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ABSTRACT As new models of electric vehicles are put on the market, with larger batteries and higher
charging rates, there are growing concerns about how the charging infrastructure should be upgraded and
modernized to cope with the challenges they pose. Governmental directives and rules dictate minimal
requirements for the future charging infrastructure, but would these be enough to handle massive numbers
of electric vehicles? In this manuscript we describe an electric mobility simulator that can be used to mimic
highway vehicular flows and evaluate the queues at charging stations under different penetration levels
of electric vehicles. Based on actual vehicular flows from the most important Italian motorway, we find
that non-homogeneous queues at charging stations can be predicted, and the infrastructure planned by the
EU rules may not be able to accommodate a penetration level of more than 3% of electric vehicles in the
highway without giving rise to unacceptably high waiting times at charging stations. Also, we note that
smart assignments of electric vehicles at charging stations may significantly improve waiting times, opening
the discussion on the need for allocation policies and guidelines. Extensive Monte Carlo simulations on an
accurate reconstruction of the Italian case study support the discussion and our findings.

INDEX TERMS Electric vehicles, intelligent transportation systems, optimization methods, recharging,
highway.

I. INTRODUCTION MOTIVATION
Growing environmental concerns are driving national and
international governments to design rules and incentivize
virtuous behaviors, in an attempt to mitigate polluting factors.
For instance, the European Union’s ‘‘Fit for 55’’ package
contains rules that aim at facilitating the penetration level
of EVs (Electric Vehicles) within the transportation sector,
under the acronym AFIR (Alternative Fuels Infrastructure
Regulation). Namely, new Charging Stations (CS’s) need to
be installed ‘‘every 60 km along TEN-T core network high-
ways’’ (the Europe’s continental highway system), delivering
by end of 2025 a minimum of 400 kW of total charging
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capacity, and including at least one 150 kW+ charger, and
by end of 2027 a minimum of 600 kW including at least
two 150 kW+ chargers ([1], art. 3.4-a). Similar rules have
been dictated for commercial vehicle charging, and plans for
future years have been already outlined as well. For instance,
the minimum total capacity must increase to 600 kW, with at
least two 150 kW+ chargers by 2028. Clearly, comparable
rules may be regarded as generic baselines to be adopted
in all countries, but then they should be adapted to specific
territories taking into account their peculiar characteristics,
most notably, vehicular densities and flows.

In this manuscript, we evaluate what penetration level of
EVs may be tolerated by the aforementioned rules in a spe-
cific case study, corresponding to the country of Italy, using
realistic traffic flows and actual vehicular data. In addition,
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we also compare two basic alternative decentralized strategies
that drivers may choose to select a charging station along
a highway and show that smart choices may significantly
reduce waiting times at charging stations.

A. STATE OF THE ART
Electric vehicle traffic simulation stands at the forefront of
transportation research, addressing the intricate challenges
posed by the increasing penetration of electric vehicles.Many
papers in the literature propose mobility simulators that lever-
age on dynamic modeling of EVs, realistic integration of
existing charging infrastructure, urban and non-urban paths,
and consideration of diverse vehicle types (e.g., passenger
cars, electric buses or commercial vehicles). Subsequently,
these tools aim to simulate various scenarios and conditions,
including peak traffic hours, adverse weather conditions,
and varying road topography. Additionally, these simula-
tors implement optimization strategies aimed at minimizing
specific performance indices, such as travel time, energy
consumption, and congestion levels.

In [2] and [3], a planning methodology for the installa-
tion of highway charging stations has been proposed. This
methodology is based on minimizing a combined cost func-
tion that considers both the construction and maintenance
costs of the stations and the cost associated with user waiting
times. The simulation involves a highway route with inter-
sections covering a total length of approximately 300 km. The
study determines the optimal number and spacing of charging
stations along the highway to achieve the optimal solution.

