799979.2800036
http://dx.doi.org/10.1145/1273442.1250746


T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

[45] (2023). Google Scholar: Top Publications Computer Security &
Crypography. MISC. Accessed: Jan. 31, 2023. [Online]. Available:
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=
eng_computersecuritycryptography

[46] B. Andow, A. Acharya, D. Li, W. Enck, K. Singh, and T. Xie, ‘‘UiRef:
Analysis of sensitive user inputs in Android applications,’’ in Proc.
10th ACM Conf. Secur. Privacy Wireless Mobile Netw. New York, NY,
USA: Association for Computing Machinery, Jul. 2017, pp. 23–34, doi:
10.1145/3098243.3098247.

[47] M. Oltrogge, E. Derr, C. Stransky, Y. Acar, S. Fahl, C. Rossow,
G. Pellegrino, S. Bugiel, and M. Backes, ‘‘The rise of the citizen
developer: Assessing the security impact of online app generators,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2018, pp. 634–647.

[48] Y. Liu, C. Zuo, Z. Zhang, S. Guo, and X. Xu, ‘‘An automatically vetting
mechanism for SSL error-handling vulnerability in Android hybrid web
apps,’’World Wide Web, vol. 21, no. 1, pp. 127–150, Jan. 2018.

[49] A. Papageorgiou, M. Strigkos, E. Politou, E. Alepis, A. Solanas,
and C. Patsakis, ‘‘Security and privacy analysis of mobile health
applications: The alarming state of practice,’’ IEEE Access, vol. 6,
pp. 9390–9403, 2018.

[50] M. Luo, P. Laperdrix, N. Honarmand, and N. Nikiforakis, ‘‘Time does not
heal all wounds: A longitudinal analysis of security-mechanism support
in mobile browsers,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2019,
pp. 1–9.

[51] D. Wu, D. Gao, R. K. C. Chang, E. He, E. K. T. Cheng, and R. H. Deng,
‘‘Understanding open ports in Android applications: Discovery, diag-
nosis, and security assessment,’’ in Proc. Netw. Distrib. Syst. Secur.
Symp., 2019, pp. 1–16.

[52] S. Shi, X. Wang, and W. C. Lau, ‘‘MoSSOT: An automated blackbox
tester for single sign-on vulnerabilities in mobile applications,’’ in
Proc. ACM Asia Conf. Comput. Commun. Secur. New York, NY, USA:
Association for Computing Machinery, Jul. 2019, pp. 269–282, doi:
10.1145/3321705.3329801.

[53] J. Reardon, A. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, ‘‘50 ways to leak your data: An exploration
of apps’ circumvention of the Android permissions system,’’
in Proc. 28th USENIX Secur. Symp., Santa Clara, CA, USA,
Aug. 2019, pp. 603–620. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity19/presentation/reardon

[54] M. Diamantaris, E. P. Papadopoulos, E. P. Markatos, S. Ioannidis,
and J. Polakis, ‘‘REAPER: Real-time app analysis for augmenting the
Android permission system,’’ in Proc. 9th ACM Conf. Data Appl. Secur.
Privacy, 2019, pp. 37–48.

[55] J. Tang, R. Li, K. Wang, X. Gu, and Z. Xu, ‘‘A novel hybrid method to
analyze security vulnerabilities in Android applications,’’ Tsinghua Sci.
Technol., vol. 25, no. 5, pp. 589–603, 2020.

[56] Y. Wang, G. Xu, X. Liu, W. Mao, C. Si, W. Pedrycz, and W. Wang,
‘‘Identifying vulnerabilities of SSL/TLS certificate verification in
Android apps with static and dynamic analysis,’’ J. Syst. Softw., vol. 167,
Sep. 2020, Art. no. 110609.

[57] M. Benz, E. K. Kristensen, L. Luo, N. P. Borges, E. Bodden, andA. Zeller,
‘‘Heaps’n leaks: How heap snapshots improve Android taint analysis,’’
in Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng. (ICSE). New York, NY,
USA: Association for Computing Machinery, Oct. 2020, pp. 1061–1072.

