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ABSTRACT GraphConvolutional Networks (GCN) are a potent and adaptable tool for effectively processing
and analyzing continuous spatial data. Despite the substantial potential of GCN in various domains,
most existing spatial data prediction models are confined to defining weights solely based on distance.
To overcome this limitation, this study proposes a novel approach to obtain the second-level embedding
of Points of Interests (POIs) by employing Delaunay Triangulation (DT), Random Walk, and Skip-Gram
model training. Subsequently, enhanced features are obtained through various aggregation strategies for
regional embedding. The integrated grid data, including longitude and latitude coordinates, enhanced
features, and target values, are then integrated. Finally, the GCN is utilized for training and fitting to
achieve the final prediction target value. By considering the influence of weights on data prediction, this
approach can more accurately reflect the distribution and relationships of data in the actual environment.
Furthermore, we have experimentally validated the effectiveness of this approach, demonstrating that it
significantly enhances the accuracy of spatial data prediction when compared to the original GCN model’s
approach.

INDEX TERMS Graph convolutional networks, POIs embedding, aggregation strategy.

I. INTRODUCTION
In smart cities, urban spatial data has become an indis-
pensable data type. Its application occupying a significant
position in various fields such as ecological construction [1],
social networks [2], urban planning [3], and more. However,
due to objective constraints, we often cannot obtain all
the spatial data of interest. In the context of unavoidable
constraints in data acquisition, the astute exploitation of
extant spatial data assets for the purpose of precise predictive
analytics has emerged as a pervasive and critical undertaking.
The usual methods for completing this prediction task are
regression or interpolation. Prediction tasks often serve as
an important data source for other downstream tasks (such
as urban planning or related analyses in the city), ensuring
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the accuracy of such generated data becomes particularly
necessary. In order to enhance the accuracy of data diffusion
and prediction, it is necessary to construct an effective
spatial modeling method that can reveal the structure and
characteristics of spatial data and accurately predict unknown
data.

Traditional data differs from spatial data, which pos-
sesses unique characteristics. Spatial data is characterized
by spatial dependence (spatial autocorrelation) and spatial
heterogeneity (spatial structure) [4]. Spatial autocorrelation
implies that each data point is associated with other data
points, but the correlation between neighboring data points
is usually much stronger than that between distant data
points [5]. Spatial prediction tasks are largely built upon
spatial autocorrelation and have developed methods such as
regression and interpolation. In spatial modeling tasks, spatial
interpolation is the most common approach. Interpolation is
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an important method for handling missing data. However,
it also has some limitations. Spatial interpolation often
makes strong assumptions about the distribution of data and
lacks the ability to handle data with different distributions
simultaneously, making it less flexible. Furthermore, with
the increasing popularity of machine learning algorithms
and the significant similarity between spatial data and graph
data, researchers have started to apply Graph Convolutional
Networks (GCNs) to the processing and analysis of spatial
data [6], [7]. Currently, the Kriging Convolutional Networks
(KCN) model is considered a superior spatial interpolation
method as it combines existingKriging interpolationmethods
with GCN approaches [8].

Nevertheless, existing methods often overlook spatial
heterogeneity within geographical data. Spatial heterogeneity
refers to the phenomenon of differences or diversities
that exist between different regions or locations in a
geographical space. This heterogeneity can manifest as gra-
dients, fluctuations, and non-uniform distributions. Notably,
we have observed that spatial heterogeneity is relatively
under considered in spatial modeling, potentially affecting
the predictive capability of spatial data. Most existing spatial
models utilize k-nearest neighbors (kNN) algorithms for
composition training based on Euclidean distance. In data
space, Euclidean distance is typically defined as the straight-
line distance between two points. Based on this definition,
a relatively small set of spatial points is often considered to
have more similar features. However, this assumption does
not correspond with real-life applications. Our living spaces
are often obstructed rather than being flat, which means that
using straight-line distance to measure similarity between
spatial points is not accurate [9]. Therefore, our work aims
to address this gap and enhance the precision of spatial
prediction models.