In [4], a case study concerning a 530 km stretch of
highway in Spain with 23 charging stations has been simu-
lated using the agent-based simulation software AnyLogic.
The simulation includes modeling electric vehicle consump-
tions, accounting for road slope, and weather conditions.
Taking into account a maximum of 31 electric vehicles in
transit, the authors demonstrate the optimization of the sys-
tem by prioritizing user queue time as a critical index and
enhancing the number of charging stations and their power
capability.

In [5], [6], and [7], algorithms have been developed
to simulate electric vehicle traffic integrating the trans-
portation network and the power grid, encompassing user
behaviors, the redistribution of charging facilities, congestion
occurrences, and dynamic variations in user routes. These
algorithms are applied to case studies involving multi-node
networks and fleets of electric vehicles numbering in thou-
sands of units. The same approach is followed by the authors
in [8], where the focus is on refining the energy consumption
of individual vehicles. This is achieved by introducing the
impact of cabin thermal conditioning on energy consump-
tion during different seasons. The authors analyze how the
peak load of charging EVs changes in different seasons.
Similarly, the authors in [9] have carried out a Monte Carlo
analysis to examine the impact of EV charging and esti-
mate the electric load growth on the Colombian grid, with

particular interest in the overloading of transmission lines and
transformers.

The authors in [10] have analyzed the localization of elec-
tric vehicle charging stations in the urban area of the city of
Rome using the popular open-source traffic simulator SUMO
in a geo-referenced environment.

In summary, the majority of studies propose simulators
developed either independently or based on open-source or
commercial software, capable of processing electric vehi-
cle flows in urban and extra-urban environments, applied
to realistic case studies. Most works use simulators as a
support to take decisions about where to allocate and enhance
the actual charging infrastructure; little attention is usually
devoted about how to influence the habits and behavior of
drivers to optimally utilize the existing infrastructure. Some
works in the latter topic exist, usually referring to the problem
of assigning EVs to charging stations, under the assumption
that drivers will follow the received recommendation. See for
instance [11] and [12] for similar assignment recommenda-
tions in an urban scenario.

In addition, most of the previous references only address
simple scenarios with small numbers of vehicles and,
as already mentioned, some of them focus on urban environ-
ments, while in the present paper we are explicitly interested
to charging events in a motorway. Moreover, in this paper we
explore what could happen in a future scenario, with a much
greater penetration level of EVs than today, to assess how
the 2028 EU planned charging infrastructure is expected to
perform.

B. CONTRIBUTION
As per the previous section, our manuscript provides the
following main contributions to the existing state of the art:

- we evaluate the latest rules dictated by the EU, in terms of
their ability to accommodate for a large fleet of EVs, and
we show that penetration rates larger than 3%may give rise
to unacceptable waiting times at CS’s;

- we present and discuss a tool that can be used to evaluate
what CS’s should be expanded, or where new CS’s should
be built;

- we evaluate the impact of different charging strategies and
show that basic decentralized approaches may already pro-
vide significant improvements even without changing the
charging infrastructure;

- while our results have been obtained for a specific case
study, the same simulator may be adapted to evaluate dif-
ferent highways in different contexts.

Our manuscript is organized as follows: the next section
is dedicated to present in detail the developed mobility
simulator. Section III briefly describes the specific case
study of interest, and Section IV describes our simulation
results, highlighting the most interesting outcomes we have
obtained. Finally, Section V summarizes the findings of the
manuscript and outlines our current research interests on the
topic.
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II. ELECTRIC MOBILITY SIMULATOR
A. INPUT DATA
As classic mobility simulators, input data include the struc-
ture of the highway network, the Origin/Destination (OD)
matrix, starting time of vehicles, and characteristics of the
EV fleet (i.e., battery capacity, charging rates, energy con-
sumption rates. . . ). As per the characteristics of the CS’s,
we assume that all CS’s are equipped with the charging
infrastructure as per the AFIR rules according to the end-
of- 2027 deadline: while this is not entirely true in Italy in
this moment, yet the AFIR objectives will be met well before
the deadline. Monte Carlo simulations are then performed to
appreciate when queues start appearing at CS’s under differ-
ent penetration levels, and under different charging strategies.
The specific components of the electric mobility simulator
are now individually illustrated.

