
Received 31 March 2024, accepted 14 April 2024, date of publication 17 April 2024, date of current version 24 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3390244

A Universal Single and Double Point
Multiplications Architecture for
ECDSA Based on Differential
Addition Chains
XIANG HE 1, WEIJIANG WANG 1,2, JINGQI ZHANG 1, ZHANTAO ZHANG1, JIANLEI YANG3,
HUA DANG1, AND GUIYU WANG 1,2
1School of Integrated Circuits and Electronics, Beijing Institute of Technology (BIT), Beijing 100081, China
2BIT Chongqing Institute of Microelectronics and Microsystems, Chongqing 400031, China
3Hebei Petroleum University of Technology, Hebei 067000, China

Corresponding author: Guiyu Wang (guiyu.wang@bit.edu.cn)

This work was supported in part by Chongqing Natural Science Foundation under Grant cstc2021jcyj-msxmX1090, and in part by the
National Natural Science Foundation of China under Grant 62201039.

ABSTRACT In the 5G and beyond networks, low-latency digital signatures are essential to ensure the
security, integrity, and non-repudiation of massive data in communication processes. The binary finite field-
based elliptic curve digital signature algorithm (ECDSA) is particularly suitable for achieving low-latency
digital signatures due to its carry-free characteristics. This paper proposes a low-latency and universal
architecture for point multiplication (PM) and double point multiplication (DPM) based on the differential
addition chain (DAC) designed for signing and verification in ECDSA. By employing the DAC, the area-time
product of DPM can be decreased, and throughput efficiency can be increased. Besides, the execution pattern
of the proposed architecture is uniform to resist simple power analysis and high-order power analysis. Based
on the data dependency, two Karatsuba–Ofman multipliers and four non-pipeline squarers are utilized in the
architecture to achieve a compact timing schedule without idle cycles for multipliers during the computation
process. Consequently, the calculation latency of DPM is minimized to five clock cycles in each loop. The
proposed architecture is implemented on Xilinx Virtex-7, performing DPM in 3.584, 5.656, and 7.453 µs
with 8135, 13372, and 17898 slices over GF(2163), GF(2233), GF(2283), respectively. In the existing designs
that are resistant to high-order analysis, our architecture demonstrates throughput efficiency improvements
of 36.7 % over GF(2233) and 9.8% over GF(2283), respectively.

INDEX TERMS Elliptic curve cryptosystems, differential addition chain, point multiplication, double point
multiplication, field-programmable gate array.

I. INTRODUCTION
A. BACKGROUND
The 5G and beyond networks achieve ultra-high data transfer
rates, ultra-low latency, and super-dense connections [1].
These characteristics make scenarios such as vehicle-to-
everything (V2X), edge computing, wireless data centers,
etc, possible. In these scenarios, there is a need for

The associate editor coordinating the review of this manuscript and

approving it for publication was Rahim Rahmani .

end-to-end transmission of massive data involving super-
dense devices [2]. Those transmissions between super-
dense devices include highly secure and private required
data such as personal information, medical data, financial
transactions, location data in V2X, etc [3]. Efficient digital
signatures are necessary to prevent leakage or malicious
tampering of this transmitted data during the communication
process. The Digital Signature Algorithm (DSA) is an
encryption technique used to ensure the integrity of digital
information, authenticate the sender’s identity, and resist

55434

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0000-0027-5504
https://orcid.org/0000-0001-8950-9337
https://orcid.org/0000-0003-4140-7029
https://orcid.org/0000-0002-6440-2901
https://orcid.org/0000-0001-5924-5457


X. He et al.: Universal Single and DPMs Architecture for ECDSA

repudiation [4]. Rivest-Shamir-Adleman (RSA), invented by
Rivest and Adleman [5], and elliptic curve cryptosystems
(ECC), invented by Koblitz [6] and Miller [7], stand
out as prevalent techniques employed in digital signature
algorithms. Although RSA and ECC may face potential risks
when confronted with quantum searching algorithms in the
future post-quantum era, both of them remain a practical
and widely adopted solution in contemporary times [8].
Moreover, ECC achieves equivalent security to RSA with
shorter key lengths, implying higher efficiency in digital
signatures and reduced computational requirements storage
overhead [9], whichmeans higher computation speed and less
resource consumption. Therefore, the elliptic curve digital
signature algorithm (ECDSA) [10] is more suitable for digital
signatures.

In ECDSA, there are two steps: signing and verification.
Signing involves encrypting themessage using the private key
to generate a digital signature through point multiplication
(PM). Verification consists of performing a double point
multiplication (DPM), using the corresponding public key
to generate the signature during the signing, and checking if
the received signature matches the message [10]. The elliptic
curve point multiplication (ECPM) is a core computational
step in ECDSA. Currently, ECPM over prime finite fields
GF(p) offers better security than over binary finite fields
GF(2m) and exhibits enhanced robustness against side-
channel attacks [11], [12]. However, due to the mathematical
characteristics of the prime field, the complexity of carry
chains in prime-field operations leads to higher latency than
the binary field [13]. Therefore, the carry-free feature of the
binary field makes binary-field-based ECPM more suitable
for high-performance and low-latency application scenarios.
Current research on ECPM primarily focuses on two areas:
DPM and PM. In the PM field, researchers attempt to
achieve acceleration effects by optimizing the multiplier in
PM and the scheduling scheme of the multiplier. In the DPM
field, researchers use dedicated algorithms to implement
DPM. However, either of the two strategies only accelerates
hardware in their respective fields. If there is a universal
architecture tailored for DPM, capable of computing DPM
as well as PM, it would significantly reduce the additional
hardware resource overhead and achieve circuit reuse.

B. CONTRIBUTION
In this paper, we propose a universal PM and DPM archi-
tecture suitable for ECDSA based on differential addition
chain(DAC) over binary finite fields. The main contributions
of this paper are as follows:

1) We present an algorithm that compresses the computa-
tion of two PMs into the latency of one PM, reducing
the computational load of the two PMs. In the PM
that is based on the Montgomery algorithm, if we
assume that the computation of kP and lQ requires
n iterations, calculating kP + lQ requires a total of
2n+ 1 point additions(PAs), 2n point doublings(PDs),

and 2n + 1 iterations. In contrast, DPM requires only
2n+1 PAs and n PDs. Moreover, the final result can be
obtained in n + 1 iterations. This algorithm not only
reduces the overall computational workload but also
minimizes the computational latency.

2) The proposed algorithm possesses the capability to
resist Simple Power Analysis(SPA) by performing a
uniform PA-PD-PA pattern in each iteration without
pseudo operations. Since all operations are real,
the proposed algorithm also shows resistance to
correlation-based high-order power analysis.

3) We propose a universal architecture that performs both
PM and DPM. This architecture is not only suitable for
both PM and DPM but also accelerates PM by reducing
the number of iterations, thereby decreasing the latency
of PM. The reuse of the DPM architecture with the
PM design has been implemented, avoiding additional
hardware resource overhead.

4) We analyzed the data dependency and identified the
crucial data path in our architecture. We arranged
two PMs and one PA in five clock cycles using
two two-stage pipelined multipliers based on the
Karatsuba–Ofman algorithm and four non-pipelined
squarers. By inserting buffers into the design,
we avoided the generation of critical paths. Addi-
tionally, there is no idle time for multipliers when
calculating DPM, reducing the latency and improving
the throughput.