[58] X. Liu, J. Liu, S. Zhu, W.Wang, and X. Zhang, ‘‘Privacy risk analysis and
mitigation of analytics libraries in the Android ecosystem,’’ IEEE Trans.
Mobile Comput., vol. 19, no. 5, pp. 1184–1199, May 2020.

[59] T. T. Nguyen, M. Backes, N. Marnau, and B. Stock, ‘‘Share
first, ask later (or never?) Studying violations of GDPR’s explicit
consent in Android apps,’’ in Proc. 30th USENIX Secur. Symp.,
Aug. 2021, pp. 3667–3684. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity21/presentation/nguyen

[60] Z. Dong, H. Liu, L. Wang, X. Luo, Y. Guo, G. Xu, X. Xiao, and H. Wang,
‘‘What did you pack in my app? A systematic analysis of commercial
Android packers,’’ in Proc. 30th ACM Joint Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng. New York, NY, USA: Association for Computing
Machinery, Nov. 2022, pp. 1430–1440, doi: 10.1145/3540250.3558969.

[61] M. H. Meng, Q. Zhang, G. Xia, Y. Zheng, Y. Zhang, G. Bai, Z. Liu,
S. G. Teo, and J. S. Dong, ‘‘Post-GDPR threat hunting on Android
phones: Dissecting OS-level safeguards of user-unresettable identifiers,’’
in Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS), 2023, pp. 1–18.

[62] (2023). Hope Felivery: Extracting User Locations From Mobile Instant
Messengers. [Online]. Available: https://www.ndss-symposium.org/wp-
content/uploads/2023/02/ndss2023_s188_paper.pdf

[63] H. Inayoshi, S. Kakei, and S. Saito, ‘‘Execution recording and recon-
struction for detecting information flows in Android apps,’’ IEEE Access,
vol. 11, pp. 10730–10750, 2023.

[64] K. Ahmed, Y. Wang, M. Lis, and J. Rubin, ‘‘ViaLin: Path-aware dynamic
taint analysis for Android,’’ in Proc. ACM Joint Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng. (FSE), 2023, pp. 1598–1610.

[65] H. Cai, N. Meng, B. Ryder, and D. Yao, ‘‘DroidCat: Effective Android
malware detection and categorization via app-level profiling,’’ IEEE
Trans. Inf. Forensics Security, vol. 14, no. 6, pp. 1455–1470, Jun. 2019.

[66] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song, and H. Yu,
‘‘SAMADroid: A novel 3-level hybrid malware detection model for
Android operating system,’’ IEEE Access, vol. 6, pp. 4321–4339, 2018.

[67] K. Xu, Y. Li, R. H. Deng, and K. Chen, ‘‘DeepRefiner: Multi-layer
Android malware detection system applying deep neural networks,’’ in
Proc. IEEE Eur. Symp. Secur. Privacy (EuroSP), Apr. 2018, pp. 473–487.

[68] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, ‘‘A novel dynamic Android
malware detection system with ensemble learning,’’ IEEE Access, vol. 6,
pp. 30996–31011, 2018.

[69] M. L. Bernardi, M. Cimitile, D. Distante, F. Martinelli, and F. Mercaldo,
‘‘Dynamic malware detection and phylogeny analysis using process
mining,’’ Int. J. Inf. Secur., vol. 18, pp. 257–284, Jan. 2019.

[70] M. Ahmad, V. Costamagna, B. Crispo, F. Bergadano, and
Y. Zhauniarovich, ‘‘StaDART: Addressing the problem of dynamic
code updates in the security analysis of Android applications,’’ J. Syst.
Softw., vol. 159, Jan. 2020, Art. no. 110386. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121219301530

[71] J. Gajrani, U. Agarwal, V. Laxmi, B. Bezawada, M. S. Gaur, M. Tri-
pathi, and A. Zemmari, ‘‘EspyDroid+: Precise reflection analysis of
Android apps,’’ Comput. Secur., vol. 90, Mar. 2020, Art. no. 101688.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167404819302251

[72] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, ‘‘DL-Droid: Deep learning
based Android malware detection using real devices,’’ Comput. Secur.,
vol. 89, Feb. 2020, Art. no. 101663.