To overcome the aforementioned limitations, we propose
a regional feature aggregation module that leverages a
substantial amount of crowdsourced Points of Interest
(POIs) data to obtain high-dimensional features for each
region. By utilizing these high-dimensional features, the
performance of downstream tasks related to regional pre-
diction can be significantly enhanced. However, during
the implementation phase, we encountered two primary
challenges: (1) In GCN, edge information in the graph is
typically used to represent spatial proximity or physical
links between nodes. Nevertheless, the k-nearest neighbor
graph constructed based on Euclidean distance may not
accurately reflect the actual proximity relationship between
nodes. (2) Balancing spatial distance and regional functions
to better capture the spatial structure within the overall region
remains a challenge. To address these issues, this study
proposes new weight definition methods comprising four
specific strategies: (1) Utilizing the definition of regional
function, which consists of a series of multi-dimensional
matrices, each dimension representing a functional value in
one region of multiple regions, with all functions summing
up to 1. (2) Selecting crowdsourced POIs data from the city
as the functional function for each region. (3) Employing
contrastive learning based on the Word2Vec method to

negatively sample random walks on the POIs graph, resulting
in single-point embeddings for POIs. Subsequently, through
aggregation strategies, single-point POIs embeddings in each
region are combined into regional embeddings, which serve
as the desired regional functional functions. (4) Constructing
a corresponding network based on the distance between
regions and the similarity between regions, and employing
GCN methods for geographical modeling. The proposed
method was evaluated using real data from Chinese cities to
achieve the following objectives:

1. Balance spatial distance and regional functions to
provide accurate geographic information support.

2. Enhance the model’s performance in complex geograph-
ical environments for better application in real life.

3. Offer more precise geographic modeling compared
to existing prediction models, address the gaps in current
research, and offer a new perspective for spatial data analysis
in smart cities.

II. RELATED WORK
A. SPATIAL DATA PREDICTION MODEL
Spatial data modeling has a rich history, with numerous clas-
sic regression or interpolationmethods having been applied in
the field of geographic modeling for prediction tasks. Kriging
is the most representative and best-performing method across
various scenarios. Recently, there has been an increase in
research on the application of GCNs in spatial modeling
tasks. Compared to traditional spatial modeling methods,
GCNs are typically used for tasks that graphically represent
spatial data, offering advantages in terms of flexibility and
scalability. In GCNs, explicit graphs are constructed based
on the geographical coordinates of spatial data points, and
the weights of corresponding edges are defined. Information
is passed through these edges, and the weights typically
represent the correlation between two points, which can
be naturally combined with the autocorrelation of spatial
data. By setting multiple hidden layers, GCNs can capture
more complex relationships between feature values and target
values. Compared to traditional methods, GCNs are more
flexible [10]. Among them, two models worth noting are
KCN and Positional Encoder Graph Neural Networks (PE-
GNN).

The KCN model [8] has been previously discussed in the
previous text. It is a highly effective GCN that combines the
inductive benefits of traditional Kriging interpolation with
the complex fitting capabilities of GCN models, resulting in
superior performance. Specifically, KCN employs Convolu-
tional Neural Networks (CNNs) to extract and learn features
from spatial data, generating representations that retain
spatial context and features. Subsequently, based on these
learned features, Kriging interpolation is utilized for spatial
interpolation and prediction to estimate attribute values at
unidentified locations. The KCN model’s design takes into
account the characteristics of knowledge graphs and their
integration with GCNs, aiming to enhance the efficiency and
accuracy of GCNs in handling complex network-structured
data. By utilizing kernel functions to determine the weights
of GCNs, KCN achieves favorable outcomes compared
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to baseline models. PE-GNN [11] directly employs the
distance reciprocal edge weight definition method in the
GCN component, yielding positive results in their respective
domains.

B. REGIONAL FUNCTIONALITY REPRESENTATION
THROUGH EMBEDDING OF POIs
In the realm of urban data modeling, crowdsourced data
such as POIs have garnered significant attention due to
their ease of access. In the context of urban modeling
tasks, approaches based on regions or grids often encounter
challenges related to small sample sizes and low feature
dimensionality. To facilitate end-to-end modeling of urban
data, POIs emerge as a highly valuable data source. POIs
are intrinsically linked to group behavior [12] and the
socio-economic facets [13] of urban areas, making them
one of the most widely utilized sources of crowdsourced
data currently. Furthermore, POIs are more readily available
compared to other data sources (e.g., group mobility data),
which are typically restricted to specific regions and user
groups. Consequently, despite the emergence of new types of
crowdsourced data, POIs continue to be a valuable and easily
accessible resource for enhancing regional features.

