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ABSTRACT In the era of digital data proliferation, agriculture stands on the cusp of a transformative
revolution driven by Machine Learning (ML). This study delves into the intricate interplay between
Information and Communications Technology (ICT) and conventional agriculture, emphasizing the role
of ML in reshaping farming practices. With the ongoing data tsunami impacting data-driven businesses,
the fusion of smart farming and precision agriculture emerges as a beacon of innovation. ML algorithms,
analyzing historical and real-time environmental data, soil conditioning, predicts suitable crop for maximum
yields, detect diseases, and optimize irrigation in smart farming, facilitating informed decision-making.
Precision agriculture benefits from autonomous vehicles and drones, driven by ML, ensuring precision
in planting, harvesting, and crop monitoring. Resource efficiency increases as ML optimizes energy
consumption, manages fertilizer application, and promotes climate-resilient practices. This comprehensive
assessment underscores ML’s pivotal role in maximizing productivity, minimizing environmental impact,
and navigating the complexities of modern agriculture.

INDEX TERMS Smart agriculture, precision farming, machine learning, unmanned aerial vehicles, artificial
intelligence.

I. INTRODUCTION

The 6.4% of global Gross Domestic Product (GDP) comes
from agriculture, making it the primary source of both food
supply and economic growth. In nine nations throughout
the world, agriculture is a major economic driver. Energy
and employment for millions of people are provided by
the agricultural sector [1]. Supplying the demands of the
world’s population would need a threefold rise in yearly
wheat output and a more than twofold increase in annual meat

The associate editor coordinating the review of this manuscript and

approving it for publication was Michele Nappi

production by 2050 [2]. Increases in grain production yields
will provide a steady supply. It is necessary to adopt a more
modern perspective on farming and to expand the scale of
your crop production. The question of whether or not this
can be accomplished in a way that is both sustainable and
welcoming remains open. But re-engineering the agricultural
operations at massive size and speed calls for a major and
quick transition. Because of climate change and population
expansion, the agricultural industry is looking for ways to
apply new technologies to increase yields. As Artificial
Intelligence (AI) advances, it is being put to more useful use
in the agricultural sector. Concurrently, the Fourth Industrial
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Revolution (Industry 4.0) and the Internet of Things (IoTs)
make it possible for brand-new technological developments
and ground-breaking ideas to emerge. Smart agriculture,
commonly known as “Agriculture 4.0, is the use of new
technology and methods to farming that improves crop
yield while simultaneously lowering resource consumption.
Environment-specific monitoring and forecasting tools will
make this a reality. With the new tools made available
by smart farming, agricultural processes may be improved,
leading to higher yields while using less resources. In order
to take advantage of new ideas, Smart Farming (SF) employs
a wide range of technologies and platforms as shown in
Figure 1 [3].

Improvements in productivity, sustainability, equity, and
transparency will result from the ““‘digital agricultural revo-
lution™ in the agricultural sector. The agriculture industry,
however, needs wider use of technology to take full benefit
of their improved efficacy. Correct data generation, transport,
and processing, as well as protection from assaults, are
essential for Agriculture 4.0 [4]. Technologies reliant on data,
such as analytics and smart systems, are useless if their
integrity isn’t managed appropriately. The integrity of the
network and all devices linked to it may be compromised if
the system fails due to defective hardware or in combination
with other assaults. Privacy leaks, broken trust, and missing
resources are just some of the security concerns that crop up
when resources from different categories are combined.

A. SMART AGRICULTURE AND PRECISION FARMING: A
DEFINITION
An approach to agricultural management known as “‘smart
Agriculture (SA)” focuses on equipping agriculture with the
means to monitor, automate, and analyze their processes
via the use of cutting-edge technology, such as big data,
the cloud, and the IoT. Improving agricultural yields and
supporting management choices via the use of high-tech
sensor and analytic tools is known as Precision Farming
(PF). The weather (sun, rain, hail), farm machinery, animals,
passers-by, and humans are just some of the environmental
factors that farm smart devices must contend with. Because
of the aforementioned factors, the sophistication of our farm
is open to attacks that have not been seen before. Any of
these safeguards will be rendered useless if the sensor is
moved or damaged by accident. When these devices aren’t
physically attached to anything, as is frequently the case with
smart cities, external agents may easily find a way around
them. There is a clear weakness in agricultural systems due
to the absence of protection. ML’s potential uses on a grander
scale in agriculture are just now being explored. Research
and improvement in all areas of agriculture will eventually
yield miraculous outcomes. ‘“‘Agriculture is the cornerstone
of civilization and any stable economy,” said economist Allan
Savory.

Early applications of PF were targeting certain soil
conditions with fertilizer applications. Since then, PF has
found widespread usage in the development of autonomous
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farming equipment, farm management software, and research
methodologies. Automated Machine Learning (AutoML) is
a core tenet of Al with respect to its flexibility, efficiency,
accuracy, and low cost in the agricultural sector. In addition to
enhancing farmers’ skill sets, Al in agriculture ushers in a new
era of guided farming, which promises increased productivity
and improved quality with little input [5]. Water and fertilizer
management are examples of how farmers may benefit
from the smart agriculture concept of crop management
as explained in Figure 2 using different kinds of sensors.
In today’s farming operations, sensors for chemicals, pH,
wind, rain, temperature, moisture, and sound are routinely
used.

In every facet of farming, smart and precision agriculture
plays a crucial role. That’s where Information Technology
(IT) and IoT meet in one place. They want to use the
information gleaned from these many sources to plan, predict,
and manage agricultural operations in light of their respective
ecosystems. Sensors are now everywhere, and they are used
to gather all kinds of data. Sensor networks are widely used
for data gathering and transmission in this industry. When
it comes to SF, information gathered from the surrounding
environment is invaluable [5]. Due to the importance of the
soil in determining the likely occurrence of a disease, farmers
might benefit from receiving early warnings of impending
outbreaks based on weather data. A greater emphasis on
data use for crop security has the potential to boost yields
while simultaneously reducing their environmental effect.
A human brain can only take in so much information at
once, therefore we need methods that make analyzing this
data simpler so that we can use it to make better decisions.
Data mining methods are crucial for every serious data
analysis project. In order to find the patterns hidden in
big data, it is essential to examine the information from a
variety of angles. Many other agricultural jobs, such as pest
and disease detection, crop yield forecasting, and fertilizer
and pesticide application planning, have already benefited
from data mining approaches. In addition to their role
in crop management, they may also investigate alternative
models that contribute to the evaluation of farm management.
Agricultural Internet of Things Network Platform for Big
Data Analysis is shown in Figure 3. Therefore, gathering this
information is a novel input that may substantially improve
agricultural productivity [6]. SF is the practice of using
ICTs like the internet and mobile phones in agricultural
endeavors. The term ICTs is used to describe a wide range
of tools used in agricultural technology. These tools include
mobile phones, computers, networks, services, and apps that
help with data processing, management, and sharing with
specific audiences. It paves the way for the incorporation
of data gathering and analysis into ICT-based workflows.
The European Union (EU) thinks that satellite images, robots
for data collecting, and UAVs are the greatest technology
and approaches since they can be used to their maximum
potential. In the EU cooperation statement on ‘‘Information
technology for European agricultural and rural regions” from
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FIGURE 1. Agricultural trends: Emerging Smart Farming.

April 2019, 24 EU nations agreed on the importance of
smart agriculture in rural areas. According to the SF official
proclamation, digital inclusion is the first impediment that
must be tackled in places where connection is the largest
challenge, such as in rural communities [7]. Only 25-53% of
rural areas in Europe had access to Next Generation Access
Networks as of the end of 2017, despite IPv6 deployment
having been active for half a century. There seems to be an
overwhelming amount of efforts aimed towards the digital
transformation of agriculture. A new thematic network called
Smart AKIS, financed by the European Union, is working
to fill this information vacuum in order to develop workable
solutions. Even yet, SF shouldn’t only aim to make farming
as a whole more industrial, but rather to meet the demands of
farmers.

Rental schemes for agricultural equipment, provide several
benefits, including lower prices for farmers and support
systems that mechanize operations. One interpretation of this
program is that it encourages the use of Smart Agriculture
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(SA) in low-income areas. French company trying to modern-
ize inflexible infrastructure by integrating web and hardware
technologies. Many farms may access the data, which
serves as a resourceful resource library for scientists [8].
By using blockchain technology, AgriOpenData offers a
Decision Support Services (DSS) with its other supported
services. Reduced water use and increased productivity
are just two of the many benefits that robotic agriculture
may bring to the farming industry. Finally, a revolution
in traceability is taking place thanks to digital ledgers.
No matter how far out in the future you want to take it,
questions about the safety and reliability of food sources
remain an important reality check for any society. The French
retail giant Carrefour is considering blockchain technology
as a way to boost consumer and industry confidence in
the veracity of its transactions. As an example of the
flexibility of the blockchain, Hectare Agritech’s farm trade
platform makes use of the technology in a variety of
ways [9].
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Depending on the capabilities of the appliance, the
edge may contribute a single or several resources. Some
gadgets can just send and receive data, while others can
do intricate functions. Programmable gateways’ power lies
in their capacity to interpret data, make judgements, issue
instructions to devices, and upload data to the cloud. Though
the big data, world will soon be faced with a deluge of
information from perception devices, processing this data in
the cloud is prohibitively expensive [10]. Costs associated
with cloud computing, bandwidth, and initial investment are
quite high for some of the suggested solutions. It may be
helpful to use a powerful gateway with some processing
done at the periphery. It may be possible to reduce the
farm’s operating costs by moving some subsystems to the
periphery. Network bandwidth is conserved and battery life is
protected when data is downloaded or processed at the edge.
The cloud’s ability to store vast quantities of data and run
processes and make judgements in real time paves the way
for collaborative decision making amongst users. High-tech
Al and pattern recognition techniques may be required for
processing massive data.
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B. NEED FOR INTELLIGENT AND AUTOMATED FARMING

A growing population and changing environment have com-
plicated efforts to increase food production. The agricultural
sector, in order to protect itself from the risk of fluctuating
markets and to better take advantage of land and water
management techniques, must clearly adapt its existing
production and adoption strategies. A number of recent IT
developments have ushered in a data-driven age for the
agricultural sector. India is primarily an agricultural economy,
with agriculture contributing 16% and 10%, respectively,
to GDP and exports. Roughly 75% of India’s people rely
on agriculture for their livelihood. Tomatoes are grown on
over 3,50,000 acres of land in India, making the country
the third-largest producer of tomatoes in the world [11].
More than 15% of India’s crops are lost every year due
to diseases, which has a negative impact on the country’s
GDP. Agricultural activities now use more than 40% of
Europe’s fresh water and are responsible for over 10% of
the continent’s greenhouse gas emissions. The water usage
breakdown for each sector is illustrated in Figure 4. Increased
market penetration for fruit crops often requires the use
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FIGURE 4. Percentage of water consumption in different sectors.

of chemical treatments (pesticides), which has far-reaching
consequences for pollinators and the global ecosystem. Over
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eighty percent of the average human diet consists of plant-
based foods. Therefore, there is a rising need for innovative
strategies to lessen the burden on water supplies and enhance
the efficiency of pesticide applications. Given the challenges
posed by factors like climate change, population expansion,
and food insecurity, there is an ongoing need to find
new strategies to boost agricultural output. More and more
people in the IT world consider agriculture as a front-runner
when it comes to the development of Al. Because of how
challenging or impossible this task is for people, we need
to use automated techniques and technologies to help with
the decision-making. Innovations in computer vision and
precision agriculture have the potential to boost yields and
quality while decreasing labor expenses. Access to timely
data on crop health and disease hotspots allows for more
precise disease control and more targeted treatment.

C. RESEARCH CONTRIBUTIONS
Significant contributions of our study include:

1) This paper covers the fundamental methods for
automating pre-harvest agricultural tasks such as land
and seed preparation, disease detection and weed
control, pesticide, yield and irrigation management.

2) To recap about how ML and Deep Learning (DL) have
been used to better detect disease in plant leaves and
fruits. Other methods, such as image processing, are
also covered, along with the importance of IoT and
smart agriculture, drones, and increasing agricultural
yields.

3) In this paper, we examine the symptoms of numerous
diseases, and infections found in crops. The process of
automated plant disease detection and categorization is
outlined, along with the many tactics and algorithms
that may be used at each stage.

4) The potential and discussion of the future of these ML
models for smart agricultural tasks are discussed in this
in-depth research, as are the difficulties and obstacles
that have prevented their wider implementation to far.

D. OUTLINE OF THE PAPER

The subsequent sections of the article are as follows.
In Section I, an overview of basic terminologies and concepts
of machine learning are highlighted while in section III
the primary focus is on machine learning application
in the area of smart agriculture and precision farming.
This section highlights automating pre-harvest activities,
including soil and seed preparation, disease monitoring,
crop analysis, irrigation, and pesticide management. The
section also covers various diagnostic signs for plant diseases,
ranging from those impacting tomatoes, rice, and apples
to other plants. Detailed explanations are provided for
image-related processes like picture capture, data processing,
image segmentation, extraction, and disease classification,
with a strong emphasis on ML and DL techniques. It also
covers machine learning applications in harvesting and post
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harvesting stage. Moving on to Section IV, the article
addresses the challenges associated with utilizing ML and
computer vision for plant disease detection and classification,
along with identifying research opportunities based on the
analysis of existing frameworks. Lastly, Section V provides
a conclusion of pertinent literature and the issues uncovered
during the research presented in the article.

Il. MACHINE LEARNING

A. MACHINE LEARNING TERMINOLOGY AND
DEFINITIONS

Learning is the basic methodology in most ML approaches,
with the goal of gaining the necessary experience (training
data) to successfully complete a task. A collection of
characteristics, often called features or variables, is typically
used to characterize a single instance. Nominal features are
those that are enumerated, binary features that are either
0 or 1, ordinal features that are either A or B, or numeric
features that have a specific value between O and 1. (integer,
real number, etc.). To gauge how well an ML model performs
on a given job, we may look at its performance metrics, which
become better the more data it processes. The efficiency of
ML models and algorithms may be estimated using a number
of different statistical and mathematical approaches. When
the training phase is complete, the learned model may be
put to use to make predictions or group together fresh data
(testing data) based on what it learned in the training phase.
There are a number of statistical and mathematical models
that may be used to estimate how well a ML model or
algorithm will perform. After the training phase is complete,
the learned model may be put to use to make predictions
or group together fresh data (testing data) based on what it
learned in the training phase. Figure 5 depicts a common ML
strategy.

B. TASKS OF LEARNING

Based on the nature of the learning signal used, ML tasks
may be broken down into two broad categories: supervised
and unsupervised learning. Data are supplied with sample
inputs and the related outputs in supervised learning, and the
goal is to develop a general rule that maps inputs to outputs.
Sometimes in a dynamic setting, only some of the inputs may
be accessible, while some of the desired outputs will be absent
or provided just as feedback to the actions (reinforcement
learning) [12]. The trained model is used to make predictions
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about the test data’s missing outputs (labels) in a supervised
scenario. However, with unsupervised learning, the data is not
labelled, hence there is no classification needed to separate
the training and test data. The learner analyses facts in an
effort to establish a precedent for future discoveries.

C. ANALYSIS OF LEARNING

Dimensional reduction is a method used in both supervised
and unsupervised learning to simplify the learning process.
Its main goal is to create a compact representation of a dataset
with fewer dimensions while preserving as much original
information as possible. This step is usually done before
applying a classification or regression model. Common
techniques include principal component analysis, partial least
squares regression, and linear discriminant analysis.

D. LEARNING MODELS
Some of the ML learning models that have been deployed are
briefly explained as follows:

1) CLUSTERING

Unsupervised learning models, like clustering are often
employed to discover meaningful categories in large amounts
of data (clusters). Proven clustering methods include the
k-means method, the hierarchical method, and the expecta-
tion maximization method.

2) INSTANCE BASED MODELS

Memory-based Instance Based Models (IBM) compare fresh
examples to cases in the training database in order to learn.
Instead of keeping track of a collection of abstractions, these
methods produce classification or regression predictions
based on individual instances and then test their hypotheses
against the data [13]. The complexity of these models
increases as more data is added, which is a drawback. In this
area, the k-nearest neighbor, locally weighted learning, and
learning vector quantization are the most often used learning
algorithms.

3) DECISION TREES

Decision trees (DT) are tree-like models for classification
or regression. A tree graph is created with a hierarchical
organization of the dataset into smaller, more similar groups
(sub-populations) using DT. A pairwise comparison on a
chosen characteristic is represented by each internal node
of the tree structure, while the comparison’s conclusion is
represented by each branch. If you trace a tree from its root
to its tip, you’ll end up at a leaf node, which represents
the conclusion or forecast made along the (expressed as a
classification rule) [14].

4) ARTIFICIAL NEURAL NETWORKS

There are two types of Artificial Neural Networks (ANNS):
the more simplistic Traditional ANNs and the more complex
Deep ANNs. ANNs are motivated by the capabilities of
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the human brain, modelling its pattern-generating, cognitive,
learning, and decision-making abilities. There are billions
of neurons in the human brain, all communicating with
one another to take in and organize incoming data. Like
the biological neural network, an ANN is a model of the
structure of the network reduced to its essentials, consisting
of processing units coupled in a predetermined topology [15].
The following nodes are among those that have been placed
in hierarchical fashion.

There are three main parts to a neural network:

1) The input layer, where data is brought in.

2) The hidden layers, where learning occurs.

3) The output layer, where the judgement or prediction is

provided.

5) SUPPORT VECTOR MACHINES

Founded on the principles of statistical learning theory,
Support Vector Machines (SVM) were first introduced
in [16]. SVM, in essence, operates as a binary classifier
employing a linear separating hyperplane to categorize data
points into two distinct groups. The application of the kernel
trick facilitates a substantial enhancement in the classification
capabilities of conventional SVMs by transforming the
original feature space into a higher-dimensional counter-
part. SVMs find utility in various domains, encompassing
classification, regression, and clustering tasks. What makes
SVMs particularly fascinating is their reliance on global
optimization techniques, enabling them to effectively address
over-fitting challenges commonly encountered in high-
dimensional settings [17].

Ill. MACHINE LEARNING IN SA AND PF

In the future, farmers will be able to produce the same
quantity of food while using less water and fewer pesticides.
Farmers, in an era of rising output and falling costs, are
naturally tempted to maximize both quantity and profit, but
the public is increasingly demanding healthy options. The
agricultural sector actively seeks for novel goods, methods,
and technology. Precision agriculture allows farmers to
adapt their practices to a wide range of customer demands.
Agricultural progress depends on the use of several tools for
data gathering and analysis. Massive volumes of information
are created by many of these new technologies, particularly
web technologies, and made available to everyone. The most
important aspects of data mining for PF are: To efficiently
and quickly delve into this data, it is crucial that we be
able to handle massive volumes of information and a wide
variety of data types (including sensors, pictures, strings,
integers, etc.) are required for usage in SA [18]. Whether
it’s farming techniques or technological advancements, the
globe is always improving. Both past information and the use
of computer vision technologies are crucial to performance
in order to keep up with the expanding agricultural demand.
Although it does have an impact on crop categorization,
agrochemical production, disease diagnosis, and prevention,
it is not a guarantee.
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With the correct setting and item, everything is possible.
PF is a more exact and regulated alternative to traditional
agricultural methods that eliminates labor-intensive, time-
consuming tasks like weeding and planting [19]. Precision
agriculture include the use of satellite GPS and its applica-
tions to livestock. Also, it coordinates, integrates, measures,
and analyses a number of technologies in order to boost
production and reduce costs [20]. If soil conditions, available
acreage, and equipment were to stay constant, agricultural
profits and output would increase dramatically [21]. Image
and computer vision have flourished in recent years as
a result of falling prices for necessary hardware, rising
computing power, and a commensurate decrease in the
willingness to use destructive approaches [22]. ANNs and
fuzzy controllers are two examples of Al based technologies
that have arisen in the past two decades to improve the
accuracy of climate management in artificially controlled
greenhouses. These self-driving, wheeled robots have several
uses in the agricultural sector. Robots in agriculture may learn
new techniques to help them with their work since farming
is an ever-changing activity. The sensors on an autonomous
robot are its defining feature since they provide data back to
the brain. The robot’s command structure might be governed
by fuzzy logic.