[73] G. D’Angelo, M. Ficco, and F. Palmieri, ‘‘Malware detection in mobile
environments based on autoencoders and API-images,’’ J. Parallel
Distrib. Comput., vol. 137, pp. 26–33, Mar. 2020.

[74] A. De Lorenzo, F. Martinelli, E. Medvet, F. Mercaldo, and A. Santone,
‘‘Visualizing the outcome of dynamic analysis of Android malware with
VizMal,’’ J. Inf. Secur. Appl., vol. 50, Feb. 2020, Art. no. 102423.

[75] W. Zhang, H. Wang, H. He, and P. Liu, ‘‘DAMBA: Detecting Android
malware by ORGB analysis,’’ IEEE Trans. Rel., vol. 69, no. 1, pp. 55–69,
Mar. 2020.

[76] H. Cai, X. Fu, and A. Hamou-Lhadj, ‘‘A study of run-time behavioral
evolution of benign versus malicious apps in Android,’’ Inf. Softw.
Technol., vol. 122, Jun. 2020, Art. no. 106291.

[77] P. Bhat, S. Behal, and K. Dutta, ‘‘A system call-based Android
malware detection approach with homogeneous & heterogeneous
ensemble machine learning,’’ Comput. Secur., vol. 130, Jul. 2023,
Art. no. 103277. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167404823001876

[78] G. Suárez-Tangil, S. K. Dash, P. García-Teodoro, J. Camacho, and
L. Cavallaro, ‘‘Anomaly-based exploratory analysis and detection of
exploits in Android mediaserver,’’ IET Inf. Secur., vol. 12, no. 5,
pp. 404–413, Sep. 2018, doi: 10.1049/iet-ifs.2017.0460.

[79] H.-W. Hung, Y. Liu, and A. A. Sani, ‘‘Sifter: Protecting security-critical
kernel modules in Android through attack surface reduction,’’ in Proc.
28th Annu. Int. Conf. Mobile Comput. Netw. New York, NY, USA:
Association for Computing Machinery, Oct. 2022, pp. 623–635, doi:
10.1145/3495243.3560548.

[80] B. F. Demissie, M. Ceccato, and L. K. Shar, ‘‘Security analysis of
permission re-delegation vulnerabilities in Android apps,’’ Empirical
Softw. Eng., vol. 25, no. 6, pp. 5084–5136, Nov. 2020.

[81] B. Liu, C. Zhang, G. Gong, Y. Zeng, H. Ruan, and J. Zhuge,
‘‘FANS: Fuzzing Android native system services via automated interface
analysis,’’ in Proc. 29th USENIX Conf. Secur. Symp., 2020, pp. 307–323.

[82] L. Harrison, H. Vijayakumar, R. Padhye, K. Sen, and M. Grace,
‘‘PARTEMU: Enabling dynamic analysis of real-world TrustZone
software using emulation,’’ in Proc. 29th USENIX Conf. Secur. Symp.,
2020, pp. 789–806.

VOLUME 12, 2024 57285

http://dx.doi.org/10.1145/3098243.3098247
http://dx.doi.org/10.1145/3321705.3329801
http://dx.doi.org/10.1145/3540250.3558969
http://dx.doi.org/10.1049/iet-ifs.2017.0460
http://dx.doi.org/10.1145/3495243.3560548


T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

[83] I. Pustogarov, Q. Wu, and D. Lie, ‘‘Ex-vivo dynamic analysis framework
for Android device drivers,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2020, pp. 1088–1105.

[84] A. Druffel and K. Heid, ‘‘DaVinci: Android app analysis beyond Frida
via dynamic system call instrumentation,’’ in Applied Cryptography and
Network Security Workshops, Rome, Italy. Cham, Switzerland: Springer,
2020, pp. 473–489.

