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ABSTRACT Over the last decades, learning methods using kernels have become very popular. The main
reason is that real data analysis often requires nonlinear methods to detect the dependencies that allow
successful predictions of properties of interest. Gaussian kernels have been used in many studies such as
learning algorithms and data analysis. Most of these studies have shown that the parameter chosen for a
Gaussian kernel could have a huge impact on the desired results. Therefore, it is essential to understand this
impact on a theoretical level. The main contribution of this paper is to study the effect of the Gaussian kernel
bandwidth parameter on how well an empirical operator defined from data approximates its continuous
counterpart. Some results in spectral approximations are provided as well as some examples.

INDEX TERMS Gaussian kernel, radial kernels, kernel principal component analysis, reproducing kernel,
support vector machine.

I. INTRODUCTION
Gaussian kernels are one of the most popular choices in
kernel methods. They can perform very efficiently in many
learning algorithms such as support vector machines, and
kernel principal component analysis (kernel PCA), when the
appropriate requirements are met. Most kernels of interest
are actually families of kernels, usually depending on one
parameter that controls the ‘‘bandwidth,’’ i.e., how ‘‘wide’’ is
the kernel. A narrow bandwidth allows a kernel to distinguish
between very close inputs, while farther inputs are all
regarded as essentially infinitely far; a wide bandwidth allows
distinctions between different levels of ‘‘farness’’ but loses
granularity at close distances. Picking a bandwidth, in a way,
selects the scale at which wewill be able to study phenomena,
see [1], [2], [3], [4], and [5]. One of the central points of
this paper is how to study learning with kernels when we
use kernels at different bandwidths at the same time, which
is necessary when the data present different phenomena at
different scales.

Our contribution in this paper is to find a theoretical tech-
nique that helps choosing such a good parameter. Therefore,
we start by presenting some recent results on Reproducing
Kernel Hilbert Spaces (RKHSs) of Gaussian kernels such as I.
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Steinnwart, and C. Scoval. A combination of these results
and Rosasco’s results, see [6], [7], and [8], we obtained a
new bound shows the effect of the Gaussian kernel bandwidth
parameter on how well an empirical operator defined from
data approximates its continuous counterpart.

II. INTEGRAL OPERATORS DEFINED BY GAUSSIAN
REPRODUCING KERNEL
Gaussian kernel is one of the most popular and used kernels
in learning algorithms such as Kernel PCA, clustering, and
many other problems and Algorithms that make the use of
kernels crucial. The choice of the parameter of Gaussian
kernel could have a huge impact on these algorithms. For
that reason, our contribution is to study the role of these
parameters theoretically. In 2010, Rosasco considered the
case when we have any positive kernel and made some
bounds on eigenvalues and spectral projections, but he did
not study the kernel parameter impact, see [7]. In our
case, our results will be focused on on Gaussian kernels.
We make some bounds that show the impact of such
parameters.

First of all, let us assume that X ⊂ Rd and kγ : X×X → C
is the Gaussian reproducing kernel defined by

kγ (x, t) = e
−

∥x−t∥2

γ 2 , x, t ∈ X .
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Let p be a probability measure on X and L2(X , p) is the space
of square integrable functions with norm

∥f ∥L2(X ,p) = ⟨f , f ⟩L2(X ,p) =

∫
X

|f (x)|2dp(x).

Let Lkγ : L2(X , p) → L2(X , p) be an integral operator
defined by

(Lkγ f )(x) =

∫
X
e
−

∥x−t∥2

γ 2 f (t)dp(t)

for all x, t ∈ X , γ ∈ R+, and f ∈ L2(X , p). We know that

kγ (x, t) = e
−

∥x−t∥2

γ 2 ≤ 1

for all x, t ∈ X . Therefore, Lkγ is a bounded operator, see [2],
[6], [8], and [9].
Assume that we are given a set of points {x1, . . . , xn} ⊂ Rd

sampled i.id. according to p. The n × n-kernel matrix Kn is
given by

Ki,j =
1
n
e
−

∥xi−xj∥
2

γ 2 .

