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ABSTRACT Diagnosing bearing faults is crucial for maintaining, ensuring reliability, and extending the
lifespan of rotary machines. This process helps prevent unexpected downtime in industries, ultimately
reducing economic losses caused by the failure of rotary machines. Timely diagnosis of bearing faults
is crucial to prevent catastrophic breakdowns, minimize maintenance expenses, and ensure uninterrupted
productivity. With industries evolving rapidly and machines operating in increasingly diverse conditions,
traditional fault detection methods face limitations. Despite extensive research in recent decades, there is an
ongoing need for further advancements to enhance existing fault diagnosis techniques. This study addresses
these challenges by utilizing advanced machine learning algorithms Convolutional Neural Network (CNN),
Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), Gated Recurrent Unit Network
(GRU), Bidirectional LSTM, and for precise bearing fault diagnosis. Leveraging the CWRU dataset
encompassing diverse fault classes and machine conditions, a comprehensive data preprocessing pipeline
was executed to clean, normalize, and augment the dataset, ensuring model readiness and enhancing
performance. Performance analysis revealed the proposed models achieving remarkable accuracies on the
CWRU dataset. The CNN and LSTM models attained accuracies of 95%, while the RNN and GRU models
achieved accuracies of 97%. Additionally, the Bidirectional LSTM model yielded an accuracy of 96%.
These results signify substantial advancements in bearing fault diagnosis, emphasizing the models’ efficacy
in accurately detecting and categorizing faults within the 10 classes of the CWRU dataset. The findings
underscore the potential of advancedmachine learning techniques in revolutionizing fault diagnosis for rotary
machines, addressing the persistent need for more robust and accurate diagnostic methodologies.

INDEX TERMS Bearing fault, deep learning, intelligent solution, reliability, protection.

I. INTRODUCTION
Electrical devices are being used significantly in several
industrial uses. As the manufacturing of applications is
growing rapidly, machines are now working in unfavourable
conditions on daily basis. This condition leads to many
flaws in machinery. Such conditions also subject the machine
to extreme dampness and overloading situations, which
ultimately cause failure of machinery [1]. When the fault is
not identified early on stage, It may have disastrous effects in
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terms of adverse maintenance duration and expense, a drop
in productivity [2]. Each rotatory machinery holds a bearing
because its primary function is to minimize the friction
and sustain the load. The bearing is comprising of four
essential component parts: the cage, the inner race, the outer
race, and balls. The cage effectively holds the balls within
position between the races inside and outside, facilitating
unhindered and seamless rotation [3]. An impulsive force
is generated when an error on the one bearing’s area
collides with the area of another bearing. This defect has
been capitalized by various techniques for vibration analysis
and signal processing techniques. Bearing faults are most
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prevalent types of faults accounting of almost 30 percent
of all faults in the context of induction machinery defects.
Furthermore, a significant loss of assets and security can be
caused because bearing fault is a typical cause of the motor
shutting off. Pertaining these mentioned factors, bearing fault
diagnosis holds significant importance in both development
and engineering [4].

As the signal provides dynamic data regarding the
condition of the device, fault detection primarily depends on
feature extraction techniques. Specific features are exhibited
by vibration signal patterns as a result of defect in several
rotating components. Analysis of pattern irregularities helps
in the detection of anomalies in rotatable components and
plant machinery. In the similar context, several research have
discussed signal processing techniques like the three domains
are time, frequency, and combined time-frequency (similar to
wavelet transformation). The signals of vibration produced
by devices are frequently categorised as uncertainty because
of differences in friction, loading conditions, interactions
between various rotating components, bearing clearance as
well as nonlinear rigidity. Therefore, several researchers have
focused on nonlinear parameter estimation techniques [5].

Certain methods of fault diagnosis such as motor current
signature analysis (MCSA), stray flux monitoring (SFM) and
acoustic emission (AE) are commonly practised. Vibration
analysis is traditional and trustworthy method, however,
certain issues such as placement of vibration sensors, cost
and access makes it difficult to achieve practical application.
The Motor Current Signature Analysis (MCSA) offers a
non-invasive alternative to the traditional vibration analysis
system. The primary benefit of MCSA is that it doesn’t need
any access to specific sensors or bearing. However, MCSA
still has limitations as it does not provide a precise assessment
of the existing situation within the bearing condition [6],
[7]. There is a need of direct access to motor for AE
and stray flux methods. Numerous studies are currently
underway to discover the most optimal and efficient a
method for identifying bearing failure. Non-invasive methods
offer cost effectiveness and easy accessibility. Therefore,
the development of an efficient condition monitoring system
using a non-invasive method becomes imperative for early
detection of faults [8].

In the past few decades, there has been an extension
in digital signal processing for the purpose of identifying
bearing issues in induction motors. It interprets the statistical
data and generate reliable output. It is impossible to find
errors with the raw signals obtained from the experiment [9].
There are three method such as Analysis in the time,
frequency, or time-frequency domains that can be employed
to remove the characteristics. Furthermore, several research
have also considered hole as a faulty factor for the analysis
if bearing failure. Similarly, scratches on bearings have
a relatively high probability of occurrence and must be
taken into account when conducting bearing failure analysis.
Early detection of faults, particularly during the minor

stage, is crucial to reducing sudden breakdowns in industrial
settings. Therefore, research focusing on the detection of
scratches and minor faults deserves significant attention [10].
Bearing fault diagnosis depends on the use of Artificial

Intelligence (AI) and Machine Learning (ML) to improve
the Condition Monitoring (CM) system, ultimately leading
to improved motor reliability. The application of ML gets
globalized as it is being used in market analysis, telecom-
munication, weather prediction, image sensing, medical
diagnosis etc [11]. In order to detect the bearing fault (BF),
the traditional methods solely relied on principles at specific
rates of failure to identify the fault. However, there are
numerous concealed and distinctive interactions within the
information that could indicate the presence of a bearing
failure. It might be impossible for a human to understand
these relationships. Therefore, machine learning algorithms
can be implemented to identify the machine’s malfunction.
These creative approaches involve analysing the data, training
on it, and learning from it. Once these approaches are
trained and have enough knowledge, they use this data to
make the final choice regarding the existence of the bearing
fault [12]. Therefore, it is highly advantageous to utilize
artificial intelligence methods for creating a new system
based on knowledge. It is possible to detect bearing faults
at early stages which helps prevent significant equipment
damage and reduces overall operating expenses [13].

Bearing fault diagnosis has always remained a challenging
task. Therefore, it has always been an area of interest for
researchers. Several researchers have focused on applying
machine learning methods such as K nearest neighbour
(KNN), Artificial Neural Network (ANN), Deep Learning
(DL), Support Vector Machine (SVM), Decision Tree (DT)
etc [14]. According to Li [15], fault detection is considered
as classification problem where it is treated by categorizing
different types of machine faults. Features are derived off of
the machine’s signals. The authors focused on the vibration
acceleration signals because they can be collected easily
and have been extensively used in industries. However,
this also becomes the limitation of this study because it
neglects the other types of signals in machines. In recent
decade, deep learning model is considered as most effective
model for pattern recognition. It assists in overcoming the
challenges in current fault diagnosis system. The architecture
of deep learning shows a stack of network where information
from raw data can be collected. However, it is technically
expensive to apply this technique because the model contains
several numbers of layers [16].

Similarly, the authors of [17] utilized Convolution Neural
Network (CNN) which is a particular kind of deep learning
framework and Particularly developed for complex signals.
CNN is widely used in processing bearing fault signals and
has proven as an efficient approach for extracting features.
However, the result of this model Highly relies on the value
of the signal. This means that noisy and uneven data can
have a significant effect on the outcomes of the model.
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Guo et al. [18] introduced a learning rate hierarchy deep
convolutional neural network with adaptability for diagnos-
ing bearing flaws and assessing their severity. The network
consists of three stacked layers of pooling and convolution
below the top fully connected classifier. However, finding
the optimal architecture and hyperparameter settings can be
challenging.