In most cases, farmers will follow the procedures outlined
below while carrying out agricultural operations:

o Phase 1: Choose crop

o Phase 2: Preparing the Land.

o Phase 3: Planting the Seeds.

o Phase 4: Watering and fertilizing the soil.

o Phase 5: Crop Maintenance (Pesticide Application,

Plant Pruning, etc)
o Phase 6: Harvesting.
o Phase 7: Post Harvest.

By using the aforementioned approach, agricultural oper-
ations may be broken down into three broad classes. These
three categories of agricultural work are shown in Figure 6.
The next sections provide a comprehensive overview of the
most up-to-date methods for using machine vision systems
for categorization and object identification prior to harvest.

A. PRE-HARVESTING

Real crop growth is affected by pre-harvest circumstances.
During the pre-harvest phase, machine learning is used to
keep track of the state of the soil, the quality of the seeds
planted, the amount and timing of fertilizer used, the timing
and method of pruning, the crop’s genetic makeup, and
its environmental and environmental conditions. Reduced
manufacturing losses need meticulous attention to each
individual component. In this part, we examine a few crucial
pre-harvesting components and the ways in which ANN and
ML used to capture the properties of each.

1) SEED AND SOIL
Soil attribute categorization and evaluation help farmers in
significantly lowering on fertilizer expenses, significantly
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reducing on the requirement for soil analysis specialists,
boosting profits, and enhancing soil health. Suchithra and
Pai [23] established a methodology for classifying and
predicting pH and soil fertility metrics. Authors anticipated
pH and Soil Organic Matter (SOM) parameters in paddy soil
since they are important indicators of soil fertility. In [24]
author have made predictions for the soil’s organic carbon
(OC), nitrogen, and Moisture Content (MC) characteristics.
Germination rates are a good indicator of overall seed quality,
which in turn has a major impact on harvest success. Many
computers vision, ML, and ANN techniques have been shown
to have applications in automated seed sorting and soil quality
assessments by [25] and [26]. Summary of some of the review
work related to the seed and soil is presented in Table 1.

2) MONITORING AND PREDICTING CROP DISEASES
Infectious diseases may easily spread to plants because of
their constant exposure to the elements. The susceptibility
and state of the crop will determine how quickly the disease
spreads. To protect against losses in crop production and
quantity, proper identification of plant diseases is essential.
Everything from the plant’s leaves, stems, seeds, and roots
to the plant’s blooms, fruit, and seeds [30]. Therefore,
in many areas of the world, early diagnosis is difficult [31].
Improvements in DL and Computer Vision (CV) are allowing
smartphones to be used in a diagnostic role. Due to the
time-consuming nature of manually identifying and counting
disease cases across huge populations of crops on big farms,
automation is useful for reducing risk. Most illnesses are too
minute for the human eye to be able to detect, making medical
aid is essential even in underdeveloped nations. Since it was
difficult to identify between many species just by looking at
images, the use of image processing software to support in
the classification of plant diseases became an acute problem.
Variations in soil conditions and nitrogen levels have
a significant role in the success or failure of agricultural
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activities. In the past, pesticides were spread uniformly
throughout the field in all squares. Overly conservative water
budgeting by farmers could have a dramatic impact on the
diversity of pollinator species available to support plant and
animal life. When used with analytical tools, ML may help
determine the state of a crop’s health. The information is used
to zero in on the regions with the most severe infestations,
enabling farmers to concentrate their pesticide applications
there. The ability to modify one’s surroundings may have a
major impact. Plantix, a German startup, is one such company
that uses ML and picture identification in a mobile app to
detect plant illnesses and nutritional deficiencies. Modular
equipment like this is vital to smaller farms. When it comes
to gathering visual and thermal data, larger corporations
rely on digital platforms linked to IoT devices. A popular
example of a company that uses this strategy is Gamaya,
a Swiss firm. By using ML, businesses may focus on disease
prevention rather than detection in their efforts to maintain
healthy agricultural yields. Some farmers choose to send their
soil samples direct to Trace Genetics for analysis, so they
may find out in advance how healthy their soil really is. This
article provides a comprehensive review of the most up-to-
date methods in computer science for automating agricultural
disease diagnosis and detection.

3) CROP DISEASES DETECTION AND CLASSIFICATION
USING CONVENTIONAL DATA MINING METHODS

Several crop disease detection and classification techniques
are available for use in CV. Using DNNSs, [32] was able
to attain a 99.53% accuracy rate for identifying the plant
illness. In addition, neural networks have been used to solve
rice-related problems, such as disease diagnosis [33]. In [34]
showed that color and texture were useful in identifying
diseases in agriculture and horticulture via the discovery and
classification of visual similarities. The New Enterprise To
monitor crops and alert farmers of any problems, Proper
built a system with connected cameras, sensors, and a ML
algorithm [35]. Focusing on plant disease, [36] used neutral
network processing algorithms to hyper-spectral data. The
multilayered neural networks employed by [37] to detect
yellow rust in wheat. With the help of ANN software, student
achievement went from 95% to 99%.

Tomato crop disease classification dataset based on an
experiment by [38], who collected six different tomato leaf
types from Plant Village. VGG16 was able to correctly
classify 13,261 image signatures (97.29%) while AlexNet
achieved 97.50% accuracy. Diseases in plants are easier to
spot in their early stages of development, when machine
vision approaches are most effective [39]. The first step
is to gather and prepare a sample for analysis. Accuracy
rates of 87.9%, 87.5%, and 90.15% were achieved when
using ML on rice [40], papaya [41], and chilli pepper [42].
In [43], researchers employed the SVM classifier to identify
grape leaf diseases. There was an 88.89% success rate in
identifying mildew grape plants in [44]. The researchers
in [45] found disorders on citrus fruits such as anthracnose
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TABLE 1. Soil and seed analysis prior to harvest.

Comparing models, and methodologi Best models, and

h

Tol

Feature Utilized Dataset Results Ref.

Various activation models for the Extreme Learning Machine (ELM),
include sine-squared, Gaussian radial basis,
triangular basis, hyperbolic tangent, and hard boundary

Gaussian radial basis function ELMs

Soil Does not possess (common) | Accurate 80 percent [23]

Four models for ML, Partial Least Squares Regression (PLSR),
ELMs, Least Squares-Support Vector Machines (LS-SVM),
and The Cubist Regression Model (CRM)

ELMs

Soil Possess more accurate (R2 = 0.81) [27]

Principal Component Regression (PCR),
LS-SVM, Cubist, and PLSR

Best by Cubist is True-Negative TN,
the finest LS-SVM for MC and OC

MC—RMSEP:0.45,RPD:2.24,
TN—RMSEP: 0.071 and
RPD:1.96

Soil Possess [24]

Ensemble learning, GoogLeNet, SVM,K-Nearest Neighbor (KNN),
Logistic Regression (LR), and Speeded Up Robust Features (SURF)
algorithm to classify the extracted features, VGG19

GoogleNet

Seed Possess 95% [25]

Based on deep features collected using self-designed

CNN and ResNet models, SVM, PLS-DA, and LR models self-design CNN 80%

Cotton Speed | Possess(China) 80% [26]

DeepSort DeepSort

DeepSort, (SVM), (LR),

and Random Forest (RF) cross-validated five times

Maize Seeds [28]

Binary Logistic Regression (BLR), single feature models,
multilayer perceptron (MLP)

BLR, and (MLP)

Pepper Seeds Possess 90% [29]

and canker. Citrus trees, especially those bearing lemons and
grape fruits. Research findings got a 95% accurate rating in
the real world. Exhibits by the writers proved categorization
accuracy of around 90% on average [46] while using a
big data collection to identify diseases. The Writers in [47]
developed a method for identifying potentially harmful tea
crops, as well as identifying three distinct illnesses with
just a few available traits, and claiming an accuracy rate
of 90%. In [48], authors built a technique to evaluate
illness presence by using a fuzzy classifier on images of
wheat crops. Its precision that 56% of the time, it was
possible to distinguish between sick and healthy leaves and
as a percentage, they each account for 88%. In [49], the
K-Nearest Neighbors (KNN) classifier is used to conduct a
comprehensive analysis of agricultural disease identification.
The GLCM feature extraction method was utilized by the
authors [50]. Utilizing the KNN classifier for Grey Mildew,
a disease that affects cotton crops, we were able to increase
accuracy to 82.5%. Quantitative and qualitative information
about plants. An ANN classifier for the diagnosis of illnesses
is provided in [51]. The algorithms RF, SVM, DT, KNN, NB,
and KNN from the supervised machine learning family were
studied by the authors [52]. CV techniques for determining
the most effective algorithm for categorizing plant diseases.
Overall, the RF algorithm was 89% effective precision as
compared to comparable algorithms.

Similarly, DL approaches outperformed ML methods
while evaluating citrus plant disease identification in an
evaluation of SVM, RF, SGD, and DL by the authors [53].
Work [54] sheds light on several Plant Diseases (PD)
that may affect plants, as well as advanced ML and
image processing methods for diagnosing PDs. The goal
of [55] was to modify and evaluate state-of-the-art deep
Convolution Neural Network (CNN) for image-based PD
characterization. The KNN classifier was suggested by [56]
as a means of plant leaf disease detection (PLDD) and
characterization.

Another paper proposing an intensity threshold approach
for tracking cherry powdery mildew’s spread is [57]. In [58],
a hybrid approach to disease detection and identification in
citrus trees is given. In order to identify the infected areas
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of previously identified mandarin leaves, the authors provide
a color-based method [59]. Author in [60], proposed CNN
approach to identify bean diseases. Wheat disease detection
studies are conducted in [61], while banana field imaging
studies are conducted in [62]. SVM was shown to be the most
effective classifier in [63], which presented a technique for
separating rotting apples from healthy ones. Using KNN and
SVM, the authors of [64] looked for signs of leaf deficiencies
and illnesses. It is advised in [65] that a hybrid approach be
used to identify and classify illnesses in citrus plants. The
state-of-the-art review efforts for smart disease diagnosis in
SF are summarized in Table 2. The different phases of grape
leaf disease are shown in Figure 7.

4) CROP DISEASES DETECTION AND CLASSIFICATION
USING MULTIMODAL CROP DATA ANALYSIS

In [77], the authors used a hybrid approach, combining data
from hyperspectral and multi-spectral imaging, to identify
illness at an early stage achieved a precision of 94.5%. These
writers suggest a better data-driven choices may be made
with the help of Hydra’s multi-valued data fusion, application
event detection, and other features [78]. There are a variety
of ways to classify the elements: All the way from the
ground up to the upper altitudes. Once again, there are a
variety of ways to stratify the data. Two with the help of
Embrapa, the SA Domain one offered facts and figures about
top-performing methods that are helpful to farmers, and the
other is data that may assist them implement such methods.
Use them for water collection on a small scale. The first
action was to determine whether or not a threshold amount of
moisture existed. In the second stage, enough irrigation time
was calculated by the monitoring of crop evaporation [78].
Figure 8 shows a representational sample of infected apple
leaves with varying degrees.

5) CROP DISEASES DETECTION AND CLASSIFICATION
USING DL

In this part, we will look at different DL approaches
used to modernize farming. Using the DL framework
developed at Berkley’s vision and learning center, a model for
identifying plant diseases was developed in [79]. The model
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TABLE 2. Summarized review related to traditional data mining techniques for illness detection and classification.

Obtained
Techniques Model used Plant Disease features ﬁzzl;lrt:cy ;::::mrs and Reference
(%)
illnesses that affect
. Supervised Learning | Grapes leaves include powdery | 88.99 Padol and Yadav, [66]
Image processing by - 2016
SVM and downy mildew
Supervised Learning Cotton The illness of leaf spot 89 g’gtllzand Zambre, [67]
Supervised Learning Apple blotch, rot, scab 93 12)(;1 lbze y and Jalal, [68]
Red leaf spot,
cercospora leaf spot, Warne and Ganorkar,
Image processing Neural Network Cotton and alternaria leaf spot 89.56 2015 169]
which affect leaves.
illnesses that cause Revathi and
Neural Network Cotton Jeaf spots 98.1 Hemalatha, 2012 [70]
Image processing 2;1‘251:;1 Neural Potato Late blight of the leaf 100 2K(§1 il 6r and Singla, [71]
illnesses that .
Image processin; Back-propagation Grapes affect leaves 100 Isizr'mi(;(lii?nd [72]
eep g Neural Networks P include powdery 20J1§ ?
and downy mildew
GoogLeNet gzg‘;lr‘lf“’“ Neural g{;lltt‘sple Ilness in plants 96.17 Barbedo, 2019 (73]
AlexNet precursor,
VGG 19, inception,
DenseNet,
ResNet, Neural Networks and | Multiple | . Liu and Zhang,
PlantDiseaseNet, Supervised Learning Plants illness of leaf 97.62 2017 (741
SVM BPAlexNet
GoogLeNet,
ResNet-20 VggNet-16
Fuzzy rule-based
approach for . . Kour and Arora,
disease detection Fuzzy logic Apples Illness of fruits 91.66 2018 [75]
(FRADD)
K-nearest neighbour (KNN), Tiirkoelu and
support vector machine (SVM), Supervised Learnin Multiple | detection of plant 08 Hanbag 76]
extreme learning machine (ELM), uperv 1ng Plants pests and illnesses 2019 ¥
VGG16, VGG19, and AlexNet

a | b

FIGURE 7. Different phases of grape leaf disease from healthier (a) to fully affected (d).

has accurately diagnose 13 unique diseases. The method
proposed in [80] combines CNNs with K-means features for
the purpose of preventing and detecting plant diseases. Using
DL and K-means improved identification accuracy to 92.89%
[81]. Current research on automated disease diagnosis using
DL in agriculture is shown in Table 3.
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The study in [82] utilizes a Deep Convolutional Neural
Network (DCNN) based on the AlexNet architecture. The
proposed model underwent comparison with alternative CNN
models, specifically VGG-16 and Lenet-5. The results of
the comparative analysis indicate that our AlexNet-based
model exhibits superior accuracy when compared to VGG-16

VOLUME 12, 2024



G. Mohyuddin et al.: Evaluation of ML Approaches for PF in Smart Agriculture System

IEEE Access

a b

FIGURE 8. Different phases of Apple leaf disease from healthier (a) to fully affected (d).

and Lenet-5. Research in [83] utilized a dataset comprising
a total of 7070 images, encompassing both diseased and
healthy leaves and CNN was used to mitigate the diseases.
The dataset was sourced from the plant village repository.
The proposed methodology demonstrated a high level
of accuracy, successfully identifying crop species with a
precision of 96.76 %. The investigation in [84] introduces
a novel approach which explores the application of ant
colony optimization (ACO) to enhance disease detection,
encompassing key phases such as data acquisition in the form
of image then classifying the image and improving the image
quality for more accurate data training.

In [85], authors addressed the challenge of small image
databases by introducing a deep Siamese convolutional
network. This network achieved a recognition accuracy of
over 90 % for three grape leaf diseases: Esca, Black rot, and
Chlorosis. In [86], a thorough analysis and comparison of
different ML based classification techniques is performed,
the RF algorithm emerged as the most suitable model, attain-
ing a 79.23 % accuracy for plant disease prediction. In [87]
author conducted a comparative study of five architectures for
disease recognition. Their findings revealed that ResNet50
outperformed others, achieving 94 % accuracy on the test set.
In [88], the paper explores classification methods that rely on
input data, employing k-mean clustering and Support Vector
Machine. The challenge of method selection is acknowledged
due to varying results based on input data. Disease detection,
particularly in coffee leaves, is addressed in [89] using
Convolutional Neural Network (CNN). CNN demonstrates
effectiveness in image classification and pattern recognition,
specifically in identifying coffee leaf diseases with high accu-
racy. Despite the method’s time-intensive nature, it proves
advantageous in achieving accurate detections compared to
alternative approaches. Author in [90] proposed an approach
for early-stage identification and categorization of tomato
leaf disease. Utilizing the AlexNet framework and KNN,
it achieves improved accuracy, yet the KNN algorithm’s
slowness remains a drawback. In [91] DL-based approach for
tomato leaf disease detection, employing a residual network
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and CNN classifier is presented. Despite achieving enhanced
accuracy, the method is deemed economically inefficient.

The authors of [92] employed DL to identify powdery
mildew (PM). While ResNet-50’s 98.11% CA was the top
for differentiating between healthy and sick leaves, AlexNet’s
95.59% CA was the highest for processing 2320 photos in
the shortest amount of time (40.73s) [93]. Both AlexNet and
SqueezeNet were tested for their ability to identify disease in
tomatoes by the authors of [94], and both were found to have
comparable accuracies. Diseases in cassava have also been
identified using GoogLeNet (Inception) [95], [96]. The last
study, [97], examined two variants of the ResNet algorithm
for disease detection in tomatoes and found that ResNet-50
was superior to ResNeXt-50.

6) CROP PHENOTYPING
Phenotype refers to the sum of an organism’s observ-
able traits. Personality, biological characteristics, physical
attributes, and appearance may all be considered fundamental
traits. Throughout its life cycle, a plant’s morphological
qualities remain consistent, but its ontogenic, physiologi-
cal, anatomical, and biochemical properties change [114].
In addition, the phenotype contains a vast array of processes,
structures, and functions as it matures and develops [115].
Successful breeding and quick phenotypic assessment are
essential for cultivar development. Science confirms that
increasing crop output is the primary difficulty in plant
breeding. Increase in the number of phenotypic assessments,
so alleviating the alleged quantitative constraint for functional
genotyping research, are shown by [116] and [117].
Hyperspectral sensor systems come in four distinct flavors:
push broom, filter-based, non-imaging, and two. On the other
hand, they may be put to use in agriculture to help prevent the
spread of a certain illness. The simplex volume maximization
method [118] is another well-known example of a collection
of mathematical methods used to categorization. Classifi-
cation and stress phenotyping are two common uses for
support vector machine (SVM) techniques [119]. K-means
clustering, ANN, Gaussian mixture models, etc., may all be
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TABLE 3. Synopsis of the literature on utilizing deep learning to identify and categorize illnesses.