Let Hγ (X ) be the Gaussian reproducing kernel Hilbert space
and define the operators TH,Tn : Hγ (X ) → Hγ (X ) by

TH =

∫
X
⟨·, e

−
∥x−·∥

2

γ 2 ⟩Hγ (X ) e
−

∥x−·∥
2

γ 2 dp(x), (1)

Tn =
1
n

n∑
i=1

⟨·, e
−

∥xi−·∥
2

γ 2 ⟩Hγ (X ) e
−

∥xi−·∥
2

γ 2 . (2)

Let in be the inclusion map Hγ (X ) ↪→ L2(X , p), then i∗n is
its adjoint operator. The following proposition is a key in our
results.
Proposition 1: Assume that X = R, and p(x) is a normal

distribution with a density

φσ (x) =
1

σ
√
2π

e−
x2

2σ2 .

Under the above assumptions, the operator TH is a Hilbert-
Schmidt operator. In particular,

∥TH∥
2
HS =

1√
1 + 8σ 2

γ 2

.

Proof: See Appendix A

Corollary 1: If X = Rd , then it is also

∥TH∥
2

=
1√

1 + 8σ 2

γ 2

.

The following theoremwill provide a new boundness depends
on σ and the parameter γ for the difference TH − Tn.

Theorem 1: TH and Tn are Hilbert Schmidt operators.
Under the above assumptions with probability 1 − 2 e−τ

∥TH − Tn∥HS ≤

√
2τ
n
[1 +

 1

1 + 8σ 2

γ 2


1
4

].

Proof: Assume that (ξ )ni=1 is a sequence of random
variables in the Hilbert space of Hilbert-Schmidt operators
defined by

ξi = ⟨·, e
−

∥xi−·∥
2

γ 2 ⟩Hγ (R) e
−

∥xi−·∥
2

γ 2 − TH.

From (1) E(ξi) = 0. By a simple computation we obtain that∥∥∥∥∥⟨·, e
−

∥x−·∥
2

γ 2 ⟩Hγ (R) e
−

∥x−·∥
2

γ 2

∥∥∥∥∥
2

HS

=

∥∥∥∥∥e− ∥x−·∥
2

γ 2

∥∥∥∥∥
4

Hγ (R)

≤ 1.

From the last proposition, we have

∥TH∥HS =

 1

1 + 8σ 2

γ 2


1
4

and thus

∥ξi∥HS ≤ 1 +

 1

1 + 8σ 2

γ 2


1
4

.

Using the concentration inequality, see [10], [11], [12], [13],
and [14] in Hilbert spaces with confidence 1 − 2 e−τ

∥∥∥∥∥1n
n∑
i=1

ξi

∥∥∥∥∥
HS

= ∥TH − Tn∥HS ≤

√
2τ
n
[1 +

 1

1 + 8σ 2

γ 2


1
4

].

Theorem 1 shows that the Hilbert-Schmidt of the difference
of the operators TH and Tn is bounded by√

2τ
n
[1 +

 1

1 + 8σ 2

γ 2


1
4

].

This means that the operators TH and Tn become closer and
closer, when the bound above becomes smaller and smaller.
It is obvious that a smaller bandwidth γ can result in a
smaller bound, while a larger bandwidth γ will result in
a larger bound. The closeness of operators TH and Tn is
the mathematical interpretation of using different bandwidth
parameters in our experiment, which we will see in the last
section.
Corollary 2: The same results in Theorem 1 hold true if p

is sub-Gaussian probability distribution.
At this point, since we have bounded the difference between
the operators TH and Tn, we shall be able to introduce the next
proposition which gives a bound for the ℓ2-distance between
the spectrum of the operator Kn and the spectrum of the
operator Lkγ .
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Proposition 2: There exists an extended enumeration
{σj}j≥1 of discrete eigenvalues for Lkγ and an extended
enumeration {σ̂j}j≥1 of discrete eigenvalues for Kn such that

∑
j≥1

(σj − σ̂j)2 ≤
2τ
n
[1 +

 1

1 + 8σ 2

γ 2


1
4

]2,

with a probability greater than 1 − 2e−τ .
Proof: The same technique in [6] is performed. We see

that the the extended enumeration of discrete eigenvalues for
Lkγ is also an extended enumeration of discrete eigenvalues
for TH, and the same relationship holds for Tn and Kn.
Therefore, we obtain that∑

j≥1

(σj − σ̂j)2 ≤ ∥TH − Tn∥2HS

Now if (σj)j≥1, and (σ̂j)j≥1 are two suitable extended enu-
merations of discrete eigenvalues for TH and Tn respectively.
From Theorem 1 we obtain

∑
j≥1

(σj − σ̂j)2 ≤
2τ
n
[1 +

 1

1 + 8σ 2

γ 2


1
4

]2

which proves the claim.