Early research primarily utilized POI frequency as regional
features [14], [15]. This approach aimed to learn low-
dimensional latent vector embeddings for POI classification
(e.g., shopping malls and restaurants) based on spatial co-
occurrence information and a sampling strategy. In recent
years, the concept of learning POI and regional representa-
tions has emerged, highlighting the limitations of traditional
feature engineering methods. Word2Vec, a word embedding
technique introduced by Mikolov for generating word
vectors [16]. Yao et al. were the first to employ Word2Vec
for learning POI category embeddings, with the goal of
capturing co-occurrence patterns between POI categories
within POI strings [17]. Building upon this foundation,
Yan et al. proposed the Place2Vec model, which also focuses
on capturing category co-occurrence patterns but utilizes
kNN as its core method [18]. Subsequently, Niu and Silva
employed the Doc2Vec model, a variant of Word2Vec,
to embed POIs and regions, resulting in functional land use
classification [19]. Huang et al. proposed a semantically
preserved POI embedding method in 2022, which applied
random walks in the POI network and class semantics using
manifold learning algorithms [20]. Recently, Yang et al.
proposed a novel model that combines POIs, Place2vec and
Latent Dirichlet Allocation (LDA) to significantly enhance
the classification accuracy of urban functional areas [21].
After POIs are embedded, aggregation operations are

usually required. Among these operations, average pooling
is widely used. However, Huang et al. suggested that POIs
may have varying importance levels during the aggregation
process. To address this issue, they employed long short-term
memory (LSTM) and attention mechanisms [20]. Never-
theless, due to the limitations of their supervised training
approach, it may not be suitable for most tasks. Therefore,

exploring effective POI embedding in an unsupervised
environment remains a worthwhile endeavor.

III. METHODOLOGY
This study proposes a novel approach for urban areamodeling
utilizing GCN. The fundamental unit of this approach is an
urban block, denoted as G. Each block comprises central
coordinates C, discrete POIs points classified at first, second,
and third levels, longitude and latitude coordinates, and a
small amount of feature data X. Additionally, the target
value Y that needs to be predicted through regression is also
incorporated. In the context of GCN, central coordinates C
are utilized to establish the geographical location relationship
between grids. Based on these relationships, we select the
k closest area blocks Gi to the region block and establish
an edge between Gi and G to obtain the corresponding
graph data for grid data. Correspondingly, the feature values
X represent the feature values of the graph nodes, and
the target value Y is employed to predict the nodes on
the graph.

To address the potential issues of inadequate feature
values and subpar prediction performance, we propose a two-
layer embedding approach for cities. The first layer is the
POIs embedding, which draws inspiration from Word2Vec.
This embedding process involves utilizing the coordinates
of POIs to construct a Delaunay Triangulation (DT) graph
encompassing all POIs within a city. Subsequently, biased
random walks are conducted on the generated graph. The
resulting sequence is then trained through a Skip-Gram
model, which incorporates a negative sampling proce-
dure and maximizes hierarchical information, ultimately
yielding the embeddings for all secondary categories of
POIs [20].

After obtaining the embeddings of secondary categories of
POIs, we employ an unsupervised approach to aggregate all
POIs within urban area block G, resulting in the embedding
EG for that block. This strategy may involve multi-head
attention mechanisms or average pooling, among other
techniques. The obtained block embedding not only enhances
the feature dimensionality of the block but also serves as
a functional representation function, playing a crucial role
in the GCN backbone prediction model. By combining EG
with the original features X, we obtain a higher-dimensional
and more informative feature vector. Furthermore, for grid
graph data, the edge weight is defined by the product of
the similarity between the functional embeddings of two
areas and their distance. This approach addresses the precise
capture problem of spatial heterogeneity data mentioned
earlier.

A. THE MAIN BODY OF GCN IN THE MODEL
Suppose there is a data point i, which includes a feature
vector xi and a label yi. These feature vectors and labels
are collectively represented by X̃ and Ỹ respectively.
Subsequently, a graphG is constructed withG = (V ,E). This
graph comprises: A set of data nodes V = {v1, v2, . . . , vn}
which symbolize the data point i; A set of edges E =
{e1, e2, . . . , em} that are determined by the adjacency matrix
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A of the graph. The formula for the standardized adjacency
matrix Ā is presented below:

Ā = D−
1
2 (A+ I )D−

1
2 (1)