Networks

learning

Techniques Targeted Parameter | Deep Learning (DL) features Ref. Author and Year
c lutional Neural Using photos of commercial farms, Tedesco-Oliveira
onvolutional Neura . . -
Networks Cotton Yield CNN w:cls able to estimate the cotton [98] and da Silva, 2020
production.
Deep Convolutional . Prediction of crop production using Nevavuori and
Neural Networks Crop Yield deep CNN (991, 11001 | \raimaitijiang, 2020
C lutional N i Using UAV-based remotely sensed photos, Q.Y d
onvolutional Neura . ) . . . L . Yang an
Networks Rice Yield Dec?p CNN is us.ed to estimate rice grain yield | [101] L. Shi. 2019
during the ripening stage.
Convolutional Neural . . L . Khaki and
Networks Crop Yield Crop Yield Prediction Using DNN. [102] Wang, 2019
Convolutional Neural Yield Estimation Estimating yield in real time using deep (103] Rahnemoonfar

and Sheppard, 2017

Convolutional Neural

A Self-Predictable Crop Yield Platform

S. Lee

Networks Crop Yield (SCYP) [104], [105] and Elavarasan, 2020
Unmanned aerial vehicle (UAV) with dual
. cameras and a high-throughput N. Yu
CNN-RNN soybean yield phenotyping (HTP) platform for a large- [106], [107] and Z. Chu, 2020
scale soybean yield
Ez:;r ggf\l,zrlz tional Deep Neural Network-Based Prediction of Y. Chen and
Neural Networks Strawberry Yield Stra.wberry Y.1eld Using High-Resolution [108] W.S. Lee
(Faster R-CNN) Aerial Orthoimages
(CNN-LSTM) Soybean Deep CNN-LSTM Model for County-Level (109] J. Sun and
cornbi_nation Yield Soybean Yield Prediction L. Di, 2019
] . Deep Learning Approaches for County- X. Wang and
Wheat-Production | | /6] Wheat Yield Prediction in China. [HOL T 1 5y, 2020
(CNN-RNN) . . S. Khaki and
combination Crop Yield Framework for Crop Yield on CNN-RNN [112] L. Wang, 2020
R Soybean crop case study Using Deep Neural Terliksiz and
(3D CNN) Soybean Yield Networks for Crop Yield Prediction [113] Alt'yla, 2019
= to conduct strength tests on plant stalks and collect data on
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FIGURE 9. Crop phenotyping communication network.

useful, but a deeper knowledge of the process would allow
for their more effective use. For example, a telepresence robot
equipped with a suite of non-contact sensors may be utilized
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the genetic makeup of the plant using an autonomous ground
vehicle [120]. As an alternative phenotypic platform, we may
use metaphor [121]. This is helpful also because ground
vehicle might be equipped with sensors to collect data on
certain plants, while the observation tower could keep an eye
on a large area and zero in on specific ones. Other methods
of accessing or collecting data include remote sensing and
ground-based devices [122]. Pre-trained neural networks,
or Deep Phenomics, may be used to give plant scientists with
phenotyping models right away [123]. Leaf counting, mutant
classification, and age regression tests were conducted to
assess the efficacy of image-based phenotypic tasks. Imaging
and environmental sensors that don’t break the bank were
the subject of research by [124]. See Figure 9 for a visual
representation of the crop phenotyping for communication
network.

7) EFFICIENT UTILIZATION OF FERTILIZERS AND PESTICIDES
According to the findings of that research, an annual
worldwide application rate of 5.6 billion pounds of pesticides
is a realistic estimate. Reducing pesticide use is possible
because to pattern recognition and decades of data on
crop conditions. With the use of image-based pest control
software, spotting these unwanted guests is a breeze, and
the same goes for zeroing in on the best way to get rid of
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them. Since pesticides may be harmful to people if consumed
in large numbers, agents help ensure that just the necessary
quantity is applied to the crop. Plant diseases, such as fungal
and nematode bacteria and rodents, may develop in a variety
of environments, including those that are too warm and
humid throughout the plant’s growth cycle. Agrochemical-
containing agricultural goods hit shelves 30 years ago
and immediately revolutionized the industry. Pesticides,
antibiotics, and insecticides are all examples of modern
chemical therapies that have helped farmers combat pests
and diseases. Using these pesticides reduces crop damage,
although it does so in a variety of ways, some of which are
better for the environment and human health than others.

However, so-like neuropeptides are thought to be essential
for the proper functioning of all biological and behavioral
processes, including metabolism and reproduction, in insects
and other animals like mollusks. NeuroPlIpred takes in a
neuropeptide composition from an insect and produces a
novel insect poison that is lethal to but not harmful to other
insects. For decades, the use of harmful agrochemicals has
been a major cause for worry across the globe.

8) PEST IDENTIFICATION WITH DEEP LEARNING
TECHNIQUES

In [133], the authors offer an embedded system with ML
functionality, which guarantees continuous detection of pest
infestation inside fruit plantations. A low-power embedded
sensor device and a neural accelerator form the basis of
the embedded solution, which can be used to take and
interpret photos from inside the most prevalent types of
pheromone-based traps. The results demonstrate how insect
infestation may be automated for an indefinite period of
time without any involvement from the farmer. By using
deep learning methods, a fully automated, real-time pest
monitoring system has been developed, with the human
out of the loop totally [134]. Over preexisting validation
data, the VGG model achieved its maximum accuracy
of 93.5%. To minimize the potential for human mistake
and shorten the time required to diagnose plant illnesses,
Barbedo [135] developed an image segmentation algorithm.
Background removal and lesion tissue segmentation are
two common pre-processing steps outlined in many arti-
cles [136], [137], [138], [139] on image-based plant disease
detection.

An 88% identification rate was reported by the authors
of, who also offer a technique for detecting illnesses in
apple fruit and preventing their spread in a timely manner
due to environmental variables. Using an enhanced CNN
for real-time identification of the illness using an image
dataset, Jiang et al. [140] suggested a CNN model for disease
detection in apple leaves. In [141], we see the introduction
of a new mobile app that uses a deep-learning technology to
automatically categorize pests in order to aid professionals
and farmers. Aphids, Cicadellidae, Flax Budworm, Flea
Beetles, and Red Spiders are just some of the pests that have
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been used to effectively verify the research, with the approach
displaying an accuracy of 99.0%. In study [142], the authors
examine the different strengths of SoA CNN-based object
identification models for the task of recognizing beetle-like
nuisance insects on nonhomogeneous pictures. Five distinct
CNN architectures were used to create a method for disease
identification in banana plants by the authors of. Additional
state-of-the-art studies related to automated pesticide duties
in agriculture are included in Table 5.

9) WEED DETECTION AND MANAGEMENT

Fungus follows the proliferation of weeds to further reduce
productivity and profits. Herbicides are the current standard,
however there are issues with both their effectiveness and
their cost. Second, weeds are becoming more and more
resistant to herbicides when they are kept in the soil for
extended periods of time. As soon as the technology is fully
implemented, it will drastically alter how farmers look for
infected areas. See & Spray, developed by California-based
company Blue River Technology, is capable of autonomously
selecting and treating just undesirable plants with herbicide.
The number of chemicals needed is cut by around 80 percent
due to this technique. The weed profiling function in See &
Spray also helps when it comes to developing individualized
herbicide treatment plans. Water use and distribution may
be measured with the use of meteorological variables,
agricultural factors, and economic factors with the help
of data mining. Pest management is crucial in a farming
operation. Although, several scholars have used ML to study
plant mapping [150], [151]. Many unmanned aerial mapping
equipment have been developed for use in optimizing fields.
Frying equipment managed by the Internet of Things NB-IoT
is able to process and form massive data sets. Additional
state-of-the-art efforts on automated weed identification in
agriculture are included in Table 6.

10) WATER ANALYSIS FOR SMART AND OPTIMIZED
IRRIGATION

ML help in analysing past data to determine how much
water each field needs based on its specific moisture content.
Before the advent of machine learning, farmers had a hard
time determining the optimal amount of water for irrigation.
Moreover, the ML robots can monitor the field’s moisture
levels in real time and apply the right amount of irrigation
water to all areas of the field in an isobotonic pattern. Water
management is very important in irrigation because its one
of the crucial factor for the world’s food supply. Almost
70% of the world’s freshwater is used for irrigation. As the
world’s population and food demand rise, this becomes an
environmental concern and an issue in international trade.
ML-enabled smart irrigation systems, with in-field sensors
and satellites, provide accurate measurements of temperature,
humidity, precipitation, and crop growth. If given enough
information, an irrigation system may become ‘‘smart”,
requiring less efforts and workload to achieve the same
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TABLE 4. An overview of the literature on smart agriculture’s optimum fertilizer and pesticide usage.

Method Objective Used information Year and Ref.
a prediction of six different ..

Neural Networks bug kinds in an apple orchard Digital pest photography 2015, [125]

Rapid Association Rule Mining, Temperature, soil temperature,

Multivariate Regression Mining, and predicting illnesses and pests humidity level, leaf moisture, and 2011, [126]

Gaussian Naive Bayes other meteorological information

Interval Fuzzy Logic predicting illnesses and pests temperature and humidity information 2013, [127]

. . . Pest population forecasting .

Time series analysis and Random Forest (including dynamics of the population) Information of pest 2019, [128]

Random Markov Field, Random Forest, finding weeds or p‘lantS Robots’ pictures of two distinct fields 2016, [129]
that produce beet sugar

DCNN finding of weeds pictures taken at various locations 2019, [130]

SVM detection and weed and Vegetation pictures 2018, [131]
crop categorization

. . Control of irrigation and Weather forecast information and
Naive Bayes algorithm fertiliser dosage suggestions sensor data (temperature, moisture, and PH) 2017, [132]

TABLE 5. An overview of the literature on applying deep learning to determine the optimum application of fertilizers and pesticides in the context of

smart agriculture.

Dataset used Best model checking precision g\(/;i(l)lfi;;e)unable parameters Year and Ref.
Banana leaf photo ResNet-152 99 60 2020, [143]
VGG-19 98 143 2020, [144]
. VGGNet 99.5 138 2018, [145]
PlantVillage GoogLeNet 99 7 3016, [146]
ResNet-50+SVM 98 25 2020, [147]
PlantVillage dataset,. VGG-19_ +Logistic 978 143 2020, [148]
a potato leaf was retrieved Regression
leaves of the tomato, potato,
and maize taken from PlantVillage CAE 86.8 33 2020, [149]
TABLE 6. Techniques for detecting weeds using machine learning.
Model Precision (%) | problem description chosen crop Dataset Year and Ref.
95 detection and categorization unidentified Pictures were gathered 2020, [152]
of crops and weeds from a private farm.
Random Forest Canopy structure Australia’s Bundaberg,
(RF) algorithm % measurement Avocado tree an avocado field 2019, [153]
. . . . Images were captured in a
81 weed identification Maize Belgian agricultural field. 2018, [154]
. Mages were captured from
87.9 mapping of early weeds Sunflower, cotton a Spanish farm field. 2018, [155]
92.19 wate'r aqd aquatic plant Stratiotes aloides Canada s Trent-Severn Waterway 2018, [156]
monitoring in Ontario
. . Images were captured in Australia’s
84.8 mapping of land cover 9 perennial crops NSW state’s Riverina area. 2018, [157]
. Species identification 1600 pictures of weeds were taken
(Ssu\;;i%‘t Vector Machines | 92.35 of weeds 8 weed plants on a farming field in South China. 2019, [158]
95 Utilizing thé form feature, Sugar beet Photos shot at Shiraz University in Iran | 2019, [159]
locate weeds
species identification . Photos were taken at the
9 for weeds Soybean Saa José farm in Brazil. 2018, [160]
955 UAV imaging is used Sunflower, maize Pictures were gathered 2018, [161]
to map weeds. from a personal farm.
97 Classification of crops Chilli Chilli field images were collected. 2016, [162]
and weed

level of water efficiency. ConsertWater, a California based
application system, calculates how much water a field needs
depending on satellite data, weather, geography, and location.
The beauty of the app is that it functions reliably and without
installing any sensors on the ground. The app’s developers

claim that farmers may reduce their water consumption by
30% just by using it. Water quality has been examined,
and various techniques for managing water in agriculture
have been implemented [163], [164]. In [165] and [166],
the author suggests using an automatic irrigation system to
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investigate farmers’ water demands. The quantity of water
needed is estimated using the Naive Bayes method. This
method considers forecasted weather conditions in order to
determine the optimal timing and quantity of water and
fertilizer needs for crops.

This literature review explores cutting-edge smart moni-
toring and irrigation control strategies employed in recent
years for irrigation scheduling. Findings of [167] suggest that
closed-loop irrigation control systems outperform open-loop
counterparts by addressing uncertainties. The integration of
soil-based, plant, and weather-based monitoring within a
modeling framework, coupled with model predictive control,
emerges as a promising avenue to enhance water use
efficiency. This comprehensive review serves as a valuable
resource for researchers and farmers seeking optimal irriga-
tion monitoring and control strategies to enhance scheduling
in open-field agricultural systems.

This study [168] introduces an open-source technology-
based smart system for predicting field irrigation needs by
integrating ground parameters like soil moisture, soil tem-
perature, and environmental conditions with Internet-sourced
weather forecast data. The sensing nodes encompass soil
and environmental factors, including soil moisture, soil
temperature, air temperature, UV light radiation, and crop
field humidity. The system’s intelligence relies on a smart
algorithm, combining sensed data with future weather
forecast parameters. Deployed on a pilot scale, the system
wirelessly collects sensor node data over the cloud, providing
real-time insights through a web-based decision support
system. Offering a closed-loop control option, the fully func-
tional system demonstrates promising irrigation prediction
results based on three weeks of data analysis.

In an Algerian study [169], remote irrigation management
utilizes a 6LoWPAN wireless sensor network, integrating
ZigBee with the internet. Soil moisture data, acquired via
SMS, is transmitted through a ZigBee mesh network to
a smart gateway. This information is then relayed to a
web service through mobile data communication, enabling
data evaluation and responsive actions. Additionally, ZigBee
technology proves successful in monitoring citrus soil
conditions and nutrients within an IoT system, resulting in
a 20 % conservation of water and fertilizer resources. In Las
Vegas [170], signal-based ET controllers reduced water usage
by approximately 20 % compared to control sites. Similarly,
effective irrigation scheduling in Valdebebas, Madrid, Spain,
using ET controllers based on climatic conditions achieved
water savings of up to 35 %.

Utilizing fuzzy logic systems [171], farmers can make
informed decisions regarding watering needs. A proof-
of-concept loT-based fuzzy logic control system, inte-
grating temperature, soil moisture, and humidity, demon-
strated superior water use efficiency, requiring a 7-hour
water pumping period compared to 12 to 20 hours
for drip and manual flooding irrigation methods over
3 days.
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A smart irrigation system is proposed in [172] where the
time of usage (TOU) model is being utilized. The results
indicated that both water and energy consumption could be
reduced by 7.97%, which equated to a 25.34% reduction
in total. It was argued by [173] that the FITRA, a fuzzy
neural network based model, would be useful for watering
crops, based on collected information algorithm adjusts the
flow of irrigation water by analyzing data of sensors to
enhance output while minimizing water use. In [174], there
is developed method to propose watering schedules. Several
prediction models were used in a variety of regression and
classification techniques. A unique CNN calibration strategy
was presented by the authors [175]. It has a very basic
structure consisting of only one convolution layer and one
pooling layer. Extracting the most informative characteristics
was accomplished in a data-driven manner by using the DT
technique.

In order to regulate the switching time of a pump in
accordance with user-defined variables, sophisticated fuzzy
logic is proposed in [176], along with a framework in which
sensors play a vital role and contribute to the system. In [177],
an overview of agricultural irrigation systems that rely on the
IoT is discussed in detail. In [178], different methods that are
used to manage precision irrigation systems are examined in
both laboratory and field settings. In [179], [180], the authors
suggest an architecture for implementing smart irrigation
systems that makes use of LoORaWAN and fog computing.
Drone-based remote sensing methods were utilized by
the authors of [181], [182], [183], and [184] to identify
trees exhibiting symptoms comparable to those of trees
infected with PWD. As a whole, the SVM was 6.7% more
accurate than the ANN (94.13% vs. 87.43%). The research
recommends creating an UAS dubbed AgriQ [185] to carry
out precision agriculture. Table 7 provides a summary of more
cutting-edge research on automated irrigation management
for the agricultural industry.

11) SMART FARMING TECHNOLOGIES: ROBOTICS DRONES
AND UAVS

Large-scale farms have substantial labor expenditures.
Harvesting also requires a large workforce in traditional
plantation agriculture. The profit margin will decrease if the
crop is left unharvested for some reason. A robotic harvesting
system can detect when crops are ready to be picked and
then do it automatically. This is helpful for lowering labor
expenses and making sure the harvest is delivered to the client
without losing any of its quality. The same ML methods and
technologies used in crop production are also present in the
cattle industry. Farming is now completely automated and
supervised by machines. Combining these data sets can aid in
making a more accurate diagnosis or finding signs of damage.
Figure 10 provides a good illustration of the overall robotic
system used in SA system. Drones may survey enormous
regions along predetermined paths. These are also entirely
made using CV. Crop analysis, plant monitoring, weed
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TABLE 7. Characteristics of research focusing on the irrigation job in smart agriculture.

Technology Monitoring Improvement / limitation Year and Ref.
. assessment of the specific water need Data .fr(.)m Sensors .
Naive Bayes and advice on the required fertiliser (humidity, soil temperature, and soil PH), 2019, [165]
q and sites that provide weather forecasts
Julian day, crop, weekday, bank holiday,
Decision Trees, GA forecasting of irrigation events and climatic data 2019, [166]
(temperature, humidity, precipitation event)
Support Vector Regression Information on soil moisture, cloudless irradiance,
Irrigation estimation algorithm cost reduction for irrigation numerical meteorqlqglcal da.ta. . 2022, [172]
and an optimization (cloud cover, humidity, precipitation),
and data on solar energy
Fuzzy Neural Network Irrigation management sensors for measuring soil moisture 2019, [173]
Linear regression models, Actual irrigation records, weather station data
Boosted Trees Classifiers, and the forecast for the weekly irrigation plan and reviois sensor data, ’ 2017, [174]
Gradient Boosted Regression Trees p
e .. Sensor data, including temperature,
DM Zone-specific irrigation management humidity, and other plant data, 2021, [175]
WiFi, Zigbee, and LoRaWAN monitoring of agriculture and solar panels te?hm'quve for mon}tonflg agriculture 2021, [180]
that uses energy harvesting
MATLAB soil and plant morphologies — .| GUI-based software (for Windows OS) 2020, [181]
(soil porosity, tree branching, biochar porosity)
Management of irrigation, fertiliser, It offers suggestions for daily farm-scale
REUTIVAR-App and reused water real-time irrigated and fertilisation schedules. 2017, [182]
SmartFarmNet Real-time data analytics and a user-friendly
(Semantic Web Technologies) Soil, fertilization, irrigation interaction approach similar to that 2017, [186]
s used in e-commerce
OASNDFA Orange orchards dlstnbuted sensor nodes to measure 2020, [187]
soil temperature and moisture
2019, [188]
Fuzzy Logic Irrigation management Meteorological parameters
2017, [189]

detection, disease detection, and determining the impact of
plant health and drought on crop productivity can all be
accomplished with the help of multi-spectral images created
from standard photographs. Taking into account all possible
yields, this is a fair estimate of the harvest. Robots using
machine vision are increasingly employed for tasks like
weed picking [190] and chemical application [190]. This
estimate of the crop yield is realistic when all possible
yields are considered. More common uses for robots using
machine vision include weed harvesting [190] and chemical
application [190] with pinpoint accuracy.

Drones used for precision farming may operate at varying
altitudes. Using a hundred meters of altitude, drone pilots
may take high-quality images for automated leaf analysis
on maize plants, or they can hover low over a field like
a sprayer. The defining characteristics of drones are its
ground control station (GCS), data link system (DLS),
and flying platform [191]. Depending on their intended
function, most agricultural unmanned aerial vehicles (UAVs)
fall into one of three categories: rotary-wing, flapping-
wing, or fixed-wing [192]. Ag Drones and senseFly are
examples of fixed-wing UAVs that farmers prefer over
multi-rotor drones for remote sensing because of how quickly
they can cover land. Featuring a top-notch camera From
100 meters above ground, they can take high-resolution,
georeferenced RGB pictures of hundreds of acres per day.
While in flight, multispectral instruments may measure soil

60170

moisture and temperature, the number of plants, vegetation
indices (e.g., NDVI, MCARI, CCCI, CWSI, NDRE) [193],
and even create three-dimensional maps of the landscape.
The Lancaster is a well-liked fixed-wing drone because it
allows for dependable data gathering from the air and has
the broadest array of aerial sensors. Precision imaging and
operations are better accomplished with multi-rotor drones
in confined, uneven, and diverse tiny regions. In a nutshell,
Guardian-Z10 is a low-cost, high-efficiency pesticide sprayer
that can easily replace human workers while guaranteeing
more pesticide penetration and improved accuracy to lessen
pesticide residue. Thanks to its proximity detectors, it is
capable of flying independently across uneven terrain. Agras
MG-1S, an octocopter with a similar modular design, can
spray 6,000 square meters in about 10 minutes with a payload
of up to 10 kg of herbicides, insecticides, and fertilizers—a
task that is 60 times quicker than hand spraying. MG-1S
uses radar-based sensors to autonomously modify its spray
depending on flight speed and centimeter-accurate height
over crops. There are seven different types of unmanned
aerial vehicles (UAVs) classified by size, flying duration, and
capabilities, as shown in the classification system for civilian
drones in [194].