1) STRUCTURE OF THE HIGHWAY
We consider a single (two-way) linear segment of an Ital-
ian highway, namely, the longest linear segment – called
Autostrada del Sole (A1) – depicted in Fig. 1a. This segment
includes a sequence of motorway entrances and exits, in addi-
tion to charging stations (actual highway structure and data
has been used). For the moment, for simplicity, we do not
consider the intersections with other roadways.

In response to the AFIR rules, the charging stations on
the A1 highway are equipped with pairs of High Power
Chargers (HPCs), that can each deliver up to 300 kW, but
the sum of the two cannot exceed the same amount as well.
This charging infrastructure is by large compliant with the
previously mentioned prescriptions of [1], according to the
latest deadline (end of 2027). In addition to this, stations are
also equipped with a fast charger with 64 kW max power.

In our simulations, we slightly simplify this architecture
assuming that each charging station is equipped with five
independent chargers with maximum power equal to 150 kW.
The effects of this simplification are however negligible
because the charging rates of the considered vehicles (taken
as average charging power between 10-80% of State of
Charge) cannot exceed 150 kW, which is consistent with
current EV specifications. This assumption is consistent also
with the vast majority of electric vehicles that are currently in
circulation, which, as specified later in the text, have average
charging powers lower than 150 kW. For the purposes of this
study, the presence of charging power peaks higher then the
CS’s limit will not be considered, as it is reasonable to assume
that the occurrence of two vehicles simultaneously charg-
ing with synchronous peaks exceeding the station’s limit is
extremely unlikely.

2) OD MATRIX
The OD matrix corresponding to an average working day has
been considered as our baseline to identify the trips taken by
single vehicles. This matrix was obtained by considering the
average toll information at entrances/exits of the motorway

during weekdays; only vehicles starting and ending their
journey on the sameA1 segment have been considered for our
purposes. Interestingly, the same ODmatrix may be also used
to represent peak days (e.g., those occurring at the beginning
or at the end of summer holidays in Italy), after appropriate
scaling to consider the increased volume of traffic. Toll data
show that the total number of vehicles increases during peak
days, but their distribution does not change significantly if
a single piece of the whole highway network is considered,
as in our case.

The (i,j) entry of the OD matrix contains the number of
vehicles that during the considered day start their trip from
the i′th entry of the motorway and leave the highway at the
j′th exit. The OD matrix is then normalized so that the sum
of all its terms is 1. The so obtained elements of the OD
matrix are called baseline values, and then they are slightly
perturbed according to a pre-defined probabilistic distribu-
tion, to evaluate the sensitivity of our traffic analysis under
different conditions. The baseline OD matrix is depicted in
Fig. 1c and Fig. 1d, in a 2D and in a 3D view to appreciate
the most common trips.

3) STARTING TIME
For simplicity, we assume that all trips from the OD matrix
have the same starting time, which is drawn from the prob-
ability function depicted in Fig. 1b. Roughly speaking, this
implies that most trips start during the morning and during
the afternoon, while fewer trips take place during lunch time
or during the night.

4) ELECTRIC VEHICLE FLEET COMPOSITION
We assume that each EV travelling in the road network
is randomly drawn from a ‘‘class’’ of vehicles, which is
required to determine its battery size and its charging rate.
For simplicity, we assume that the charge rate is constant,
corresponding to the average value of the typical recharging
curves for EV fast charges between 10 to 80% SOC. It is well
known that such an approximation actually provides accurate
estimates of charging times [12]. The composition of the fleet
of EVs is summarized in Table 1, in addition to other input
information related to our case study. According to the table,
we assume that small cars, with small capacities and low
charging rates, are less likely to take long trips along the
highway network (i.e., we assume that they are mainly used
for urban trips). Furthermore, to simulate more realistic con-
ditions, the State of Health (SOH) of each vehicle’s battery
is also taken into account. This is done by multiplying the
value of the individual batteries’ nominal energy by the SOH
coefficient randomly sampled from a uniform distribution
between 0.7 and 1. In this way, we are tacitly assuming that
the 70% threshold corresponds to the end-of-life value for
the battery, which is consistent with what is recommended
by most EV manufacturers.