In this formulation, D is a diagonal matrix defined as D =
diag(A1 + 1), which means the degree matrix plus one. The
symbol I represents an identity matrix. A single GCN layer
ℓ comprises Ā, X̃ , Ỹ , with Ā and X̃ serving as inputs and the
known label Ỹ being utilized as the target for fitting. Each
GCN layer ℓ accepts an input Hℓ−1 ∈ Rn×dℓ−1 and produces
an output matrix Hℓ ∈ Rn×dℓ . Additionally, each layer is
parameterized by a weight matrixW ℓ, which has dimensions
dℓ−1 × dℓ. Consequently, a series of L GCN layers form the
final GCN model. Formally, the GCN is defined as follows:

H ℓ
= σ

(
ĀH ℓ−1W ℓ

)
, ℓ = 1, . . . ,L (2)

Here, H ℓ represents the output of the ℓ-th layer in the GCN.
H ℓ−1 denotes the output of the previous layer ℓ − 1. σ is a
non-linear activation function. The initial output of the GCN,
X̃ , comprises all node feature vectors and can be expressed as
H0
= X̃ . Ultimately, the final output of the GCN is Ŷ = HL .

In addition, the GCN determines its training loss based
on the available labels and predicts the unknown labels
corresponding to the entries in Ŷ . To apply the GCN for
predicting the labels of other unknown nodes, a graph
can be constructed based on the data point positions (i.e.,
geographical coordinates), with each feature vector and
its label attached to the corresponding graph node. For
predicting unknown points, only the corresponding value
from Ŷ is required [8].
The GCN [10] is composed of multiple graph convo-

lutional layers, akin to the perceptron. However, it also
incorporates a neighborhood aggregation step based on
spectral convolution. At time t, layer (ℓ) receives the
adjacency matrix At and node embedding matrix H (ℓ)

t as
input and employs the weight matrixW (ℓ)

t to update the node
embedding matrix as output. It can be expressed as follows:

H (ℓ+1)
t = GCONV(At ,H

(ℓ)
t ,W (ℓ)

t )

:= σ (ÃtH
(ℓ)
t W (ℓ)

t ) (3)

The notation Ãt is employed to denote the normalized version
of At , which is defined as follows (omitting the time index for
clarity):

Ã = D̃−
1
2 ÃD̃−

1
2 ,Ã = A+ I ,D̃ = diag

(∑
j
Ãij
)

(4)

where σ is an activation function, typically ReLU, which
is suitable for all layers except the output layer. The initial
embedding matrix is derived from node features, i.e. H (0)

t =

Xt . Assuming there are (L) layers of graph convolution.
For the output layer, the function σ can be considered as
an identity function, in this case, H (L)

t contains high-level
representations of nodes transformed from the initial features;
or it could be a SoftMax function for node classification,
in which caseH (L)

t contains predicted probabilities. TheGNN

updates information through the following message passing
mechanism:

h(ℓ+1)
v

= UPDATE(ℓ)
(
h(ℓ)
v ,AGGREGATE(ℓ)

(
h(ℓ)
u : u ∈ N (v)

))
(5)

where h(ℓ)
v denotes the feature representation of node v at

layer (ℓ), N (v) is the set of neighbor nodes of node v,
UPDATE(ℓ) and AGGREGATE(ℓ) represent the update and
aggregation functions respectively, operating at layer (ℓ).

B. THE EMBEDDING OF POIs AND REGIONS
The method primarily comprises a secondary category
encoder for POIs and an area feature representation aggre-
gator. The secondary categories are sufficiently informative
without being excessively numerous. Firstly, we construct
a POI network and devise a spatial explicit Random Walk
strategy to sample the co-occurrence information of POIs.
Subsequently, we capture the hierarchical structure of POIs
categories [20]. The captured co-occurrence information and
category semantic information are fed into a POI encoder
φ, which generates POI embeddings by simultaneously
optimizing the objective of Skip-Gram [16] and Laplacian
Eigenmaps [22].

1) THE PROCEDURE OF EMBEDDING POIs
In the given area, POIs are interconnected using DT network,
which possesses several advantageous characteristics that
contribute to the generation of a compact and concise
network. This facilitates the learning of spatial vector data
embeddings [23]. Subsequently, a spatially explicit Random
Walk sampling strategy is employed to capture the category
co-occurrence patterns of POIs. The core of this sampling
strategy lies in designing the transition probability between
two points in the random walk. This biased transition
probability between nodes (POIs) combines spatial distance
decay, balances local and long-distance co-occurrence pat-
terns between nodes, and distinguish between internal and
cross-regional co-occurrence. The aforementioned approach
is accomplished through the establishment of three distinct
types of transition biases, whose precise mathematical
formulations are detailed below:

The first is an inverse-distance transition bias αd :

αd (p2, x) = log

((
1+ D1.5

)
(1+d1.5p2,x

)
(6)

The second transition biasαb aims to equalize the discrepancy
between local and long-range co-occurrence of POIs:

αb (p2, x) =


αlocb , if hopp2,x = 0
1, if hopp2,x = 1

α
glob
b , if hopp2,x = 2

(7)

The third transition bias αr is defined as:

αr (p2, x)=

{
1, if{p2, x} ⊆ Pi
αinter−regionr , ifp2 ∈ Pi and x ∈ Pk and ri ̸= rk

(8)
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The parameter αd ensures that nodes with closer spatial
distances are assigned higher probabilities. Here, D denotes
the diagonal length of the minimum bounding rectangle
encompassing all POIs within the study area, while d
represents the spatial distance between two nodes, p2 and
x. hopp,x represents the minimum number of hops required
to move from p (the previous node) to candidate node x.
In theory, the value of α

inter−region
r should be less than 1,

indicating that it is more likely to sample co-occurrence
information within a region.

Finally, in space-explicit random walk, the unnormalized
transition probability from the current node p2 to each
candidate node x is given by:

tp
(
p2,x

)
= αd

(
p2,x

)
× αb

(
p2,x

)
× αr

(
p2,x

)
(9)

Using the aforementioned sampling strategy, we execute
several random walks starting from each node in the network
and generate multiple sequences of POIs, where each POI
is represented by its second-level category ci. For each
sampled sequence, the first category is designated as the
target category, while the remaining categories are considered
context categories. To optimize the embedding of each
POI second-level category, we employ a Skip-Gram neural
network with negative sampling. This approach needs to
minimize the objective function as follows:

Lco−occurrence =
∑

c∈C2

∑
cq∈NR(c)

− log

 exp
(
cT c′q

)
∑

cn∈C2 exp
(
cT c′n

)


≈

∑
c∈C2

∑
cq∈NR(c)

−

(
log

(
σ
(
cT c′q

))
−

∑k

i=1
log

(
σ
(
cT c′ni

)))
(10)

In this context, σ represents the sigmoid function. The
symbol c denotes both the target embedding and the vector
embedding of the second-level category, while c′ represents
the context embedding. NR(c) refers to the set of context
categories captured by c during a random walk. The first
line presents the original form of the Skip-Gram objective
function, and the second line provides an approximation.
To address the high computational cost, we opt for this
approximation, where cni signifies the category obtained
through a negative sampling process (meaning that cni does
not co-occur with c) [20].

2) THE AGGREGATION YIELDS REGIONAL EMBEDDINGS
After obtaining the POIs category embeddings, it is crucial
to aggregate them in a meaningful manner to generate
regional embeddings. During this process, it is essential to
consider the varying importance of each POI in defining its
region, which typically necessitates multiple perspectives.
Our objective is to learn regional representations that can
serve multiple purposes, necessitating the simulation of
this multifaceted impact. There are several methods for
obtaining regional embeddings for all POIs points in a region.

The more traditional approach involves using the average
pooling of POIs embeddings, which can yield good results
in unsupervised scenarios.

Additionally, the multi-head attention mechanism can also
be employed for POIs aggregation, as developed by the
Transformer [24], [25]. Specifically, this mechanism enables
the attention operation to capture the relative relevance
(importance levels) between two sets of entities, which in
this case refers to the significance of each POI in defining
its region from a singular perspective. The attention function
maps the query vector Q to the output using key-value pairs
K and V .

Att (Q,K ,V ) = α
(
QKT

)
V (11)

In the (11), Q ∈ Rnv×dq , K ∈ Rnv×dk , V ∈ Rnv×dv . The
scaling factor in the SoftMax function is denoted by α, which
is calculated as α (o) = softmax( o

√
d
). Initially, Q,K and

V are projected onto h independent vectors with dimensions
dk = dq = dv = d

h , commonly referred to as multi-
heads. Subsequently, an attention mechanism is applied to
these h projections, resulting in a linear transformation and
combination of all attention outputs:

Multihead (Q,K ,V ) = concat(O1,O2, . . . ,Oh)WO (12)

where the calculation of each Oj is achieved through the
application of Att(QWQ

j ,KWK
j ,VWV

j ), where{
WQ
j ,WK

j ,WV
j

}h
j=1

are learnable parameters. Furthermore,

as per set transformer [25] an aggregation function
AGGpoi−region can be defined using the multi-head attention
mechanism as follows:

AGGpoi−region (Pi) = H+rFF(H ) (13)

H = s⃗i+Multihead (s⃗i,Pi,Pi) (14)

in which Pi is the embeddings of the POIs in a region ri;s⃗i,
a randomly initialized and learnable seed vector, is used to
compute the attention weights for the POI embeddings in
the region ri; The function rFF is a linear transformation
that is subsequently followed by a ReLU activation function.
This methodology produces the output of AGGpoi−region,
which is the raw embedding r⃗wi for a region, representing
the aggregating of embeddings of POIs within that region.
The resulting r⃗wi captures varying levels of importance of
POIs from multiple viewpoints, with each head representing
a distinct perspective [26].
In this research, the Skip-Gram model is trained by

maximizing the log-likelihood of the contextual embeddings
of POIs. More specifically, the objective function for model
training is the cross-entropy loss, which can be formulated as
follows:

L (θ) = −
∑

(w,c)∈D
logp(c|w;θ) (15)

where L (θ) denotes the loss function, D represents the set of
all positive sample pairs (w, c), w is the target word, c is the
context word and θ represents the model parameter.
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C. DETAILS AND TRAINING OF MODEL
1) THE ARCHITECTURE OF MODEL
Our model employs a multi-layer GCN with the following
specific structure:
Input layer: This layer receives the feature matrix X of

nodes and the normalized adjacency matrix Ã.
Hidden layers: These layers consist of multiple GCN

layers, where each layer applies the ReLU activation function
and includes Batch Normalization to enhance training
stability.
Output layer: The final GCN layer outputs the region

embeddings, which are then passed through a SoftMax layer
for multi-classification.

2) THE TRAINING PROCESS OF MODEL
To prevent overfitting, L2 regularization terms are incorpo-
rated into the loss function:

Lreg = Loriginal + λ

∑
w
∥w∥2 (16)

where Loriginal is the original loss function, w represents the
weight of the model, and λ is the regularization coefficient.

Our model is trained using the Adam optimizer with an
initial learning rate of 0.001, a batch size of 32, and a
total number of 100 epochs. To prevent overfitting, we also
employ L2 regularization with a regularization parameter
λ set to 0.0001. After each epoch, we assess the model’s
performance on the validation set and adjust the learning
rate to avoid premature convergence. The enhancement in
model performance is based on the reduction in loss on the
validation set. If there is no further reduction in loss for
10 consecutive epochs, we halt training early. We list the
algorithm as follows.

Algorithm 1 POIs Embedding
Input: POI dataset: CPOI , FCPOI , SCPOI , TCPOI
Output: Embedding of SCPOI
1: Function 1: DTG(d)→ return graph data
2: Function 2: Rw(G)→ return random walk sequence
3: Function 3: Skip-gram(s)→ return embedding of SCPOI
4: G ← DTG(POI Dataset)
5: Si ← Rw(G)
6: for number of training steps(epochs) do
7: for all s in Si do
8: Y← Skip-Gram(s)
9: Compute loss
10: end for
11: end for
12: return Skip-Gram(SCPOI )

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
In addition to the spatial modeling technology utilized
in ecological construction and urban planning scenarios
mentioned above, data generalization is crucial when delving
into the factors influencing commodity consumptionmarkets.
For instance, the cigarette consumption market is influenced
by numerous factors, encompassing not only substantial
amounts of internal industry data such as the number of

Algorithm 2 POIs-GNN Training
Input: Grid dataset: C, X, Y

POI second-level embedding PE
Output: Model predicted value Y’
1: Function: Aggregation-function (PE)→ return grid
embedding

2: Initialize model
3: Set hyper-parameter
4: for all grid in grid dataset
5: for all POI in grid
6: x′= aggregation (PE)
7: x′= concat [x′; x]
8: end for
9: Construct a spatial graph with C using k-nearest
neighbors

10: Predict outcome Y′

11: Compute loss (Y’,Y)
12: Update the parameters
13: end for
14: return Y’

retailers and consumption rates but also external data sets that
impact the market, including consumer demographics and
holiday crowd flow. These data sets are often dynamic and
subject to change, with variations in distribution occurring
over time, geography, or other variables. Occasionally,
this may result in missing data. Consequently, out-of-
distribution generalization is essential for handling such data.
In this study, we opted for a dataset pertinent to cigarette
consumption for model evaluation purposes.
Datasets: We selected the cigarette dataset from