Theorem 2: Let X = Rd , and α1 ≥ . . . ≥ αs > αs+1
eigenvalues for the operator Lkγ . Let s be the sum of the
multiplicities of the first S distinct eigenvalues. Let us call PS
to the orthogonal projection from the Hilbert spaceL2(Rd , p)
onto the space spanned by the eigenfunctions corresponding
to the eigenvalues α1, . . . , αs, αs+1. Let û1, . . . , ûs be the
eigenvectors of the kernel matrix Kn, which has the rank r
corresponding to the nonzero eigenvalues in a non-increasing
order, and v̂1, . . . , v̂s ∈ Hγ (Rd ) be their corresponding
Nystrom extension. Assume that we have n examples such
that

n >
32τ

(αs − αs+1)2

[
1 +

(
1

1 + 8σ 2

γ 2

) 1
4
)]2

for a given τ > 0, then
s∑
j=1

∥(I − PS )v̂j∥2L2(Rd ,p) +

r∑
j=s+1

∥PS v̂j∥2L2(Rd ,p)

≤
16τ

n(αs − αs+1)2

[
1 +

(
1

1 + 8σ 2

γ 2

) 1
4
)]2

with a confidence greater than 1 − 2 e−τ .
Proof: First, we are allowed to assume that u1, . . . , us

are the eigenfunctions of Lkn with strictly positive eigenvalues
α1, . . . , αs without loss of generality. Assume that we have
the two families of eigenfunctions of the operator TH the
family {vj}j≥1, and the famliy v̂1, . . . , v̂r obtained by the
Nystrom extension. Complete both families to orthonrmal

basis of the RKHS Hγ (Rd ), and assume that we n examples
such that

n >
32τ

(αs − αs+1)2

[
1 +

(
1

1 + 8σ 2

γ 2

) 1
4
)]2

. (3)

FromKato’s theorem,and Zwald and Blachard, see [13], [14],
[15], and [16], we obtain

∥Tn − TH∥
2
HS ≤

2τ
n

[
1 +

(
1

1 + 8σ 2

γ 2

) 1
4
)]2

≤
(αs − αs+1)2

16

∥PTn − PTH∥
2
HS ≤

4
(αs − αs+1)2

∥Tn − TH∥
2
HS

≤
8τ

n(αs − αs+1)2

[
1 +

(
1

1 + 8σ 2

γ 2

) 1
4
)]2

,

with high probability, where

PTH =

s∑
j=1

⟨·, vj⟩Hγ (Rd )vj

and

PTn =

s∑
j=1

⟨·, v̂j⟩Hγ (Rd )v̂j.

Now we have both {vi}j≥1 and {v̂i}j≥1 are orthonormal bases
for Hγ (Rd )

∥PTn − PTH∥
2
HS =

∑
i,j≥1

|⟨PTnvi − PTHvi, v̂j⟩Hγ (Rd )|
2

=

s∑
j=1

∑
i≥s+1

|⟨vi, v̂j⟩Hγ (Rd )|
2

+

∑
j≥s+1

s∑
i=1

|⟨vi, v̂j⟩Hγ (Rd )|
2

≥

s∑
j=1

∑
i≥s+1
THvi ̸=o

|⟨vi, v̂j⟩Hγ (Rd )|
2

+

r∑
j≥s+1

s∑
i=1

|⟨vi, v̂j⟩Hγ (Rd )|
2

Mercer’s theorem implies that ⟨vi, v̂j⟩Hγ (Rd ) = ⟨vi, v̂j⟩L2(Rd ,p),
when the sum of on iwith respect to the eigenfunctions of TH
with nonzero eigenvalue. The last observation is that

s∑
i=1

|⟨ui, v̂j⟩L2(Rd ,p)|
2

= ∥PS v̂j∥2L2(Rd ,p)

and ∑
i≥s+1
THvi ̸=0

|⟨ui, v̂j⟩L2(Rd ,p)|
2

=

∑
i≥s+1
LK ui ̸=0

|⟨ui, v̂j⟩L2(Rd ,p)|
2

= ∥(I − PS )v̂j∥2L2(Rd ,p)
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where we used that kerTH ⊂ kerTn. Therefore, v̂j ∈ kerL⊥
kγ

with probability 1.