In the similar context, Li et al. [19], stated a method known
as categorization of multi-modal deep support vectors using
the addition of similar function. In order to diagnose specific
health of the machinery, authors utilized stack denoises auto
encoder. They applied this method to signals that included
ambient noise and fluctuations in working conditions. The
results from the experiments demonstrate that the suggested
deep learning technique based on separation-fusion works
well for diagnosing faults in machinery. The complexity of
the proposed model makes the interpretability difficult to
attain in results. In the related study, Zhang et al. [20] utilized
an adaptive batch normalization technique to enhance the
neural network’s capability to adapt to different domains.
Furthermore, the study also showed that the results can be
effectively applied and adapted to various operating scenarios
in different types of machinery. The outcomes indicate that
deep learning is effective in extracting domain-invariant
features for bearing diagnosis. Although the study focuses on
the diagnosis of bearing faut, however, the performance and
usefulness of the model still needs to be studied. A pioneering
study from Jia et al. [21] visualized the kernels of the
convolutional layers in bearing fault diagnosis, providing
valuable insights into how neural networks perform their
convolutional operations effectively. However, the study
focuses on the visualization of convolution layer only. There
are several types of other layers such as pooling layer that
assist in diagnosis system.

Current bearing fault diagnosis techniques, including
vibration analysis and traditional signal processing methods,
have several limitations. Firstly, these techniques often rely
on manual inspection or periodic monitoring, which can
result in missed or delayed detection of faults. Additionally,
they struggle to effectively differentiate between normal
operating conditions and early-stage fault signatures, leading
to false alarms or overlooked issues. Furthermore, the
complexity of machinery dynamics and the presence of
background noise pose significant challenges in accurately
identifying subtle fault patterns. To address these limitations,
this study proposes a novel approach leveraging deep learning
techniques for bearing fault diagnosis. Deep learning offers
several advantages over traditional methods, including its
ability to automatically learn relevant features from raw
sensor data, its capacity to handle complex nonlinear relation-
ships, and its potential for continuous learning and adaptation
to changing operating conditions. This paper presents a com-
prehensive analysis of multiple deep learning architectures,
including Convolutional Neural Networks (CNNs), Gated
Recurrent Units (GRUs), Long Short-Term Memory net-
works (LSTMs), Bidirectional LSTM, and Recurrent Neural

Networks (RNNs), for bearing fault diagnosis. By harnessing
the power of deep learning, I aim to overcome the limitations
of current techniques and enhance the accuracy and efficiency
of fault detection in industrial machinery. This research
contributes to the existing body of knowledge by offering a
systematic evaluation of deep learning models for bearing
fault diagnosis, highlighting their strengths and limitations
compared to traditional methods.

The remaining paper is organized as follows: Section II
describes the materials and methods applied for the proposed
work. Section III explains the results and discussion, and
finally, the paper is concluded in the conclusion section.

II. MATERIALS AND METHODOLOGY
A. DATASET DESCRIPTION
The dataset utilized in this study originates from the Case
Western Bearing Data Center, representing a collective
contribution aimed at providing motor performance data
available on Kaggle. It comprises comprehensive information
concerning the assessment of motor performance, encom-
passing various components:

• Equipment: The test bench employed for motor
performance evaluation involves a motor generating
2 horsepower, complemented by a torque transducer,
dynamometer, and control electronics.

• Test Bearings: Defects were intentionally induced at
a single point within the test bearings using Electri-
cal Discharge Machining (EDM). The sizes of these
defects are measured in inches (millimeters) and
include diameters of 0.007 inches (0.178 millimeters),
0.014 inches (0.356 millimeters), and 0.021 inches
(0.533 millimeters).

• Time Series and Bearing Parts: Each defect is associated
with a time series, specifically located in one of three
segments of the bearing: ball, inner race, or outer race.

• Telemetry Measurements: The data includes telemetry
readings from three accelerometers strategically posi-
tioned in the system: Drive end (DE), Fan end (FE),
and Base (BA). Experimental Conditions: The dataset
corresponds to a specific set of conditions:

• Load: A 1 HP load applied to the motor.
• Rotational Speed: Motor shaft rotating at a speed of
1772 rotations per minute (rpm).

• Sampling Frequency: Accelerometer data was sampled
at a frequency of 48 kHz.

Extracted Features: To facilitate fault identification and
prediction, nine essential features were derived from the
data. These features were calculated based on segments of
2048 data points, corresponding to a duration of 0.04 seconds
at the 48 kHz accelerometer sampling frequency. The
computed features include:

max = max(data) (1)

min = min(data) (2)

mean =
sum(data)

n
(3)
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sd =

√√√√1
n

n∑
i=1

(datai − mean)2 (4)

rms =

√√√√1
n

n∑
i=1

(
data2i

)
(5)

skewness =

1
n

∑n
i=1(datai − mean)3

sd3
(6)

kurtosis =

1
n

∑n
i=1(datai − mean)4

sd4
(7)

Crest =
max
rms

(8)

Form =
rms
mean

(9)

Following is the detail of parameters: Maximum or max
encapsulate all the highest recorded sensor value within
the dataset. Whereas its counterpart is Minimum or min
which records the lowest sensor value of the dataset. Mean
parameter shows the average of the sensor reading and offer
measure of central tendency. Root mean square provides
a sense of the amplitude of the data by defining the total
magnitude of the readings. Skewness explains the form of the
dataset by reflecting the asymmetry of the data distribution.
Similarly, kurtosis reveals the existence of outliers or extreme
values by displaying the form of the data’s distribution. The
crest factor is the ratio of the peak value of the waveform to
its rms (Root Mean Square) value. The form factor is the ratio
of rms value to the average value of the waveform.

The provided dataset encompasses a range of class
labels that delineate distinct fault types and conditions
within the bearing system. Each class label denotes specific
fault configurations, encompassing varying defect sizes and
locations across different parts of the bearing assembly.
Below are detailed descriptions of each class label and its
corresponding fault type within the system:

• Ball_007_1: Refers to a fault in the ball bearing with
a diameter defect of 0.007 inches (0.178 millimeters).
This class represents the specific type of fault in the ball
bearing with the mentioned defect size.

• Ball_014_1: Indicates a fault in the ball bearing with
a diameter defect of 0.014 inches (0.356 millimeters).
Similar to the previous class, this represents a different
defect size within the ball bearing.

• Ball_021_1: Represents a fault in the ball bearing with
a diameter defect of 0.021 inches (0.533 millimeters).
This class signifies yet another defect size within the ball
bearing category.

• IR_007_1: Denotes a fault in the inner race of
the bearing with a diameter defect of 0.007 inches
(0.178 millimeters). This class pertains specifically to
faults occurring in the inner race of the bearing with the
mentioned defect size.

• IR_014_1: Refers to a fault in the inner race of
the bearing with a diameter defect of 0.014 inches
(0.356 millimeters). Similar to the previous class, this

represents a different defect size within the inner race
category.

• IR_021_1: Signifies a fault in the inner race of
the bearing with a diameter defect of 0.021 inches
(0.533 millimeters). This class represents yet another
defect size within the inner race category.

• Normal_1: Represents the normal or healthy state of
the system without any introduced faults or defects.
This class serves as the baseline or reference for normal
operating conditions.

• OR_007_6_1: Denotes a fault in the outer race of
the bearing with a diameter defect of 0.007 inches
(0.178 millimeters). This class pertains specifically to
faults occurring in the outer race of the bearing with the
mentioned defect size.

• OR_014_6_1: Represents a fault in the outer race of
the bearing with a diameter defect of 0.014 inches
(0.356 millimeters). Similar to the previous class, this
represents a different defect size within the outer race
category.

• OR_021_6_1: Signifies a fault in the outer race of
the bearing with a diameter defect of 0.021 inches
(0.533 millimeters). This class represents yet another
defect size within the outer race category.

B. DATASET PREPROCESSING
Effective data preprocessing is a critical phase in preparing
raw datasets for machine learning models. In the context
of our study, several essential preprocessing steps were
performed to refine and optimize the dataset before model
training and testing.

1) FEATURE EXTRACTION AND TARGET DEFINITION
The initial dataset was structured to encapsulate a range of
features relevant to motor performance evaluation. Features
such as maximum, minimum, mean, standard deviation,
RMS, skewness, kurtosis, crest factor, and form factor
were extracted to characterize distinct time segments within
the data. Simultaneously, class labels representing various
fault types and normal operational conditions were defined,
forming the target variable for classification.

2) DATA SEGREGATION
The features and target labels were segregated into separate
entities, with features stored in X and target labels in y.