Because of its controlled environment and low mainte-
nance requirements, it is ideal for greenhouse gardening.
According to a thorough spectral analysis, the classification
accuracy for irrigation was 96%, for nitrogen it was 83%,
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FIGURE 10. Agri-Robots used in smart farming.

and for weed control it was 100%. In addition, hyperspectral
data may be processed using the pattern recognition methods
of ANN [195] and SVM [196]. The author and coworkers
in [197] assessed WSN applications in agriculture and
highlighted sensor requirements in 2014. The authors set
out to employ networked sensors to develop practical and
productive agricultural solutions. WSN was first used in
farming by [198].

For research, [199] focused emphasis on soil health
monitoring, which provides real-time readings of variables
like temperature, soil moisture, pH, and humidity on a
farmer’s smartphone screen. As an example of progress
toward Agricultural 4.0, [200] have addressed in depth how
IoT and WSN might be used in precision agriculture. The
“Plant Spike”” WSN system for soil health monitoring that
Yu et al. [201] created is both inexpensive and energy
efficient. The Internet of Things was used by [202] to keep
tabs on the condition of crops and increase yield. In [203],
we develop and test AgriTalk, a low-cost IoT platform, for
use in growing turmeric. The macronutrients N (Nitrogen), P
(Phosphorus), K (Potassium), pH, soil moisture, and humid-
ity are all monitored by the soil health monitoring system
created by Goswami et al. [204] using the IoT. FarmFox,
created by the authors of [205], is an IoT-enhanced gadget
that can evaluate the detected information and broadcast
it to the user through the internet. Using a wide range of
agricultural sensors, drones, and [oT hardware and software
utilities, the authors of [206] propose a comprehensive smart
agriculture application. Additional state-of-the-art works on
IoT and WSN for the smart agriculture domain are provided
in Table 8.
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12) FORECASTING CROP YIELDS WITH TRADITIONAL DATA
MINING TECHNIQUES

To predict agricultural yields using Deep Learning, In [221]
author conducted a systematic literature review, revealing that
neural networks like CNN, LSTM, and DNN are commonly
used. Authors compared Deep Learning approaches for apple
orchard fruit recognition, finding that techniques like U-Net
and CNN performed less effectively than other methods for
yield mapping, with gaussian mixture models showing better
results. In [222] authors explored Deep Learning techniques
for fruit counting and yield estimation, recommending
LSTM, deep regression, and CNN detectors. In [223] authors
developed a self-predicting platform for agricultural yields
based on crop diseases using CNN. In [100], authors
assessed Deep Learning applications in dense farm settings,
concluding that Deep Learning performs better in such
scenarios. Authors reviewed Deep Learning algorithms for
crop output and nitrogen status estimation using tabular
data. In [224], authors found that hybrid networks and
RNN-LSTM networks are best for predicting crop yields
using Deep Learning, particularly due to the effectiveness of
RNN and LSTM in handling agricultural production time-
series data. Despite these studies, a comprehensive review
of Deep Learning for agricultural production prediction is
lacking in the literature, leaving gaps in technical details,
motivations, and challenges. Our SLR aims to address these
gaps by providing an in-depth analysis of key characteristics
and problems in the use of Deep Learning for agricultural
production prediction.

In order to estimate the potential sugar output from IoT
farming, the authors of [225] devised an enhanced multilayer
perceptron (MLP) method. Experimental results reveal the
effectiveness of the proposed MLP algorithm, achieving
a remarkable 99% accuracy, 95% precision, 96% recall,
a Minimum Mean Absolute Error (MAE) of 0.04%, and a
Root Mean Square Error (RMSE) of 0.006%, signifying its
potential for precise and efficient prediction in the domain
of IoT agriculture. Autor in [226] suggested a classification
approach to artificial neural network evaluation of the sugar
crystallization syrup process. For the purpose of predicting
the inclusion measure function in the Hellenic sugar sector,
In [227] author suggested a fuzzy-based technique Hellenic
Sugar Industry (HIS). Focusing specifically on grapes as
a case study, the article comprehensively examines current
applications of machine vision algorithms for ripeness
estimation in viticulture. The review delves into the state-
of-the-art algorithms, discussing various applications and
assessing their limitations, challenges, and future trends. Fur-
thermore, the study investigates the integration of machine
vision algorithms with grape harvesting robots, emphasizing
the potential for real-time ripeness measurement in the
field. A literature for predicting agricultural yields from
meteorological characteristics was conducted by [228]. This
study explores the integration of computational approaches,
particularly machine learning, to address complex agricul-
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TABLE 8. Connected and intelligent farming technologies examples using loT and Al.

Description

Category

Company/Tool and Reference

A ML-based soil-analysis system that gives you an idea of the soil’s potential and its
limitations

Climate conditions Monitoring

alIMETEO [207]

A set of goods that boost productivity by removing manual inspection. They function
by deploying a broad variety of sensors producing a report back to an internet dashboard,

Climate conditions Monitoring

Smart Elements [208]

A sensor and accompanying software package that enables constant data collecting and
transmission from farm to smartphone.It also has a dashboard where the most up-to-date
phenological and disease models may be used to track patterns and evaluate potential
threats to agricultural goods.

Climate conditions Monitoring

Pycno [209]

A system for tracking pests and illnesses and compiling data for use in handheld devices.
It saves time and effort compared to more conventional techniques (like paper), allowing
for a more seamless rollout. The following metrics may be seen in real time thanks to the
synchronization of the stored data with the server: Charts and reports on pests and
illnesses, as well as a satellite map with recorded points and the farm’s current sanitation
condition, are also included.

Greenhouse automation

Farmapp [210]

A system that allows for wireless automation and control, data collecting, optimization,
monitoring, and visualization by closely integrating hardware and software components.

Greenhouse automation

Growlink [211], [212]

A gadget that takes environmental and plant-related readings and uploads them to the
cloud, where they may be accessed from anywhere and at any time. Stress, pests, and
disease indicators are provided in real-time.

Crop management

Arable [213]

An online resource for raising productivity levels. As a result, farmers may build on-site
monitoring, big data, and advanced analytical solutions for long-term agricultural goods
based on accurate, up-to-the-minute information on pests, diseases, and the state of their
Crops.

Crop management

Semios [214]

An innovative approach to animal monitoring with the primary goal of collecting and
analyzing crucial data, down to the individual animal level. When necessary, it provides
farmers with information on heat, health, and nutrition that they may use to make
informed decisions.

Livestock monitoring
and management

SCR/Allflex [215]

A high-tech collar worn around the neck of dairy cows to track their activity, ruminating
patterns, and body temperature. The system’s intelligent algorithm enables early diagnosis
of health problems even before outward symptoms manifest. It can track your every

step and analyze your gait to pinpoint. Comfortable for the animal and low-maintenance
thanks to its solar-powered base unit and waterproof, non-invasive monitoring system.

Livestock monitoring
and management

Cowlar [216], [217]

An algorithm that examines drone and satellite imagery of farmland for telltale signs of
pests, illnesses, and inadequate nutrition. In order to optimize farm productivity and
examine analytics of on-farm performance, it converts photos into a prescription map.
Cloud-based data generated for prescription formulation may be imported into practically

Predictive analytics

Farmshots [218], [219]

all agricultural programs.

worldwide agriculture choices in real time.

A system for monitoring the weather and gathering data on the viability of crops. Its
purpose is to provide comprehensive data and analysis to aid in making daily and

Predictive analytics aWhere [220]

direct harvesting operations. Additionally, it promotes agricultural goods

By keeping tabs on the state of the fields, this method makes it easier to organize and

End-to end farm

management systems FarmLogs [217]

tural challenges like crop improvement, yield prediction,
disease analysis, and water stress identification. ML and its
uses in agriculture were explored by [229]. The evaluation
encompasses crop management, addressing predictions of
yield, disease and weed detection, crop quality assessment,
and species identification. Additionally, the review extends
to livestock management, covering predictions related to
animal welfare and production, as well as water and soil
management. In [230], the authors conducted a literature
review on fruit ripeness determination with the purpose of
finding the best time to harvest and predicting production.

13) DEEP LEARNING APPROACHES FOR CROP YIELD
PREDICTION

There are a number of Al-based smart solutions for precision
agriculture and farming that are now available on the market
and summarized in Table 9.

B. MACHINE LEARNING APPLICATIONS IN HARVESTING
When the fruits and vegetables are mature, the most crucial
step is harvesting, following the pre-harvesting stage’s
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attention to soil, seeds, weeds, etc. Size, color of the
skin, hardness, flavor, quality, market window, maturity,
fruit detection, and harvest categorization are all critical
characteristics to consider at this stage. Careful and accurate
fruit picking is directly proportional to financial gain.
According to the findings of the poll, farmers are able
to cut down on harvesting losses with the use of auto-
harvesting robots, machine learning, and deep learning
approaches. Here we show how ML and DL algorithms
are used for harvesting. To illustrate the current state of
intelligent autonomous harvesting robots in horticulture,
author in [231] provided a comprehensive overview of
systems for harvesting sweet peppers, tomatoes, apples, and
kiwis. Automated harvesting robots boost farmers’ bottom
lines by cutting down on labor-intensive harvesting times and
increasing overall output. A convolutional neural network
(CNN) model for on-tree fruit recognition was created [232]
using the YOLO technique. The creation of this dataset was
accompanied by the addition of both genuine and synthetic
photographs of pear and apple trees. We used an open-source
labelling program called BBox-Label-program to label the
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TABLE 9. Commercially accessible Al-based smart farming tools.

Product Website Company

Indoor farming system driven by Al https://ageyetech.com/ AGEYE Technologies
Predicting the weather, assessing agricultural sustainability, and

evaluating farms for the presence of diseases and pests are all possible http://www.awhere.com aWhere

with the use of satellite data and ML algorithms.

Robotic agricultural machinery that can monitor plant health hitps://bluerivertechnology.com Blue Reiver Technology
and prevent weed growth.

Platform_that uses satellite and Qrope imagery to do integrated scouting hitp:// farmshots.com FarmShots

and provide variable-rate prescriptions to farmers

Intc?lllgeflt systems that use cheap sensors to measure key agricultural hitps:// fasal.co Fasal

variables for the average farmer.

Vegetable harvesting and packaging robot https://www.harvestcroorobotics.com | Harvest CROO Robotics
System for controlling irrigation, preventing mildew, and

coping with drought based on artificial intelligence-monitored https://www.heliopas.com HelioPas Al

soil moisture levels

Online software for controlling water sprinklers Ibex https://hortau.com Hortau Inc

Farmmg robots that can do everything from detegtlng weer hitp://www.ibexautomation.co.uk Automation

to spraying them down by themselves are becoming a reality.

To dete'c.t soil flaws apd m'ltrient deficits, a Deep Learning-powered picture hitps://plantix Net PEAT

recognition program is being developed.

Robotic and automated Al methods for greenhouse growers https://root-ai.com Root Al

A ML-based soil-analysis system that gives you https:// tracegenomics.com Trace Genomics

an idea of the soil’s potential and its limitations PSAIWWW. g :

photos. The model was trained using over 5,000 photos of
apples and pears. We trained the model using the Amazon
cloud infrastructure. When it came to detecting fruit on
trees, the model was over 90% accurate. In [233] author
looked at two different deep neural network models for fruit
classification: a tiny CNN model and a VGG-16 fine-tuned
model. The second model was a fine-tuned visual geometry
group-16 pre-trained DL model, whereas the first one was
constructed with six layers. In order to test how well the
suggested models worked, two datasets were used. Dataset-2
has 5946 photos spread among 10 classes, whereas dataset-1
is publicly accessible and contains 2633 color images. The
assertion was made that the VGG-16 model, after being
fine-tuned, attained outstanding accuracy on both datasets.
By using a systematic method and analyzing the network’s
input, In [234] different ways to improve the network’s
performance on unseen data were investigated. The decision
to fuse features was made instead of altering the network
design or adding more depth to the neural network. Applying
bio-inspired characteristics may simplify models without
sacrificing accuracy or generalizability, according to the
results. It is said that this method exhibits more encour-
aging outcomes with the robust DL model in real-world
applications for color-centric data classes. In August and
September of 2018, the author collected 6189 photographs
for the project and annotated 150 of them by hand. A machine
vision method was suggested by [235] to classify date fruit
pictures according to various stages of ripeness, which aids
in the decision-making process about harvesting. A total
of 8072 photos were compiled from five distinct date
kinds, each with its own unique pre-maturity and maturity
stage: Naboot Saif, Khalas, Barhi, Meneifi, and Sullaj. Few
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obstructed photographs were among the many obtained from
a variety of angles, sizes, and lighting conditions. Using
two well-known convolutional neural network (CNN) models
for input transfer The three classification models that were
built to categorize date fruit based on their harvestability,
kind, and maturity stage were constructed using AlexNet
and VGGNet. With a speed of 20.6 ms and an accuracy
of 99.01%, the VGG-16 model proved to be the winner.
To quantify yield-related phenotypes from ultra-large aerial
data, Bauer et al. [236] created a platform called AirSurf. This
platform links up-to-date ML approaches, current computer
vision, and integrated software engineering standards. In the
time leading up to harvest, the author asserts that this
platform helps to raise crop production and marketability.
Using a cheap gripper and a machine learning approach
to determine the cutting spot, Zhang et al. [237] created a
harvesting robot for autonomous harvesting. An automated
harvester system that can safely harvest crops with peduncles
was the focus of the research. Robot arms equipped with
Single Shot MultiBox Detectors (SSDs) and stereo cameras
were suggested by Onishi et al. [238] for autonomous fruit
identification and harvesting. An apple tee named “Fuji”
was used to test the system. By rotating the hand axis, the
robotic arm can identify the location of harvestable fruit
and retrieve it. The system detected 90% of the fruits and
harvested them in approximately 16 seconds, according to
the trial results. For precise fruit counting from picture order,
Liu et al. [239] suggested a new pipeline that combines
segmentation, 3D localisation, and frame-to-frame tracking.
The datasets consisting of oranges and apples were used
to test this model. The detailed description of harvesting
strategies was reported in Table 10.
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TABLE 10. Detailed description of harvesting strategies.

Dataset Used

Sr. No. | Features Targeted Fruits . No. of Samples trained | Best Model | Accuracy | Reference
Public | Own
Real-time fruit shape, . i 9
! color and other attributes detection Apple and pear P 4950 YOLO 90.01% [234]
2 Different fruits classification Different fruits P P 8600 VGG-16 99.76% [235]
3 Bio-inspired outdoor fruit detection | Strawberry P 4219 - 66% [236]
Local and spatial features o o
4 and pattern detection for dates Dates P 8000 VGG-16 9% [237]
5 Fruit harvesting robot Apple P 169 YOLO 91% [238]
TABLE 11. Detailed overview of Post-Harvest operations.
. Dataset Used .
Sr. No. | Features Targeted Fruits . No. of Samples trained | Best Model Accuracy | Reference
Public | Own
Post-Harvesting Bananas Tensorflow
! grading and classification Banana P 115 and OpenCV %0% [244]
2 Tomatoes grading and =\ e P 8100 SVM, ANN 97% [245]
disease classification
3 Post-Harvesting Banana 1165 SVM, ANN 94% [246]
Bananas classification
4 Auto Apple-sorting Apple P 185 K-mean, Decision Tree | 80% [247]
5 Dates grading Dates P 1865 BPNN 80% [248]

C. MACHINE LEARNING APPLICATIONS IN
POST-HARVESTING

Finally, and most importantly, agriculture has to pay greater
attention to post-harvesting. Negligence in the post-harvest
phase may ruin all the hard work farmers put into estimating
yields and harvesting their crops, leading to a devastating
financial loss. When it comes to fruit grading, every nation
has its own set of norms and regulations. A document
outlining the steps to take in order to ensure the quality
and safety of mangoes after harvest was published in [240].
For everyone involved in the horticulture supply chain,
this is quite illuminating. Researchers found that improper
post-harvest handling techniques may reduce fruit quality and
quantity, leading to higher losses overall. Decay alone was
responsible for 31% of the losses recorded at the retail level.
Inadequate harvesting, negligent handling, and unsuitable
packing and transportation all contribute to losses. Low
quality due to high levels of pre-harvest infections is the
result of ineffective disease control throughout production.
A lot of deterioration, such anthracnose and stem end rot,
is visible. A training handbook for “handling fresh fruits,
vegetables and root crops” was provided to the Grenada
government and the FAO as part of the ‘“Agricultural
Marketing Improvement” Project TCP/GRN/2901 in [241].
Through the implementation of a systematic agricultural
marketing system, this initiative aimed to enhance the
profitability of horticultural goods and root crop producers.
With the goal of reducing losses across the board, this
publication examines each step of the post-harvest process
in great depth. Using a deep learning system and image
processing, [242] investigated how to evaluate Cavendish
bananas. Class A big-hand, Class B small-hand, and Cluster
class (part of hand) bananas were the end result of a
model construction process including Python, OpenCYV, and
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Tensorflow. The model’s categorization accuracy was above
90%, according to the results. To grade tomatoes after they
are harvested, [243] suggested a method that uses machine
vision. The system is designed to process RGB pictures that
are sent into it. The tomato photos were carefully labelled into
four categories: defect, healthy, ripeness, and dataset. A total
of fifteen criteria were evaluated in making the choice to put
the images into one of four categories based on matching
attributes. With a detection accuracy of 0.9709, RBF-SVM
outperformed the competition in category 1, which includes
healthy and defective items. A method for banana (Musa
acuminata AA Group ‘Lakatan’) categorization using ML
approaches based on tier-based was developed by [244].
In this investigation, a tier-based method that does not involve
intrusive procedures was used. The bananas were sorted into
four classes: additional, class I, class II, and rejected using
ANN, SVM, and RF classifiers. With a 94.2% accuracy
rate, the random-forest method proved to be the best of
its kind. Early detection of bruising in ‘Pinggu’ peaches
was investigated and contrasted using two hyper-spectral
imaging technologies: long-wave near infrared (LW-NIR)
and short-wave near infrared (SW-NIR) [245]. Utilizing
multispectral PC pictures, this work developed and evaluated
an enhanced watershed segmentation technique that relies on
morphological gradient reconstruction and marker extraction.
A suggested algorithm correctly identified 97.5% of healthy
peaches and 96.5% of damaged ones, according to the
results of the experiments. Using quality inspection and
automated real-time grading, [246] created a method for
apple fruit. An enclosed cabin with a camera, load cell,
and control panel units is part of the designed system,
which also includes a roller, transporter, and class conveyors.
In addition to sorting apples into several categories according
to size, color, and weight, the system can also detect spoiled
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fruit. Capturing and processing the apple picture only took
0.52 seconds using the suggested approach. The machine
sorted an average of fifteen apples per second. The author
claims that the algorithm can sort various fruits, such as
potatoes, with an average accuracy ranging from 73% to
96%. Ohali created a date fruit grading and sorting system
using machine vision [247]. Based on the RGB picture
input, the system could determine whether the dates were of
grade 1, 2, or 3. The research demonstrated an 80% success
rate using a back-propagation technique. Considerations
such as size, shape, texture, color, and flaws determine the
quality of fruits and vegetables. To sort products by quality
metrics, one must use a number of techniques, including
data collecting, pre-processing, picture segmentation, feature
extraction, and classification. In their comprehensive review,
[248] compared the algorithms employed at each step of
the quality inspection process for fruits and vegetables.
To address the issue of incorrect fruit categorization, [249]
introduced a novel framework named “MNet: Merged Nett.”
With 12,000 photos divided into six categories, the author
has assembled his own dataset of the best Indian fruits. The
detailed overview of post-harvest operations was reported in
Table 11.