5) CHARGING STRATEGY
In this manuscript, we only consider so-called decentralized
charging strategies, i.e., where each driver autonomously
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FIGURE 1. a) Case study: Italian highway ‘‘Autostrada del sole (A1)’’; b) Probability function of the starting
time probability of the EVs; c) 2D visualization of the baseline OD matrix; c) 3D visualization of the baseline
OD matrix.

TABLE 1. Case study input information.

decides when and where charging the vehicle, based on only
local information (e.g., SOC, distance to the final destina-
tion). In particular, we consider two alternative strategies:

in the first one, an EV is charged in order to prevent its
SOC from going below a prespecified threshold, that we
shall denote by SOCmin1. Accordingly, when an EV gets in
proximity of a CS, it will estimate the value that its SOC may
reach if it does not stop for charging now, and will wait until
the next CS (or its destination). If the estimated SOC is below
SOCmin1, then it will stop for charging now. If the estimated
SOC is above SOCmin1 then it will proceed until the next
CS, where the same decision process is repeated.As a second
alternative strategy, we assume that if an EV is informed that
the next CS is currently full, then it accepts to go below the
threshold SOCmin1 and wait until the next CS, in the hope
that the following one will not be full. This second option is
acceptable provided that the estimated SOC will not anyway
go below a second threshold SOCmin2 (where SOCmin2 <

SOCmin1). In our simulations, we set SOCmin2 = 15% and
SOCmin1 = 30%, so that according to the first strategy no
vehicles will ever have a battery with a SOC below 30%,
while with the second strategy some vehicles accept to have
a SOC below 30% (but never below 15%) with the hope to
decrease waiting times at CS’s. Such choices of SOCmin1 and
SOCmin2 have been tuned according to known preferences of
drivers, to mitigate range anxiety [13].

B. SIMULATOR ALGORITHM
The electric mobility simulator consists of two main phases,
as illustrated in Fig. 2. In the first phase, denoted as
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FIGURE 2. Diagram of the possible states of EVs, as implemented in the simulator.

‘‘Initialization phase’’, all the input data are prepared and
given to the simulator. This includes the time horizon and the
time step (e.g., 1 day and 5 minutes in our case study respec-
tively) that give rise to the total number of time steps to be
simulated Ztot . Given NEV , the total number of EVs traveling
on the highway within the simulated time horizon (measured
from data), EVs are allocated into classes according to the
stochastic behavior as described in Section II-A4), their trips
are randomly decided according to the OD matrix described
in Section II-A2), and their starting time is randomly selected
as explained in Section II-A3). At the end of this phase, each
EV, denoted by index k , knows its initial position (pkstart ),
its destination (pkend ), and the time step at which it enters
the highway (zkstart ). In addition, each EV, depending on
its class, is associated with further information, such as its
initial state of charge (SOCk

start ), where the initial SOC is
defined as the ratio between the initial battery energy and
the battery size; the vehicle average speed (vk ), considered
constant throughout the journey, finally, both SOCk

start and v
k ,

for each vehicle k ∈ [1,NEV ] are randomly extracted between
their respectively allowed minimum and maximum values,
according to a uniform distribution. Once the speed is known,
the algorithm computes the vehicle consumption, necessary
to determine how much the battery discharges as the vehicle
proceeds along the road. For high speeds, such as those
expected on the highway, the consumption can be considered
dependent solely on the vehicle speed, since acceleration
and braking actions are much rarer than in urban or rural
environments, and the resistance to movement due to friction
and air resistance is very large and dominates on other factors
(cf. Equation (2) in [14]).