Chongqing city for our analysis. During the initial data
processing stage, we divided Chongqing into grid areas of
750 × 750 meters, resulting in a total of 5836 grid data
points. Each grid data set encapsulates information pertaining
to retail customers. This division was primarily influenced
by the distance that consumers travel to purchase cigarette
products, ensuring that adjacent grids exhibit both similarities
and differences. The dataset for each grid (buss-id) comprises
the following information:

1) C: This represents the grid coordinates selected from
the center of the grid, which contain longitude and
latitude information. As a result, it is a two-dimensional
dataset with a total of 5836∗2 data points.

2) X: This represents the original data of the grid,
including three dimensions of cigarette sales revenue,
number of cigarette vendors, and POIs in the grid.
Therefore, this dataset contains a total of 5836 ∗ 3 data
points.

3) Y: This indicates the predicted target value of the
model, reflecting the population in the grid. It only
contains one type of information, thus it is a one-
dimensional dataset with a total of 5836 data points.

In addition, a total of 612,078 POIs data were incorporated.
Each POI record encompasses the geographical coordinates
(latitude and longitude) of the POI, along with its first-level,
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second-level, and third-level classifications. During the
experiment, we partitioned the entire dataset into training,
validation, and testing sets in a ratio of 6:2:2. This division
was carried out for the purpose of training and evaluating the
entire model.
Models: The calculation process of our proposed approach

is detailed below. Firstly, urban grid data is selected, including
longitude and latitude coordinates, feature values X, target
values Y, and a large number of POIs. Secondly, DT is
used to form a graph data of POIs points, where POIs are
represented by their second-level category. Thirdly, a random
walk process is conducted on the POIs graph to obtain
corresponding sequences, which are then used to train the
second-level category embedding of POIs through the Skip-
Gram model. After obtaining the POIs embedding, it is
aggregated in each grid to obtain the grid embedding, which
is combined with the initial feature X to obtain enhanced
feature. Finally, all data is integrated and the GCN is used for
overall data training and fitting to obtain the final prediction
results.

This study aims to investigate the utilization of POIs
data embedding to enhance grid features and improve the
performance of GCN models. To accomplish this, we have
selected three fundamental GCN models, namely KCN, W-
GCN, and F-GCN, as the research subjects. By comparing
various embedding models and their strategies while employ-
ing the same dataset and evaluation criteria for comparison,
we ensure the objectivity and credibility of the results.
Finally, we will determine which method performs best in
practical applications based on the experimental outcomes
and provide valuable references for future research and
enhancement.
KCN: The calculation process of the model is as follows.

First, a dataset is selected, and the kNN algorithm is
employed along with coordinates to generate edges and their
corresponding weights. Second, the Radial Basis Function
(RBF) kernel function is utilized to process the adjacency
matrix. The RBF kernel function is a widely used technique
that can map data from a low-dimensional space to a high-
dimensional space, thereby making the data more linearly
separable in the higher-dimensional space. Finally, the model
is trained using the processed adjacency matrix and feature
inputs [8]. In this study, the k-nearest neighbors of the
processing point are selected, and their weights are defined
according to (17):

Ajk = exp
(
−

1
2ϕ2 ∥ cj − ck∥

2
2

)
,∀j, k ∈ βi (17)

where ϕ denotes the kernel length, which is a hyperparameter.
The square term represents the square of the distance between
two points. βi = {i} ∪ αi signifies the set encompassing data
point i and its neighbors, where αi denotes the neighbor set of
data point i in the training set. In this graph, when j and k are
adjacent to each other, edge (j, k) possesses a greater weight,
and vice versa.
W-GCN: The W-GCN is an optimization technique

designed to enhance the original GCNmodel. Its fundamental
principle involves employing a learnable weight matrix to

adjust the embedding dimension. In the W-GCN framework,
each layer’s input is intricately connected to the weight
matrix W. To process a data point, its k-nearest neighbors
are identified, and the corresponding edge weights are
established as the inverse of the distance between the two
points. The weighted GCN can be mathematically expressed
as (2) in the preceding text, which is based on the GCN.
F-GCN: F signifies the regional function. In this approach,

identify the k points that are closest to the current processing
point and assign edge weights based on the inverse of the
distance between these points, multiplied by their cosine
similarity in terms of feature vectors. The other calculation
processes align with the principles of W-GCN.