III. INTEGRAL OPERATORS DEFINED BY A SUM OF
GAUSSIAN REPRODUCING KERNELS
In the previous section, we studied the parameter impact
of only one Gaussian kernel, and how that can affect our
estimation for an operator defined on the Hilbert space
of square integrable functions by an operator defined on
an empirical data. In this section, we will apply the same
technique when we have a sum of two Gaussian kernels.
Let X be a subset ofRd , and kγ1 , kγ2 are two Gaussian kernels
with reproducing kernel Hilbert spaces Hγ1 (X ), Hγ2 (X )
consecutively. It is known that the sum of two kernels is a
kernel. Thus, we have kγ = kγ1 + kγ2 is a kernel, and its
RKHSs Hγ (X ) is given by

Hγ (X ) = {f1 + f2|f1 ∈ Hγ1 (X ), f2 ∈ Hγ2 (X )}

with a norm

∥f ∥2Hγ (X ) = inf
f=f1+f2

f1∈Hγ1 (X ),f2∈Hγ2 (X )

(
∥f1∥2Hγ1 (X )

+ ∥f2∥2Hγ2 (X )

)

for all f ∈ Hγ (X ), see [9], [17], and [18]. In addition, the
reproducing property is defined as follows,

f (x) = ⟨kγ1 (x, ·), f1⟩Hγ1
+ ⟨kγ2 (x, ·), f2⟩Hγ2

,

f1 ∈ Hγ1 (X ), f2 ∈ Hγ2 (X ). In particular, we have[
kγ (x, x)

]2
=

∥∥kγ (x, ·)∥∥2Hγ (X )

= inf
kγ =kγ1+kγ2
kγ1∈Hγ1 (X ),
kγ2∈Hγ2 (X )

(∣∣kγ1 (x, x)∣∣2 +
∣∣kγ2 (x, x)∣∣2)

The inner product of any two functions f , g in Hγ (X ) is given
by

⟨f , g⟩Hγ (X ) = inf
f=f1+f2
g=g1+g2

f1,g1∈Hγ1 (X )
f2,g2∈Hγ2 (X )

(
⟨f1, g1⟩Hγ1 (X )

+ ⟨f2, g2⟩Hγ2 (X )

)

Now we will define two operators Tn,γ ,TH,γ : Hγ (X ) →

Hγ (X ) as follows,

(TH,γ f )(x) =

∫
X
⟨kγ1 (x, ·), f1⟩Hγ1 (X )

kγ1 (x, ·)dp(x)

+

∫
X
⟨kγ2 (x, ·), f2⟩Hγ2 (X )

kγ2 (x, ·)dp(x)

for all f ∈ Hγ (X ), f1 ∈ Hγ1 (X ), and f2 ∈ Hγ2 (X ).

(Tn,γ f )(x) =

n∑
i=1

⟨kγ1 (xi, ·), f1⟩Hγ1 (Xi)
kγ1 (xi, ·)

+

n∑
i=1

⟨kγ2 (xi, ·), f2⟩Hγ2 (Xi)
kγ2 (xi, ·)

where {x1, . . . , xn} sampled i.i.d from X with a probability
p. The kernel matrix Kn whose entry ij is given by Kij =
1
nkγ (xi, xj), is an operator from Rn to Rn. The last operator
we need is the integral operator Lkγ : L2(X , p) → L2(X , p),
which is given by

(Lkγ f )(x) =

∫
X
f1(t)kγ1 (x, t) dp(t) +

∫
X
f2(t)kγ2 (x, t) dp(t)

where f , f1, f2 ∈ L2(X , p), and f = f1 + f2 with the norm

∥f ∥2L2(X ,p) = inf
f=f1+f2

f1,f2∈L2(X ,p)

(
∥f1∥2L2(X ,p) + ∥f2∥2L2(X ,p)

)
.

Again we need to bound the difference between the operators
TH,γ ,Tn,γ , whichwe use to connect the operators Lkγ and,Kn.
The following proposition shows a bound.
Proposition 3: TH,γ ,Tn,γ are Hilbert Schmidt operators.

Moreover, if X = Rd ,and p(x) is a normal distribution with a
density

φσ (x) =
1

σ
√
2π

e−
x2

2σ2 .

Then, with confidence 1 − 2 e−τ the following inequality
holds true.