Finally, the ‘‘state flag’’ identifies the mode in which a
vehicle can be found during the simulation, chosen among
4 possible conditions: ‘‘D’’ (driving), where the vehicle is
moving along its route, or still has to start its trip; ‘‘W ’’

(waiting), where the vehicle is stopped in a queue at a charg-
ing station, waiting for a charging post to become available;
‘‘C’’ (charging), where the vehicle is connected to a charging
post and the battery is charging; ‘‘E’’ (exit), meaning the
vehicle has completed its route and has exited the highway.

The second phase of the algorithm, named ‘‘Elaboration
phase’’, is where the mobility simulator processes the evolu-
tion of the vehicular flow throughout the entire established
time horizon. In this phase, at each time step all vehicles’
states are updated, especially for what regards their position
along the highway, and their SOC. In particular, if a vehicle
is on the highway at a certain time step, it is processed based
on the value of its state flag:

- if the vehicle is driving (state flag = ‘‘D’’, represented
with a blue background in Fig. 2) its position and SOC
values are updated (respectively poskz+1 and SOCk

z+1),
based on the constant speed model. If the EV reaches
its exit destination at the very next time step (if pkz+1 =

pkend ), its state flag is updated to ‘‘E’’. If the vehicle
reaches a charging station, then it decides whether to
stop for charging or not, according to the selected charg-
ing strategy (as per Section II-A5) and its actual SOC.
If the EV decides to stop, if it finds an available charging
post, it starts charging and the state flag is updated to
‘‘C’’ (charging), otherwise, its state flag is updated to
‘‘W’’ (waiting) and the vehicle is added to the CS queue.

- If the vehicle is queuing (state flag = ‘‘W’’, represented
with a yellow background in Fig. 2) the position and
SOC values are not updated, and the vehicle waits for
its turn for charging, according to a classic first-in-
first-out (FIFO) logic. When the vehicle is the first
of the queue, as soon as a plug becomes available,
the vehicle goes from the ‘‘W’’ state to the ‘‘C’’ state
flag.

- If the vehicle is charging (state flag = ‘‘C’’, repre-
sented with a green background in Fig. 2), the position
does not change, but the SOC is updated based on the
maximum charging power allowed by its vehicle class.
The level of the battery energy (i.e., the variation of its
SOC) during the charging time step is computed as the
product between the interval duration and the charging
power. The vehicle remains in the ‘‘C’’ state flag until
it reaches a predefined maximum SOC threshold for
the end of charging (SOCmax). Once this threshold is
reached, the EV completes the charging phase, frees the
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charging post, and resumes driving, setting its state back
to ‘‘D’’.

- Finally, if the vehicle has the ‘‘E’’ state flag (represented
with a gray background in Fig. 2), it must have con-
cluded its journey, and it is not updated anymore.

C. KEY PERFORMANCE INDICATORS
In this section we list some significant key performance
indicators (KPIs) that will be used to evaluate the ability
of the charging infrastructure to accommodate fleets of EVs
for different values of penetration levels, and to compare
the impact of different charging strategies. In addition to
KPIs dedicated to evaluate mobility parameters (e.g., queuing
times at CS’s), it is also critical to evaluate the electrical
power absorbed by CS’s. While this aspect is only marginally
addressed in this manuscript, power and energy requirements
need to be taken into careful consideration when planning and
sizing new CS’s, or upgrades of existing ones.
- percrecharge : percentage of EVs that recharge at least once
during their trip;

- percwaiting : percentage of EVs that, before charging, need
to wait because all plugs are busy;

- N recharge
tot : total number of recharging events;

- trechargeavg : average time for a single charging event;
- trechargetot : total time required for all charging events;
- twaitingavg : average waiting time before starting the charging
process (computed among EVs that charge at CS’s);

- twaitingmax : maximum waiting time before charging (for all
vehicles during one day of simulation);

- Psmax and P
s
avg : maximum and average charging power of

the s’th charging station;
- percsuse(z) : percentage of utilization of the s’th CS at time
step z, as per Equation (1) below, where N s