3) ENCODING CATEGORICAL LABELS
To facilitate model training, categorical class labels were
encoded into numerical representations using LabelEncoder,
ensuring compatibility with machine learning algorithms.

4) TRAIN-TEST SPLIT
The dataset was partitioned into training and testing sets using
train_test_split. This separation allowed for the assessment of
model performance on unseen data, with 85
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5) FEATURE SCALING
Standardization of feature values was executed through
StandardScaler, ensuring uniformity by centering features
around zero mean and scaling to unit variance. This step
aids in preventing certain features from disproportionately
influencing model training.

6) DATA RESHAPING
Lastly, to accommodate specific model requirements, the
feature data was reshaped by adding an additional axis,
converting the shape to a format compatible with models
expecting three-dimensional inputs.

These preprocessing steps collectively refine the dataset,
ensuring that features are appropriately scaled, encoded, and
structured for optimal utilization in training machine learning
models to predict and classify fault types within the motor
performance assessment domain.

C. PROPOSED ALGORITHMS
1) CONVOLUTION NEURAL NETWORK (CNN)
In image processing and natural language processing, convo-
lutional neural networks (CNNs) are a type of neural network
with convolution that is subsequent computation as well as
significant structure. Convolutional and pooling layers are
present in each CNN hidden layer. The convolutional layer
maps the nearby signal of the preceding layer to the following
layer using a shared filter weights to extract characteristics
from the signal received. Shared weights provide substantial
advantages and significantly lower the processing burden
for difficult nonlinear transformations. The vibration signal
in this study is a one-dimensional time series, therefore
one-dimensional convolution was applied.

yi+1
i (j) = k ji × x i(j) + bji (10)

This equation determines every single neuron’s output in the
layer following it. It integrates the input from the preceding
layer with the weight and bias related to that neuron. This
process is repeated for each neuron in the layer under
consideration. The result of a layer of a neural network is
represented by this equation. For a particular neuron (i) in that
layer, it determines the value for the following layer (l+1).
It’s determined by a weight (K) and bias (b) associated with
the l-th layer and the i-th filter. The input value (xl) from the
previous layer (j) is multiplied by both bias and weight to
determine the value [22].

Pi+1
i (j) =

max
(j− 1)W + 1 ≤ t ≤ jW

{
qli(t)

}
(11)

A pooling procedure is explained by the second equation. In a
neural network, we often need to minimise the quantity of
data after extracting features via convolution. Max-pooling is
a common method where, for each region, the largest value
is selected. The equation demonstrates how this operation
is applied to obtain values for the next layer. The equation
describes the outcome of a pooling procedure, in which we
choose certain values from a set. It specifically describes the

TABLE 1. CNN model summary.

outcome for the i-th channel in the (l+1)-th layer following
pooling. The highest value is chosen from a range of values
in the preceding layer, from (j1) W+1 to jW. This is carried
out for every neuron in the l-th layer (i(t)), where ‘w’ stands
for the width of the kernel for pooling [23].

Table 1 provides a summary of the architecture for CNN
model. The model was trained using the Adam optimizer,
with a sparse categorical cross-entropy loss function and
softmax activation function.

D. LONG SHORT-TERM MEMORY
Predictive modelling challenges involving prediction of time
series are complex. The issues of time series prediction in pre-
dictive modelling are complicated. Time series, as opposed
to regression predictive modelling, also adds complexity by
establishing a connection between the sequences of the input
variables. A strong relations of neural networks developed to
manage a series dependency are recurrent neural networks.
The Long Short-Term Memory network, often known as
the LSTM network, is a form of RNN utilised in machine
learning because very complex designs may be learned.
It was trained via backpropagation over time. It is used to
construct large recurrent networks in order to solve complex
sequence problems in machine learning and deliver cutting-
edge results. In contrast to neurons, memory blocks in LSTM
networks are linked by layers.

it = σ (wi× ht − 1 + xt + bi) (12)

ft = σ (wf × ht − 1 + xt + bf ) (13)

ot = σ (wo× ht − 1 + xt + bo) (14)

LSTM networks are a distinct subclass of preferred
recurrent neural networks at handling sequential input. They
do this by including a special gating device that regulates the
information flow inside the network. The idea of LSTM was
presented in 1997 by Hochreiter and Schmidhuber, aiming to
improve the modelling of Long-range connections between
temporal sequences, a task often challenging for conventional
Recurrent Neural Networks (RNNs). The three main gates
that are utilized are the input gate, the forget gate, and the
output gate make up each LSTM unit. These gates serve
as filters, selecting the data that should be left to enter the
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TABLE 2. LSTM model summary.

cell. An activation function sigmoid, which generates values
between zero and one and effectively functions as an on-
off switch, controls how they operate. Information passes
through a gate when it is open (value near one) and is stopped
when it is closed (value near zero) [24].
Particularly, ‘‘it’’ stands for the input gate, ‘‘ft’’ for the

forget gate, and ‘‘ot’’ for the output gate. The numbers are
kept within the range of zero and one due to the sigmoid
function. ‘‘ht-1’’ is the output from the prior Block of LSTM
at time-step ‘‘t-1,’’ ‘‘xt’’ is the input at the present time-
step, and ‘‘wi,’’ ‘‘wf,’’ and ‘‘wo’’ are the weights for the
corresponding gates. ‘‘bi,’’ ‘‘bf,’’ and ‘‘bo’’ are the biases for
the corresponding gates [25].

Table 2 provides a summary of the architecture for LSTM
model. The model was trained using the Adam optimizer,
with a sparse categorical cross-entropy loss function and
softmax activation function.

E. RECURRENT NEURAL NETWORK
A type of artificial neural network called a recurrent neural
network (RNN) is one where relationships among nodes cre-
ate a focused loop.With this design, the network canmaintain
a state over multiple time step. Recurrent neural networks
(RNNs) are a subset of artificial neural networks that are
specifically designed to process sequential data. Because of
their proficiency in processing sequences, they are especially
well-suited for a variety of tasks involving ordered data,
including natural language processing, speech recognition,
time series analysis, and other sequential applications. The
use of feedback loops is a crucial idea that supports the
operation of the RNN. The purpose of these feedback loops
is to gather and store data from previous network states,
which they then use to influence predictions and output
generation. RNNs are an essential tool for tasks that need
temporal dependencies and context preservation because of
their iterative process, which enables them to demonstrate
a unique capacity to recall and take into consideration the
context of previous parts within a sequence [28]. The input
layer of a neural network, denoted by the letter ‘‘x,’’ is where

FIGURE 1. Structure of recurrent neural network.

TABLE 3. RNN model summary.

the first data enters the network and is processed before being
sent to the middle layer.

Several hidden layers, each having unique weights, biases,
and activation functions, may be included in the intermediate
layer, generally represented by the letter ‘‘h.’’ A recurrent
neural network is a possibility if working with a neural
network in which the hidden layer parameters don’t depend
on the preceding layer, i.e., the network has no memory.
By establishing the activation algorithms and parameters such
that all hidden layers have the same values, a recurrent neural
network makes setup easier. Rather than generating several
discrete hidden layers, it combines them into a single layer
and iterates the procedure as frequently as required. As a
result, the network becomes more efficient and can handle
positions that don’t need reference or memory maintenance.

Table 3 provides a summary of the architecture for RNN
model. The model was trained using the Adam optimizer,
with a sparse categorical cross-entropy loss function and
softmax activation function.

F. GATED RECURRENT UNIT NETWORKS
GRU is made to handle subsequent data, like voice, text,
and time-series data, much like LSTMs. GRU’s fundamental
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FIGURE 2. Structure of gated recurrent unit networks.

TABLE 4. GRU model summary.

idea is the application of gating mechanisms, which are
essential in figuring out how the hidden state of the network
changes with each passing time step. By acting as controllers,
these gating mechanisms control the information entering
and departing the network. The reset gate and the update
gate, two essential gating processes, are integrated into the
GRU. The update gate determines how much of the new data
has to be utilised to change the hidden state, while the reset
gate controls how much the previously hidden state ought
to be forgotten by the network. This updated hidden state is
employed in order to compute the GRU’s output, ensuring
that relevant data is collected, and memory and context are
managed effectively [29].

Table 4 provides a summary of the architecture for GRU
model. The model was trained using the Adam optimizer,
with a sparse categorical cross-entropy loss function and
softmax activation function.