C. STRUCTURE
The remaining sections of this article are organized as
follows. In Section II, we introduce the background knowl-
edge of ECPM and DAC. What’s more, we introduce
relevant works and outlined the motivation behind this paper.
Section III presents an algorithm for constructing DAC
suitable for PM and DPM. In Section IV, we analyze the data
dependency relationships in the addition chain and optimize
the timing schedule based on these dependencies. Section V
discusses the proposed generic architecture for PM andDPM.
Section VI compares our implemented results with existing
works. Finally, Section VII concludes our work.

II. BACKGROUND AND MOTIVATION
A. ELLIPTIC CURVE POINT MULTIPLICATION
Fig. 1. illustrates the computational steps involved in
ECDSA, along with the key computational units required for
these operations.

ECPM is a pivotal step in both the creation and verification
of signatures. The signing process is executed through PM,
while the verification process is carried out via DPM.
By scheduling PA and PD operations, the results of DPM or
PM can be achieved. For either PM or DPM, it’s essential
to derive the formulas for computing PA and PD on a
specific elliptic curve. PA and PD are performed over a binary
finite field, introducing computational complexity due to the

VOLUME 12, 2024 55435



X. He et al.: Universal Single and DPMs Architecture for ECDSA

FIGURE 1. The hierarchical structure of ECDSA.

modulus operations of modular addition, multiplication, and
inversion involved in the calculation process.

Our design utilizes a curve recommended by NIST [14],
[15]. curve over GF(2m), denoted as E , is defined by
Equation (1):

E : y2 + xy = x3 + ax2 + b (1)

PM involves computing the point kP on an elliptic curve,
where P(xp, yp) is a base point and k is an integer input. DPM
involves computing the point kP + lQ on an elliptic curve,
where P(xp, yp) and Q(xQ, yQ) are two base points and k and
l are integer inputs. In almost all algorithms, both PM and
DPM require the use of PA and PD operations, which include
expensive modular inversion operation when used in affine or
mixed coordinates. However, by executing a base conversion
from the affine coordinate to the LD projective one through
Equation (2), only the final step of the PM or DPM requires
the computation of the modular inversion operation, making
the process more efficient.

(x, y)→ {(X ,Y ,Z )|x =
X
Z

, y =
Y
Z
} (2)

During the PA and PD operations, modular multiplication,
modular addition, and modular inversion can be simplified
because of the carry-free feature of binary finite fields.
In binary finite fields, modular addition and modular subtrac-
tion essentially involve performing exclusive-OR operations
on the coefficients of two polynomials. Therefore, modular
addition and modular subtraction can be considered the same
operation. Modular multiplication consists of polynomial
multiplication and modular reduction. After performing
polynomial multiplication, utilizing a NIST-recommended
polynomial a(x) for a modular reduction on the result allows
obtaining a modular multiplication result of m bits. Modular
inversion involves finding b(x) in a(x) × b(x) mod f (x) =
1 with a given a(x).

B. PA AND PD BASED ON DIFFERENTIAL ADDITION
CHAIN
There are four points C1, C2, C3, and C4 on the elliptic curve.
DAC refers to the existence of a corresponding difference

pair for each addition operation C3 = C2 + C1 in the
addition chain, i.e., C4 = C2 − C1 in the difference addition
chain. The elimination of the calculation of the Y-coordinate
is an inherent problem in ECC since PM and DPM are
composed of PA and PD operations. In each iteration, each
PMoperation involving pointsP1(X1,Y1,Z1),P2(X2,Y2,Z2),
P3(X3,Y3,Z3) in LD coordinate, and Pdiff (xdiff , ydiff ) in
affine coordinate, forms a difference chain, and for each
addition operation P3 = P2 + P1, there exists a known
Pdiff = P2 − P1. The addition chains present in PM allow
the Y-coordinate to be ignored during computation. The
simplified point addition equation is shown in Equation (3).{

X3 = xdiff (X1Z2 + X2X1)2 + X4
1 + X1X2Z1Z2

Z3 = (X1Z2 + X2Z1)2
(3)

When calculating P3 = P2 + P1, if P2 = P1, then
P3 = 2P1, which is a PD. In the LD coordinate system,
when calculating P3 = 2P1, the Y-coordinate can also be
omitted. The simplified point doubling equation is as shown
in Equation(4). {

X3 = X4
1 + bZ

4
1

Z3 = X2
1Z

2
1

(4)

Due to the properties of the DAC, we can omit the
calculation of the Y-coordinate when computing the PM.
Obtaining the final PM result always involves PA operations,
which allows us to recover the y-coordinate. We can retrieve
the LD projective coordinates to the affine coordinate system
using Equation (5). Through the LD coordinates of points
P1 and P2, and the affine coordinates of the difference Pdiff
between P1 and P2, we can recover the y-coordinate of point
P3(x3, y3).

y3 =
(xdiff + X1Z1)
xdiff Z1Z2

[
(x2diff + ydiff )(Z1Z2)

+(X1 + xdiff Z1)(X2 + xdiff Z2)
]
+ ydiff (5)

C. RELATED WORKS
DPM is more complex than PM, and there are three
approaches to computing DPM. The first approach involves
obtaining DPM using Straus-Shamir’s trick [16] and inter-
leaving [17], which cannot resist SPA because its power
during the computation process is not uniform.

The second approach to computing DPM is performing
two PMs and one PA. Reducing the latency of PM can also
achieve the goal of reducing the latency of DPM. In PM,
a large number of modular multiplications are required, and
designing the modular multiplier can be an effective way
to reduce latency. There are currently two main types of
multiplier designs: bit-serial and bit-parallel multipliers [18].
Pillutla and Boppana [19] proposed a digit-serial modular
multiplier over GF(2m). Bit-serial multipliers result in many
clock cycles, leading to substantial delays. However, serial
multipliers can significantly reduce system area, making
them applicable in scenarios with limited resources despite

55436 VOLUME 12, 2024



X. He et al.: Universal Single and DPMs Architecture for ECDSA

sacrificing some delay. To mitigate latency, almost all current
designs opt for bit-parallel multipliers. Sajid et al. [20]
proposed a simplified formulation using a single-instruction-
with-single arithmetic operation and a 32-bit digit-parallel
multiplier that decreases clock cycles, which provides higher
throughput. Khan and Benaissa [21] proposed a novel two-
stage pipelined full-precision multiplier with scheduling for
the combined Montgomery PM algorithm to decrease PM
latency highly. Li et al. [22] proposed an architecture that
is comprised of two parallel balanced full-precision multi-
pliers to reduce operation latency. Reference [23] proposed
a low latency window-based enhanced comb method to
decrease the latency in PM. Zhou et al. [24] proposed an
efficient implementation of bit-parallel finite field multipliers
by analyzing the complexity of the Karatsuba–Ofman
algorithm [25]. In addition to optimizing the PM, all of [21]
and [26] analyze the data dependency during the process to
enhance the performance of PM by increasing parallelism.
The above method requires two step-by-step PMs in a single
basic PM unit. If there is a structure that can process
two PMs in parallel, it would evidently reduce the latency
of DPM.

The third approach directly calculates DPM by scanning
both k and l simultaneously. Khabbazzian et al. [27] proposed
a technique for bandwidth and memory to speed up DPM.
Through precomputing, they recoded two scalars in DPM
to a suitable integer representation, which made it easy
to parallel the process, and they stored some multiples of
two points in memory. Adikari et al. [28] use the joint
two-dimensional Frobenius expansion, which can improve
performance in computing scalar multiplication in Koblitz
curves, to decrease the number of PA, which is more
complex. They both reduced the number of PA during
the computation through algorithms, but the presence of
the Y-coordinate still makes its computation a complex
challenge.