EV (z) represents
the number of EV charging at the s’th CS at time step z;

- percsuse,avg : average value of percsuse for the s’th station,
as defined in Equation (2);

- varstationsuse : variance of percsuse,avg among all the stations,
as defined in Equation (3), to evaluate if the charging EVs
are well balanced amongst the available CS’s.

percsuse(z) = 100 ·
N s
EV (z)

N s
posts

(1)

percsuse,avg =
1
Ztot

∑Ztot

z=1
percsuse(z) (2)

varstationsuse =

∑Ns
s=1

[
percsuse,avg −

(
1
Ns

∑Ns
s=1 perc

s
use,avg

)]2
Ns

(3)

III. CASE STUDY
As already mentioned, the proposed mobility simulator is
used for a case study consisting of the A1 highway in Italy.
This two-way road is 760 km long from Milan to Naples,
passing through the cities of Bologna, Florence and Rome.
Overall, we consider 55 entries/exits and 48 CS’s. Charging

stations are placed in a symmetric way on both sides of the
road (i.e., 24 per each direction), and each one of them is
equipped with 5 charging posts (according to the EU direc-
tive). All details are summarized in Table 1 and in Fig. 1.
The OD matrix illustrated in Fig. 1 shows that the majority
of trips along the highway consists of short trips of a few
kilometers, corresponding to large values along the diagonal
of the matrix.

In the following simulations we evaluate what happens if
the percentage of EVs varies from 0.5% to 5%. The per-
centage of EVs in Italy is currently around 0.4%, but the
percentage of EVs in the highway is even lower. This is
due to the fact that in some cases EVs have been purchased
for local urban usage, and are rarely used for longer trips.
This is especially true for small EVs with small batteries and
low charge rates. In the following, we do not consider com-
mercial vehicles. Energy consumption is estimated according
to a second-order polynomial function dependent on the
cruising speed, in order to have 177 Wh/km at 100 km/h
and 245 Wh/km at 130 km/h.

IV. SIMULATION RESULTS
A. MONTE CARLO SIMULATIONS
All results are provided as the outcome of 50 Monte Carlo
simulations, to average the stochastic effects of each simula-
tion (i.e., in terms of OD matrix, starting time of trips, actual
composition of the EV fleet, cruising speeds, . . . ). In addition
to average values, we also provide the standard deviation of
the results, to appreciate their statistical spread and evaluate
possible critical situations.

Finally, all results are provided for six different penetration
levels (namely, 0.5, 1, 2, 3, 4 and 5%), and for the two dif-
ferent charging strategies explained in Section II-A5, so that,
overall, 12 different scenarios have been evaluated, and each
one is simulated 50 times.

B. QUEUES AT CHARGING STATIONS
Fig. 3 summarizes the results of the simulation. In the box-
plots, the central line indicates the median value of the Monte
Carlo simulations, while the top and bottom edges of the
boxes denote the 75th and the 25th percentiles, respectively.
Circles refer to what have been automatically identified as
outliers. In particular, Fig. 3a shows that the number of charg-
ing events obviously increases with the penetration level of
EVs, and Fig. 3b shows that the average duration of a charg-
ing event is constant (i.e., it only slightly varies depending on
the stochastic composition of the EV fleet). The other figures
(Fig. 3c-Fig 3f) provide interesting insights regarding the
queues at the charging stations. In particular, it can be noticed
that queues start appearing when the penetration level is at
least 2%. In this case about 10-20% of the charging vehicles
need towait some time at the CS before starting their charging
process, and while the average waiting time is negligible
(i.e., less than 10 minutes – see Fig. 3e), on average, during

VOLUME 12, 2024 55819



C. Scarpelli et al.: Charging Electric Vehicles on Highways: Challenges and Opportunities

FIGURE 3. KPIs from the simulation results.

the day, there is always at least one vehicle that experiences
a waiting time greater than 1 hour (see Fig. 3f).