IV. EMERGING FRONTIERS FOR DATA MINING IN

AGRICULTURAL INNOVATION
Data collection, analysis, and application for agricultural

efficiency face a broad variety of difficulties. For farmers
to succeed in the modern digital era, protecting personal
information and confidential data is a crucial challenge.
It’s not uncommon for agricultural information systems to
have issues with data availability and quality. This becomes
much more difficult when more data becomes available in
real time. It is not easy to mine data efficiently, and it
might be more trickier to integrate spatial and semantic
meaning.

A. CHALLENGES

Agriculture is a big arena for the use of machine learning and
deep learning, and it presents a number of difficulties. Some
possible Challenges are indicated as follows:

1) PRIVACY

Agricultural data includes their contact details. Most farmers
whose data is made public through digital platforms won’t
have a clue as to what that data says about them. It’s true that
farmers have no idea their data is being collected, much less
how it’s being put to use. Organizations may use data mining
to acquire massive quantities of information on farmers,
which might be used to paint a detailed psychological or
personality image of them. The information, even if not
utilized maliciously, might nonetheless damage his reputation
if it were to become public knowledge or fall into the wrong
hands. As a result, he may find it challenging to engage
in his regular activities. They need reassurance that their
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information will only be utilized for research and innovation,
and not to gain an unfair advantage. The privacy of farmers’
information may be compromised by data mining. It takes a
lot of effort and money to adopt privacy and confidentiality
rules.

2) DATASET AVAILABILITY AND THE SIZE ISSUES

Infection photos of specific leaves on plants are difficult to
obtain by. As a result, the current plant databases are quite
limited in scope. For academic reasons, thousands of photos
have been reported on only in a few of papers. Even more
so, the photographs in the database were gathered under
very restricted settings. We think it’s important to collect
photographs in natural settings so the algorithms can be more
useful in everyday life. The time has come for quick and easy
picture collection of leaves. Such databases would be much
appreciated by the scientific community if the photographs
were recorded in real time. The results of this poll show
that many academics rely on external data repositories like
Kaggle, Meandly, IEEE Dataport, etc. for conducting their
studies. If necessary, data is lacking, researchers will have to
assemble their own.

3) DATA INTEGRITY AND ACCURACY

To be successful in agriculture, we need to collect and analyze
a great deal of data. The sheer volume of this new data
has rendered traditional methods of analysis ineffective. The
use of data mining analysis will significantly improve crop
management. In order to glean useful insights from the DM
procedure, high-quality data is required. Agricultural data
is often disorganized and incomplete since it was compiled
from a wide variety of sources, such as databases and models.
There are gaps in and many inaccuracies in the data obtained
from these sources. In data mining, a lot of groundwork
must be done first, before any analysis can be done. In order
to provide models with accurate information, researchers
must first do data processing (geographical and temporal) to
remove the effects of problems like ambiguity, persistence,
and incapability (geographical and temporal). Additional data
use is inevitable. The uniformity of syntax and semantics is
therefore required to guarantee the portability of data in an
environment. All kinds of novel analyses and products may
be made possible by better data management. Data transport
reliability is a major issue for IoT devices. In order for devices
to gather and transmit reliable data, it is essential that they be
able to verify its accuracy. If a false reading is taken, system
reliability will suffer greatly.

4) CROP DATA CLARITY AND NOISE

To extract the contaminated part of a picture, image
segmentation is used. A contaminated leaf segment is more
difficult to isolate from a picture when the backdrop contains
elements other than white and black, such as plants, leaves,
dirt, grass, and so on. Photos taken in the field for the purpose
of diagnosing crop diseases in real time may include a lot
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of distractions, especially if farmers wish to get an accurate
representation of the scene. Therefore, the system has to
be able to filter out any unnecessary details in the picture,
leaving behind just the targeted area.

5) IMAGE CONDITIONS

All publicly accessible datasets include photos captured in
well-regulated laboratory settings or created using animation
methods. Consider the results that would occur if a farmer or
capturing device in the field attempted to capture the same
object at various times of day. It’s tough to get a comparable
shot in that situation because to all the elements at play, such
as the varying levels of light and moisture. Therefore, it is
necessary to take pictures of the same leaf from different
angles, at different times of day, and in different weather
conditions.

6) LIMITATIONS AND CONCERNS IN EXISTING FEATURE
EXTRACTION METHODS

Important building blocks for every machine learning-based
system include preprocessing, feature extraction, and seg-
mentation. In order to choose the most effective preprocess-
ing and segmentation approach, it is important to consider
the method of data collecting. It is common practice to use
the acquisition method that is most optimal for a given task.
There is a wide range of methods released so far for various
modules, and this is something we have seen.

7) CLASSIFICATION MODULE PROBLEMS

The identification and automation of plant diseases has been
a hot area of study for quite some time. Despite employing
few images for training and testing, researchers claim to have
achieved extremely acceptable outcomes. Diverse classifiers
are being investigated by researchers in this area. The
results show that backpropagation neural networks, SVM,
and discriminant analysis (particularly linear) are the most
effective methods. After that, Nave Bayes, random forest,
closest neighbor, and multilayer perceptron are utilized.
Results were previously considered to be state-of-the-art,
however recent research has shown that optimized deep
neural networks can greatly improve on this. Results for large
data sets may be enhanced with the help of deep convolutional
neural networks if they are employed properly.

8) CONCERNS ON DEVICES

Assuring that technology may be utilized in a broad variety
of contexts requires standardization of devices. There are no
universally accepted formats for data processing, though. The
misinterpreted code might lead to several effects. System,
application, equipment, and product interoperability issues
may be mitigated with the aid of machine standardization.
Communication speeds between devices and servers are now
100 times quicker thanks to advancements in the 5G network.
Since 5G can transmit far more data, it is a viable technology
for transmitting data from distant sensors. Therefore, 5G
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must be implemented as a new communication network to
accommodate customers’ growing need for higher levels of
privacy and speedier data transfers. Lack of interoperability
is one of the biggest problems.

9) SPATIAL DATA IMPORTANCE

SA’s overarching objective is to minimize negative effects on
the environment while maximizing financial gain. Standard
data mining methods, which were built for use with
relational databases, have limitations when applied to data
that is physically spread out. Smart farming necessitates the
development of novel data mining techniques that account for
geographical and temporal relationships.

10) INCORPORATION OF AGRICULTURAL DOMAIN
KNOWLEDGE IN DATA MINING

Agronomy, soil science, environmental studies, and other
related fields are all part of agriculture’s broad multidisci-
plinary scope. In data mining, we may leverage information
from a wide range of resources. There are additional
difficulties to overcome because of sensors and large amounts
of data, in particular the problem of operable semantics,
or how to encode data such that it retains its meaning across
time. One of the toughest challenges in data mining is the
issue of integrating domain knowledge. This approach may
be seen as a sort of agricultural fusion since it bridges the
gap between agricultural domain knowledge and data mining
study.

11) DRONES

The flight route must account for the overlap between flight
lines since the drone can only stay in the air for an hour at a
time. Most drones are out of most people’s price range, but
the ones with the best cameras, sensors, and other hardware
and software are in a league of their own. In many countries,
using a drone without the proper licensing and at a height
of less than 400 feet is illegal. Drone use is influenced by
the weather. It is important to consider the meteorological
conditions, such as wind speed and precipitation, before
flying a drone. Some supplementary difficulties are worth
keeping in mind:

1) First, there is a need figure out what the issue is and
what the market needs.

2) Getting a deep insight into customer behavior and tech
use.

3) Simple and straightforward Application.

4) How well the model works in practice.

5) Battery life and power requirements for the product to
operate.

6) Different ways in which cameras may be set up by the
end user to use with computer vision models.

Some suggestions for improving the effectiveness, preci-
sion, smoothness, and deploy ability of the implementation
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process have been compiled based on the findings of this
extensive research:

1) Target a narrow ML task like classification or recom-
mendation as your primary goal.

2) Make your own data set for use in training the model,
and then share it with the research community using
open channels like Kaggle, Meandly, IEEE Dataport,
and so on.

3) Test and validate your models using data that is already
accessible to the public.

4) In order to reduce the length of time needed to train a
model, “Transfer Learning” techniques may be used.

5) AutoML is a state-of-the-art approach to rapidly
developing high-quality machine learning models.

6) To best help the target audience, the model should be
integrated into a running application.

B. POTENTIAL FUTURE SCOPE

In the following paragraphs, we’ll go through a few potentials
that might advance the state-of-the-art smart farming and
provide scientists new directions to explore:

« Disease stage determination is a crucial part of plant
disease diagnosis. The ability to predict the spread of
diseases will let farmers take preventative measures and
mitigate losses.

« Farmers often resort to chemical treatments for illnesses
without doing proper research or statistical analysis.
This kind of action is very harmful to people’s wellbe-
ing. Whether or not certain chemicals are needed may be
determined with the use of a powerful picture processing
application, the development of which will be facilitated
by such an application.

o In the medical literature, many methods have been
proposed for illness detection. However, these applica-
tions only work with images that have a solid, black
backdrop. That’s why it’s so important to have access
to internet tools and mobile applications for diagnosing
plant diseases. Technology like these will help farmers
pinpoint the source of a disease. Using this kind of
program, analysis reports may be compiled and sent off
to a disease specialist for further guidance.

o We recommend transfer learning as a viable option due
to the complexity of the data, especially during the
training phase. Some potential areas of investigation
for autonomous plant disease diagnosis include long
short-term memory, optical flow frames, temporal
pooling, and 3D convolution. Finally, improved and
more carefully crafted procedures are needed for future
studies in this field.

o There is a lot of promise for the Internet of Things to
improve agri-food supply chain traceability. Meanwhile,
LoRa, ZigBee, and WiFi are the most often utilized
IoT communication technologies in these publications
and new high-speed communication technologies like
5G and NB-IoT are anticipated to be extensively

VOLUME 12, 2024

employed to improve the modernization and intelligence
of agricultural output. There is a great deal of space for
innovation in agriculture that is based on the IOT as
existing technology continues to progress.

V. CONCLUSION
In conclusion, the integration of agricultural technology,
especially through data-driven solutions and machine learn-
ing, presents a promising trajectory for the agricultural sector.
The adoption of artificial intelligence-based applications,
such as GPS-guided automatic irrigation and autonomous
robots for weed control, offers avenues to improve resource
efficiency while reducing reliance on harmful pesticides.
Unmanned aerial vehicles for crop monitoring and pest
management usher in transformative approaches to farming
practices. Through the application of machine learning and
deep learning, advancements in plant disease detection,
water conservation, pesticide management, phenotyping,
and overall yield improvement are realized. Accurate dis-
ease diagnosis becomes pivotal in safeguarding agricultural
productivity, addressing long-term challenges like climate
change, and mitigating food shortages. The use of image
recognition software and pretrained models from extensive
datasets, such as PlantVillage and ImageNet, demonstrates
remarkable accuracy in detecting plant diseases, potentially
revolutionizing disease management. Embracing these tech-
nological solutions, coupled with ongoing research and
dataset refinement, undoubtedly empowers the agricultural
sector to confront growing challenges and seize opportunities
for a more efficient and environmentally responsible future.
However, it is essential to consider certain limiting
circumstances in the widespread implementation of these
technologies. Issues such as high initial costs, the digital
divide in rural areas, and concerns about data privacy and
ownership pose challenges to the equitable adoption of
advanced agricultural technologies. Additionally, the reliance
on machine learning models is contingent upon the availabil-
ity and quality of data, necessitating ongoing efforts in data
collection and curation. Looking ahead, future theoretical and
applied implications suggest the need for continued research
and development to refine existing technologies and explore
novel solutions. Collaborative efforts between technologists,
researchers, policymakers, and farmers are crucial to ensure
that these innovations are accessible, practical, and tailored to
diverse agricultural landscapes. Furthermore, considerations
for the ethical use of Alin agriculture, including transparency,
accountability, and addressing potential biases in algorithms,
will be paramount for the responsible deployment of these
technologies.

Vi. NOMENCLATURE

Abbreviation Full Form

ICT Information and Communications
Technology.
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GDP Gross Domestic Product.

IoT Internet of Things.

ML Machine Learning.

Al Artificial Intelligence.

UAVs Unmanned Aerial Vehicles.

SA Smart Agriculture.

PF Precision Farming.

AutoML Automated Machine Learning.

IPv6 Internet Protocol Version 6.

DL Deep Learning.

DSS Decision Support System.

GPS Global Positioning System.

NN Neural Network.

CNN Convolutional NN.

GLCM Grey-Level Co-occurrence Matrix.

KNN K-Nearest Neighbors classifier.

DT Decision Tree.

NB Naive Bayes.

RF Random Forest.

SVM Support Vector Machine.

SGD Stochastic Gradient Descent.

PD Plant Disease.

PLDD Plant Leaf Disease Detection.

CNN-LSTM Convolutional Neural Network -
Long Short-Term Memory.

PM Powdery Mildew.

CA Classification Accuracy.

UAV Unmanned Aerial Vehicle.

WSN Wireless Sensor Network.

MLP Multilayer Perceptron.

HIS Fuzzy-based technique (not explic-
itly defined).

CvV Computer Vision.

DL Deep Learning.

GPS Global Positioning System.

SVM Support Vector Machine.

NB-IoT Narrowband Internet of Things.

LoRa Long Range.

DM Data Mining.

REFERENCES
[1]1 United Nation. (2019). Introduction of the 2019 CDP Report at the

(2]
(3]

[5]

60178

Ecosoc High-Level Segment. Accessed: Nov. 25, 2022. [Online]. Avail-
able: https://www.un.org/development/desa/dpad/2019/introduction-of-
the-2019-cdp-report-at-the-ecosoc-high-level-segment/

United Nations. (2017). Sustainable Developement Goals. Accessed:
Nov. 25, 2022. [Online]. Available: https://sdgs.un.org/goals

Food and Agriculture Organization of the United Nations-FAO. (2019).
Strengthened Global Partnerships Needed to End Hunger and
Malnutrition. Accessed: Aug. 24, 2022. [Online]. Available:
https://www.fao.org/news/story/en/item/1194310/icode/

M. Trendov et al., Digital Technologies in Agriculture and Rural Areas:
Status Report. Food and Agriculture Organization of United Nations,
2019.

OECD-FAO Agricultural Outlook 2020-2029, Food Agricult. Org.
United Nations, Rome, Italy, 2020.

[6]

[71

[8

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. Pathan, N. Patel, H. Yagnik, and M. Shah, “Artificial cognition for
applications in smart agriculture: A comprehensive review,” in Artificial
Intelligence in Agriculture, vol. 4. Amsterdam, The Netherlands: Elsevier,
2020, pp. 81-95.

P. Varga, S. Plosz, G. Soos, and C. Hegedus, “Security threats and issues
in automation I0T,” in Proc. IEEE 13th Int. Workshop Factory Commun.
Syst. (WFCS), May 2017, pp. 1-6.

V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A
survey on IoT security: Application areas, security threats, and solution
architectures,” IEEE Access, vol. 7, pp. 82721-82743, 2019.

M. Waseem, M. A. Khan, A. Goudarzi, S. Fahad, I. Sajjad, and
P. Siano, “Incorporation of blockchain technology for different smart grid
applications: Architecture, prospects, and challenges,” Energies, vol. 16,
no. 2, p. 820, Jan. 2023.

A. Vij, S. Vijendra, A. Jain, S. Bajaj, A. Bassi, and A. Sharma, “IoT and
machine learning approaches for automation of farm irrigation system,”
Proc. Comput. Sci., vol. 167, pp. 1250-1257, Jan. 2020.

A. Walter, R. Finger, R. Huber, and N. Buchmann, “Smart farming is
key to developing sustainable agriculture,” Proc. Nat. Acad. Sci. USA,
vol. 114, no. 24, pp. 6148-6150, Jun. 2017.

(2017). Eurostat, Study on Broadband Coverage in Europe (2017).
Accessed: Nov. 8, 2022. [Online]. Available: https://ec.europa.eu/digit
alsingle-market/ en/news/study-broadband-coverage-europe-2017

M. S. Mekala and P. Viswanathan, ““A survey: Smart agriculture IoT with
cloud computing,” in Proc. Int. Conf. Microelectronic Devices, Circuits
Syst. (ICMDCS), Aug. 2017, pp. 1-7.

K. S. Pratyush Reddy, Y. M. Roopa, L. N. K. Rajeev, and N. S. Nandan,
“IoT based smart agriculture using machine learning,” in Proc. 2nd Int.
Conf. Inventive Res. Comput. Appl. (ICIRCA), Jul. 2020, pp. 130-134.
J. G. D. Silva. (2020). Feeding the World Sustainably. Accessed:
Nov. 8, 2022. [Online]. Available: https://www.un.org/en/chronicle/
article/feeding-world-sustainably#:~:text=According%20to%20estimates
9%?20compiled%20by,tol1%200n%200ur%20natural %20resources

K. Klein Goldewijk, A. Beusen, J. Doelman, and E. Stehfest, “Anthro-
pogenic land use estimates for the Holocene—HYDE 3.2, Earth Syst.
Sci. Data, vol. 9, no. 2, pp. 927-953, Dec. 2017.

(2019). Aquastat Database. Accessed: Jul. 18, 2022. [Online]. Available:
http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en

H. Ahmed, A. S. Juraimi, and S. M. Hamdani, “Introduction to robotics
agriculture in pest control: A review,” Pertanika J. Scholarly Res. Rev.,
vol. 2, no. 2, 2016.

S. Shylaja, S. Fairooz, J. Venkatesh, D. Sunitha, R.P.Rao, and
M. R. Prabhu, “IoT based crop monitoring scheme using smart device
with machine learning methodology,” J. Phys., Conf. Ser., vol. 2027,
Sep. 2021, Art. no. 012019.

T. A. Shaikh, W. A. Mir, T. Rasool, and S. Sofi, ““Machine learning for
smart agriculture and precision farming: Towards making the fields talk,”
Arch. Comput. Methods Eng., vol. 29, no. 7, pp. 4557-4597, Nov. 2022.
A. Ullah, J. Ahmad, K. Muhammad, and M. Lee, “A survey on precision
agriculture: Technologies and challenges,” in Proc. 3rd Int. Conf. Next
Gener. Comput. (ICNGC), 2017, pp. 1-3.

S. Mahajan, A. Das, and H. K. Sardana, “Image acquisition techniques
for assessment of legume quality,” Trends Food Sci. Technol., vol. 42,
no. 2, pp. 116-133, 2015.

M. Suchithra and M. L. Pai, “Improving the prediction accuracy of
soil nutrient classification by optimizing extreme learning machine
parameters,” Inf. Process. Agricult., vol. 7, no. 1, pp. 72-82, 2020.

A. Morellos, X.-E. Pantazi, D. Moshou, T. Alexandridis, R. Whetton,
G. Tziotzios, J. Wiebensohn, R. Bill, and A. M. Mouazen, ‘“Machine
learning based prediction of soil total nitrogen, organic carbon and
moisture content by using vis-nir spectroscopy,” Biosyst. Eng., vol. 152,
pp. 104-116, Dec. 2016.

S. Huang, X. Fan, L. Sun, Y. Shen, and X. Suo, “Research on
classification method of maize seed defect based on machine vision,”
J. Sensors, vol. 2019, pp. 1-9, Nov. 2019.