[85] A. Dawoud and S. Bugiel. (2021). Bringing Balance to the Force:
Dynamic Analysis of the Android Application Framework. [Online].
Available: https://github.com/abdawoud/Dynamo and https://github.
com/abdawoud/DynamoTestingApp and https://www.ndss-symposium.
org/wp-content/uploads/ndss2021_2B-1_23106_paper.pdf

[86] E. Soriano-Salvador and G. Guardiola-Múzquiz, ‘‘Detecting and bypass-
ing Frida dynamic function call tracing: Exploitation and mitigation,’’
J. Comput. Virol. Hacking Techn., vol. 19, no. 4, pp. 503–513, 2022.

[87] M. Busch, A. Machiry, C. Spensky, G. Vigna, C. Kruegel, and M. Payer,
‘‘TEEzz: Fuzzing trusted applications on COTS Android devices,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2023, pp. 220–235.

[88] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and
N. Vallina-Rodriguez, ‘‘An analysis of pre-installed Android software,’’
in Proc. IEEE Symp. Secur. Privacy (SP), May 2020, pp. 1039–1055.

[89] Google. (2023). Network Security Configuration. MISC. Accessed:
Apr. 26, 2023. [Online]. Available: https://developer.android.
com/training/articles/security-config

[90] (2023). 360 App Store. MISC. Accessed: Jan. 31, 2023. [Online].
Available: https://zhushou.360.cn/

[91] J. Jacky. (2022). Pymodel. MISC. Accessed: Apr. 26, 2023. [Online].
Available: https://github.com/zlorb/PyModel

[92] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P.McDaniel, andA.N. Sheth, ‘‘TaintDroid: An information-flow tracking
system for realtime privacy monitoring on smartphones,’’ ACM Trans.
Comput. Syst., vol. 32, no. 2, pp. 1–29, Jun. 2014, doi: 10.1145/2619091.

[93] (2023). Fiddler Network Proxy. MISC. Accessed: Jan. 31, 2023. [Online].
Available: https://www.telerik.com/fiddler

[94] N. Viennot, E. Garcia, and J. Nieh, ‘‘A measurement study of
Google play,’’ ACM SIGMETRICS Perform. Eval. Rev., vol. 42, no. 1,
pp. 221–233, Jun. 2014, doi: 10.1145/2637364.2592003.

[95] M. Luo, O. Starov, N. Honarmand, and N. Nikiforakis, ‘‘Hindsight:
Understanding the evolution of UI vulnerabilities in mobile browsers,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. New York, NY,
USA: Association for Computing Machinery, Oct. 2017, pp. 149–162,
doi: 10.1145/3133956.3133987.

[96] Microsoft. (2023). Malware Names. MISC. Accessed: Apr. 26, 2023.
[Online]. Available: https://learn.microsoft.com/en-us/microsoft-365/
security/intelligence/malware-naming?view=o365-worldwide

[97] MITRE. (2022). Malware Attribute Enumeration and Characteriza-
tion (MAEC). MISC. Accessed: Apr. 26, 2023. [Online]. Available:
https://maecproject.github.io/

[98] Kaspersky. (2023). Types of Malware. MISC. Accessed: Apr. 26,
2023. [Online]. Available: https://usa.kaspersky.com/resource-center/
threats/malware-classifications

[99] Google. (2023). Malware Categories. MISC. Accessed: Apr. 26,
2023. [Online]. Available: https://developers.google.com/android/play-
protect/phacategories

[100] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, ‘‘Deep learning
for Android malware defenses: A systematic literature review,’’ ACM
Comput. Surv., vol. 55, no. 8, pp. 1–36, Dec. 2022, doi: 10.1145/3544968.

[101] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,
‘‘DREBIN: Effective and explainable detection of Android malware in
your pocket,’’ in Proc. NDDS, vol. 14, 2014, pp. 23–26.