It can be also noted from Fig. 3 that different charging
strategies have a significant impact on the waiting time at
the CS’s. A first difference between the two strategies is
that the second strategy gives rise to a smaller amount of
charging events (see Fig. 3a), although the time for charging
is on average longer (see Fig. 3d). The reason is that the
second strategy allows for a deeper depletion of the batteries
of the EVs (down to 15%) under specific conditions (i.e.,
if the upcoming CS is fully occupied). Accordingly, it takes a
longer time to charge the battery starting from a SOC equal to
15% (strategy 2) than it takes from a SOC equal to 30%, and
likewise fewer charging eventsmay be required. However, the
most relevant difference between the two strategies is that the
second strategy gives rise to significantly shorter queues: for
instance, with a penetration level equal to 3%, the percentage
of vehicles having to wait at a CS decreases from 40 to 30% if
the second strategy is adopted. Or similarly, the average wait-
ing time decreases from 20 to 10 minutes. This observation is
particularly interesting, because the second strategy does not
require any upgrade of the existing charging infrastructure,
and only assumes that drivers may be able to know if the next
CS is full or not.

From Fig. 3 we can conclude that with the assumed
vehicle data and charging strategies 3% is the maximum

penetration level that can be supported by this motorway
without incurring excessively long waiting times at CS’s,
which is in agreement with [14]. Indeed, already with the
penetration level of 3% there are vehicles that have to wait
for more than 100 minutes before they can start the charging
process.
Remark 1: Regarding our simulator predictions, we want

to clarify that they are based on realistic traffic data (derived,
after some obfuscation, from actual measures from the com-
pany handling the motorway of the case study), and some
assumptions on the EV characteristics and behaviour (sum-
marised in Table 1). A proper validation of the results is not
feasible in the Italian context, as the current penetration of
EVs is still too low (around 0.4%).
Remark 2: we note again that in this context, we refer to

penetration levels of EVs within vehicles travelling on the
highway, and not penetration levels of EVs in the car market.
Indeed, a penetration level of 3% in the highway is supposed
to correspond to a much greater penetration level of EVs in
themarket, sincemany EVs are often purchased only for local
urban traffic.

A final consideration is that even if we conservatively
assume that EVs adopt the less convenient first charg-
ing strategy (which uses a SOC range of 50%, between
30 and 80%), assuming a battery size around 75 kWh, and
an average consumption of about 210Wh/km (corresponding
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to a speed of 115 km/h), then our simulator suggests that the
average charging speed of an EV is around 428 km/h (which
means that after 1 hour of charging, the EV can travel for
about 428 km). This result is consistent with the expected
average performance of the electric vehicles fleet composi-
tion in the upcoming years, as displayed by EVmanufacturers
and global trends [15], [16].

Fig. 4 shows the percentage of utilization of the differ-
ent CS’s in the two directions (i.e., from Milan to Naples,
and from Naples to Milan), providing information on which
geographical areas require greater attention for potential
enhancement of the charging infrastructure. It can be noticed
that the most frequently used CS’s are those located in the
proximity of the city of Naples: this is both due to the high
traffic density in the region, and most importantly to the fact
that there are fewer CS’s in the last segment of the roadway.
In particular those indexed by number 22 in both directions of
travel, for which, in the scenario with a 3% EV penetration,
utilization rates exceeding 50% are reached (meaning that
on average all charging posts are occupied for 12 out of
24 hours). Even the CS’s located near other major urban
centers exhibit peaks of demand, with values up to 20% in
the Milan area (stations number 3-5).

The obvious discrepancy between over-utilized and under-
utilized CS’s is the main limitation of the current uniform
allocation of the stations. This is compliant with the require-
ment of [1], and ensures a minimum level of charging
capability to users entering from any place in the motorway.
It indicates, however, that future enforcements of charging
stations should be targeted at the mostly congested areas,
which in the case study are near Naples and Milan.