S. Zhu, L. Zhou, P. Gao, Y. Bao, Y. He, and L. Feng, “Near-infrared
hyperspectral imaging combined with deep learning to identify cotton
seed varieties,” Molecules, vol. 24, no. 18, p. 3268, Sep. 2019.

M. Yang, D. Xu, S. Chen, H. Li, and Z. Shi, “Evaluation of machine
learning approaches to predict soil organic matter and pH using vis-NIR
spectra,” Sensors, vol. 19, no. 2, p. 263, Jan. 2019.

VOLUME 12, 2024



G. Mohyuddin et al.: Evaluation of ML Approaches for PF in Smart Agriculture System

IEEE Access

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

B. Veeramani, J. W. Raymond, and P. Chanda, “DeepSort: Deep
convolutional networks for sorting haploid maize seeds,” BMC Bioinf.,
vol. 19, pp. 1-9, Aug. 2018.

K.-L. Tu, L.-J. Li, L.-M. Yang, J.-H. Wang, and Q. Sun, “Selection
for high quality pepper seeds by machine vision and classifiers,”
J. Integrative Agricult., vol. 17, no. 9, pp. 1999-2006, Sep. 2018.

A. Zadokar, D. Bhagat, A. Nayase, and S. Mhaske, “Leaf disease
detection of cotton plant using image processing techniques: A review,”
Int. J. Electron., Commun. Soft Comput. Sci. Eng. (IJECSCSE), vol. 4,
pp. 53-55, Jan. 2017.

S. D. Khirade and A. B. Patil, “Plant disease detection using image
processing,” in Proc. Int. Conf. Comput. Commun. Control Autom.,
Feb. 2015, pp. 768-771.

S. K. S. Durai and M. D. Shamili, “Smart farming using machine
learning and deep learning techniques,” Decis. Anal. J., vol. 3, Jun. 2022,
Art. no. 100041.

T. A. Shaikh, T. Rasool, and F. R. Lone, “Towards leveraging the role
of machine learning and artificial intelligence in precision agriculture
and smart farming,” Comput. Electron. Agricult., vol. 198, Jul. 2022,
Art. no. 107119.

Y. Lu, S. Yi, N. Zeng, Y. Liu, and Y. Zhang, “Identification of Rice
diseases using deep convolutional neural networks,” Neurocomputing,
vol. 267, pp. 378-384, Dec. 2017.

D. Castro and J. New, “The promise of artificial intelligence,” Center
Data Innov., vol. 115, no. 10, pp. 32-35, 2016.

K. Golhani, S. K. Balasundram, G. Vadamalai, and B. Pradhan, “A review
of neural networks in plant disease detection using hyperspectral data,”
Inf. Process. Agricult., vol. 5, no. 3, pp. 354-371, Sep. 2018.

D. Moshou, C. Bravo, J. West, S. Wahlen, A. McCartney, and H. Ramon,
“Automatic detection of ‘yellow rust’ in wheat using reflectance measure-
ments and neural networks,” Comput. Electron. Agricult., vol. 44, no. 3,
pp. 173-188, Sep. 2004.

A. K. Rangarajan, R. Purushothaman, and A. Ramesh, ‘“Tomato crop
disease classification using pre-trained deep learning algorithm,” Proc.
Comput. Sci., vol. 133, pp. 10401047, Jan. 2018.

A. Backhaus, F. Bollenbeck, and U. Seiffert, ‘“Robust classification of the
nutrition state in crop plants by hyperspectral imaging and artificial neural
networks,” in Proc. 3rd Workshop Hyperspectral Image Signal Process.,
Evol. Remote Sens. (WHISPERS), Jun. 2011, pp. 1-4.

C.-L. Chung, K.-J. Huang, S.-Y. Chen, M.-H. Lai, Y.-C. Chen,
and Y.-F. Kuo, “Detecting Bakanae disease in Rice seedlings by
machine vision,” Comput. Electron. Agricult., vol. 121, pp. 404-411,
Feb. 2016.

M. Atas, Y. Yardimci, and A. Temizel, “A new approach to aflatoxin
detection in chili pepper by machine vision,” Comput. Electron. Agricult.,
vol. 87, pp. 129-141, Sep. 2012.

M. T. Habib, A. Majumder, A. Z. M. Jakaria, M. Akter, M. S. Uddin, and
F. Ahmed, “Machine vision based papaya disease recognition,” J. King
Saud Univ. Comput. Inf. Sci., vol. 32, no. 3, pp. 300-309, Mar. 2020.

M. Ji, L. Zhang, and Q. Wu, “‘Automatic grape leaf diseases identification
via UnitedModel based on multiple convolutional neural networks,” Inf.
Process. Agricult., vol. 7, no. 3, pp. 418-426, Sep. 2020.

K.R. Gavhale, U. Gawande, and K. O. Hajari, ‘“Unhealthy region of citrus
leaf detection using image processing techniques,” in Proc. Int. Conf.
Converg. Technol., Apr. 2014, pp. 1-6.

M. A. Khan, I. A. Sajjad, M. Tahir, and A. Haseeb, “IoT application for
energy management in smart homes,” Eng. Proc., vol. 20, no. 1, p. 43,
2022.

S. Kaur, S. Pandey, and S. Goel, “Semi-automatic leaf disease detection
and classification system for soybean culture,” IET Image Process.,
vol. 12, no. 6, pp. 1038-1048, Jun. 2018.

S. K. Malchi, S. Kallam, F. Al-Turjman, and R. Patan, “A trust-based
fuzzy neural network for smart data fusion in Internet of Things,”
Comput. Electr. Eng., vol. 89, Jan. 2021, Art. no. 106901.

S. Hossain, R. M. Mou, M. M. Hasan, S. Chakraborty, and M. A. Razzak,
“Recognition and detection of tea leaf’s diseases using support vector
machine,” in Proc. IEEE 14th Int. Colloq. Signal Process. Appl. (CSPA),
Mar. 2018, pp. 150-154.

V. A. Natarajan, M. S. Kumar, R. Patan, S. Kallam, and
M. Y. N. Mohamed, “Segmentation of nuclei in histopathology images
using fully convolutional deep neural architecture,” in Proc. Int. Conf.
Comput. Inf. Technol. (ICCIT), Sep. 2020, pp. 1-7.

VOLUME 12, 2024

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

N. Agrawal, J. Singhai, and D. K. Agarwal, “Grape leaf disease detection
and classification using multi-class support vector machine,” in Proc. Int.
Conf. Recent Innov. Signal Process. Embedded Syst. (RISE), Oct. 2017,
pp. 238-244.

B. Sangamithra, P. Neelima, and M. S. Kumar, “A memetic algorithm
for multi objective vehicle routing problem with time windows,” in Proc.
IEEE Int. Conf. Electr., Instrum. Commun. Eng. (ICEICE), Apr. 2017,
pp. 1-8.

P. Neelakantan, “Analyzing the best machine learning algorithm for
plant disease classification,” Mater. Today, Proc., vol. 80, no. 3,
pp. 3668-3671, 2023.

R. Sujatha, J. M. Chatterjee, N. Jhanjhi, and S. N. Brohi, ‘“Performance
of deep learning vs machine learning in plant leaf disease detection,”
Microprocess. Microsyst., vol. 80, Feb. 2021, Art. no. 103615.

T. V. Reddy and K. Sashirekhak, “Examination on advanced machine
learning techniques for plant leaf disease detection from leaf imagery,”
J. Crit. Rev., vol. 7, no. 5, pp. 1208-1221, 2020.

E. C. Too, L. Yujian, S. Njuki, and L. Yingchun, “A comparative study
of fine-tuning deep learning models for plant disease identification,”
Comput. Electron. Agricult., vol. 161, pp. 272-279, Jun. 2019.

E. Hossain, Md. F. Hossain, and M. A. Rahaman, “A color and texture
based approach for the detection and classification of plant leaf disease
using KNN classifier,” in Proc. Int. Conf. Electr., Comput. Commun. Eng.
(ECCE), Feb. 2019, pp. 1-6.

N. Sengar, M. K. Dutta, and C. M. Travieso, “Computer vision based
technique for identification and quantification of powdery mildew
disease in cherry leaves,” Computing, vol. 100, no. 11, pp. 1189-1201,
Nov. 2018.

S. Janarthan, S. Thuseethan, S. Rajasegarar, Q. Lyu, Y. Zheng, and
J. Yearwood, “Deep metric learning based citrus disease classification
with sparse data,” IEEE Access, vol. 8, pp. 162588-162600, 2020.

H. Ali, M. I. Lali, M. Z. Nawaz, M. Sharif, and B. A. Saleem, “Symptom
based automated detection of citrus diseases using color histogram and
textural descriptors,” Comput. Electron. Agricult., vol. 138, pp. 92-104,
Jun. 2017.

M. Bah, A. Hafiane, and R. Canals, “Deep learning with unsupervised
data labeling for weed detection in line crops in UAV images,” Remote
Sens., vol. 10, no. 11, p. 1690, Oct. 2018.

X. Zhang, L. Han, Y. Dong, Y. Shi, W. Huang, L. Han,
P. Gonzdlez-Moreno, H. Ma, H. Ye, and T. Sobeih, “A deep learning-
based approach for automated yellow rust disease detection from
high-resolution hyperspectral UAV images,” Remote Sens., vol. 11,
no. 13, p. 1554, Jun. 2019.

M. G. Selvaraj, A. Vergara, H. Ruiz, N. Safari, S. Elayabalan, W. Ocimati,
and G. Blomme, “Al-powered banana diseases and pest detection,” Plant
Methods, vol. 15, no. 1, pp. 1-11, Dec. 2019.

S. Singh and N. P. Singh, “Machine learning-based classification of good
and rotten apple,” in Proc. Recent Trends Commun., Comput., Electron.
(IC3E). Singapore: Springer, 2019, pp. 377-386.

A. Gargade and S. Khandekar, “Custard apple leaf parameter analysis,
leaf diseases, and nutritional deficiencies detection using machine
learning,” in Proc. Adv. Signal Data Process. (ICSDP). Singapore:
Springer, 2021, pp. 57-74.

M. Sharif, M. A. Khan, Z. Igbal, M. F. Azam, M. I. U. Lali, and
M. Y. Javed, “Detection and classification of citrus diseases in agriculture
based on optimized weighted segmentation and feature selection,”
Comput. Electron. Agricult., vol. 150, pp. 220-234, Jul. 2018.

P. B. Padol and A. A. Yadav, “SVM classifier based grape leaf disease
detection,” in Proc. Conf. Adv. Signal Process. (CASP), Jun. 2016,
pp. 175-179.

P. P. Warne and S. Ganorkar, ““Detection of diseases on cotton leaves using
K-mean clustering method,” Int. Res. J. Eng. Technol. (IRJET), vol. 2,
no. 4, pp. 425-431, 2015.

R. Kaurand S. Singla, “Classification of plant leaf diseases using gradient
and texture feature,” in Proc. Int. Conf. Adv. Inf. Commun. Technol.
Comput. (AICTC), 2016, pp. 1-7.

S. P. Patil and R. S. Zambre, “Classification of cotton leaf spot
disease using support vector machine,” Int. J. Eng. Res., vol. 3, no. 4,
pp. 1511-1514, 2014.

P. Revathi and M. Hemalatha, ““Classification of cotton leaf spot diseases
using image processing edge detection techniques,” in Proc. Int. Conf.
Emerg. Trends Sci., Eng. Technol. (INCOSET), Dec. 2012, pp. 169-173.

60179



IEEE Access

G. Mohyuddin et al.: Evaluation of ML Approaches for PF in Smart Agriculture System

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

60180

S. S. Sannakki, V. S. Rajpurohit, V. B. Nargund, and P. Kulkarni,
“Diagnosis and classification of grape leaf diseases using neural
network,” in Proc. 4th Int. Conf. Comput., Commun. Netw. Technol.
(ICCCNT), Jul. 2013, pp. 1-5.

S. R. Dubey and A. S. Jalal, “Detection and classification of apple fruit
diseases using complete local binary patterns,” in Proc. 3rd Int. Conf.
Comput. Commun. Technol., Nov. 2012, pp. 346-351.

J. G. Arnal Barbedo, ““Plant disease identification from individual lesions
and spots using deep learning,” Biosyst. Eng., vol. 180, pp. 96-107,
Apr. 2019.

B. Liu, Y. Zhang, D. He, and Y. Li, “Identification of apple leaf diseases
based on deep convolutional neural networks,” Symmetry, vol. 10, no. 1,
p. 11, Dec. 2017.

V. P. Kour and S. Arora, “Fruit disease detection using rule-based clas-
sification,” in Smart Innovations in Communication and Computational
Sciences. Singapore: Springer, 2018, pp. 295-312.

M. Tiirkoglu and D. Hanbay, ‘‘Plant disease and pest detection using deep
learning-based features,” TURKISH J. Electr. Eng. Comput. Sci., vol. 27,
no. 3, pp. 1636-1651, May 2019.

P. K. Kashyap, S. Kumar, A. Jaiswal, M. Prasad, and A. H. Gandomi,
“Towards precision agriculture: loT-enabled intelligent irrigation systems
using deep learning neural network,” IEEE Sensors J., vol. 21, no. 16,
pp. 17479-17491, Aug. 2021.

A. B. B. Torres, A. R. da Rocha, T. L. C. da Silva, J. N. de Souza,
and R. S. Gondim, “Multilevel data fusion for the Internet of Things
in smart agriculture,” Comput. Electron. Agricult., vol. 171, Apr. 2020,
Art. no. 105309.

N. Zhu, X. Liu, Z. Liu, K. Hu, Y. Wang, J. Tan, M. Huang, Q. Zhu, X. Ji,
Y. Jiang, and Y. Guo, “Deep learning for smart agriculture: Concepts,
tools, applications, and opportunities,” Int. J. Agricult. Biol. Eng.,vol. 11,
no. 4, pp. 32-44, 2018.

S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, and D. Stefanovic,
“Deep neural networks based recognition of plant diseases by leaf
image classification,” Comput. Intell. Neurosci., vol. 2016, pp. 1-11,
Jun. 2016.

J. Tang, D. Wang, Z. Zhang, L. He, J. Xin, and Y. Xu, ‘“Weed identifi-
cation based on K-means feature learning combined with convolutional
neural network,” Comput. Electron. Agricult., vol. 135, pp.63-70,
Apr. 2017.

W. Albattah, M. Nawaz, A. Javed, M. Masood, and S. Albahli, “A novel
deep learning method for detection and classification of plant diseases,”
Complex Intell. Syst., vol. 8, no. 1, pp. 507-524, Feb. 2022.

G. Sakkarvarthi, G. W. Sathianesan, V. S. Murugan, A. J. Reddy,
P. Jayagopal, and M. Elsisi, “Detection and classification of tomato crop
disease using convolutional neural network,” Electronics, vol. 11, no. 21,
p. 3618, Nov. 2022.

H. Cetiner, “Citrus disease detection and classification using based on
convolution deep neural network,” Microprocess. Microsyst., vol. 95,
Nov. 2022, Art. no. 104687.

P. Goncharov, G. Ososkov, A. Nechaevskiy, A. Uzhinskiy, and
I. Nestsiarenia, “‘Disease detection on the plant leaves by deep learning,”
in Proc. 20th Int. Conf. Neuroinformatics Adv. Neural Comput., Mach.
Learn., Cogn. Res. II. Moscow, Russia: Springer, Oct. 2019, pp. 151-159.
K. P. Panigrahi, H. Das, A. K. Sahoo, and S. C. Moharana, “Maize leaf
disease detection and classification using machine learning algorithms,”
in Progress in Computing, Analytics and Networking. Singapore:
Springer, 2019, pp. 659-669.

A. Sagar and J. Dheeba, “On using transfer learning for plant disease
detection,” BioRxiv, May 2020.

R. Patil, S. Udgave, S. More, D. Nemishte, and M. Kasture, *“Grape leaf
disease detection using K-means clustering algorithm,” Int. Res. J. Eng.
Technol. (IRJET), vol. 3, no. 4, pp. 2330-2333, 2016.

M. Kumar, P. Gupta, P. Madhav, and Sachin, “Disease detection in
coffee plants using convolutional neural network,” in Proc. 5th Int. Conf.
Commun. Electron. Syst. (ICCES), Jun. 2020, pp. 755-760.

A. Batool, S. B. Hyder, A. Rahim, N. Waheed, M. A. Asghar, and Fawad,
““Classification and identification of tomato leaf disease using deep neural
network,” in Proc. Int. Conf. Eng. Emerg. Technol. (ICEET), Feb. 2020,
pp. 1-6.

R. Karthik, M. Hariharan, S. Anand, P. Mathikshara, A. Johnson, and
R. Menaka, “Attention embedded residual CNN for disease detection in
tomato leaves,” Appl. Soft Comput., vol. 86, Jan. 2020, Art. no. 105933.

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

J. Shin, Y. K. Chang, B. Heung, T. Nguyen-Quang, G. W. Price,
and A. Al-Mallahi, “A deep learning approach for RGB image-based
powdery mildew disease detection on strawberry leaves,” Comput.
Electron. Agricult., vol. 183, Apr. 2021, Art. no. 106042.

B. Jiang, J. He, S. Yang, H. Fu, T. Li, H. Song, and D. He, “Fusion of
machine vision technology and AlexNet-CNNs deep learning network
for the detection of postharvest apple pesticide residues,” Artif. Intell.
Agricult., vol. 1, pp. 1-8, Mar. 2019.

H. Durmus, E. O. Giines, and M. Kirci, “Disease detection on the leaves
of the tomato plants by using deep learning,” in Proc. 6th Int. Conf. Agro-
Geoinform., Aug. 2017, pp. 1-5.

A. Ramcharan, K. Baranowski, P. McCloskey, B. Ahmed, J. Legg,
and D. P. Hughes, “Deep learning for image-based cassava disease
detection,” Frontiers Plant Sci., vol. 8, p. 1852, Oct. 2017.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2818-2826.

A. Fuentes, S. Yoon, S. Kim, and D. Park, “A robust deep-learning-
based detector for real-time tomato plant diseases and pests recognition,”
Sensors, vol. 17, no. 9, p. 2022, Sep. 2017.

D. Tedesco-Oliveira, R. P. da Silva, W. Maldonado, and C. Zerbato,
“Convolutional neural networks in predicting cotton yield from images
of commercial fields,” Comput. Electron. Agricult., vol. 171, Apr. 2020,
Art. no. 105307.

P. Nevavuori, N. Narra, and T. Lipping, ““Crop yield prediction with deep
convolutional neural networks,” Comput. Electron. Agricult., vol. 163,
Aug. 2019, Art. no. 104859.

M. Maimaitijiang, V. Sagan, P. Sidike, S. Hartling, F. Esposito, and
F. B. Fritschi, “Soybean yield prediction from UAV using multimodal
data fusion and deep learning,” Remote Sens. Environ., vol. 237,
Feb. 2020, Art. no. 111599.

Q. Yang, L. Shi, J. Han, Y. Zha, and P. Zhu, “Deep convolutional neural
networks for Rice grain yield estimation at the ripening stage using UAV-
based remotely sensed images,” Field Crops Res., vol. 235, pp. 142-153,
Apr. 2019.

A. Malviya and P. D. S. Solanki, “Crop yield prediction using deep
neural networks,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 8,
pp. 657-665, Aug. 2022.

M. Rahnemoonfar and C. Sheppard, “Real-time yield estimation
based on deep learning,” Proc. SPIE, vol. 10218, pp.59-65,
May 2017.

S. Lee, Y. Jeong, S. Son, and B. Lee, “A self-predictable crop
yield platform (SCYP) based on crop diseases using deep learning,”
Sustainability, vol. 11, no. 13, p. 3637, Jul. 2019.

D. Elavarasan and P. M. D. Vincent, “Crop yield prediction using deep
reinforcement learning model for sustainable agrarian applications,”
IEEE Access, vol. 8, pp. 86886-86901, 2020.