[102] Virustotal. (2023). Yara in a Nutshell. MISC. Accessed: Apr. 26, 2023.
[Online]. Available: https://github.com/VirusTotal/yara

[103] Security With Dynamically Loaded Code. Accessed: Apr. 18, 2024.
[Online]. Available: https://developer.android.com/training/articles/
security-tips#DynamicCode

[104] Safer Dynamic Code Loading. Accessed: Apr. 18, 2024. [Online].
Available: https://developer.android.com/about/versions/14/behavior-
changes-14#safer-dynamic-code-loading

[105] K. Tam, S. Khan, A. Fattori, and L. Cavallaro, ‘‘CopperDroid: Automatic
reconstruction of Androidmalware behaviors,’’ inProc. NDSS, Jan. 2015,
pp. 1–15.

[106] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna, ‘‘TriggerScope: Towards detecting logic bombs in Android
applications,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2016,
pp. 377–396.

[107] Google. (2023). Manifest.permission. MISC. Accessed: Apr. 26,
2023. [Online]. Available: https://developer.android.com/reference/
android/Manifest.permission

[108] K. Allix, T. F. Bissyande, J. Klein, and Y. Le Traon, ‘‘AndroZoo:
Collecting millions of Android apps for the research community,’’ in
Proc. 13th Int. Conf. Mining Softw. Repositories, New York, NY, USA,
2016, pp. 468–471, doi: 10.1145/2901739.2903508.

[109] X. Wang, H. Edison, D. Khanna, and U. Rafiq, ‘‘How many papers
should you review? A research synthesis of systematic literature reviews
in software engineering,’’ in Proc. ACM/IEEE Int. Symp. Empirical Softw.
Eng. Meas. (ESEM), Oct. 2023, pp. 1–6.

[110] J. Senanayake, H. Kalutarage, M. O. Al-Kadri, A. Petrovski, and L. Piras,
‘‘Android source code vulnerability detection: A systematic literature
review,’’ ACM Comput. Surv., vol. 55, no. 9, pp. 1–37, Jan. 2023, doi:
10.1145/3556974.

[111] S. Garg and N. Baliyan, ‘‘Android security assessment: A review,
taxonomy and research gap study,’’ Comput. Secur., vol. 100,
Jan. 2021, Art. no. 102087. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0167404820303606

[112] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, ‘‘A survey
of Android malware detection with deep neural models,’’ ACM Comput.
Surveys, vol. 53, no. 6, pp. 1–36, Dec. 2020, doi: 10.1145/3417978.

[113] T. Sharma and D. Rattan, ‘‘Malicious application detection in Android—
A systematic literature review,’’ Comput. Sci. Rev., vol. 40, May 2021,
Art. no. 100373. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1574013721000137

[114] A. Ehsan, C. Catal, and A. Mishra, ‘‘Detecting malware by ana-
lyzing app permissions on Android platform: A systematic literature
review,’’ Sensors, vol. 22, no. 20, p. 7928, 2022. [Online]. Available:
https://www.mdpi.com/1424-8220/22/20/7928

[115] D. D. Dave and D. Rathod, ‘‘Systematic review on various techniques
of Android malware detection,’’ in Computing Science, Communication
and Security, N. Chaubey, S. M. Thampi, and N. Z. Jhanjhi, Eds. Cham,
Switzerland: Springer, 2022, pp. 82–99.

[116] P. Yan and Z. Yan, ‘‘A survey on dynamic mobile malware detection,’’
Softw. Quality J., vol. 26, no. 3, pp. 891–919, Sep. 2018.

[117] A. Razgallah, R. Khoury, S. Hallé, and K. Khanmohammadi, ‘‘A
survey of malware detection in Android apps: Recommendations and
perspectives for future research,’’ Comput. Sci. Rev., vol. 39, Feb. 2021,
Art. no. 100358.

[118] S. Acharya, U. Rawat, and R. Bhatnagar, ‘‘A comprehensive review
of Android security: Threats, vulnerabilities, malware detection, and
analysis,’’ Secur. Commun. Netw., vol. 2022, pp. 1–34, Jun. 2022, doi:
10.1155/2022/7775917.