B. EVALUATION METRICS
In this research, we employ the following evaluation
metrics to gauge the precision of model predictions. These
metrics, commonly referred to as evaluation coefficients,
are primarily utilized to quantify the performance and
efficacy of the model. By leveraging these evaluation metrics,
we can gain a more comprehensive understanding of the
predictive capability, fitting accuracy, and stability of the
model.

(1) RMSE. The Root Mean Square Error is a widely
adopted metric in regression tasks to assess the accuracy
of predictive models on continuous data. It calculates the
square root of the mean of the squared differences between
predicted and actual values, providing an indication of the
average deviation between these two sets of values. The
smaller the RMSE value, the closer the predicted and actual
values are, suggesting a stronger predictive ability of the
model.

(2) MAE. The Mean Absolute Error is a commonly
adopted evaluation metric in regression predictive models,
which quantifies the discrepancy between predicted and
actual values. In essence, MAE computes the average of the
absolute deviations between predicted and actual outcomes.
A lower value of this metric signifies a reduced difference
between predicted and actual values, suggesting that the
model exhibits superior predictive capabilities.

C. ENHANCING FEATURE REPRESENTATION THROUGH
REGIONAL EMBEDDING TECHNIQUES
This study aims to enhance the accuracy of predictions
on grid data in urban areas. To accomplish this objective,
we conducted comparative experiments utilizing multiple
GCN models and incorporated diverse embedding strategies
for POIs data embedding within these models. Given that
the feature dimension of the grid is relatively low and
only approximately 5000 grids have data, while there are
over 600,000 point of POI data points, organizing the vast
number of POIs within the grid becomes a crucial aspect
of data processing and feature extraction. In light of these
considerations, we employ strategies outlined in Section III
to enhance regional feature organization. Our specific
aggregation strategies encompass attention mechanisms and
embedding combined with pooling.
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TABLE 1. The results of evaluation metrics.

FIGURE 1. The primary framework of the methodology.

The original method utilized raw data for predictions.
To investigate the optimal combination of embedding model
and embedding strategy, we conducted comparative exper-
iments by comparing this method with the results of POIs
data embedding under different embedding strategies. The
experimental findings are presented in Table 1. It can be
observed that, in terms of the RMSE metric, the strategy
of employing F-GCN model-based POIs embedding with
pooling achieves the best performance, improving by 12.91%
compared to the W-GCN model, which had the highest
performance among the raw data. In terms of the MAE
metric, the strategy of using W-GCN model-based POIs
embedding with attention mechanism achieves the best
performance, improving by 14.08% compared to the W-
GCN model, which had the highest performance among
the raw data. This indicates that our joint approach is
effective.

D. PERFORMANCE CHANGES WITH DIFFERENT NUMBER
OF NEIGHBORS
This study also investigates the impact of varying the number
of neighbors on the performance of KCN, W-GCN, and F-
GCN during graph construction. The results are presented in
Fig. 2, which illustrates the variations in RMSE and MAE
for these three models under both the original method and
the POIs embedding methods with attention mechanism and
pooling. The original method’s W-GCN model consistently
outperforms other models, as demonstrated in Fig. 2a, d,
regardless of the value of k . Conversely, when employing
pooling strategy with POIs embedding, the F-GCN model’s
performance becomes optimal as the value of k increases
(Fig. 2b, e). Similarly, the W-GCN model consistently sur-
passes the other two models when using attention mechanism
strategy with POIs embedding (Fig. 2c, f). This suggests
that the F-GCN model is more suitable for employing the
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FIGURE 2. RMSE and MAE over k .

pooling strategy when embedding POIs data, while the W-
GCN model is more appropriate for utilizing the attention
mechanism strategy.

V. CONCLUSION
This study introduces a novel approach that leverages GCN
and diverse POIs data embedding techniques to enhance
urban regional features. We employ crowdsourced POIs
data for feature embedding and explore various embedding
models and strategies to optimize the predictive accuracy
and computational efficiency of the model. In contrast
to conventional models in this field, our experimental
results suggest that our proposed approach demonstrates
superior accuracy in spatial data prediction. This implies
that our model can furnish dependable prediction outcomes
in practical applications, which is of paramount importance
for various domains such as urban planning and traffic
management. This research provides robust support for
addressing practical issues and serves as a valuable reference
for further refining and advancing spatial data prediction
methodologies.
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