∥TH,γ − Tn,γ ∥HS

≤

√
2τ
n

[
√
2 +

(
1√

1 + 8σ 2

γ 2
1

+
1√

1 + 8σ 2

γ 2
2

) 1
2
]
.

with a probability 1 − 2e−τ .
Proof: To prove this proposition we use the same

approach in Theorem 1 as well as using the following facts,

∥⟨kγ (xi, ·), ·⟩Hγ (X )kγ (xi, ·)∥
2
HS

≤ ∥⟨kγ1 (xi, ·), ·⟩Hγ1 (X )
kγ1 (xi, ·)∥

2
HS

+ ∥⟨kγ2 (xi, ·), ·⟩Hγ2 (X )
kγ2 (xi, ·)∥

2
HS

≤ 2

∥⟨kγ (xi, ·), ·⟩Hγ (X )kγ (xi, ·)∥HS ≤
√
2

We have

∥TH,γ ∥
2
HS ≤ ∥TH,γ1∥

2
HS + ∥TH,γ2∥

2
HS

where TH,γ1 : Hγ1 (X ) → Hγ1 (X ), and TH,γ2 : Hγ2 (X ) →

Hγ2 (X ). Now we know from Proposition 1 that

∥TH,γ1∥
2
HS =

1√
1 + 8σ 2

γ 2
1

, ∥TH,γ2∥
2
HS =

1√
1 + 8σ 2

γ 2
2

Therefore, we obtain

∥TH,γ ∥
2
HS ≤

1√
1 + 8σ 2

γ 2
1

+
1√

1 + 8σ 2

γ 2
2

∥TH,γ ∥HS ≤

(
1√

1 + 8σ 2

γ 2
1

+
1√

1 + 8σ 2

γ 2
2

) 1
2

.
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Using Hoeffding inequality as in Theorem 1, we will have
that

∥TH,γ − Tn,γ ∥HS

≤

√
2τ
n

[
√
2 +

(
1√

1 + 8σ 2

γ 2
1

+
1√

1 + 8σ 2

γ 2
2

) 1
2
]
.

holds with a probability 1 − 2e−τ .

A similar result holds when we have if kγ (x, t) =∑m
j=1 kγj (x, t).

IV. LEARNING WITH A FAMILY OF GAUSSIAN KERNELS
In this section, our goal is to extend our study to an infinite
number of Gaussian Kernels. One important thing to consider
is how the corresponding RKHS of a family of Gaussian
kernels is going to be defined. In 2010, Clint Scovel, Don
Hush, Ingo Steinwart, and James Theiler introduced what
they called RKHS of mixture, see [9]. In particular, they
discussed the RKHS of the radial kernel when it is a family
of Gaussain Kernels. We shall be able to relate the empirical
operator to its continuous part as we will see below.

A. RKHS OF RADIAL KERNELS
Let X ⊂ Rd , and k : X × X → R be a radial kernel given by

k(x, t) =

∫
R+

kγ (x, t) dµ(γ ),

where kγ (x, t) is a Gaussian kernel with a parameter γ , µ(γ )
is a finite Borel measure on R+, γ ∈ R+, and x, t ∈ Rd .
Let 0 ⊂ R+, and Hkγ (X ) represents the reproducing kernel
Hilbert space corresponding to the Gaussian kernel kγ (x, t),
then for any fγ ∈ Hkγ (X ), fγ = ⟨fγ , kγ ⟩Hkγ (X ). Denote Hk (X )
to the RKHS of the radial kernel k(x, t), and for the sake
of simplicity let Eγ,µ =

∫
0
kγ (x, t) dµ(γ ), then the RKHS

corresponding to k(x, t) is given by

Hk (X ) = {Eγ, µfγ , fγ ∈ Hkγ (X ), ∀ γ ∈ 0}

with the norm

∥f ∥2Hk (X ) = inf
f=Eγ,µfγ

fγ ∈Hkγ (X ), γ∈0

Eγ,µ∥fγ ∥
2
Hkγ (X )

.

B. INTEGRAL OPERATOR DEFINED BY RADIAL
REPRODUCING KERNELS
First of all, consider all the above assumptions. Let Lk :

L2(X , p) → L2(X , p) be an integral operator defined by

(Lk f )(x) =

∫
X
f (t) Eγ,µ(x, t) dp(t),

where L2(X , p) is the space of square integrable functions
with a probability measure p(x) with the norm

∥f ∥2 = inf
f=Eγ,µfγ

fγ ∈L2(X ,p), γ∈0

Eγ,µ∥fγ ∥
2
L2(X ,p).