[119] X. Zhan, T. Liu, L. Fan, L. Li, S. Chen, X. Luo, and Y. Liu,
‘‘Research on third-party libraries in Android apps: A taxonomy and
systematic literature review,’’ IEEE Trans. Softw. Eng., vol. 48, no. 10,
pp. 4181–4213, Oct. 2022.

[120] L. Nie, K. S. Said, L. Ma, Y. Zheng, and Y. Zhao, ‘‘A systematic mapping
study for graphical user interface testing on mobile apps,’’ IET Softw.,
vol. 17, no. 3, pp. 249–267, 2023.

[121] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, ‘‘Automated
testing of Android apps: A systematic literature review,’’ IEEE Trans.
Rel., vol. 68, no. 1, pp. 45–66, Mar. 2019.

[122] M. Nass, E. Alégroth, and R. Feldt, ‘‘Why many challenges with GUI
test automation (will) remain,’’ Inf. Softw. Technol., vol. 138, Oct. 2021,
Art. no. 106625. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0950584921000963

THOMAS SUTTER was born in Sankt Gallen,
Switzerland, in 1991. He received the B.Sc. and
M.Sc. degrees in computer science from Zürich
University of Applied Sciences (ZHAW), Zürich,
Switzerland, in 2021. He is currently pursuing
the Ph.D. degree in computer science with the
University of Bern. He is a Research Associate
with the Information Security Group, ZHAW. His
research interest includes information security,
with a focus on mobile security research.

57286 VOLUME 12, 2024

http://dx.doi.org/10.1145/2619091
http://dx.doi.org/10.1145/2637364.2592003
http://dx.doi.org/10.1145/3133956.3133987
http://dx.doi.org/10.1145/3544968
http://dx.doi.org/10.1145/2901739.2903508
http://dx.doi.org/10.1145/3556974
http://dx.doi.org/10.1145/3417978
http://dx.doi.org/10.1155/2022/7775917


T. Sutter et al.: Dynamic Security Analysis on Android: A Systematic Literature Review

TIMO KEHRER received the Ph.D. degree from
the University of Siegen, Germany. He is currently
a Professor with the Institute of Computer Science,
University of Bern, Switzerland, where he is also
chairing the Software Engineering Research and
Teaching Group. Previously, he was an Assistant
Professor with the Department of Computer Sci-
ence, Humboldt-Universität zu Berlin, Germany.
He was a Postdoctoral Research Fellow with
Politecnico di Milano, Italy. His research interest

includes various fields of software engineering, including software testing
and analysis.

MARC RENNHARD received the M.Sc. and
Ph.D. degrees in electrical engineering from ETH
Zürich. He is currently a Professor of computer
science and the Head of the Department of Infor-
mation Technology, Electrical Engineering and
Mechatronics, School of Engineering, Zürich Uni-
versity of Applied Sciences (ZHAW), Winterthur,
Switzerland. His research interests include secure
software, security engineering, and automated
security testing.

BERNHARD TELLENBACH was born in Berne,
Switzerland, in 1979. He received the master’s and
Doctor of Science degrees in electrical engineering
and information technologies from ETH Zürich,
in 2005 and 2012, respectively. He is currently
the Head of cyber security with Armasuisse
Science and Technology, Cyber-Defence Campus.
His research interests include network security,
vulnerability research, red- and blue team automa-
tion, and operating system security. He leads the

Swiss Cyber Storm Association and represents Switzerland in the Steering
Committee of the EuropeanCybersecurity Challenge coordinated by ENISA.
He is a member of the Cyber Security Advisory Board of SATW.

JACQUES KLEIN (Member, IEEE) is cur-
rently a Full Professor with SnT, University
of Luxembourg. He co-leads a group of about
25 researchers focusing on software security,
software reliability, and intelligent software.
He has standing experience and expertise in
successfully running industrial projects; android
security, including both static analysis techniques
for tracking privacy leaks andmachine learning for
identifying malware; and program repair. He has

published almost 200 research papers in top journals/conferences.

VOLUME 12, 2024 57287