By employing DAC, the computation of the Y-coordinate
can be omitted, which greatly reduces the complexity of
the calculation. Bernstein [29] proposed a binary DAC that
consists of two PAs and one PD in each iteration. It is
a constant-time algorithm that can be used to calculate
DPM. Azarderakhsh and Karabina [30], [31] implemented
DPM in hardware based on the DJB algorithm [29], the
AK algorithm [31] and the JT algorithm [32]. They first
used DAC in the hardware architecture to implement DPM.
It demonstrated that using the DJB algorithm for DPM results
in the minimum latency while employing the AK algorithm,
which achieves the smallest area. Due to a more efficient
arrangement of timing and less utilization of multiplier
resources, redundancy may exist in the multiplier resources.
Shahroodi et al. [33] proposed an architecture with amodified
DAC that makes decisions based on 3 bits of scalar at
one iteration to calculate DPM, reducing the number of
PA and PD operations in each round of the DAC iteration
process.

D. MOTIVATION
In the works [20], [21], [22], they used the Montgomery
ladder to calculate PM, which included one PA and one PD
in each iteration. Similarly, when using DAC to compute
DPM, there are two PAs and one PD in each iteration [29].
The computational processes present structural similarity
between them, and by arranging them properly, we can
use one PD and one PA from DAC to construct the PM
computation architecture, thus achieving structural reuse. The
work [34] points out this aspect, but it does not provide a
specific implementation method.

Using DAC not only enables a universal architecture for
DPM and PM but also reduces the latency of DPM. The
reported works [20], [21], [22], [23], [24], [26] have primarily
focused on improving DPM’s computation speed by reducing
PM latency. These works have reduced the latency of PM
by designing high-performance modular multiplication units
and increasing the parallelism of modular multiplication
by analyzing the data dependency in DPM. If using PM
architecture to compute DPM over GF(2m), it requires 2m+1
PAs and 2m PDs, while in the case of using the DAC, only
2m + 1 PAs and 2m PDs are needed, saving on m PDs.
Therefore, DAC can effectively reduce the latency of DPM.

The motivation of this paper is to reduce the computational
latency of DPM by leveraging the characteristics of DAC.
Additionally, a universal architecture for both PM and DPM
can be implemented by using DAC, allowing for the reuse of
hardware resources.

III. PROPOSED UNIVERSAL ARCHITECTURE FOR PM AND
DPM
In the Montgomery algorithm, each iteration involves PA
and PD. Now we have points on the elliptic curve, P1, P2,
P3, and Pdiff . For each point addition P3 = R1 + R2 in
the computation, Pdiff = R1 − R2 exists, allowing for the
omission of the Y-coordinate during the computation. Based
on the Montgomery algorithm, we propose an algorithm
with a structure similar to the Montgomery algorithm.
The calculation of PM and DPM is achieved through the
generation of a two-dimensional DAC.

When executing kP + lQ, we can consider (k, l) as the
initial value for the first iteration. When generating a two-
dimensional DAC, at each iteration, the existence of a pair
(ki, li) allows the calculation of (ki, li), (ki, li+ 1), (ki+ 1, li),
and (ki + 1, li + 1) for this iteration [29]. The three elements
in the current iteration of the DAC, along with one missing
element, are obtained from (ki, li), (ki, li + 1), (ki + 1, li),
and (ki + 1, li + 1). Due to parity, it is evident that the
elements can only be obtained from (odd, odd), (even, even),
(odd, even), and (even, odd). Moreover, the missing element
that is decided by (ki−1 + ki, li−1 + li), where (ki−1, li−1) =
([ki/2], [li/2]), is always chosen as either (even, even) or
(odd, even).

1) when (ki−1 + ki, li−1 + li) = (odd, odd), the choice is
same as previous iteration;

VOLUME 12, 2024 55437



X. He et al.: Universal Single and DPMs Architecture for ECDSA

2) when (ki−1+ ki, li−1+ li) = (even, even), the choice is
opposite as previous iteration;

3) when (ki−1 + ki, li−1 + li) = (odd, even), the choice is
(even, odd).

4) when (ki−1 + ki, li−1 + li) = (even, odd), the choice is
(odd, even).

Algorithm 1 The Two-Dimensional DAC Generation
Algorithm
Require: two-dimensional input vector (k, l)
Ensure: V (1)

i ,V (2)
i ,V (3)

i
1: n = max(⌈log2k⌉, ⌈log2l⌉)
2: kn = k, ln = l
3: Dn = kn mod 2
4: V (1)

n = (kn + (kn + 1) mod 2, ln + (ln + 1) mod 2)
5: V (2)

n = (kn + kn mod 2, ln + ln mod 2)
6: V (3)

n = (kn+ (kn+Dn) mod 2, ln+ (ln+Dn+1) mod 2)
7: for i = n− 1 to 0 do
8: Set (ki, li) = (⌊ki+1/2⌋, ⌊li+1/2⌋)
9: if (ki + ki+1, li + li+1) mod 2 = (0, 0) then

10: Di = Di+1
11: end if
12: if (ki + ki+1, li + li+1) mod 2 = (0, 1) then
13: Di = 0,
14: end if
15: if (ki + ki+1, li + li+1) mod 2 = (1, 0) then
16: Di = 1,
17: end if
18: if (ki + ki+1, li + li+1) mod 2 = (1, 1) then
19: Di = ¯Di+1,
20: end if
21: Set V (1)

i = (ki + (ki + 1) mod 2, li + (li + 1) mod 2),
22: Set V (2)

i = (ki + ki mod 2, li + l mod 2),
23: SetV (3)

i = (ki+(ki+Di)mod 2, li+(li+Di+1)mod 2),
24: end for
Return: V (1)

i ,V (2)
i ,V (3)

i .

We can determine the V (1)
i , V (2)

i , and V (3)
i elements in

DAC for any pair (k, l) through Algorithm 1, What’s more,
we have obtained the initial elements V (1)

0 and V (2)
0 which is

equal to (1,1) and (0,0), and V (3)
0 which is equal to (1,0) or

(0,1). In this context, (1,1), (0,0), (1,0), and (0,1) respectively
represent the results of P + Q, 0, P, and Q, all of which are
known or easily obtained. If we can establish the relationship
between elements in the i-th and (i-1)-th iteration, then we
can obtain the final V (1)

n , V (2)
n , and V (3)

n through P and Q.
Upon observation, we can find that, in each iteration, there is
one PD and two PA, and Equation (6) shows the relationship
between {V (1)

i ,V (2)
i ,V (3)

i } and {V (1)
i−1,V

(2)
i−1,V

(3)
i−1}, where

PDi−1 ∈ {1, 2, 3} and PQi−1 ∈ {1, 2}. As we can see, V (1)
i

is always calculated through the point addition of V (1)
i−1. V

(2)
i

is calculated through the PD of V (1)
i−1 and either V

(2)
i−1 or V

(3)
i−1.

Finally, V (3)
i is calculated through the point addition of V (3)

i−1

and one of the other elements, V (1)
i−1 or V

(2)
i−1.

V (1)
i = V (1)

i−1 + V
(2)
i−1

V (2)
i = 2V (PDi−1)

i−1

V (3)
i = V (3)

i−1 + V
(PAi−1)
i−1

(6)

Additionally, we have observed that by considering the
parity of V (m)

i from the previous iteration, we can determine
the parity of V (m)

i−1 in the current iteration. Firstly, we need
to clarify that through the equations in Algorithm 1, we can
ascertain that V (1)

i is always (odd, odd), V (2)
i is always

(even, even), and V (3)
i is always (even, odd) or (odd, even) in

each iteration.