N. Yu, L. Li, N. Schmitz, L. F. Tian, J. A. Greenberg, and B. W. Diers,
“Development of methods to improve soybean yield estimation and
predict plant maturity with an unmanned aerial vehicle based platform,”
Remote Sens. Environ., vol. 187, pp. 91-101, Dec. 2016.

Z. Chu and J. Yu, “An end-to-end model for Rice yield prediction using
deep learning fusion,” Comput. Electron. Agricult., vol. 174, Jul. 2020,
Art. no. 105471.

Y. Chen, W. S. Lee, H. Gan, N. Peres, C. Fraisse, Y. Zhang, and Y. He,
“Strawberry yield prediction based on a deep neural network using high-
resolution aerial orthoimages,” Remote Sens., vol. 11, no. 13, p. 1584,
Jul. 2019.

J. Sun, L. Di, Z. Sun, Y. Shen, and Z. Lai, “County-level soybean yield
prediction using deep CNN-LSTM model,” Sensors, vol. 19, no. 20,
p. 4363, Oct. 2019.

X. Wang, J. Huang, Q. Feng, and D. Yin, “Winter wheat yield prediction
at county level and uncertainty analysis in main wheat-producing regions
of China with deep learning approaches,” Remote Sens., vol. 12, no. 11,
p. 1744, May 2020.

S. Ju, H. Lim, and J. Heo, ‘““Machine learning approaches for crop yield
prediction with MODIS and weather data,” in Proc. 40th Asian Conf.
Remote Sensing, Prog. Remote Sens. Technol. Smart Future (ACRS),
2019.

S. Khaki, L. Wang, and S. V. Archontoulis, “A CNN-RNN framework
for crop yield prediction,” Frontiers Plant Sci., vol. 10, p. 1750,
Jan. 2020.

VOLUME 12, 2024



G. Mohyuddin et al.: Evaluation of ML Approaches for PF in Smart Agriculture System

IEEE Access

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

A. S. Terliksiz and D. T. Altylar, “Use of deep neural networks for
crop yield prediction: A case study of soybean yield in Lauderdale
county, Alabama, USA,” in Proc. 8th Int. Conf. Agro-Geoinform. (Agro-
Geoinformatics), Jul. 2019, pp. 1-4.

D. Guo, J. Juan, L. Chang, J. Zhang, and D. Huang, “Discrimination
of plant root zone water status in greenhouse production based on
phenotyping and machine learning techniques,” Sci. Rep., vol. 7, no. 1,
p. 8303, Aug. 2017.

S. Jay, G. Rabatel, X. Hadoux, D. Moura, and N. Gorretta, “In-field
crop row phenotyping from 3D modeling performed using structure from
motion,” Comput. Electron. Agricult., vol. 110, pp. 70-77, Jan. 2015.

F. Coppens, N. Wuyts, D. Inzé, and S. Dhondt, “Unlocking the
potential of plant phenotyping data through integration and data-driven
approaches,” Current Opinion Syst. Biol., vol. 4, pp. 58-63, Aug. 2017.
G. Bai, Y. Ge, W. Hussain, P. S. Baenziger, and G. Graef, “A multi-sensor
system for high throughput field phenotyping in soybean and wheat
breeding,” Comput. Electron. Agricult., vol. 128, pp. 181-192, Oct. 2016.
A.-K. Mahlein, M. T. Kuska, S. Thomas, M. Wahabzada, J. Behmann,
U. Rascher, and K. Kersting, “Quantitative and qualitative phenotyping
of disease resistance of crops by hyperspectral sensors: Seamless inter-
locking of phytopathology, sensors, and machine learning is needed!”
Current Opinion Plant Biol., vol. 50, pp. 156-162, Aug. 2019.

S. Thomas, J. Behmann, A. Steier, T. Kraska, O. MCuller, U. Rascher,
and A.-K. Mahlein, “Quantitative assessment of disease severity and
rating of barley cultivars based on hyperspectral imaging in a non-
invasive, automated phenotyping platform,” Plant Methods, vol. 14, no. 1,
pp. 1-12, Dec. 2018.

V. Singh, Varsha, and A. K. Misra, “Detection of unhealthy region of
plant leaves using image processing and genetic algorithm,” in Proc. Int.
Conf. Adv. Comput. Eng. Appl., Mar. 2015, pp. 1028-1032.

T. Mueller-Sim, M. Jenkins, J. Abel, and G. Kantor, “The robotanist:
A ground-based agricultural robot for high-throughput crop pheno-
typing,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017,
pp. 3634-3639.

A. Shafiekhani, S. Kadam, F. Fritschi, and G. DeSouza, ‘““Vinobot and
vinoculer: Two robotic platforms for high-throughput field phenotyping,”
Sensors, vol. 17, no. 12, p. 214, Jan. 2017.

D. Deery, J. Jimenez-Berni, H. Jones, X. Sirault, and R. Furbank,
“Proximal remote sensing buggies and potential applications for field-
based phenotyping,” Agronomy, vol. 4, no. 3, pp. 349-379, Jul. 2014.

J. R. Ubbens and 1. Stavness, “Deep plant phenomics: A deep learning
platform for complex plant phenotyping tasks,” Frontiers Plant Sci.,
vol. 8, p. 1190, Jul. 2017.

P. Boniecki, K. Koszela, H. Piekarska-Boniecka, J. Weres,
M. Zaborowicz, S. Kujawa, A. Majewski, and B. Raba, ‘“Neural
identification of selected apple pests,” Comput. Electron. Agricult.,
vol. 110, pp. 9-16, Jan. 2015.

A. Tripathy, J. Adinarayana, D. Sudharsan, S. Merchant, U. Desai,
K. Vijayalakshmi, D. R. Reddy, G. Sreenivas, S. Ninomiya, M. Hirafuji,
T. Kiura, and K. Tanaka, ““Data mining and wireless sensor network for
agriculture pest/disease predictions,” in Proc. World Congr. Inf. Commun.
Technol., Dec. 2011, pp. 1229-1234.

L. M. Rodrigues, G. P. Dimuro, D. T. Franco, and J. C. Fachinello,
“A system based on interval fuzzy approach to predict the appearance
of pests in agriculture,” in Proc. Joint IFSA World Congr. NAFIPS Annu.
Meeting (IFSA/NAFIPS), Jun. 2013, pp. 1262-1267.

R. Rupnik, M. Kukar, P. Vra¢ ar, D. Kosir, D. Pevec, and Z. Bosnix¢,
“AgroDSS: A decision support system for agriculture and farming,”
Comput. Electron. Agricult., vol. 161, pp. 260-271, Jun. 2019.

P. Lottes, M. Hoeferlin, S. Sander, M. Miiter, P. Schulze, and
L. C. Stachniss, “An effective classification system for separating sugar
beets and weeds for precision farming applications,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2016, pp. 5157-5163.

J. Yu, S. M. Sharpe, A. W. Schumann, and N. S. Boyd, “Deep learning
for image-based weed detection in turfgrass,” Eur. J. Agronomy, vol. 104,
pp- 78-84, Mar. 2019.

P. Bosilj, T. Duckett, and G. Cielniak, “Connected attribute morphology
for unified vegetation segmentation and classification in precision
agriculture,” Comput. Ind., vol. 98, pp. 226-240, Jun. 2018.

P. Padalalu, S. Mahajan, K. Dabir, S. Mitkar, and D. Javale, “Smart water
dripping system for agriculture/farming,” in Proc. 2nd Int. Conf. Converg.
Technol. (I12CT), Apr. 2017, pp. 659—-662.

VOLUME 12, 2024

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

A. Albanese, M. Nardello, and D. Brunelli, “Automated pest detection
with DNN on the edge for precision agriculture,” IEEE J. Emerg. Sel.
Topics Circuits Syst., vol. 11, no. 3, pp. 458-467, Sep. 2021.

A. Segalla, G. Fiacco, L. Tramarin, M. Nardello, and D. Brunelli, “Neural
networks for pest detection in precision agriculture,” in Proc. IEEE
Int. Workshop Metrol. Agricult. Forestry (MetroAgriFor), Nov. 2020,
pp. 7-12.

J. G. A. Barbedo, “An automatic method to detect and measure leaf
disease symptoms using digital image processing,” Plant Disease,
vol. 98, no. 12, pp. 1709-1716, Dec. 2014.

H. Al Hiary, S. Bani Ahmad, M. Reyalat, M. Braik, and Z. ALRahamneh,
“Fast and accurate detection and classification of plant diseases,” Int.
J. Comput. Appl., vol. 17, no. 1, pp. 31-38, Mar. 2011.

U. Mokhtar, M. A. Ali, A. E. Hassanien, and H. Hefny, “Identifying two
of tomatoes leaf viruses using support vector machine,” in Proc. 2nd Int.
Conf. Inf. Syst. Design Intell. Appl. (INDIA), vol. 1. India: Springer, 2015,
pp. 771-782.

S. Arivazhagan, R. N. Shebiah, S. Ananthi, and S. V. Varthini, “Detection
of unhealthy region of plant leaves and classification of plant leaf diseases
using texture features,” Agricult. Eng. Int. CIGR J., vol. 15, no. 1,
pp. 211-217, 2013.

H. Jiang, X. Li, and F. Safara, “WITHDRAWN: IoT-based agricul-
ture: Deep learning in detecting apple fruit diseases,” Microprocess.
Microsyst., Aug. 2021, Art. no. 104321.

P. Jiang, Y. Chen, B. Liu, D. He, and C. Liang, ‘“Real-time
detection of apple leaf diseases using deep learning approach based
on improved convolutional neural networks,” IEEE Access, vol. 7,
pp. 59069-59080, 2019.

M. E. Karar, F. Alsunaydi, S. Albusaymi, and S. Alotaibi, “A new mobile
application of agricultural pests recognition using deep learning in cloud
computing system,” Alexandria Eng. J., vol. 60, no. 5, pp. 4423-4432,
Oct. 2021.

L. Butera, A. Ferrante, M. Jermini, M. Prevostini, and C. Alippi, ‘Precise
agriculture: Effective deep learning strategies to detect pest insects,”
IEEE/CAA J. Autom. Sinica, vol. 9, no. 2, pp. 246-258, Feb. 2022.

S. Sanga, V. Mero, D. Machuve, and D. Mwanganda, ‘“Mobile-based deep
learning models for banana diseases detection,”” 2020, arXiv:2004.03718.
M. Chohan, A. Khan, R. Chohan, S. H. Katpar, and M. S. Mahar, ‘‘Plant
disease detection using deep learning,” Int. J. Recent Technol. Eng.
(IJRTE), vol. 9, no. 1, pp. 909-914, May 2020.

K. P. Ferentinos, “Deep learning models for plant disease detection
and diagnosis,” Comput. Electron. Agricult., vol. 145, pp. 311-318,
Feb. 2018.

S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for
image-based plant disease detection,” Frontiers Plant Sci., vol. 7, p. 1419,
Sep. 2016.

F. Mohameth, C. Bingcai, and K. A. Sada, “Plant disease detection with
deep learning and feature extraction using plant village,” J. Comput.
Commun., vol. 8, no. 6, pp. 10-22, 2020.

D. Tiwari, M. Ashish, N. Gangwar, A. Sharma, S. Patel, and S. Bhardwaj,
“Potato leaf diseases detection using deep learning,” in Proc. 4th Int.
Conf. Intell. Comput. Control Syst. (ICICCS), May 2020, pp. 461-466.
A. Khamparia, G. Saini, D. Gupta, A. Khanna, S. Tiwari, and
V. H. C. de Albuquerque, “Seasonal crops disease prediction and clas-
sification using deep convolutional encoder network,” Circuits, Syst.,
Signal Process., vol. 39, no. 2, pp. 818-836, Feb. 2020.

M. Pérez-Ortiz, P. A. Gutiérrez, J. M. Peiia, J. Torres-Sanchez,
F. L6opez-Granados, and C. Hervas-Martinez, ‘‘Machine learning
paradigms for weed mapping via unmanned aerial vehicles,” in Proc.
IEEE Symp. Ser. Comput. Intell. (SSCI), Dec. 2016, pp. 1-8.

T. Sarvini, T. Sneha, G. S. Gowthami, S. Sushmitha, and
R. Kumaraswamy, ‘‘Performance comparison of weed detection
algorithms,” in Proc. Int. Conf. Commun. Signal Process. (ICCSP),
Apr. 2019, pp. 843-847.

M. Alam, M. S. Alam, M. Roman, M. Tufail, M. U. Khan, and
M. T. Khan, “Real-time machine-learning based crop/weed detection
and classification for variable-rate spraying in precision agriculture,”
in Proc. 7th Int. Conf. Electr. Electron. Eng. (ICEEE), Apr. 2020,
pp. 273-280.

Y.-H. Tu, K. Johansen, S. Phinn, and A. Robson, ‘“Measuring canopy
structure and condition using multi-spectral UAS imagery in a horticul-
tural environment,” Remote Sens., vol. 11, no. 3, p. 269, Jan. 2019.

60181



IEEE Access

G. Mohyuddin et al.: Evaluation of ML Approaches for PF in Smart Agriculture System

[154]

[155]

[156]

[157

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

60182

J. Gao, D. Nuyttens, P. Lootens, Y. He, and J. G. Pieters, “Recognising
weeds in a maize crop using a random forest machine-learning algorithm
and near-infrared snapshot mosaic hyperspectral imagery,” Biosyst. Eng.,
vol. 170, pp. 39-50, Jun. 2018.

A. de Castro, J. Torres-Sanchez, J. Pefia, F. Jiménez-Brenes, O. Csillik,
and F. Lopez-Granados, “An automatic random forest-OBIA algorithm
for early weed mapping between and within crop rows using UAV
imagery,” Remote Sens., vol. 10, no. 3, p. 285, Feb. 2018.

D. Chabot, C. Dillon, A. Shemrock, N. Weissflog, and E. Sager,
““An object-based image analysis workflow for monitoring shallow-water
aquatic vegetation in multispectral drone imagery,” ISPRS Int. J. Geo-Inf.,
vol. 7, no. 8, p. 294, Jul. 2018.

J. Brinkhoff, J. Vardanega, and A. J. Robson, “Land cover classification
of nine perennial crops using Sentinel-1 and -2 data,” Remote Sens.,
vol. 12, no. 1, p. 96, Dec. 2019.

S. Zhang, J. Guo, and Z. Wang, “Combing K-means clustering and
local weighted maximum discriminant projections for weed species
recognition,” Frontiers Comput. Sci., vol. 1, p. 4, Sep. 2019.

A. Bakhshipour and A. Jafari, “Evaluation of support vector machine
and artificial neural networks in weed detection using shape features,”
Comput. Electron. Agricult., vol. 145, pp. 153-160, Feb. 2018.

S. Abouzahir, M. Sadik, and E. Sabir, “Enhanced approach for weeds
species detection using machine vision,” in Proc. Int. Conf. Electron.,
Control, Optim. Comput. Sci. (ICECOCS), Dec. 2018, pp. 1-6.

M. Pérez-Ortiz, J. M. Peiia, P. A. Gutiérrez, J. Torres-Sanchez,
C. Hervas-Martinez, and F. Lépez-Granados, “Selecting patterns and
features for between- and within- crop-row weed mapping using UAV-
imagery,” Expert Syst. Appl., vol. 47, pp. 85-94, Apr. 2016.

F. Ahmed, H. A. Al-Mamun, A. S. M. H. Bari, E. Hossain, and P. Kwan,
“Classification of crops and weeds from digital images: A support vector
machine approach,” Crop Protection, vol. 40, pp. 98-104, Oct. 2012.

Y. Khan and C. S. See, “Predicting and analyzing water quality using
machine learning: A comprehensive model,” in Proc. IEEE Long Island
Syst., Appl. Technol. Conf. (LISAT), Apr. 2016, pp. 1-6.

M. R. Machado, T. R. Jinior, M. R. Silva, and J. B. Martins, ‘Smart water
management system using the microcontroller ZR16S08 as IoT solution,”
in Proc. IEEE 10th Latin Amer. Symp. Circuits Syst. (LASCAS), Feb. 2019,
pp. 169-172.

C. Kamienski, J.-P. Soininen, M. Taumberger, R. Dantas, A. Toscano,
T. S. Cinotti, R. F. Maia, and A. T. Neto, “Smart water management
platform: IoT-based precision irrigation for agriculture,” Sensors, vol. 19,
no. 2, p. 276, Jan. 2019.

R. G. Perea, E. C. Poyato, P. Montesinos, and J. A. R. Diaz, “Prediction
of irrigation event occurrence at farm level using optimal decision trees,”
Comput. Electron. Agricult., vol. 157, pp. 173—180, Feb. 2019.

E. Bwambale, F. K. Abagale, and G. K. Anornu, “Smart irrigation
monitoring and control strategies for improving water use efficiency
in precision agriculture: A review,” Agricult. Water Manage., vol. 260,
Feb. 2022, Art. no. 107324.

X. Zhang, J. Zhang, L. Li, Y. Zhang, and G. Yang, ‘“‘Monitoring citrus
soil moisture and nutrients using an IoT based system,”” Sensors, vol. 17,
no. 3, p. 447, Feb. 2017.

Y. Zou, Q. Saddique, A. Ali, J. Xu, M. I. Khan, M. Qing, M. Azmat,
H. Cai, and K. H. M. Siddique, “Deficit irrigation improves maize yield
and water use efficiency in a semi-arid environment,” Agricult. Water
Manage., vol. 243, Jan. 2021, Art. no. 106483.

V. S. Rathore, N. S. Nathawat, S. Bhardwaj, B. M. Yadav, M. Kumar,
P. Santra, P. Kumar, M. L. Reager, N. D. Yadava, and O. P. Yadayv,
“Optimization of deficit irrigation and nitrogen fertilizer management for
peanut production in an arid region,” Sci. Rep., vol. 11, no. 1, p. 5456,
Mar. 2021.

L. K. Silveira, G. C. Pavao, C. T. dos Santos Dias, J. A. Quaggio, and
R. C. D. M. Pires, “Deficit irrigation effect on fruit yield, quality and
water use efficiency: A long-term study on péra-IAC sweet orange,”
Agricult. Water Manage., vol. 231, Mar. 2020, Art. no. 106019.

T. Xie, Z. Huang, Z. Chi, and T. Zhu, ‘“Minimizing amortized cost of the
on-demand irrigation system in smart farms,” in Proc. 3rd Int. Workshop
Cyber-Phys. Syst. Smart Water Netw., Apr. 2017, pp. 43-46.

G. Kokkonis, S. Kontogiannis, and D. Tomtsis, “FITRA: A neuro-fuzzy
computational algorithm approach based on an embedded water planting
system,” in Proc. 2nd Int. Conf. Internet things, Data Cloud Comput.,
Mar. 2017, pp. 1-8.

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

H. Chen, A. Chen, L. Xu, H. Xie, H. Qiao, Q. Lin, and K. Cai, “A deep
learning CNN architecture applied in smart near-infrared analysis of
water pollution for agricultural irrigation resources,” Agricult. Water
Manage., vol. 240, Oct. 2020, Art. no. 106303.

A. Goldstein, L. Fink, A. Meitin, S. Bohadana, O. Lutenberg, and
G. Ravid, “Applying machine learning on sensor data for irrigation
recommendations: Revealing the agronomist’s tacit knowledge,” Precis.
Agricult., vol. 19, no. 3, pp. 421-444, Jun. 2018.

N. Abdullah, N. A. B. Durani, M. F. B. Shari, K. S. Siong, V. K. W. Hau,
W.N. Siong, and I. K. A. Ahmad, “Towards smart agriculture monitoring
using fuzzy systems,” IEEE Access, vol. 9, pp. 4097-4111, 2021.