It is easy to show that LK is a bounded and well-defined
operator. Let κ = supx∈X k(x, x), then

κ =Eγ,µe
−

∥x−x∥2

γ 2 =

∫
0

e
−

∥x−x∥2

γ 2 dµ(γ ) =

∫
0

dµ(γ )=µ(0).

Now let {x1, . . . , xn} ⊂ X a set of points sampled i.i.d. Then,
the kernel matrix Kn whose entry ij is given by

Kij =
1
n
k(xi, xj) =

1
n
Eγ,µ(xi, xj) =

1
n

∫
0

kγ (xi, xj) dµ(γ ).

The next step is to introduce two operators TH,0,Tn,0 :

Hk (X ) → Hk (X ) using the reproducing property as follows,

TH,0 =

∫
X
Eγ,µ⟨·, kγ (x, ·)⟩Hkγ (X ) kγ (x, ·) dp(x)

=

∫
0

∫
X
⟨·, kγ (x, ·)⟩Hkγ (X ) kγ (x, ·) dp(x) dµ(γ )

Tn,0 =
1
n

n∑
i=1

Eγ,µ⟨·, kγ (xi, ·)⟩Hkγ (Xi) kγ (xi, ·)

=
1
n

∫
0

n∑
i=1

⟨·, kγ (xi, ·)⟩Hkγ (Xi) kγ (xi, ·) dµ(γ ).

The next proposition will show how the latter operators
approach each other.
Proposition 4: TH,0,Tn,0 are Hilbert Schmidt operators.

Moreover,if X = Rd , and p(x) is a normal distribution with a
density

φσ (x) =
1

σ
√
2π

e−
x2

2σ2 .

Then, with confidence 1 − 2 e−τ the following inequality
holds true:

∥TH,0 − Tn,0∥HS ≤

√
2τ
n
[µ(0) +

(
Eγ,µ

1√
1 + 8σ 2

γ 2

) 1
2

.

Proof: Assume that (ξ )ni=1 is a sequence of random
variables in the Hilbert space of Hilbert-Schmidt operators
by

ξi = ⟨·,

∫
0

e
−

∥xi−·∥
2

γ 2 dµ(γ )⟩Hkγ (R)

∫
0

e
−

∥xi−·∥
2

γ 2 µ(γ ) − TH,0.

We have E(ξi) = 0. By a simple computation we obtain that∥∥∥∥∥⟨·,

∫
0

e
−

∥x−·∥
2

γ 2 dµ(γ )⟩Hγ (R)

∫
0

e
−

∥x−·∥
2

γ 2 dµ(γ )

∥∥∥∥∥
2

HS

=

∥∥∥∥∥
∫

0

e
−

∥x−·∥
2

γ 2 dµ(γ )

∥∥∥∥∥
4

Hkγ (Rd )

≤ µ(0)2.

We can easily compute that

∥TH,0∥HS =

∫
0

1√
1 + 8σ 2

γ 2

dµ(γ )


1
2

,
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FIGURE 1. Four populations represented with different colors.

FIGURE 2. The first four eigenvectors of Gaussian kernel matrix with
λ = 1.

and

∥ξi∥HS ≤ µ(0) +

∫
0

1√
1 + 8σ 2

γ 2

dµ(γ )


1
2

.

Thus, the inequality∥∥∥∥∥1n
n∑
i=1

ξi

∥∥∥∥∥
HS

= ∥TH,0 − Tn,0∥HS

≤

√
2τ
n
[µ(0) +

∫
0

1√
1 + 8σ 2

γ 2

dµ(γ )


1
2

].

holds true with confidence 1 − 2 e−τ .

At this point, we shall be able to bound the difference
between the eigenvalues of the operators Lk , and Kn when
using radial kernels.
Proposition 5: Consider all the assumptions in section IV,

then there exists an extended enumeration {σj}j≥1 of discrete
eigenvalues for Lk and an extended enumeration {σ̂j}j≥1 of
discrete eigenvalues for Kn such that

∑
j≥1

(σj − σ̂j)2 ≤
2τ
n
[µ(0) +

∫
0

1√
1 + 8σ 2

γ 2

dµ(γ )


1
2

]2,

with a probability greater than 1 − 2e−τ .

FIGURE 3. Another representation for the first four eigenvectors of
Gaussian kernel matrix with λ = 1.