Algorithm 2 The Flag Generation Algorithm

Require: V (1)
i ,V (2)

i ,V (3)
i , (k, l)

Ensure: PAi,PDi,PQi.
1: n = max(⌈log2k⌉, ⌈log2l⌉)
2: for i = n to 0 do
3: if (V (2)

i+1/2) mod 2 = (1, 1) then
4: Set PDi = 1
5: else if (V (2)

i+1/2) mod 2 = (0, 0) then
6: Set PDi = 2
7: else
8: Set PDi = 3
9: end if

10: if (V (3)
i+1 mod 2 ⊕ V (3)

i mod 2) = (1, 1) then
11: PAi = 1
12: if V (3)

i − V
(1)
i = (0, 1) then

13: PQi = 0
14: else if V (3)

i − V
(1)
i = (1, 0) then

15: PQi = 1
16: end if
17: else if (V (3)

i+1 mod 2 ⊕ V (3)
i mod 2) = (0, 0) then

18: PAi = 2
19: if V (3)

i − V
(2)
i = (0, 1) then

20: PQi = 0
21: else if V (3)

i − V
(2)
i = (1, 0) then

22: PQi = 1
23: end if
24: end if
25: end for
Return: PAi,PDi,PQi.

Most importantly, for each PA in DAC , its Pdiff , which
can be used to omit the calculation of Y-coordinate, can only
come from {(1, 1), (0, 1), (1, 0), (1,−1)}.
Now, we consider the process of obtaining the result V (1)

i
as point addition PA1, the process of obtaining the result V

(3)
i

as point addition PA2, and the process of obtaining the result
V (2)
i as PD. For PA1, it is always obtained through V (1)

i−1 and
V (2)
i−1, and it can be observed that the difference between V

(1)
i−1

and V (2)
i−1 is always P + Q or P − Q during to the parity

of them. For PD, obviously, if V (2)
i = (even, even), it is

55438 VOLUME 12, 2024



X. He et al.: Universal Single and DPMs Architecture for ECDSA

obtained through V (2)
i−1. For PA2, it is obtained by V (3)

i−1 and
V (1)
i−1 or V

(2)
i−1. If V

(3)
i = (odd, even) and V (3)

i−1 = (even, odd),
we can deduce that V (3)

i = V (3)
i−1 + V (1)

i−1. At the same time,
we can also determine that xdiff = xQ by calculating the
difference between V (3)

i−1 and V (1)
i−1. Based on the preceding

analysis, in Algorithm 2, we generated PDi, PQi, and PAi.
Here, PDi is used to indicate which element to choose for PD
in the i-th round: if PDi = 1, then V (1)

i is chosen; if PDi = 2,
then V (2)

i is chosen; if PDi = 3, then V (3)
i is chosen. PAi is

used to indicate which element to choose for PA2 with V
(3)
i :

if PAi = 1, then V (1)
i is selected; otherwise, V (2)

i is selected.
PQi determines whether the difference between V (3)

i and the
element used for PA2 with V

(3)
i is P or Q: if PQi = 0, then the

difference is P; otherwise, it is Q. Therefore, by precomputing
P−Q and P+Q, we can simplify the computation and omit
the calculation of the Y-coordinate with existing P and Q.

One more thing to note is that, in order to complete
the establishment of the addition chain, it is necessary to
determine V (3)

0 . We find out that all the parity also holds for
the initial element {V (1)

0 ,V (2)
0 ,V (3)

0 }, which means that V (3)
0

can only obtain the form (0,1) or (1,0) that means P or Q.

Algorithm 3 The Double Point Multiplication Algorithm

Require: PA,PD,V (3)
0 ,P,Q.

Ensure: C = kP+ lQ.
1: Set n = max([log2k], [log2l]),
2: Set C1 = P+ Q,C2 = 0,
3: if V (3)

0 = (0, 1) then
4: Set C3 = Q
5: else if V (3)

0 = (1, 0) then
6: Set C3 = P
7: end if
8: for i = 1 to n do
9: C1← C1 + C2

10: if PAi = 0 then
11: C3← C1 + C3
12: else if PAi = 1 then
13: C3← C2 + C3
14: end if
15: if PDi = 0 then
16: C2← 2C1
17: else if PDi = 1 then
18: C2← 2C2
19: else if PDi = 2 then
20: C2← 2C3
21: end if
22: end for
Return: C = kP+ lQ.

In Algorithm 3, the calculated PDi and PAi determine the
values of n and m in Equation (6). Through PQi, the value of
xdiff in Equation (3) is determined. With {PDi,PAi,PQi} and
{V 1

0 ,V 2
0 ,V 3

0 }, we can obtain kP + lQ by the value of P, Q,
and precomputed P+ Q,P− Q by Algorithm 4.

Algorithm 4 The PA Algorithm
Require: X1,Y1,Z1,X2,Y2,Z2.
Ensure: X3,Z3, xp.
1: X1← X1Z2,X2← X2Z1
2: Y1← Y1Z2,X2← Y2Z1
3: X1← X1 + X2
4: Y1← Y1 + Y2
5: Y1← Y1Y2,Z1← Z1Z2,X2← X2

1
6: Y1← Y1Z1,Z3← Z1X2,X1← X1 + Z1
7: X1← X1X2
8: X3← Y1 + X1
9: xp← X3/Z3

Return: X3,Z3, xp.

FIGURE 2. Calculating DPM 75P + 91Q with the proposed DAC.

When performing precomputation for P + Q and
P− Q, we use Algorithm 4 to compute the PA of two points
(X1,Y1,Z1) and (X2,Y2,Z2) in the LD projective coordinate
system. We then transform the resulting points to the affine
coordinate system to obtain their horizontal coordinate xP
for PA. As shown in Algorithm 3, we ultimately obtain the
complete pathway for computing DPM. All of the above
algorithms also hold for PM. When calculating kP, we need
to calculate hP+ eP, where k = h+ e.
It appears that Fig. 2. provides an example of DPM using a

two-dimensional DAC to calculate 75P+ 91Q. The left side
of the figure shows the elements in the DAC, while the right
side shows the computed flags. By using these flags, the final
result can be obtained by following the computation sequence
as shown in the diagram.

It seems that when computing 91P, it can be considered
as calculating 91P + 0P, which makes the construction of a
two-dimensional DAC more feasible. Furthermore, based on

VOLUME 12, 2024 55439



X. He et al.: Universal Single and DPMs Architecture for ECDSA

FIGURE 3. Calculating PM 91P with the proposed DAC.

FIGURE 4. Calculating PM 45P + 46P with less iterations.

Algorithm 2, if l = 0, each iteration of PA2 can be obtained
from the computation of V (2)

i and V (3)
i , and only V (2)

i and V (3)
i

are involved in the calculation of PD. In this scenario, it is
only necessary to determine, based on PDi, whether V

(2)
i or

V (3)
i is involved in PD for each iteration, and the computation

of PA1 can be skipped.We can also express 91P as 46P+45P,
which allows us to reduce one iteration, making full use of the
two PA operations in the design, which is shown in Fig. 4.

IV. DATA DEPENDENCY AND TIME SCHEDULE IN THE
PROPOSED GENERAL ARCHITECTURE
A. DATA DEPENDENCY
It seems that in the previous context, we demonstrated that
by transforming the affine coordinate into the LD coordinate,

FIGURE 5. Data Dependency of proposed universal architecture.

and with the help of DAC, it is possible to omit the calculation
of the Y-coordinate in PA and PD. This allows us to obtain
the data dependency relationships for each iteration for PA1,
PA2, and PD. As shown in Fig. 5., there are four modular
multiplications, one modular squaring, and two modular
additions in each iteration of PA1 and PA2. In PD, there
are two modular multiplications, four modular squaring, and
one modular addition. Additionally, in PA2, there is a PA
multiplexer and a PQ multiplexer, which are selected based
on the PAi flag and PQi flag generated by Algorithm 2. In PD,
a PD multiplexer is selected based on the PDi flag generated
by Algorithm 2. Observing the data paths in the architecture
with two multipliers takes five clock cycles to complete
PA. However, not every cycle uses the multipliers. For PA,
multiplications are used in two clock cycles, while for PD,
multiplications are used in one clock cycle. In the architecture
with two multipliers, this consumption of clock cycles
in multiplications happens to be completed in five clock
cycles. Therefore, strategically arranging the multiplication
computation order can accomplish two PAs and one PD
within five clock cycles.