Alternatively, incentives should be designed to push drivers
to choose alternative charging strategies (i.e., even when the
SOC is not below 30%) to prevent most EVs from stopping
at the same CS’s, and rather exploit the available infras-
tructure in a more balanced fashion. At this regard, Fig. 5
shows the variance of utilization of the different charging
stations, where a smaller value of the variance corresponds
to a more balanced utilization of the infrastructure. As one
could expect, the second charging strategy outperforms the
first one, because it allows for a more balanced exploitation
of the available infrastructure (a lower variance).

The strategies used in the paper are derived from choices
made by drivers based only on:
1. SOC;
2. the position of charging stations along the route;
3. whether the next charging station is full or not.

The first two items are already available on all cars, the
third one can be easily provided through digital panels, sim-
ilarly to what is currently done for available parking spots
at parking lots. Nevertheless, we strongly believe that the
charging potential of a motorway can be further significantly
improved if driver’s decisions are centrally orchestrated and
supported. For instance, the motorway manager is aware of
the whole real-time EV charging load across all CS, of actual
traffic flows in the highway network, and can determine a

FIGURE 4. Percentage of utilization of the different CS in the two
directions (average values for scenarios up to 3% of EVperc are shown).

FIGURE 5. Variance of utilization of the different charging stations.

more convenient allocation of future EVs than individual
drivers with only local information. The interesting research
aspect then becomes how to incentivize drivers to accept the
central recommendations of where to charge.

As example, it may appear convenient to design dynamic
pricing schemes, to force drivers to adhere to centralized rec-
ommendations regarding the choice of the charging station.
Dynamic pricing may be highly effective in urban contexts
(see examples in [11] and [17]), less on highways because
there would be fewer opportunities for charging (i.e., a driver
cannot change its route to find an alternative charging sta-
tion), and tighter constraints (i.e., the final destination cannot
change either). Nevertheless, significant improvements are
expected also on motorways.

Such a central management architectures is the natural
completion of this study and will be addressed in greater
detail in a following paper. In addition to more sophisticated
assignment algorithms, our work can be expanded also in
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other directions. First of all, the full national motorway net-
work should be considered, and not just the A1 stretch, and
maybe even the whole TEN-T network, to fully appreciate all
European traffic flows, and obtain more accurate traffic data,
and better identify critical highway links. Also, the power
peaks at CS’s, and the overall energy requirements, should
be better correlated with the actual properties of distribution
networks to identify what are the margins of upgrading of
existing CS’s, or where new ones could be built, taking
into account appropriate integration with renewable energy
sources and battery storage systems. If so, then the mobility
simulator could be also deployed as a proactive tool to plan
and size new infrastructure.

V. CONCLUSION
In this paper we presented an electric mobility simulator that
allows us to evaluate the charging load at the charging stations
of amotorway. The simulator has been used in a realistic case-
study (the most important Italian motorway), and has shown
that, using realistic vehicle data and charging strategies based
on currently available information (or what may be simply
available in the near future) the maximum reasonable pene-
tration of EVs running on motorways would be around 3%.
Beyond this value, the charging infrastructure recommended
by the AFIR directive may give rise to unacceptable queues
at the CS’s. This result casts shadows regarding the future
horizon of the directive, although it is obviously intertwined
with the actual penetration level of EVs, which is currently
significantly far from the 3% threshold in most Southern
Europe countries.

The paper has also shown that in the considered motorway,
having a uniform distribution of charging stations, the largest
queues are generated just around two urban areas. Therefore,
future empowerment of the charging station capability should
address these areas, rather than keep following a uniform
approach.

In addition to the physical empowering of the charging
capability, also a managerial improvement can mitigate the
situation. This paper shows that moving from a first basic
strategy to a second one, significant improvements can be
already obtained.

In conclusion, even larger improvements can be foreseen
using a centralized allocation strategy of charging vehicles,
which has been sketched in this paper, but not implemented
yet. Such last an observation may serve as a starting point to
discuss who should better be in charge of orchestrating the
charging process of EVs at CS’s.
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