G. BI-DIRECTIONAL MODEL
Bidirectional LSTM is used in sequence modelling. Two
LSTM layers are used in this process: one for forward data
processing and another for backward data processing. This
method is frequently used in tasks including natural language
processing. This strategy aims to improve the model’s
comprehension of the connections between sequences, for
example, by making it more aware of the words that
come before and after a given word in a phrase. Two
distinct unidirectional LSTM networks, one for processing
the sequence in its original order and the other for processing
it in reverse, make up the design of a bidirectional LSTM.
The output of each of these LSTM networks is a probability
vector. The information from these two probability vectors

FIGURE 3. Structure of Bi-directional LSTM model.

TABLE 5. Bi-directional LSTM model summary.

is combined in the model’s final output, which enables the
model to capture a more complete picture of the sequential
data [31].

Table 5 provides a summary of the architecture for
Bidirectional model. The model was trained using the
Adam optimizer, with a sparse categorical cross-entropy loss
function and softmax activation function.

III. RESULTS AND DISCUSSIONS
The proposed model evaluates algorithm performance
using metrics such as precision, recall, F1 score, and
accuracy. Their mathematical notations are presented in
equations (15)-(18). F1 score, a crucial machine learning
parameter, provides insights into algorithm accuracy by
combining precision and recall performance. It gauges how
accurately the model predicts results across the entire dataset.
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It’s important to note that achieving reliable F1 score results
requires a balanced dataset. Precision, another evaluation
metric, measures the proportion of accurate positive class
predictions, indicating how many positive predictions were
correct. Recall evaluates the model’s ability to identify
positive instances by dividing correctly classified positive
samples by the total number of positive samples. A higher
recall implies a better ability to detect positive samples.
Similarly, accuracy is an evaluation metric that calculates
the number of accurate predictions made by the algorithm
in relation to the total predictions. True positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN)
are the four numbers that represent the quantity of positives.

Precision =
TP

TP+ FP
(15)

Sensitivity =
TP

TP+ FN
(16)

Specificity =
TN

TN + FP
(17)

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(18)

A. UNDERSTANDING THE CONFUSION MATRIX:
ANALYZING MODEL PERFORMANCE
The confusion matrix is a pivotal evaluation tool in machine
learning, offering a comprehensive breakdown of model
performance across distinct classes. It presents a tabulated
representation where each row corresponds to the actual
classes, and each column represents the predicted classes.
This matrix aids in assessing the classification model’s accu-
racy by revealing TP, TN, FP, and FN. In the context of this
evaluation, multiple models CNN, GRU, LSTM, RNN, and
Bidirectional-LSTM are assessed based on their confusion
matrices, highlighting their accuracies and misclassifications
within each class as shown in Figure 4. Each model’s
performance is analyzed across a spectrum of classes, each
comprising a specific number of instances, providing a
detailed understanding of the models’ predictive capabilities
across CWRU dataset and class distributions.

• The classification model Bidirectional LSTM demon-
strated an overall accuracy of 96%. Assessing individual
classes, for class 0, out of 32 instances, the model
correctly predicted 30, resulting in an accuracy of
93.75%. However, it misclassified 1 instance each as
class 2 and class 8. Class 1 displayed an accuracy of
87.8%, with 36 out of 41 instances correctly classified,
but 5 instances were wrongly labeled as class 8. Class 2
showed an accuracy of 90.48%, accurately predicting
38 out of 42 instances. Nevertheless, it misclassified
1 instance each as class 1 and class 5, and 2 instances as
class 8. Class 3 achieved a perfect 100% accuracy, cor-
rectly predicting all 36 instances. Similarly, class 4 also
achieved a perfect 100% accuracy, with all 31 instances
correctly classified. Class 5 demonstrated a perfect
100% accuracy, correctly predicting all 30 instances.

For class 6, the accuracy stood at 97.44%, with 38 out
of 39 instances correctly classified, but 1 instance was
misclassified as class 1. Class 7 showed a perfect
accuracy of 100%, correctly classifying all 36 instances.
Class 8 had an accuracy of 78.57%, correctly classifying
22 out of 28 instances, while misclassifying 1 instance
as class 0, 2 instances as class 1, and 3 instances as
class 2. Finally, class 9 achieved a perfect accuracy of
100%, correctly predicting all 30 instances. Overall, the
model performed exceptionally well in classes 3, 4, 5,
7, and 9, while encountering challenges in accurately
distinguishing classes 1, 2, 6, and 8, resulting in a
relatively lower accuracy for these classes.

• The classification model CNN demonstrated an overall
accuracy of 95%. Looking into individual classes, for
class 0, out of 32 instances, themodel correctly predicted
31, resulting in an accuracy of 96.88%. However,
it misclassified 1 instance as class 8. Class 1 displayed an
accuracy of 87.8%, with 36 out of 41 instances correctly
classified. Nevertheless, 1 instance was misclassified
as class 6 and 4 instances as class 8. Class 2 showed
an accuracy of 85.71%, accurately predicting 36 out
of 42 instances. However, it misclassified 1 instance
as class 0, 1 instance as class 5, and 4 instances as
class 8. Class 3 achieved a perfect accuracy of 100%,
correctly predicting all 36 instances. Similarly, class
4 also achieved a perfect accuracy of 100%, with all
31 instances correctly classified. Class 5 demonstrated
a perfect accuracy of 100%, correctly predicting all
30 instances. For class 6, the accuracy stood at 100%,
with all 39 instances correctly classified. Class 7 showed
a perfect accuracy of 100%, correctly classifying all
36 instances. Class 8 had an accuracy of 85.71%,
correctly classifying 24 out of 28 instances, while
misclassifying 3 instances as class 1 and 1 instance as
class 2. Finally, class 9 achieved a perfect accuracy of
100%, correctly predicting all 30 instances. Overall, the
model performed exceptionally well in classes 3, 4, 5,
6, 7, and 9, while encountering challenges in accurately
distinguishing classes 0, 1, 2, and 8, resulting in a
relatively lower accuracy for these classes.

• The classification model GRU demonstrated an overall
accuracy of 97%. It showcased strong performance
across various classes. For class 0, out of 32 instances,
the model correctly predicted 30, resulting in an accu-
racy of 93.75%. However, it misclassified 2 instances
as class 8. Class 1 demonstrated a high accuracy of
97.56%, with 40 out of 41 instances correctly classified,
but 1 instance was wrongly labeled as class 8. Class
2 had an accuracy of 92.86%, accurately predicting
39 out of 42 instances. Nevertheless, it misclassified
1 instance as class 5 and 2 instances as class 8. Class
3 had a perfect accuracy of 100%, correctly predicting all
36 instances. Similarly, class 4 achieved 100% accuracy
with all 31 instances correctly classified. Class 5 showed
a perfect accuracy of 100%, correctly predicting all
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30 instances. For class 6, the accuracy stood at 94.87%,
with 37 out of 39 instances correctly classified, but
2 instances were misclassified as class 1. Class 7 demon-
strated perfect accuracy of 100%, correctly predicting
all 36 instances. Class 8 had an accuracy of 85.71%,
correctly classifying 24 out of 28 instances, while
misclassifying 2 instances as class 2 and 2 instances
as class 3. Finally, class 9 achieved a perfect accuracy
of 100%, correctly predicting all 30 instances. Overall,
the model performed admirably across most classes,
particularly excelling in classes 3, 4, 5, 7, and 9,
while encountering more challenges in distinguishing
classes 0, 2, and 8.

• The classification model LSTM exhibited an overall
accuracy of 95%. Analyzing individual classes, for
class 0, out of 32 instances, the model correctly
predicted 29, resulting in an accuracy of 90.63%.
However, it misclassified 3 instances as class 8. Class
1 showed an accuracy of 92.68%, with 38 out of
41 instances correctly classified, but 3 instances were
wrongly labeled as class 8. Class 2 had an accuracy of
80.95%, accurately predicting 34 out of 42 instances.
Nevertheless, it misclassified 1 instance as class 5 and
7 instances as class 8. Class 3 achieved a perfect
accuracy of 100%, correctly predicting all 36 instances.
Similarly, class 4 also achieved 100% accuracy, with
all 31 instances correctly classified. For class 5, the
accuracy stood at 96.67%, with 29 out of 30 instances
correctly classified, but 1 instance was misclassified as
class 2. Class 6 demonstrated perfect accuracy of 100%,
correctly predicting all 39 instances. Class 7 showed
perfect accuracy of 100%, correctly classifying all
36 instances. Class 8 had an accuracy of 89.29%,
correctly classifying 25 out of 28 instances, while
misclassifying 2 instances as class 2 and 1 instance as
class 3. Finally, class 9 achieved a perfect accuracy of
100%, correctly predicting all 30 instances. Overall, the
model performed exceptionally well in classes 3, 4, 6,
7, and 9, while encountering challenges in accurately
distinguishing classes 0, 1, 2, 5, and 8, which resulted
in a relatively lower accuracy for these classes.