In the above analysis, we used two KOMs with a latency
of two clock cycles each to increase the system frequency.
As shown in Table 1, for the two-cycle multiplier MUL0,
X2 and Z1 are inputted in the first clock cycle, X1 and Z2 in the
second clock cycle, and the resulting output X2Z1 is written
to a register. The result X2Z1 from the multiplier is utilized
in the third cycle. This approach minimizes the clock cycles
consumed in each iteration, ultimately increasing the system
frequency. In clock cycle 1, we need to use PAi to determine
whether Z1 and X1 or Z2 and X3 are inputted to register Zk
and Xk , and we need to use PDi to determine Zi and Xi from
Z1 and X1, Z2 and X2, or Z3 and X3. In clock cycle 4, we need
to use PQi to determine xdiff from xP or xQ.

V. HARDWARE ARCHITECTURE
A. OVERALL ARCHITECTURE
The proposed DPM and PM universal architecture based
on two-dimensional DAC on FPGA appears in Fig. 6.

55440 VOLUME 12, 2024



X. He et al.: Universal Single and DPMs Architecture for ECDSA

TABLE 1. Timing schedule of proposed universal architecture.

FIGURE 6. Proposed PM and DPM Universal architecture.

The overall architecture includes an arithmetic logical unit
(ALU), a DAC generation unit, a control unit, a flag RAM,
and a built-in phase-locking loop (PLL) that provides the
global clock. The ALU is responsible for PA, PD, modular
inversion, and precomputes the initial elements P + Q of
DAC chains. The DAC generation unit is used to generate
the flags in the DAC. The flag ram stores the control signals
of multiplexers in the ALU generated by the DAC generation
unit. The control unit completes the iterative calculation steps
in Algorithm 3 by reading the flags stored in the flag storage
unit.

B. ALU ARCHITECTURE
Based on the timing schedule proposed in Table 1, an ALU
architecture has been proposed, shown in Fig. 7. The
ALU consists of registers, adders, multipliers, and squares.
Registers store pre-computed values of P + Q, P − Q,
input values P, Q, and inputs and outputs of multipliers and
squaring. By reading the DAC generation unit generates PAi,
PDi, and PQi through the input scalar pairs (k, l), the control
unit performs different operations.

As shown in Fig. 7. the ALU includes two Karatsuba–
Ofman multiplier (KOM) [25], four squares, and several
multiplexers. The control unit controls different multiplexers
by controlling the MUXs signals in each clock cycle and

stores the results in specific registers. For example, when we
need to compute X1X2 in Table 1, we need to control two
multiplexers corresponding toMUL0 to select X2 and Z1 and
store the result in the X1Z2 register. The same applies to other
calculations. It is important to note that registers with the
same name in the figure represent the same register.

Through the corresponding algorithm 3 and DAC gener-
ation unit, it can be observed that the PQ flag determines
whether the Xdiff register selects XP or XQ in each iteration;
the PA flag determines whether the Zk and Xk registers select
Z1 and X1 or Z2 and X2 in each iteration; and the PD flag
determines whether the Zi and Xi registers select Z1 and X1,
Z2 and X2, or Z3 and X3 in each iteration.

C. DAC GENERATION UNIT ARCHITECTURE
As illustrated in Fig. 8, the entire DAC generation unit is
composed of modules for generating V (1)

i , V (2)
i , V (3)

i , and a
flag generation module. The entire system comprises four
types of m-bit registers. Registers (C1_REG0,C1_REG1),
(C2_REG0,C2_REG1) and (C2_REG0,C2_REG1) are des-
ignated for storing V (1)

i , V (2)
i and V (3)

i respectively. Another
type of register, as depicted in the diagram, is utilized
for storing the (ki, li) pairs of the current iteration.
Once the values for the registers (C1_REG0,C1_REG1),
(C2_REG0,C2_REG1) and (C2_REG0,C2_REG1) have
been obtained, the corresponding flag signals can be gener-
ated by utilizing the values of their 0th or 1st bits.
If we need to calculate (V (3)

i+1 mod 2) ⊕ (V (3)
i mod 2)

in Algorithm 2, we can obtain the result of (V (3)
i mod 2)

by getting the 0-th bit of (C3_REG0,C3_REG1), and
the result of (V (3)

i−1 mod 2) by getting the 0-th bit of
(C3_REG0′,C3_REG1′). In this way, we can obtain PAi
using only (Ki, li). In the same way, we can obtain PQi and
PDi.

VI. IMPLEMENTATION RESULTS AND COMPARISON
In this section, we first discuss the evaluation metrics.
Then, we give a brief security analysis of our proposed
work. Finally, we conduct comparisons with existing works.
The FPGA implementation results of our design and
existing closely related designs in recent years are listed in
Table 2.

VOLUME 12, 2024 55441



X. He et al.: Universal Single and DPMs Architecture for ECDSA

FIGURE 7. Proposed ALU architecture with two KOM and four squares.

A. LATENCY AND PERFORMANCE ANALYSIS
Our design proposes a universal architecture applicable to
DPM and PM. The resource consumption of our design
is calculated under the premise of implementing DPM.
Therefore, compared with other works, the comparison is not
made under the PM condition. To ensure a fair comparison,
when calculating the latency of other works, we assume that
they require two PMs, simply multiplying the clock cycles by
2. This method does not consider the latency of the final PA,
so the actual latency of other works is bigger than the values
listed in Table 2.

In our design, the total latency includes theDACgeneration
unit, PA unit, ALU, and modular inversion unit. When
performing DPM, it is necessary to construct the DAC and
precompute P + Q and P − Q. However, it is worth noting
that the construction of the DAC and the calculation of P+Q
and P − Q do not consume the same hardware resources.
Therefore, it is possible to perform DAC calculation, P+ Q,
and P − Q calculation simultaneously. For GF(2m), the
construction of the DAC chain requiresm clock cycles, while
the calculation of P + Q and P − Q using the proposed
Algorithm 4 requires clock cycles withinm. The total latency
can be calculated by Equation (7).

T = (CDAC + CALU + CINV )× TCLK (7)

In our design, there are two multipliers and four squares.
When utilizing Itoh and Tsujii’s [45] and Rashidi et al.’s [46],

[47] proposed modular inversion algorithm, the calculation
of the modular inverse can be completed within m+1

2 cycles
for GF(2m). The ALU consumes 5× m+ 1 clock cycle over
GF(2m) and one additional clock cycle to wait for the final
multiplication result.

CTot = m+ 5× m+
m+ 1
2
+ 1 (8)

The prevailing trend in most existing works involves
utilizing area-time product (ATP) as a performance metric
to assess the balance between hardware consumption and
latency.

ATP = Slice× T (9)

In practical scenarios involving ECDSA, throughput is a
crucial metric that determines whether a design can handle
a significant number of ECDSA operations within a unit of
time.

Throughput =
Bit Width

T
bps (10)

Due to differences in the area of different designs, we used
Equation (11) to compare the throughput efficiency between
different designs.