L. Garcia, L. Parra, J. M. Jimenez, J. Lloret, and P. Lorenz, “IoT-based
smart irrigation systems: An overview on the recent trends on sensors
and IoT systems for irrigation in precision agriculture,” Sensors, vol. 20,
no. 4, p. 1042, Feb. 2020.

E. A. Abioye, M. S. Z. Abidin, M. S. A. Mahmud, S. Buyamin,
M. H. I. Ishak, M. K. I. A. Rahman, A. O. Otuoze, P. Onotu, and
M. S. A. Ramli, “A review on monitoring and advanced control strategies
for precision irrigation,” Comput. Electron. Agricult., vol. 173, Jun. 2020,
Art. no. 105441.

P. P. Ray, “Internet of Things for smart agriculture: Technologies,
practices and future direction,” J. Ambient Intell. Smart Environments,
vol. 9, no. 4, pp. 395-420, Jun. 2017.

P. Fraga-Lamas, M. Celaya-Echarri, L. Azpilicueta, P. Lopez-Iturri,
F. Falcone, and T. M. Ferndndez-Caramés, ‘“Design and empirical
validation of a lorawan IoT smart irrigation system,” Proceedings,
vol. 42, no. 1, p. 62, 2019.

L. Han, F. Srocke, O. Masek, D. L. Smith, J. A. Lafond, S. Allaire,
and P. Dutilleul, ““A Graphical-User-Interface application for multifractal
analysis of soil and plant structures,” Comput. Electron. Agricult.,
vol. 174, Jul. 2020, Art. no. 105454.

C. A. Zaragoza, R. G. Perea, . F. Garcia, E. C. Poyato, and J. A. R. Diaz,
“Open source application for optimum irrigation and fertilization using
reclaimed water in olive orchards,” Comput. Electron. Agricult., vol. 173,
Jun. 2020, Art. no. 105407.

J.-A. Jiang, C.-H. Wang, M.-S. Liao, X.-Y. Zheng, J.-H. Liu,
C.-L. Chuang, C.-L. Hung, and C.-P. Chen, “A wireless sensor network-
based monitoring system with dynamic convergecast tree algorithm
for precision cultivation management in orchid greenhouses,” Precis.
Agricult., vol. 17, no. 6, pp. 766-785, Dec. 2016.

M. Syifa, S.-J. Park, and C.-W. Lee, “Detection of the pine wilt disease
tree candidates for drone remote sensing using artificial intelligence
techniques,” Engineering, vol. 6, no. 8, pp. 919-926, Aug. 2020.

A. M. de Oca and G. Flores, “The AgriQ: A low-cost unmanned aerial
system for precision agriculture,” Expert Syst. Appl., vol. 182, Nov. 2021,
Art. no. 115163.

P. Jayaraman, A. Yavari, D. Georgakopoulos, A. Morshed, and
A. Zaslavsky, “Internet of Things platform for smart farming: Experi-
ences and lessons learnt,” Sensors, vol. 16, no. 11, p. 1884, Nov. 2016.
Z.Sai, Y. Fan, T. Yuliang, X. Lei, and Z. Yifong, “‘Optimized algorithm of
sensor node deployment for intelligent agricultural monitoring,” Comput.
Electron. Agricult., vol. 127, pp. 76-86, Sep. 2016.

J. Anand and J. R. P. Perinbam, “Automatic irrigation system using fuzzy
logic,” AE Int. J. Multidisciplinary Res., vol. 2, no. 8, pp. 1-9, 2014.

A. K. Mousa, M. S. Croock, and M. N. Abdullah, ““Fuzzy based decision
support model for irrigation system management,” Int. J. Comput. Appl.,
vol. 104, no. 9, pp. 14-20, Oct. 2014.

W. S. Lee, D. Slaughter, and D. Giles, “Robotic weed control system for
tomatoes,” Precis. Agricult., vol. 1, pp. 95-113, Jan. 1999.

J. Awange, GNSS Environmental Sensing, vol. 10. Springer, 2018,
pp. 973-978.

T. Adao, J. Hruska, L. Padua, J. Bessa, E. Peres, R. Morais, and
J. Sousa, “Hyperspectral imaging: A review on UAV-based sensors, data
processing and applications for agriculture and forestry,” Remote Sens.,
vol. 9, no. 11, p. 1110, Oct. 2017.

M. Hassanalian and A. Abdelkefi, ““Classifications, applications, and
design challenges of drones: A review,” Prog. Aerosp. Sci., vol. 91,
pp. 99-131, May 2017.

J. Gago, C. Douthe, R. E. Coopman, P. P. Gallego, M. Ribas-Carbo,
J. Flexas, J. Escalona, and H. Medrano, “UAVs challenge to assess water
stress for sustainable agriculture,” Agricult. Water Manage., vol. 153,
pp. 9-19, May 2015.

VOLUME 12, 2024



G. Mohyuddin et al.: Evaluation of ML Approaches for PF in Smart Agriculture System

IEEE Access

[195]

[196]

[197]

[198

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206

[207

[208

[209

[210]
[211]

[212

[213

[214]

[215

[216]

[217

[218]
[219]

[220

[221

[222]

T. Saranya, C. Deisy, S. Sridevi, and K. S. M. Anbananthen, “A
comparative study of deep learning and Internet of Things for
precision agriculture,” Eng. Appl. Artif. Intell., vol. 122, Jun. 2023,
Art. no. 106034.

Z. Unal, “Smart farming becomes
learning—A  bibliographical analysis,”
pp. 105587-105609, 2020.
Ageel-ur-Rehman, A. Z. Abbasi, N. Islam, and Z. A. Shaikh, “A review
of wireless sensors and networks’ applications in agriculture,” Comput.
Standards Interfaces, vol. 36, no. 2, pp. 263-270, Feb. 2014.

M. Keshtgari and A. Deljoo, “A wireless sensor network solution for
precision agriculture based on ZigBee technology,” Wireless Sensor
Netw., vol. 4, no. 1, pp. 25-30, 2012.

V. Bhatnagar and R. Chandra, “IoT-based soil health monitoring and
recommendation system,” in Internet of Things and Analytics for
Agriculture, vol. 2, 2020, pp. 1-21.

D. Dasig, “Implementing IoT and wireless sensor networks for precision
agriculture,” in Internet of Things and Analytics for Agriculture, vol. 2,
2020, pp. 23-44.

C. Yu, K. Kam, Y. Xu, Z. Cui, D. Steingart, M. Gorlatova, P. Culligan,
and I. Kymissis, “Plant spike: A low-cost, low-power beacon for smart
city soil health monitoring,” IEEE Internet Things J., vol. 7, no. 9,
pp. 9080-9090, Sep. 2020.

N. Ahmed, D. De, and I. Hussain, “Internet of Things (IoT) for smart
precision agriculture and farming in rural areas,” IEEE Internet Things
J., vol. 5, no. 6, pp. 4890-4899, Dec. 2018.

W.-L. Chen, Y.-B. Lin, Y.-W. Lin, R. Chen, J.-K. Liao, F-L. Ng,
Y.-Y. Chan, Y.-C. Liu, C.-C. Wang, C.-H. Chiu, and T.-H. Yen, “AgriTalk:
IoT for precision soil farming of turmeric cultivation,” IEEE Internet
Things J., vol. 6, no. 3, pp. 5209-5223, Jun. 2019.

V. Goswami, ‘“Soil health monitoring system,” Int. J. Res. Appl. Sci. Eng.
Technol., vol. 8, no. 5, pp. 1536-1540, May 2020.

A. Sengupta, B. Debnath, A. Das, and D. De, “FarmFox: A quad-sensor-
based IoT box for precision agriculture,” IEEE Consum. Electron. Mag.,
vol. 10, no. 4, pp. 63-68, Jul. 2021.

M. Cicioglu and A. Calhan, “‘Smart agriculture with Internet of Things in
cornfields,” Comput. Electr. Eng., vol. 90, Mar. 2021, Art. no. 106982.
(2019). AIMETEO. Accessed: Nov. 11,2022. [Online]. Available: https://
www.allmeteo.com/

(2019). SSmart Elements. Accessed: Nov. 11, 2021. [Online]. Available:
https://smartelements.io/

(2019). Pycno. Accessed: Oct. 9, 2022. [Online]. Available: https://
WWW.pycno.co/

(2019). FarmApp. Accessed: Jan. 10, 2023. [Online]. Available: https://
farmappweb.com/

(2019). Growlink. Accessed: Dec. 12, 2022. [Online]. Available: https://
growlink.com/

(2019). GreenlQ. Accessed: Aug. 21, 2022. [Online]. Available: https://
easternpeak.com/works/iot/

(2019). Arable. Accessed: Aug. 22, 2022.
https://arable.com/

(2019). Semios. Accessed: Jul. 22, 2022. [Online]. Available: https:
//semios.com/

(2019). SCR/Allflex. Accessed: Jul. 30, 2022. [Online]. Available: https://
www.scrdairy.com/

(2019). Cowlar. Accessed: Dec. 1, 2022. [Online]. Available: https:
/lcowlar.com/

(2019). FarmLogs. Accessed: Jan. 5, 2022. [Online]. Available: https:
//farmlogs.com/

(2019). Cropio. Accessed: Sep. 19, 2022. [Online]. Available: https:
/labout.cropio.com/#agro

(2019). Farmshots. Accessed: Oct. 18, 2022. [Online]. Available: https:
//farmshots.com/

(2019). AWhere. Accessed: Oct. 19, 2022. [Online]. Available: https:
/Iwww.awhere.com/

N. Hini, P. Roy, and V. Isler, “A comparative study of fruit detection and
counting methods for yield mapping in apple orchards,” J. Field Robot.,
vol. 37, no. 2, pp. 263-282, Mar. 2020.

A. Koirala, K. B. Walsh, Z. Wang, and C. McCarthy, “Deep
learning—Method overview and review of use for fruit detection and
yield estimation,” Comput. Electron. Agricult., vol. 162, pp. 219-234,
Jul. 2019.

even smarter with deep
IEEE Access, vol. 8,

[Online]. Available:

VOLUME 12, 2024

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

D. B. Lobell, K. N. Cahill, and C. B. Field, “Historical effects of
temperature and precipitation on California crop yields,” Climatic
Change, vol. 81, no. 2, pp. 187-203, Feb. 2007.

P. Oliphant, ““Anaconda (version 4.9. 2),” Anaconda Inc., Tech. Rep.,
2012.

P. Wang, B. A. Hafshejani, and D. Wang, “RETRACTED: An improved
multilayer perceptron approach for detecting sugarcane yield production
in IoT based smart agriculture,” Microprocess. Microsyst., vol. 82,
Apr. 2021, Art. no. 103822.

M. A. Khan, A. M. Saleh, M. Waseem, and 1. A. Sajjad, ‘“‘Artificial
intelligence enabled demand response: Prospects and challenges in smart
grid environment,” IEEE Access, vol. 11, pp. 1477-1505, 2023.

E. Vrochidou, C. Bazinas, M. Manios, G. A. Papakostas, T. P. Pachidis,
and V. G. Kaburlasos, ‘“Machine vision for ripeness estimation in
viticulture automation,” Horticulturae, vol. 7, no. 9, p. 282, Sep. 2021.
D. Elavarasan, D. R. Vincent, V. Sharma, A. Y. Zomaya, and
K. Srinivasan, “Forecasting yield by integrating agrarian factors and
machine learning models: A survey,” Comput. Electron. Agricult.,
vol. 155, pp. 257-282, Dec. 2018.

K. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis, “Machine
learning in agriculture: A review,” Sensors, vol. 18, no. 8, p. 2674,
Aug. 2018.

B. Li, J. Lecourt, and G. Bishop, “Advances in non-destructive early
assessment of fruit ripeness towards defining optimal time of harvest and
yield prediction—A review,” Plants, vol. 7, no. 1, p. 3, Jan. 2018.

Y. Hua, N. Zhang, X. Yuan, L. Quan, J. Yang, K. Nagasaka, and
X.-G. Zhou, “Recent advances in intelligent automated fruit harvesting
robots,” Open Agricult. J., vol. 13, no. 1, pp. 101-106, Aug. 2019.

K. Bresilla, G. D. Perulli, A. Boini, B. Morandi, L. C. Grappadelli, and
L. Manfrini, “Single-shot convolution neural networks for real-time fruit
detection within the tree,” Frontiers Plant Sci., vol. 10, p. 611, May 2019.
M. S. Hossain, M. Al-Hammadi, and G. Muhammad, ‘“Automatic fruit
classification using deep learning for industrial applications,” [EEE
Trans. Ind. Informat., vol. 15, no. 2, pp. 1027-1034, Feb. 2019.

R. Kirk, G. Cielniak, and M. Mangan, “L*a*b*fruits: A rapid and robust
outdoor fruit detection system combining bio-inspired features with one-
stage deep learning networks,” Sensors, vol. 20, no. 1, p. 275, Jan. 2020.
H. Altaheri, M. Alsulaiman, and G. Muhammad, ‘‘Date fruit classification
for robotic harvesting in a natural environment using deep learning,”
IEEE Access, vol. 7, pp. 117115-117133, 2019.

A. Bauer, A. G. Bostrom, J. Ball, C. Applegate, T. Cheng, S. Laycock,
S. M. Rojas, J. Kirwan, and J. Zhou, “Combining computer vision and
deep learning to enable ultra-scale aerial phenotyping and precision
agriculture: A case study of lettuce production,” Horticulture Res., vol. 6,
no. 1, p. 70, Dec. 2019.

T. Zhang, Z. Huang, W. You, J. Lin, X. Tang, and H. Huang, “An
autonomous fruit and vegetable harvester with a low-cost gripper using a
3D sensor,” Sensors, vol. 20, no. 1, p. 93, Dec. 2019.

Y. Onishi, T. Yoshida, H. Kurita, T. Fukao, H. Arihara, and A. Iwai, “An
automated fruit harvesting robot by using deep learning,” Robomech J.,
vol. 6, no. 1, pp. 1-8, 2018.

X. Liu, S. W. Chen, S. Aditya, N. Sivakumar, S. Dcunha, C. Qu,
C. J. Taylor, J. Das, and V. Kumar, “Robust fruit counting: Combining
deep learning, tracking, and structure from motion,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 1045-1052.

E. B. Esguerra, R. Rolle, and M. Rahman, ‘“‘Post-harvest management
of mango for quality and safety assurance,” Guid. Horticultural
Supply Chain Stakeholders, Food Agricult. Org. United Nation, Rome,
Italy, 2018.

G. Paltrinieri and F. Staff, “Handling of fresh fruits, vegetables and
root crops: A training manual for Grenada,” Food Agricult. Org. United
Nations, Rome, Italy, Tech. Rep., 2014.

R. C. Ucat and J. C. Dela Cruz, “Postharvest grading classification of
cavendish banana using deep learning and tensorflow,” in Proc. Int. Symp.
Multimedia Commun. Technol. (ISMAC), Aug. 2019, pp. 1-6.

D. Ireri, E. Belal, C. Okinda, N. Makange, and C. Ji, “A computer vision
system for defect discrimination and grading in tomatoes using machine
learning and image processing,” Artif. Intell. Agricult., vol. 2, pp. 28-37,
Jun. 2019.

E. J. Piedad, J. I. Larada, G. J. Pojas, and L. V. V. Ferrer, “‘Postharvest
classification of banana (Musa acuminata) using tier-based machine
learning,” Postharvest Biol. Technol., vol. 145, pp. 93-100, Nov. 2018.

60183



IEEE Access

G. Mohyuddin et al.: Evaluation of ML Approaches for PF in Smart Agriculture System

[245] J. Li, L. Chen, and W. Huang, “Detection of early bruises on
peaches (Amygdalus persica L.) using hyperspectral imaging coupled
with improved watershed segmentation algorithm,” Postharvest Biol.
Technol., vol. 135, pp. 104-113, Jan. 2018.

[246] M. M. Sofu, O. Er, M. C. Kayacan, and B. Cetisli, “Design of an
automatic apple sorting system using machine vision,” Comput. Electron.
Agricult., vol. 127, pp. 395-405, Sep. 2016.

[247] Y. Al Ohali, “Computer vision based date fruit grading system: Design
and implementation,” J. King Saud Univ. - Comput. Inf. Sci., vol. 23, no. 1,
pp- 29-36, Jan. 2011.

[248] A. Bhargava and A. Bansal, “Fruits and vegetables quality evaluation
using computer vision: A review,” J. King Saud Univ. - Comput. Inf. Sci.,
vol. 33, no. 3, pp. 243-257, Mar. 2021.

[249] V. A. Meshram, K. Patil, and S. D. Ramteke, ‘“MNet: A framework
to reduce fruit image misclassification,” Ingénierie des systémes d Inf.,
vol. 26, no. 2, pp. 159-170, Apr. 2021.

GHULAM MOHYUDDIN received the B.Sc.
degree in agricultural plant breeding and genet-
ics and the M.Sc. degree in agricultural plant
breeding and genetics, in 2023. His research
interests include several vital aspects of agri-
cultural plant breeding and genetics, including
crop improvement, genetic diversity, molecular
breeding techniques, and nutritional improvement.
His commitment to these research areas promises
to have a lasting impact on the agricultural sector
and global food security.

MUHAMMAD ADNAN KHAN was born in
Dera Ghazi Khan, Punjab, Pakistan, in 1998.
He received the B.Sc. and M.Sc. degrees in
electrical engineering from the University of
Engineering and Technology, Taxila, Pakistan,
in 2019 and 2022, respectively. He is currently
with the Department of Electrical Engineering,
University of Engineering and Technology, Taxila.
His research interests include renewable energy,
smart grids, distributed energy resources integra-
tion, integration of renewable energy in smart grids, and demand side
management. He is a Lifetime Member of Pakistan Engineering Council
(PEC).

-

60184

ABDUL HASEEB received the bachelor’s degree
in electrical engineering and the master’s degree in
electrical power engineering from the University
of Engineering and Technology, Taxila, in 2015.
His professional journey began as a Trainee
Electrical Power Engineer with Bestway Cement
Ltd., Chakwal. His publications in well-reputed
journals delve into the application of advanced Al
techniques for addressing challenges in optimal
reactive power dispatch (ORPD) and harmonics
estimation. He is currently as a Research Associate with the LUMS Energy
Institute, Department of Computer Engineering, Syed Babar Ali School of
Science and Engineering, LUMS, Lahore. His research interests includes
application of Al to solve power system operational and planning problems.

SHAHZADI MAHPARA received the B.Sc., master’s and Ph.D. degrees
in agriculture. His research interests include several vital aspects of agri-
cultural plant breeding and genetics, including crop improvement, genetic
diversity, molecular breeding techniques, and nutritional improvement. His
commitment to these research areas promises to have a lasting impact on the
agricultural sector and global food security.

MUHAMMAD WASEEM (Member, IEEE)
received the M.Sc. degree in electrical engineering
from the University of Engineering and Tech-
nology, Taxila, Pakistan, in 2017, and the Ph.D.
degree in electrical engineering from Zhejiang
University, China, in 2022. He was a Postdoctoral
Fellow with the Centre for Advances in Relia-
bility and Safety, The Hong Kong Polytechnic
University, Hong Kong. He is currently a Senior
\ Postdoctoral Researcher with the International
Renewable and Energy Systems Integration Research Group (IRESI),
Department of Electronic Engineering, Maynooth University, Kildare,
Ireland. His research interests include power system analysis, demand-side
management, integrated energy management systems, and smart grids.

AHMED MOHAMMED SALEH was born in
Yemen. He received the bachelor’s degree (Hons.)
in electrical engineering from the University of
Aden, Yemen, in 2015. He is currently pursuing
the Ph.D. degree. He was a Laboratory Engi-
neer with the University of Aden, until 2019.
His research interests include smart grid, the
hybridization of renewable energy sources, and
optimization techniques.

VOLUME 12, 2024