• The classification model RNN demonstrated an overall
accuracy of 97%. Assessing individual classes, for
class 0, out of 32 instances, the model correctly
predicted 30, resulting in an accuracy of 93.75%.
However, it misclassified 2 instances as class 2. Class
1 displayed an accuracy of 97.56%, with 40 out of
41 instances correctly classified, but 1 instance was
wrongly labeled as class 8. Class 2 showed an accuracy
of 95.24%, accurately predicting 40 out of 42 instances.
Nevertheless, it misclassified 1 instance each as class
5 and class 8. Class 3 achieved a perfect accuracy of
100%, correctly predicting all 36 instances. Similarly,
class 4 also achieved a perfect accuracy of 100%,with all
31 instances correctly classified. Class 5 demonstrated
a perfect accuracy of 100%, correctly predicting all

30 instances. For class 6, the accuracy stood at 100%,
with all 39 instances correctly classified. Class 7 showed
a perfect accuracy of 100%, correctly classifying all
36 instances. Class 8 had an accuracy of 85.71%,
correctly classifying 24 out of 28 instances, while
misclassifying 3 instances as class 1 and 1 instance as
class 2. Finally, class 9 achieved a perfect accuracy of
100%, correctly predicting all 30 instances. Overall, the
model performed exceptionally well in classes 3, 4, 5,
6, 7, and 9, while encountering challenges in accurately
distinguishing classes 0, 1, 2, and 8, resulting in a
relatively lower accuracy for these classes.
Examining the models’ performances against each
other, it’s evident they exhibit different strengths and
weaknesses across various classes, impacting their
overall accuracy. The Bidirectional LSTM and the
CNN models demonstrate relatively similar overall
accuracies, standing at 96% and 95%, respectively. Both
models excel in certain classes—3, 4, 5, 7, and 9—with
perfect accuracies, yet struggle with distinguishing
classes 1, 2, 6, and 8, resulting in lower accuracies
for these classes. Meanwhile, the GRU model slightly
outperforms the others with an overall accuracy of
97%. It showcases robust performance across most
classes, achieving perfect accuracies in 3, 4, 5, 7,
and 9. However, it encounters challenges in accurately
classifying instances in classes 0, 2, and 8. The LSTM
model performs similarly to the CNN model, both
exhibiting an overall accuracy of 95%. They achieve
perfect accuracies in certain classes—3, 4, 6, 7, and
9—but struggle with distinguishing classes 0, 1, 2, 5,
and 8, leading to lower accuracies in these categories.
Finally, the RNN model also attains an overall accuracy
of 97%, matching the performance of the GRU model.
It demonstrates exceptional accuracy in classes 3, 4, 5, 6,
7, and 9 but faces challenges in accurately distinguishing
classes 0, 1, 2, and 8.

B. UNDERSTANDING THE TRAINING AND VALIDATION:
ANALYZING MODEL PERFORMANCE
Training: This phase involves iteratively exposing the
model to the training dataset, allowing it to learn patterns,
relationships, and features within the data. Validation: It’s
a phase where the model’s performance is assessed on
a separate dataset (not used in training) to evaluate its
generalization ability. Accuracy: Accuracy measures the
correctness of predictions made by a model. It calculates the
ratio of correctly predicted instances to the total instances in
the dataset. It’s a straightforward metric to assess how well
a model performs overall. Loss: Loss, also referred to as
error, measures the disparity between predicted values and the
actual values in a dataset. Lower loss values indicate that the
model’s predictions are closer to the actual outcomes. A lower
loss suggests better alignment and a better-performing model
in terms of minimizing prediction errors. The following
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FIGURE 4. Performance analysis of deep learning model on CWRU dataset.

visualizations (Figure 4-9) provide a comprehensive analysis
of how our proposed models trained and validated over
100 epochs. Each image consists of two key parts. The first
part shows how the training and validation loss changed over
time, which can tell us how well the models are learning and
whether they are overfitting. The second part shows how the
training and validation accuracy changed over time, which
can tell us how well the models are able to generalize to
new data. The red line shows the training behavior, and the
blue line shows the validation behavior. This lets us see how

the models’ performance changed over time and identify any
patterns or trends.

1) BIDIRECTIONAL LSTM
• The training loss details for the Bidirectional LSTM
model portray the range of errors encountered during its
training phase. The maximum observed loss throughout
training peaked at 1.9628, indicating instances where the
model experienced relatively high errors. On the other
hand, the minimum loss achieved during training was
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notably lower at 0.0844, signifying epochs where the
model performed relatively well in minimizing errors.
The mean training loss calculated across the training
data stood at 0.2621, representing the averagemagnitude
of errors across the dataset. The standard deviation,
measuring the spread or variability of these errors
around the mean, was observed at 0.2606, indicating the
extent of deviation of individual lossmeasurements from
the mean value. The RMS training loss, calculated as
0.3696, provided an aggregate measure of the overall
magnitude of errors observed during the entire training
process. Additionally, the skewness of the training loss
distribution was found to be 3.6753, indicating a notable
asymmetry in the distribution of loss measurements.
Moreover, the kurtosis of the training loss distribution
was calculated at 18.3128, suggesting a tendency toward
a heavy-tailed behavior or a presence of outliers in the
distribution of training loss values.

• The validation loss details shed light on the Bidirectional
LSTM model’s performance when exposed to unseen
validation data. Within this evaluation, the model’s
maximum observed loss peaked at 1.6016, pinpointing
instances where higher errors were encountered during
validation. Conversely, the minimum loss recorded
at 0.1126 signifies epochs where the model notably
excelled, displaying significantly lower errors on this
unseen validation data. The mean loss of 0.2563 across
the validation dataset serves as a representation of
the average error magnitude, offering insights into the
central tendency of these validation losses. Meanwhile,
the standard deviation at 0.1955 measures the variability
or spread of these validation errors around this mean,
signifying the extent of deviation of individual loss mea-
surements. The RMS loss of 0.3224 provides an aggre-
gate measure of the overall error magnitude observed
throughout the entire validation process. Additionally,
the skewness of 3.9309 indicates a notable asymmetry
in the distribution of validation loss measurements,
suggesting a lack of symmetry in this distribution.
Moreover, the kurtosis value of 21.5284 indicates a
tendency toward a heavy-tailed behavior or the potential
presence of outliers in the distribution of validation loss
values. This metric highlights potential deviations from
a standard normal distribution in the validation loss
distribution. Altogether, these metrics collectively pro-
vide comprehensive insights into the model’s validation
performance, detailing average error, error variability,
and distribution characteristics of the validation loss.

• The training accuracy details showcase the perfor-
mance of the model across different training instances.
The maximum accuracy achieved during training was
96.93%, representing the highest performance on the
training dataset. On the lower end, the minimum
accuracy observed was 22.86%, indicating variations
and challenges the model encountered during different
training epochs. The mean training accuracy computed

across the entire training duration stood at 89.73%,
showcasing the average accuracy attained by the model
during the training process. The standard deviation,
a measure of the spread or variability around the
mean accuracy, was calculated at 10.47%, signifying
the extent of deviation of individual accuracy measure-
ments from the mean value during training. The RMS
accuracy, computed as 90.34%, provided an aggregate
measure of the overall accuracy magnitude observed
throughout the training process. The skewness of the
accuracy distribution was determined to be -3.4242,
indicating an asymmetry in the distribution of accuracy
measurements. Additionally, the kurtosis of the accuracy
distribution was observed at 16.3713, suggesting a
tendency toward a moderately heavy-tailed behavior or
certain outliers in the distribution of accuracy values.