Efficiency =
Throughput

Silce
× 103 (11)

55442 VOLUME 12, 2024



X. He et al.: Universal Single and DPMs Architecture for ECDSA

FIGURE 8. DAC generation unit generate {V (1)
i , V (2)

i , V (3)
i } and {PAi , PQi , PDi }.

TABLE 2. FPGA implementation results over Xilinx Vertex-7.

B. SECURITY ANALYSIS
Currently, the main attack methods against cryptographic
chips include side-channel attacks [48], fault injection, and
so on.

1) SPA and high-order power analysis can be utilized to
analyze the power consumption curve of an FPGA [49].
This approach allows us to discern the operations a
certain design executes at different time intervals [50].

VOLUME 12, 2024 55443



X. He et al.: Universal Single and DPMs Architecture for ECDSA

In our algorithm, during each iteration, two PAs and
one PD are performed, forming a structure similar to
the Montgomery Ladder [51]. This ensures that the
power trace of our structure exhibits a uniform pattern,
making it resistant to SPA.Many works use an extra PA
with the point at infinity, such as [35], to defend against
SPA. However, during the PD-PA-PD sequence, the
extra PA with the point at infinity performed during the
first PD does not change the internal value. This leads
to a correlation between the first PD and the second
PD, making this method ineffective against high-order
power analysis [23]. However, our design is resistant
to high-order power analysis because every PA is valid,
eliminating any such correlation.

2) The execution time of the proposed algorithm is fixed
for a given field GF(2m), as the number of iteration
loops depends solely on the length of k . Consequently,
our proposed architecture is secure against timing
attacks.

3) The proposed algorithm does not include any dummy
operations, and all components in the architecture are
utilized. Therefore, any fault injection will lead to
an incorrect computation result, indicating that our
proposed architecture is secure against fault injection
attacks.

C. IMPLEMENTATION RESULTS COMPARISON
Table 2 presented in this paper shows the implementation
results of Vertex-7 Series over GF(2m). Our work has
latency of 3.584, 5.656, and 7.453 µs, using 29160, 75642,
and 133402 ATP, with throughput efficiency of 5.590,
3.080, and 2.153 over GF(2163), GF(2233), and GF(2283),
respectively.

1) Security: Both work [33] and work [35] require the
introduction of dummy PAs in specific steps of every
iteration to resist SPA. The analysis presented in
Section VI-B suggests that the dummy PAs operation
of [33] and [35] may be vulnerable to high-order power
analysis, posing a potential security risk. Our work and
other works don’t employ dummy PA, which enables
them to resist high-order power analysis.

2) Latency: The work [33] demonstrates the lowest
latency among existing work. Compared to our work,
it reduces latency by 31.4%, 72.2%, and 55.6%
over GF(2163), GF(2233), and GF(2283), respectively.
Another work [22] has a latency that is 5% lower than
ours over GF(2163), and work [44] has a latency that
is 17.6% lower than ours over GF(2283). Aside from
those, our work demonstrates superiority in terms of
latency, which reduces the latency by 36.7%, 82.9%,
and 83.3% compared to the works [21], [37], and [38]
over GF(2163). Our work reduces the latency by 32.3%,
42.4%, and 84.8 % compared to the works [20], [35],
and [43] over GF(2233) and reduces the latency by

38.9% and 81.9% compared to the works [35] and [37]
over GF(2283), respectively.

3) Area Time Product: Among all existing works,
work [33] and [35] show advantages in terms of low
ATP. Aside from these two designs, the ATP of our
work is 0.98% higher than work [22], 5.9%, 3.8%,
5.8%, and 52.3% lower than work [36], [37], [38],
and [39] over GF(2163). The ATP of our work is
26.8% and 46.9% lower than works [20] and [43] over
GF(2233), and 9% and 37.9% lower than works [37]
and [44] over GF(2283).

4) Throughput Efficiency: Among all existing works, [33]
has the highest throughput efficiency, which is 73.3%,
81.2%, and 79.1% higher than ours over GF(2163),
GF(2233), and GF(2283), respectively. Work [35] has
the second highest throughput efficiency, which is
49.7%, 57.6%, and 50.4% higher than ours over
GF(2163), GF(2233), and GF(2283), respectively. Aside
from those, the throughput efficiency of our work is
0.97% lower than work [22], 6.3%, 19.8%, and 62.5%
higher than works [37], [38], and [41] over GF(2163).
The throughput efficiency of our work is 9.8% and
61.0% higher works [44] and [37].

Work [33] and Work [35] currently demonstrate the best
performance, boasting the lowest latency and ATP, and
highest throughput for both PM and DPM.While other works
may pale in comparison, in ECDSA, prioritizing security
over performance underscores the value of sacrificing some
efficiency for the sake of safety.

With resistance to higher power analysis, our design
outperforms the best designs [20] over GF(2233) with
increasing throughput efficiency by 36.7 % and reducing
ATP by 26.8 % and the best design [44] over GF(2283)
with increasing throughput efficiency by 9.8 % and reducing
ATP by 9.0 %. The implementation results of the reported
works indicate that the proposed architecture based on DAC
has advantages in ATP and throughput efficiency when
computing DPM, which makes our work more suitable for
ECDSA. Some lightweight PM architectures proposed in
previous works [20], [37] may find applications in resource-
constrained scenarios. However, with an acceptable increase
in hardware resources, our work reduces the computation
burden of PD through DAC, leading to higher throughput
efficiency, less ATP, and lower latency in our work.

In addition, these advantages also exist over GF(2163).
Two works over GF(2163) perform similarly to our work.
Compared to [36], our work shows a 6.3% improvement
in throughput efficiency and a 5.9% reduction in ATP,
and compared to work [36] with 20.997 µs, our work,
3.584 µs, significantly reduces 82.9% latency, making it
more suitable for scenarios with strict latency requirements.
Work [22] outperforms our work by 0.98 % in throughput
efficiency and reduces ATP by 0.97 % compared to our work.
However, it is important to note that our work is a universal
architecture for DPM and PM, while work [22] is a PM

55444 VOLUME 12, 2024



X. He et al.: Universal Single and DPMs Architecture for ECDSA

TABLE 3. Symbol and notation table.

architecture. Additionally, it should be mentioned that we
assume two calls to PM without considering the latency of
PA. Finally, [22] does not mention whether its design has
the functionality for PA, suggesting that additional hardware
may be needed for PA when performing DPM. This could
incur additional hardware resource overhead and decrease
throughput efficiency, far from the claimed 0.98 %. Our
work is faster than other works [21], [36], [37], [38], [39],
[40], [41], [42], and with lower ATP and higher throughput
efficiency.

VII. CONCLUSION
The article introduces a DAC-based algorithm suitable for
DPM and PM, enabling high throughput and low latency
for ECDSA in embedded scenarios. A detailed timing
schedule is provided through data dependency analysis.
A unified architecture for DPM and PM, including a DAC
generation unit, an ALU, and a control unit, is proposed
in this article. This architecture exhibits high throughput,
low latency, and resistance to attacks. Tailored for resource-
constrained embedded devices, it achieves resource reuse
for DPM and PM, addressing the challenge of additional
PM modules required for DPM architecture. Compared to
existing works with the same level of security, our design
slightly improves ATP and throughput efficiency but excels in
terms of versatility. Currently, the setup for DAC still requires
precomputation, and the PM calculation cannot be completed

during the bit-by-bit scanning of the scalar, as is done with the
traditional Montgomery algorithm. In future work, we will
seek improvements in this area and further exploit DAC-
based algorithms over GF(p) and try to implement hardware
architectures on application-specific integrated circuits.

