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ABSTRACT While considerable progress has been made in achieving accurate lip synchronization for 3D
speech-driven talking face generation, the task of incorporating expressive facial detail synthesis aligned
with the speaker’s speaking status remains challenging. Existing efforts either focus on learning a dynamic
talking head pose synchronized with speech rhythm or aim for stylized facial movements guided by external
reference such as emotional labels or reference video clips. The former works often yield coarse alignment,
neglecting the emotional nuances present in the audio content while the latter studies lead to unnatural
applications, requiring manual style source selection by users. Our goal is to directly leverage the inherent
style information conveyed by human speech for generating an expressive talking face that aligns with the
speaking status. In this paper, we propose AVI-Talking, an Audio-Visual Instruction system for expressive
Talking face generation. This system harnesses the robust contextual reasoning and hallucination capability
offered by Large Language Models (LLMs) to instruct the realistic synthesis of 3D talking faces. Instead
of directly learning facial movements from human speech, our two-stage strategy involves the LLMs first
comprehending audio information and generating instructions implying expressive facial details seamlessly
corresponding to the speech. Subsequently, a diffusion-based generative network executes these instructions.
This two-stage process, coupled with the incorporation of LLMs, enhances model interpretability and
provides users with flexibility to comprehend instructions and specify desired operations or modifications.
Specifically, given a speech clip, we first employ a Q-Former for contrastive alignment the speech features
with visual instructions, which is then projected to input text embedding of LLMs. It functions as a
prompting strategy, prompting LLMs to generate plausible visual instructions that encompass diverse facial
details. In order to use these predicted instructions, a language-guided talking face generation system with
disentangled latent space is delicately derived, where the speech content related lip movements and emotion
correlated facial expressions are separately represented in speech content space and content irrelevant space.
Additionally, we introduce a contrastive instruction-style alignment and diffusion technique within the
content-irrelevant space to fully exploit the talking prior network for diverse instruction-following synthesis.
Extensive experiments showcase the effectiveness of our approach in producing vivid talking faces with
expressive facial movements and consistent emotional status.

INDEX TERMS Large language models, audio-visual instruction, diffusion model, expressive talking face
generation, contrastive learning.

I. INTRODUCTION
Generating realistic 3D animations of human faces is crucial
for a multitude of entertainment applications, encompassing
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digital human animation, visual dubbing in movies, and
the creation of virtual avatars. To synthesize expressive
speech-driven 3D talking face, previous work either 1) model
the correlation between dynamic head poses and audio
rhythm [1], [2] or 2) borrow an external representation [3],
[4], [5] such as emotion labels or video clips as style reference
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FIGURE 1. In contrast to previous approaches that directly learn facial
motions from speaker speech, our framework introduces an audio-visual
instruction module achieved by LLMs to instruct the talking face
synthesis network.

during generation. However, the head dynamics hold limited
expressive ability thus only yield coarse alignment, neglect-
ing the emotional nuances present in the audio content. The
latter studies require manual style source selection by users,
leading to unnatural applications. In the paper, we explore
a more natural scenario, targeting to directly leverage the
underlying style information conveyed by human speech for
generating an expressive talking face that aligns with the
speaking status.

Synthesizing diverse and plausible facial details based
on speech while maintaining accurate lip synchronization
is a highly challenging task. This challenge stems from
the inherent ill-posed nature of the problem, characterized
by 1) one-to-many relationship between audio inputs and
potential facial movements consistent with the spoken
content. Some efforts [1], [6], [7] have introduced diffusion
mechanisms to tackle diverse generation. However, direct
diffusion from audio to facial motion requires bridging a
huge modality gap while the information within speech
and facial movements are often weakly correlated. With
heavy learning burden and limited model capability, such
practice is prone to capture only coarse alignment with audio
cues, neglecting emotional nuances of the speaker. 2) The
intertwining of the speaker’s talking style and lip movements
further complicates the synthesis process. Prior work [3]
aimed to address this entanglement by controlling specific
coefficients of a parametric model. However, such practice
relies on a disentangled parametric model, which is not
always accessible or precise.