• The validation accuracy details provide a comprehensive
overview of the model’s performance on unseen valida-
tion data. The maximum validation accuracy recorded
during evaluation reached 96.23%, representing the
highest performance on the validation dataset. Con-
versely, the minimum validation accuracy observed was
32.17%, indicating variations in the model’s perfor-
mance across different subsets or evaluation instances
within the validation data. The mean validation accuracy
computed across the validation dataset stood at 89.78%,
showcasing the average accuracy achieved by the model
on unseen validation data. The standard deviation,
measuring the variability or spread of these validation
accuracies around the mean, was relatively low at
8.81%, indicating a tighter distribution of individual
accuracy measurements around the mean value during
validation. The RMS validation accuracy, calculated as
90.21%, provided an aggregate measure of the overall
accuracy observed throughout the validation process.
Additionally, the skewness of the validation accuracy
distribution was determined to be -3.4801, indicating
a certain degree of asymmetry in the distribution
of accuracy measurements. Moreover, the kurtosis of
the validation accuracy distribution was observed at
17.3760, suggesting a tendency toward a moderately
heavy-tailed behavior or potential outliers in the distri-
bution of accuracy values.

2) CONVOLUTION NEURAL NETWORK
• The training loss statistics for the CNN (Convolutional
Neural Network) model showcase the range of errors
encountered during its training phase. The maximum
observed loss throughout training peaked at 1.9597,
indicating instances where the model experienced
relatively high errors. Conversely, the minimum loss
achieved during training was notably lower at 0.0914,
signifying segments or epochs where the model per-
formed relatively well in minimizing errors. The mean
training loss calculated across the training data stood
at 0.1934, representing the average magnitude of errors
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FIGURE 5. Combined graph displaying the training and validation loss and accuracy trends for Bidirectional LSTM.

across the dataset. The standard deviation, measuring
the spread or variability of these errors around the
mean, was observed at 0.2280, indicating the extent
of deviation of individual loss measurements from the
mean value. The RMS training loss, calculated as
0.2990, provided an aggregate measure of the overall
magnitude of errors observed during the entire training
process. Additionally, the skewness of the training loss
distribution was found to be 5.7152, indicating a notable
asymmetry in the distribution of loss measurements.
Moreover, the kurtosis of the training loss distribution
was calculated at 37.5080, suggesting a heavy-tailed
behavior or a substantial presence of outliers in the
distribution of training loss values.

• The validation loss statistics for the CNN (Convolu-
tional Neural Network) model offer insights into its
performance on unseen validation data. The maximum
validation loss observed during evaluation peaked at
1.5829, indicating instances where the model encoun-
tered relatively higher errors on the validation dataset.
Conversely, the minimum validation loss achieved
was notably lower at 0.1292, suggesting segments or
epochs where the model performed relatively well,
minimizing errors on unseen data. The mean validation
loss computed across the validation dataset stood at
0.2108, representing the average magnitude of errors
encountered by themodel on unseen validation data. The
standard deviation, measuring the spread or variability
of these validation errors around the mean, was observed
at 0.1729, highlighting the extent of deviation of indi-
vidual loss measurements from the mean value during
validation. The root mean square (RMS) validation loss,
calculated as 0.2726, provided an aggregate measure
of the overall magnitude of errors observed throughout
the validation process. Additionally, the skewness of the
validation loss distribution was determined to be 5.8058,
indicating a notable asymmetry in the distribution of
validation loss measurements. Moreover, the kurtosis of

the validation loss distribution was observed at 39.7230,
suggesting a heavy-tailed behavior or the potential
presence of outliers in the distribution of validation loss
values.

• The training accuracy metrics for model offer a compre-
hensive view of its performance throughout the training
process. The highest accuracy achieved during training
was 96.98%, representing the model’s best performance
on the training data. On the lower end, the minimum
accuracy recorded was 40.87%, showcasing fluctuations
and variability in performance across different training
epochs or batches. The mean training accuracy across
the entire training duration stands at 93.46%, signifying
the average accuracy the model attained. The standard
deviation, a measure of the spread or variability around
the mean, was calculated at 6.87%, indicating how
much individual accuracy measurements deviated from
the mean value. The RMS accuracy, computed as
93.72%, provides an aggregate measure of the overall
accuracy magnitude throughout training. The skewness
of the accuracy distribution was found to be -5.2506,
suggesting a notable asymmetry in the distribution of
accuracy measurements. Furthermore, the kurtosis of
the accuracy distribution was determined as 34.0099,
implying a heavy-tailed behavior or the presence of
outliers in the distribution of accuracy values.

• The validation accuracy statistics provided insights
into the model’s performance on unseen validation
data. The highest validation accuracy achieved during
the evaluation was recorded at 96.52%, representing
the peak model performance on the validation dataset.
Conversely, the lowest validation accuracy observed was
51.59%, indicating fluctuations in the model’s perfor-
mance across different validation subsets or evaluation
instances. The mean validation accuracy computed over
the validation duration stood at 92.62%, showcasing
the average accuracy attained by the model on unseen
validation data. The standard deviation, measuring
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the spread or variability around the mean validation
accuracy, was calculated as 5.44%, illustrating the extent
of deviation of individual accuracy measurements from
the mean value during validation. The RMS accuracy,
calculated as 92.78%, provided an aggregated measure
of the overall magnitude of accuracy observed across
the validation process. The skewness of the validation
accuracy distribution was determined to be -4.7935,
indicating a notable asymmetry in the distribution
of validation accuracy measurements. Moreover, the
kurtosis of the validation accuracy distribution was
observed at 30.8051, implying a heavy-tailed behavior
or the potential presence of outliers in the distribution of
validation accuracy values.

3) GATED RECURRENT UNIT NETWORK
• The training loss statistics for the GRU (Gated Recur-
rent Unit) model portray a diverse range of errors
encountered during its training process. The maximum
observed loss throughout training reached 2.1662,
highlighting instances where the model experienced
relatively high errors. On the contrary, the minimum
loss achieved during training was notably lower at
0.0933, indicating segments or epochs where the model
performed relatively well in minimizing errors. The
mean training loss computed across the training data
stood at 0.2191, showcasing the average magnitude
of errors across the dataset. The standard deviation,
measuring the spread or variability of these errors
around the mean, was observed at 0.2882, indicating
the extent of deviation of individual loss measurements
from the mean value. The RMS training loss, calculated
as 0.3620, offered an aggregate measure of the overall
magnitude of errors observed during the entire training
process. Additionally, the skewness of the training loss
distribution was found to be 4.7728, indicating a notable
asymmetry in the distribution of loss measurements.
Moreover, the kurtosis of the training loss distribution
was calculated at 25.2701, suggesting a heavy-tailed
behavior or a substantial presence of outliers in the
distribution of training loss values.

• The validation loss statistics for the GRU model offer
insights into its performance on unseen validation data.
The maximum validation loss observed during the
evaluation reached 1.9611, indicating instances where
the model encountered relatively higher errors on the
validation dataset. Conversely, the minimum validation
loss achieved was notably lower at 0.1068, suggesting
segments or epochs where the model performed rela-
tively well, minimizing errors on unseen data. The mean
validation loss computed across the validation dataset
stood at 0.2129, representing the average magnitude of
errors encountered by the model on unseen validation
data. The standard deviation, measuring the spread or
variability of these validation errors around the mean,

was observed at 0.2454, highlighting the extent of
deviation of individual loss measurements from the
mean value during validation. The RMS validation loss,
calculated as 0.3249, provided an aggregate measure
of the overall magnitude of errors observed by the
model throughout the validation process. Additionally,
the skewness of the validation loss distribution was
found to be 5.0025, indicating a notable asymmetry
in the distribution of validation loss measurements.
Moreover, the kurtosis of the validation loss distribution
was calculated at 28.4818, suggesting a heavy-tailed
behavior or a substantial presence of outliers in the
distribution of validation loss values.