APPENDIX A
SYMBOLS AND NOTATION
In Table 3, we have explained the symbols that appear in the
article.

REFERENCES
[1] C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang,

Y. Huang, Y. Chen, H. Haas, J. S. Thompson, E. G. Larsson, M. D. Renzo,
W. Tong, P. Zhu, X. Shen, H. V. Poor, and L. Hanzo, ‘‘On the
road to 6G: Visions, requirements, key technologies and testbeds,’’
IEEE Commun. Surveys Tuts., vol. 25, no. 2, pp. 905–974, 2023.

[2] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, ‘‘The road towards
6G: A comprehensive survey,’’ IEEE Open J. Commun. Soc., vol. 2,
pp. 334–366, 2021.

[3] P. Meena, M. B. Pal, P. K. Jain, and R. Pamula, ‘‘6G communication
networks: Introduction, vision, challenges, and future directions,’’Wireless
Pers. Commun., vol. 125, no. 2, pp. 1097–1123, Jul. 2022.

[4] C. Nist, ‘‘The digital signature standard,’’ Commun. ACM, vol. 35, no. 7,
pp. 36–40, Jul. 1992.

[5] G. R. Blakley and I. Borosh, ‘‘Rivest-Shamir–Adleman public key
cryptosystems do not always conceal messages,’’ Comput. Math. with
Appl., vol. 5, no. 3, pp. 169–178, 1979.

[6] N. Koblitz, ‘‘Elliptic curve cryptosystems,’’ Math. Comput., vol. 48,
no. 177, pp. 203–209, 1987.

[7] V. S. Miller, ‘‘Use of elliptic curves in cryptography,’’ in Proc. Conf.
Theory Appl. Cryptograph. Techn. Springer, 1985, pp. 417–426.

[8] V. Mavroeidis, K. Vishi, M. D. Zych, and A. Jøsang, ‘‘The impact of
quantum computing on present cryptography,’’ 2018, arXiv:1804.00200.

[9] F. Mallouli, A. Hellal, N. S. Saeed, and F. A. Alzahrani, ‘‘A survey on
cryptography: Comparative study between RSA vs ECC algorithms, and
RSA vs El-Gamal algorithms,’’ in Proc. 6th IEEE Int. Conf. Cyber Secur.
Cloud Comput. (CSCloud) 5th IEEE Int. Conf. Edge Comput. Scalable
Cloud (EdgeCom), Jun. 2019, pp. 173–176.

[10] D. Johnson, A. Menezes, and S. Vanstone, ‘‘The elliptic curve digital
signature algorithm (ECDSA),’’ Int. J. Inf. Secur., vol. 1, no. 1, pp. 36–63,
Aug. 2001.

[11] D. J. Bernstein and T. Lange. (2014). Safecurves: Choosing Safe Curves
for Elliptic-Curve Cryptography. Accessed: Jan. 12, 2024. [Online].
Available: https://safecurves.cr.yp.to

[12] M.M. Islam,M. S. Hossain, Moh. K. Hasan, M. Shahjalal, and Y. M. Jang,
‘‘FPGA implementation of high-speed area-efficient processor for elliptic
curve point multiplication over prime field,’’ IEEE Access, vol. 7,
pp. 178811–178826, 2019.

[13] Y. A. Shah, K. Javeed, S. Azmat, and X. Wang, ‘‘Redundant-signed-digit-
based high speed elliptic curve cryptographic processor,’’ J. Circuits, Syst.
Comput., vol. 28, no. 5, May 2019, Art. no. 1950081.

[14] X. Hu, X. Li, X. Zheng, Y. Liu, and X. Xiong, ‘‘A high speed processor for
elliptic curve cryptography over NIST prime field,’’ IET Circuits, Devices
Syst., vol. 16, no. 4, pp. 350–359, Jul. 2022.

[15] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography (Springer Professional Computing). New York, NY,
USA: Springer, 2006. [Online]. Available: https://books.google.com.
hk/books?id=V5oACAAAQBAJ

[16] M. Alfred and V. Scott, Handbook of Applied Cryptography, 1997.
[17] B. Möller, ‘‘Algorithms for multi-exponentiation,’’ in International Work-

shop on Selected Areas in Cryptography. Springer, 2001, pp. 165–180.
[18] M. Imran and M. Rashid, ‘‘Architectural review of polynomial bases finite

field multipliers over GF(2m),’’ in Proc. Int. Conf. Commun., Comput.
Digit. Syst. (C-CODE), Mar. 2017, pp. 331–336.

[19] S. R. Pillutla and L. Boppana, ‘‘A high-throughput fully digit-serial
polynomial basis finite field GF(2m) multiplier for IoT applications,’’ in
Proc. IEEE Region 10 Conf. (TENCON), Oct. 2019, pp. 920–924.

VOLUME 12, 2024 55445



X. He et al.: Universal Single and DPMs Architecture for ECDSA

[20] A. Sajid, M. Rashid, M. Imran, and A. R. Jafri, ‘‘A low-complexity
edward-curve pointmultiplication architecture,’’Electronics, vol. 10, no. 9,
p. 1080, May 2021.

[21] Z. U. A. Khan and M. Benaissa, ‘‘High-speed and low-latency ECC
processor implementation over GF(2m) on FPGA,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 25, no. 1, pp. 165–176, Jan. 2017.

[22] J. Li, S. Zhong, Z. Li, S. Cao, J. Zhang, and W. Wang, ‘‘Speed-oriented
architecture for binary field point multiplication on elliptic curves,’’ IEEE
Access, vol. 7, pp. 32048–32060, 2019.

[23] J. Zhang, Z. Chen, M. Ma, R. Jiang, H. Li, and W. Wang, ‘‘High-
performance ECC scalar multiplication architecture based on comb
method and low-latency window recoding algorithm,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 32, no. 2, pp. 382–395, Feb. 2024.

[24] G. Zhou, H. Michalik, and L. Hinsenkamp, ‘‘Complexity analysis and
efficient implementations of bit parallel finite field multipliers based on
karatsuba-ofman algorithm on FPGAs,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 18, no. 7, pp. 1057–1066, Jul. 2010.

[25] A. Karatsuba and Y. Ofman, ‘‘Multiplication of multidigit numbers on
automata,’’ Sov. Phys. Doklady, vol. 7, no. 7, pp. 595–596, Jan. 1963.

[26] H. Mahdizadeh and M. Masoumi, ‘‘Novel architecture for efficient FPGA
implementation of elliptic curve cryptographic processor over GF(2163),’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 12,
pp. 2330–2333, Dec. 2013.

[27] M. Khabbazian, T. A. Gulliver, and V. K. Bhargava, ‘‘A new technique for
improving the speed of double point multiplication,’’ in Proc. IEEE Pacific
Rim Conf. Commun., Comput. Signal Process., Aug. 2005, pp. 653–656.

[28] J. Adikari, V. S. Dimitrov, and R. J. Cintra, ‘‘A new algorithm for double
scalar multiplication over Koblitz curves,’’ in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2011, pp. 709–712.

[29] D. J. Bernstein. (2006). Differential Addition Chains. [Online]. Available:
http://cr.yp.to/ecdh/diffchain-20060219.pdf

[30] R. Azarderakhsh and K. Karabina, ‘‘Efficient algorithms and architectures
for double point multiplication on elliptic curves,’’ in Proc. 3rd Workshop
Cryptography Secur. Comput. Syst., Jan. 2016, pp. 25–30.

[31] R. Azarderakhsh and K. Karabina, ‘‘A new double point multiplication
algorithm and its application to binary elliptic curves with endomor-
phisms,’’ IEEE Trans. Comput., vol. 63, no. 10, pp. 2614–2619, Oct. 2014.