FIGURE 4. The first four eigenvectors of Gaussian kernel matrix with
λ = 1000.

FIGURE 5. Another representation for the first four eigenvectors of
Gaussian kernel matrix with λ = 1000.

V. KERNEL PCA EXPERIMENTS
We create three clusters using standard bivariate normals
shifted to have centers at the points (−5, 0), (0, 0), and (5, 0).
We also have a fourth population, uniformly distributed on
the rectangle [−8, 8] × [−3, 3], see Fig. 1.

First, we use Kernel PCA, see [19], [20], [21], and [22],
with the Gaussian kernel, with parameter λ = 1, see Fig. 2,3.

We repeat Kernel PCA, with the Gaussian kernel, with
parameter λ = 1000, as can be seen in Fig. 4,5. We can
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see that Eigenvector 2 tracks very well the x coordinate while
Eigenvector 3 tracks very well the y coordinate.
This shows that a smaller bandwidth works well for

identifying clusters (areas of higher density), but loses track
of the geometric location of the clusters with respect to
each other, while a larger bandwidth can recover such
relationships.

VI. CONCLUSION
We studied the effect of the Gaussian kernel bandwidth
parameter γ on estimating an integral operator Lkγ defined
on the space of square integrable functions by its empirical
counterpart, which is the kernel matrix Kn at a theoretical
level. The proof technique, adapted from [6], involved
establishing two operators, TH and Tn and define them on
the Reproducing Kernel Hilbert spaceHk with a reproducing
kernel k(x, t). Estimating Lkγ by Kn would depend on how
close the operators TH and Tn to each other. Therefore,
we bounded the norm of the difference of these operators. Our
results show that when the parameter γ becomes smaller and
smaller, the operators TH and Tn become closer and closer.
The bounds we found for the Gaussian case improve on the
general bounds found in [6], and allow us to show that this
bound changes by a factor of less than 2 for all positive values
of the bandwidth parameter. We have also shown how this
translates to estimated spectral decompositions for different
values of the bandwidth parameter.

An experiment on kernel PCA was performed to test the
impact of the Gaussian kernel parameter. The results show
that a small bandwidth tells us more about clusters, while a
large one can recover the locations of these clusters. These
results clearly support our claim that using Gaussian kernels
at different bandwidth at the same time can help learning
different things about the data.

APPENDIX A
PROOF OF PROPOSITION 1
First of all, for all x ∈ R we have that

(THf )(x) = ⟨kγ (x, ·),THf ⟩Hγ (R)

= ⟨kγ (x, ·), i∗ninf ⟩Hγ (R)

= ⟨inkγ (x, ·), inf ⟩L2(R)

=

∫
R
kγ (x, t)f (t)dp(t).

We have

(THf )(x) =

∫
R
e
−

∥x−t∥2

γ 2 f (t)dp(t). (4)

We know that {en(x) =

√
2n

γ 2nn!
xne

−
x2

γ 2 , n = 0, 1, . . .} is an
orthonormal basis for the Gaussian RKHS Hγ (R). Now we

can calculate ∥TH∥
2
HS as follows,

∥TH∥
2
HS =

∞∑
n=0

⟨THen,THen⟩Hγ (R)

=

∞∑
n=0

⟨THen, i∗ninen⟩Hγ (R)

=

∞∑
n=0

⟨inTHen, inen⟩L2(R)

=

∞∑
n=0

⟨THen, en⟩L2(R)

=

∞∑
n=0

∫
R
THen(x) · e(x)p(x)

=

∞∑
n=0

∫
R

(∫
R
kγ (x, t)en(t)dp(t)

)
en(x)dp(x)

=

∞∑
n=0

∫
R

∫
R
en(t)kγ (x, t)en(x)dp(t)dp(x)

=
1

2σ 2π

∫
R

∫
R

∞∑
n=0

2n

γ 2nn!
tne

−
t2

γ 2 e
−

(x−t)2

γ 2

× xne
−

x2

γ 2 e−
t2

2σ2 e−
x2

2σ2 dp(t)dp(x)

=
1

2σ 2π

∫
R

∫
R
e
−( 1

γ 2
+

1
2σ2

)x2+ 4xt
γ 2

−( 1
γ 2

+
1

2σ2
)t2
dxdt

=
1√

1 + 8σ 2

γ 2

.

which is the end of the proof.
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