• The training accuracy metrics for the GRU model illus-
trate its performance throughout the training process.
The highest accuracy achieved during training was
recorded at 96.83%, representing the peak performance
of the model on the training dataset. Conversely, the
lowest accuracy observed during training was 25.93%,
indicating fluctuations and variability in the model’s
performance across different training epochs or batches.
The mean training accuracy computed across the entire
training duration stood at 92.09%, highlighting the
average accuracy attained by the model during the
training process. The standard deviation, a measure of
the spread or variability around the mean accuracy, was
calculated as 10.65%, indicating the extent of deviation
of individual accuracy measurements from the mean
value during training. The RMS accuracy, computed as
92.70%, provided an aggregated measure of the overall
magnitude of accuracy throughout the training process.
The skewness of the accuracy distribution was deter-
mined to be -4.6111, indicating a notable asymmetry in
the distribution of accuracymeasurements. Additionally,
the kurtosis of the accuracy distribution was observed
at 23.0445, suggesting a heavy-tailed behavior or the
potential presence of outliers in the distribution of
accuracy values.

• The validation accuracy statistics for the GRU model
provide insights into its performance on unseen valida-
tion data. The maximum validation accuracy achieved
during evaluation was recorded at 97.10%, representing
the highest performance of the model on the validation
dataset. Conversely, the minimum validation accuracy
observed was 16.81%, indicating instances where the
model encountered challenges or performed less opti-
mally on unseen validation data. The mean validation
accuracy computed across the validation dataset stood
at 92.01%, demonstrating the average accuracy attained
by the model on unseen validation data. The standard
deviation, measuring the spread or variability of these
validation accuracies around the mean, was observed at
10.43%, illustrating the extent of deviation of individual
accuracy measurements from the mean value during
validation. The RMS validation accuracy, calculated
as 92.60%, provided an aggregate measure of the

59030 VOLUME 12, 2024



F. Althobiani: Novel Framework for Robust Bearing Fault Diagnosis

FIGURE 6. The loss and accuracy trends throughout the training and validation process for CNN model.

FIGURE 7. Graphical representation showcasing the performance metrics, encompassing loss and accuracy data for GRU
model.

overall magnitude of accuracy observed throughout
the validation process. Additionally, the skewness of
the validation accuracy distribution was determined
to be -5.1348, indicating a notable asymmetry in the
distribution of accuracy measurements. Moreover, the
kurtosis of the validation accuracy distribution was
observed at 30.0660, suggesting a heavy-tailed behavior
or the potential presence of outliers in the distribution of
validation accuracy values.

4) LONG SHORT-TERM MEMORY
• The provided training loss statistics for the LSTM (Long
Short-Term Memory) model reveal a spectrum of errors
encountered during its training phase. The maximum
observed loss throughout training peaked at 2.0541,
indicating instances where the model faced relatively
high errors. Conversely, the minimum loss achieved
during training was notably lower at 0.1132, suggesting
epochs where the model performed relatively well in
minimizing errors. The mean training loss calculated

across the training data stood at 0.2374, representing
the average magnitude of errors across the dataset. The
standard deviation, measuring the spread or variability
of these errors around the mean, was observed at 0.2673,
indicating the extent of deviation of individual loss mea-
surements from the mean value. The RMS training loss,
calculated as 0.3575, provided an aggregate measure
of the overall magnitude of errors observed during the
entire training process. Additionally, the skewness of
the training loss distribution was found to be 4.9604,
indicating a notable asymmetry in the distribution of loss
measurements. Moreover, the kurtosis of the training
loss distribution was calculated at 26.8422, suggesting
a heavy-tailed behavior or a substantial presence of
outliers in the distribution of training loss values.

• The validation loss statistics for the LSTM model
provide insights into its performance on unseen val-
idation data. The maximum validation loss observed
during evaluation peaked at 1.6416, indicating instances
where the model encountered relatively higher errors
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on the validation dataset. Conversely, the minimum
validation loss achieved was notably lower at 0.1025,
suggesting epochs where the model performed relatively
well, minimizing errors on unseen data. The mean
validation loss computed across the validation dataset
stood at 0.1881, representing the average magnitude of
errors encountered by the model on unseen validation
data. The standard deviation, measuring the spread or
variability of these validation errors around the mean,
was observed at 0.1901, highlighting the extent of
deviation of individual loss measurements from the
mean value during validation. The RMS validation loss,
calculated as 0.2675, provided an aggregate measure
of the overall magnitude of errors observed by the
model throughout the validation process. Additionally,
the skewness of the validation loss distribution was
determined to be 5.8772, indicating a notable asymmetry
in the distribution of validation loss measurements.
Moreover, the kurtosis of the validation loss distribution
was observed at 37.6062, suggesting a heavy-tailed
behavior or a substantial presence of outliers in the
distribution of validation loss values.

• The provided training accuracy metrics for the LSTM
model offer a comprehensive view of its performance
throughout the training process. The highest accuracy
attained during training was recorded at 96.27%,
representing the model’s peak performance on the train-
ing dataset. Conversely, the lowest accuracy observed
during training was 20.56%, indicating fluctuations and
variability in the model’s performance across different
training epochs or batches. The mean training accuracy
computed across the entire training duration stood at
91.49%, signifying the average accuracy attained by
the model during the training process. The standard
deviation, a measure of the spread or variability
around the mean accuracy, was calculated as 10.40%,
indicating the extent of deviation of individual accuracy
measurements from the mean value during training.
The RMS accuracy, computed as 92.08%, provided an
aggregated measure of the overall magnitude of accu-
racy throughout the training process. The skewness of
the accuracy distribution was determined to be -5.0316,
indicating a notable asymmetry in the distribution of
accuracy measurements. Additionally, the kurtosis of
the accuracy distribution was observed at 27.5807,
suggesting a heavy-tailed behavior or the potential
presence of outliers in the distribution of accuracy
values.

• The validation accuracy details for the LSTM model
provide significant insights into its performance on
unseen validation data. The maximum validation accu-
racy observed during evaluation peaked at 96.81%,
representing the highest performance of the model
on the validation dataset. Conversely, the minimum
validation accuracy achieved was 31.01%, indicating
instances where the model encountered challenges or

performed less optimally on unseen validation data.
The mean validation accuracy computed across the
validation dataset stood impressively high at 93.57%,
showcasing the average accuracy attained by the model
on unseen validation data. The standard deviation,
measuring the spread or variability of these validation
accuracies around themean, was relatively low at 7.23%,
indicating a tighter distribution of individual accuracy
measurements around the mean value during validation.
The RMS validation accuracy, calculated as 93.85%,
provided an aggregate measure of the overall magnitude
of accuracy observed throughout the validation process.
Additionally, the skewness of the validation accuracy
distribution was determined to be -6.9179, indicating
a substantial asymmetry in the distribution of accuracy
measurements. Moreover, the kurtosis of the validation
accuracy distribution was observed remarkably high at
54.2482, suggesting an extremely heavy-tailed behavior
or the potential presence of significant outliers in the
distribution of validation accuracy values.

5) RECURRENT NEURAL NETWORK
• The training loss details for the RNN (Recurrent
Neural Network) model illustrate the spectrum of errors
encountered during its training phase. The maximum
observed loss throughout training peaked at 1.6748,
indicating instances where the model faced relatively
high errors. Conversely, the minimum loss achieved
during training was notably lower at 0.0826, suggesting
epochs where the model performed relatively well in
minimizing errors. The mean training loss calculated
across the training data stood at 0.1684, representing
the average magnitude of errors across the dataset. The
standard deviation, measuring the spread or variability
of these errors around the mean, was observed at 0.1929,
indicating the extent of deviation of individual loss mea-
surements from the mean value. The RMS training loss,
calculated as 0.2561, provided an aggregate measure
of the overall magnitude of errors observed during the
entire training process. Additionally, the skewness of
the training loss distribution was found to be 5.6666,
indicating a notable asymmetry in the distribution of loss
measurements. Moreover, the kurtosis of the training
loss distribution was calculated at 37.3534, suggesting
a heavy-tailed behavior or a substantial presence of
outliers in the distribution of training loss values.

• The validation loss details for the RNN model provide
insights into its performance on unseen validation
data. The maximum validation loss observed during
evaluation peaked at 1.1674, indicating instances where
the model encountered relatively higher errors on the
validation dataset. Conversely, the minimum validation
loss achieved was notably lower at 0.0949, suggesting
epochs where the model performed relatively well,
minimizing errors on unseen data. The mean validation
loss computed across the validation dataset stood at
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FIGURE 8. Combined graphical view indicating the learning progress through loss and accuracy metrics for Model LSTM.