[32] M. Joye and M. Tunstall, ‘‘Exponent recoding and regular exponentiation
algorithms,’’ in Progress in Cryptology—AFRICACRYPT, Gammarth,
Tunisia. Springer, 2009, pp. 334–349.

[33] T. Shahroodi, S. Bayat-Sarmadi, and H. Mosanaei-Boorani, ‘‘Low-latency
double point multiplication architecture using differential addition chain
over GF(2m),’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 4,
pp. 1465–1473, 2019.

[34] J. Zhang, Z. Chen, H. Li, and W. Wang, ‘‘A high-performance universal
FPGA implementation for PM and DPM based on differential addition
chain,’’ in Proc. 8th Int. Conf. Signal Image Process. (ICSIP), 2023,
pp. 789–793.

[35] R. Salarifard, S. Bayat-Sarmadi, and H. Mosanaei-Boorani, ‘‘A low-
latency and low-complexity point-multiplication in ECC,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 65, no. 9, pp. 2869–2877, Sep. 2018.

[36] Z. U. A. Khan and M. Benaissa, ‘‘High speed ECC implementation on
FPGA over GF(2m),’’ in Proc. 25th Int. Conf. Field Program. Log. Appl.
(FPL), Sep. 2015, pp. 1–6.

[37] Z.-U.-A. Khan and M. Benaissa, ‘‘Throughput/area-efficient ECC pro-
cessor using Montgomery point multiplication on FPGA,’’ IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 62, no. 11, pp. 1078–1082, Nov. 2015.

[38] M. Imran, M. Rashid, A. R. Jafri, and M. Kashif, ‘‘Throughput/area
optimised pipelined architecture for elliptic curve crypto processor,’’ IET
Comput. Digit. Techn., vol. 13, no. 5, pp. 361–368, Sep. 2019.

[39] M. Imran, M. Rashid, A. R. Jafri, and M. Najam-Ul-Islam, ‘‘ACryp-
proc: Flexible asymmetric crypto processor for pointmultiplication,’’ IEEE
Access, vol. 6, pp. 22778–22793, 2018.

[40] S. Harb and M. Jarrah, ‘‘FPGA implementation of the ECC over GF(2m)
for small embedded applications,’’ ACM Trans. Embedded Comput. Syst.,
vol. 18, no. 2, pp. 1–19, Mar. 2019.

[41] T. T. Nguyen and H. Lee, ‘‘Efficient algorithm and architecture for elliptic
curve cryptographic processor,’’ JSTS, J. Semicond. Technol. Sci., vol. 16,
no. 1, pp. 118–125, Feb. 2016.

[42] M. Imran, I. Shafi, A. R. Jafri, and M. Rashid, ‘‘Hardware design and
implementation of ECC based crypto processor for low-area-applications
on FPGA,’’ in Proc. Int. Conf. Open Source Syst. Technol. (ICOSST),
Dec. 2017, pp. 54–59.

[43] B. Rashidi, S. M. Sayedi, and R. R. Farashahi, ‘‘High-speed hardware
architecture of scalar multiplication for binary elliptic curve cryptosys-
tems,’’Microelectron. J., vol. 52, pp. 49–65, Jun. 2016.

[44] J. Li,W.Wang, J. Zhang, Y. Luo, and S. Ren, ‘‘Innovative dual-binary-field
architecture for point multiplication of elliptic curve cryptography,’’ IEEE
Access, vol. 9, pp. 12405–12419, 2021.

[45] T. Itoh and S. Tsujii, ‘‘A fast algorithm for computing multiplicative
inverses in GF(2m) using normal bases,’’ Inf. Comput., vol. 78, no. 3,
pp. 171–177, Sep. 1988.

[46] B. Rashidi, R. Rezaeian Farashahi, and S. M. Sayedi, ‘‘High-performance
and high-speed implementation of polynomial basis Itoh–Tsujii inversion
algorithm over GF(2m),’’ IET Inf. Secur., vol. 11, no. 2, pp. 66–77,
Mar. 2017.

[47] B. Rashidi, ‘‘High-speed hardware implementation of Gaussian nor-
mal basis inversion algorithm overF2m,’’ Microelectron. J., vol. 63,
pp. 138–147, May 2017.

[48] M. Randolph andW. Diehl, ‘‘Power side-channel attack analysis: A review
of 20 years of study for the layman,’’ Cryptography, vol. 4, no. 2, p. 15,
May 2020.

[49] F.-X. Standaert, ‘‘Introduction to side-channel attacks,’’ in Secure Inte-
grated Circuits and Systems, 2010, pp. 27–42.

[50] T. S.Messerges, E. A. Dabbish, andR. H. Sloan, ‘‘Power analysis attacks of
modular exponentiation in smartcards,’’ in Cryptographic Hardware and
Embedded Systems, Worcester, MA, USA. Springer, 1999, pp. 144–157.

[51] P. L. Montgomery, ‘‘Speeding the Pollard and elliptic curve methods of
factorization,’’Math. Comput., vol. 48, no. 177, pp. 243–264, Jan. 1987.

XIANG HE received the B.Sc. degree in electronic
science and technology from Beijing Institute
of Technology, Beijing, China, in 2018 and
2022, respectively, where he is currently pursuing
the M.Sc. degree with the School of Integrated
Circuits and Electronics. His research interests
include digital circuit design, hardware implemen-
tation for cryptography, and encrypting network
transmission.

WEIJIANG WANG received the B.Eng. and
Ph.D. degrees in communication and information
systems from Beijing Institute of Technology,
Beijing, China, in 1999 and 2004, respectively.
In 2004, he joined the School of Information and
Electronics, Beijing Institute of Technology. His
research interests include image processing, array
signal processing, and hardware implementation
for cryptography.

JINGQI ZHANG received the B.Sc. and M.Sc.
degrees in electronic engineering from Beijing
Institute of Technology, Beijing, China, in
2017 and 2020, respectively, where he is currently
pursuing the D.Eng. degree with the School of
Integrated Circuits and Electronics. His research
interests include digital circuit design, VLSI
implementation of cryptosystems, and high-speed
data processing.

55446 VOLUME 12, 2024



X. He et al.: Universal Single and DPMs Architecture for ECDSA

ZHANTAO ZHANG received the B.Sc. degree in
electronic science and technology from Beijing
Institute of Technology, Beijing, China, in
2019 and 2023, respectively, where he is currently
pursuing the M.Sc. degree with the School of
Integrated Circuits and Electronics. His research
interests include digital circuit design and the
hardware implementation of prime field elliptic
encryption algorithms.

JIANLEI YANG, photograph and biography not available at the time of
publication.

HUA DANG received the Ph.D. degree from the
School of Information and Electronics, Beijing
Institute of Technology, Beijing, China, in 2013.
He is currently an Assistant Professor with the
School of Information and Electronics, Beijing
Institute of Technology. His current research
interests include integrated circuit design, micro-
system integration, wireless communication, and
digital signal processing.

GUIYU WANG was born in Sichuan, China,
in January 1991. He received the B.Eng. degree in
information countermeasures and the Ph.D. degree
in information and communication engineering
from Beijing Institute of Technology (BIT),
Beijing, China, in 2013 and 2021, respectively.
He is currently a Postdoctoral Research Fellow
with the School of Integrated Circuits and Elec-
tronics, BIT, and the BIT Chongqing Institute of
Microelectronics and Microsystems. His research

interests include sparse array processing and direction-of-arrival estimation
and the hardware realization of the array processing technique.

VOLUME 12, 2024 55447