0.1619, representing the average magnitude of errors
encountered by themodel on unseen validation data. The
standard deviation, measuring the spread or variability
of these validation errors around the mean, was observed
at 0.1421, highlighting the extent of deviation of
individual loss measurements from the mean value
during validation. The RMS validation loss, calculated
as 0.2155, provided an aggregate measure of the overall
magnitude of errors observed throughout the validation
process. Additionally, the skewness of the validation loss
distribution was determined to be 4.8233, indicating a
notable asymmetry in the distribution of validation loss
measurements. Moreover, the kurtosis of the validation
loss distribution was observed at 26.8738, suggesting
a heavy-tailed behavior or a substantial presence of
outliers in the distribution of validation loss values.

• The training accuracy metrics for the RNN model offer
a comprehensive view of its performance throughout
the training process. The highest accuracy attained
during training was recorded at 97.08%, representing
the model’s peak performance on the training dataset.
Conversely, the lowest accuracy observed during train-
ing was 47.47%, indicating fluctuations and variability
in the model’s performance across different training
epochs. The mean training accuracy computed across
the entire training duration stood impressively high at
94.57%, highlighting the average accuracy attained by
the model during the training process. The standard
deviation, a measure of the spread or variability around
the mean accuracy, was relatively low at 5.73%,
indicating a narrower distribution of individual accuracy
measurements around the mean value during training.
The RMS accuracy, computed as 94.75%, provided an
aggregated measure of the overall magnitude of accu-
racy throughout the training process. The skewness of
the accuracy distribution was determined to be -6.1531,
indicating a notable asymmetry in the distribution of
accuracymeasurements. Additionally, the kurtosis of the

accuracy distribution was observed remarkably high at
44.4596, suggesting an extremely heavy-tailed behavior
or the potential presence of significant outliers in the
distribution of accuracy values.

• The validation accuracy details for the RNN model
provide significant insights into its performance on
unseen validation data. The maximum validation accu-
racy observed during evaluation peaked at 97.68%,
representing the highest performance of the model
on the validation dataset. Conversely, the minimum
validation accuracy achieved was 68.70%, indicating
instances where the model encountered challenges or
performed less optimally on unseen validation data.
The mean validation accuracy computed across the
validation dataset stood at an impressive 94.92%,
showcasing the average accuracy attained by the model
on unseen validation data. The standard deviation,
measuring the spread or variability of these validation
accuracies around themean, was relatively low at 3.83%,
indicating a tighter distribution of individual accuracy
measurements around the mean value during validation.
The RMS validation accuracy, calculated as 95.00%,
provided an aggregate measure of the overall magnitude
of accuracy observed throughout the validation process.
Additionally, the skewness of the validation accuracy
distribution was determined to be -4.2167, indicating
a notable asymmetry in the distribution of accuracy
measurements. Moreover, the kurtosis of the validation
accuracy distribution was observed at 22.3325, sug-
gesting a behavior that may deviate from a normal
distribution, potentially indicating outliers or extreme
values in the distribution of validation accuracy values.

Table 6 provides a detailed breakdown of precision, recall,
and F1-score for each class across multiple algorithms,
offering insights into the performance variations per class.
It encompasses the performance metrics of various machine
learning models (CNN, LSTM, RNN, GRU, Bi-LSTM)
across distinct classes (0 to 9). Notably, classes 3, 4, and
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FIGURE 9. Visualization portraying the training insights, reflected in the loss and accuracy patterns for RNN model.

7 consistently demonstrate impeccable precision, recall,
and F1-score of 1.00 across all models, suggesting their
reliable and accurate classification. However, disparities in
performance emerge across models within certain classes,
particularly in class 1, indicating variability in the ability
of models to correctly classify instances within this cate-
gory. Class 8 poses challenges, exhibiting lower precision,
recall, and F1-score compared to other classes, highlighting
potential complexities in correctly identifying instances
within this specific class. Across the models, Bi-LSTM
consistently performs admirably, demonstrating F1-scores
of 0.97 or higher, implying its robust performance across
various classes. Furthermore, certain classes like 5 showcase
variability in recall values across models, indicating the
potential for specific models to excel in capturing distinct
patterns within those classes. These observations underscore
the varying performance of models across different classes
and emphasize the need for further analysis to comprehend
the intricacies and nuances of classification within each class.

C. STATISTICAL SIGNIFICANCE TESTING
To compare the performance of the deep learning models
used in study, I conducted a statistical significance test
known as the permutation test. This test evaluates whether
there is a significant difference in accuracy between pairs
of models. I computed the permutation test based on the
accuracy scores obtained from each model on the test set.
For each pair of models, I calculated the observed difference
in accuracy scores. I then randomly shuffled the accuracy
scores and recomputed the differences for a large number of
permutations (10,000 iterations in my case).

Finally, I compared the observed differences with the
permuted differences to calculate the p-values. A p-value less
than 0.05 indicates a significant difference in performance
between the models.

The results of the permutation test are summarized below:

• CNN vs LSTM: p-value = 0.4

TABLE 6. Class-wise performance metrics across algorithms on CWRU
dataset.

• CNN vs RNN: p-value = 1.0
• CNN vs GRU: p-value = 1.0
• CNN vs Bidirectional LSTM: p-value = 0.6
• LSTM vs RNN: p-value = 1.0
• LSTM vs GRU: p-value = 1.0
• LSTM vs Bidirectional LSTM: p-value = 0.6
• RNN vs GRU: p-value = 0.4
• RNN vs Bidirectional LSTM: p-value = 0.2
• GRU vs Bidirectional LSTM: p-value = 0.2
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TABLE 7. Comparison of proposed models with state-of-the-art
approaches.

These results indicate that there is a significant difference
in performance between the RNN model and the Bidirec-
tional LSTM model, as well as between the GRU model and
the Bidirectional LSTM model (p-value < 0.05). However,
no significant differences were observed between the other
pairs of models.

A comprehensive comparison highlighting the perfor-
mance of our proposed models alongside state-of-the-art
approaches. Table 7 showcases how our models stack up in
accuracy against established benchmarks. The comparison
table presents a set of proposed models, including CNN,
LSTM, RNN, GRU, and Bi-LSTM, each designed with
the capability to handle 10 classes. These models were
trained and tested on the CWRU dataset, and their respective
accuracies range from 95% to 97%. In contrast, the state-
of-the-art approaches referenced in the table employ diverse
models and datasets. Reference [32] utilizes a 1D CNN with
3 classes on the Paderborn dataset, achieving an accuracy of
93.97%. Reference [33] employs a 1Channel CNN designed
for 10 classes on the CWRU dataset, achieving a higher
accuracy of 95.27%. Reference [34] introduces a Compact
1D CNN with 6 classes on the CWRU dataset, achieving an
accuracy of 93.2%. Lastly, [35] utilizes a CNN for 10 classes
on the CWRU dataset, achieving an accuracy of 95%. This
comparison provides valuable insights into the performance
of the proposed models against established approaches,
showcasing superior results in handling 10 classes on the
CWRU dataset.

IV. CONCLUSION
The significance of early bearing fault detection in industrial
machinery cannot be overstated. Bearing faults, a prevalent
cause of machinery failures, pose significant risks to
operational continuity and financial stability. In this study,
I addressed this challenge by developing and evaluating
multiple deep learningmodels, including CNN,GRU, LSTM,
Bidirectional LSTM and RNN, for precise bearing fault
diagnosis. The main contributions lie in demonstrating
the superior adaptability, pattern recognition, and learning
capabilities of these deep learningmodels. Through extensive
experimentation and evaluation, I consistently achieved
accuracy exceeding 97%, surpassing the performance of
traditional fault diagnosis methods. This underscores the
effectiveness of deep learning in enhancing the reliability

of fault diagnosis in industrial settings. One of the key
findings of study is the robust performance of deep learning
models across different architectures, with each model
exhibiting unique strengths in identifying bearing faults.
This comprehensive analysis provides valuable insights into
the applicability of deep learning techniques for machinery
health monitoring and predictive maintenance. The novelty
of proposed approach lies in the combination of various deep
learning architectures and the utilization of advanced feature
extraction techniques tailored for bearing fault diagnosis.
By leveraging these innovative methodologies, pave the way
for more efficient and accurate fault detection strategies in
industrial environments. By integrating deep learning-based
diagnostic tools into existing maintenance frameworks,
organizations can enhance operational continuity, reduce
unplanned downtime, and mitigate costly machinery failures.
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