To handle the above challenges, we present AVI-Talking,
an Audio-Visual Instruction System for expressive Talking
face generation. Our key insight is to bridge the huge
audio-visual modality gap with an intermediate visual
instruction representation. As shown in Figure. 1, in contrast
to previous approaches that directly learn facial movements
from audio, our framework decomposes the audio-to-video
generation into two stages, each with a distinctive objective,
thus significantly mitigating the optimization complexities.
Specifically, while speaker voice entails complex informa-
tion, language instruction typically conveys clearer meaning.
This inherent clarity enhances the performance of the
synthesis network, leading to superior results. To facilitate
this, we integrate Large Language Models, leveraging their

contextual reasoning capabilities to comprehend human
speech and simulate plausible speaker states. By separating
the generation and understanding functions, we ensure spe-
cialized expertise is responsible for each task. Furthermore,
by presenting visual instruction as an intermediate output,
our system not only enhances model interpretability but also
grants users the flexibility to specify desired instructions
or modifications. This feature enriches user interaction and
greater customization.

The first stage aims for comprehending the speaker
talking state and imaginatively generate plausible facial
expression details for subsequent instruction, necessitating
robust contextual reasoning and hallucination capability.
Inspired by the impressive multi-modal understanding and
generation abilities demonstrated by recent large language
models (LLMs) [8], [9], we propose integrating LLMs as
an agent [10] to guide the talking face synthesis process.
The key aspect lies in formulating a soft prompting strategy
to harness the prior contextual knowledge underlying LLMs
for speaker talking state comprehension. To achieve this,
we initially employ a Q-Former to contrastively align speech
features with visual instructions. Building upon the aligned
audio features, we fine-tune a small number of parameters
in the input projection layers for domain adaptation. Such
practice not only facilitates efficient tuning but also promotes
the utilization of language priors.

In the second stage, with the obtained visual instruc-
tions, our objective is to develop a speech-to-talking face
network capable of synthesizing facial details that adhere
to the provided instructions while preserving accurate lip
movements. To address the inherent entanglement between
lip movements and the speaker’s talking style, we propose
deriving a compressed latent space that distinctly identifies
features related to speech content and those irrelevant
to content. By integrating both types of latent features,
we can reconstruct expressive facial movements through
a talking generator, thereby bypassing issues associated
with inaccurate or inaccessible disentangled parametric
spaces [4]. In order to leverage this devised talking prior for
instruction-following generation, it is crucial to align visual
instructions within the content irrelevant space. To facilitate
joint representation learning, we introduce a contrastive
instruction-style alignment and diffusion strategy. Specifi-
cally, we initially align the visual instruction contrastively to
the shared content irrelevant space, upon which a diffusion
prior network is employed to further refine this joint
representation towards the distribution of the pre-trained
talking prior.

Compared with previous studies, our main contributions in
this work can be summarized as follows:

• We propose an innovative audio-visual instruction sys-
tem, AVI-Talking, that decomposes expressive talking
face generation into two stages: audio-visual instruction
generation and facial movement synthesis.

• To interpret the speaker’s talking status, we intro-
duce Large Language Models (LLMs) as agents
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for audio-visual instruction. They generate plausible
speaker talking status based on the human speech.

• For precise instruction-following synthesis, we intro-
duce a language-guided talking prior network with dis-
entangled speech content and content-irrelevant space.
Additionally, we design a diffusion network to fully
exploit the motion prior.

• Experimental results validate the capability of
AVI-Talking in generating vivid 3D talking faces with
expressive facial details and a consistent emotional
status.

II. RELATED WORK
Speech-driven facial animation holds diverse applications
in the realms of computer vision and augmented/virtual
reality. This has spurred a broad spectrum of research topics
encompassing both 2D [11], [12], [13], [14], [15] and 3D [5],
[16], [17], [18], [19], [20], [21], [22] facial synthesis. In the
subsequent discussion, we delve into themost relevant studies
in this field.

A. EXPRESSIVE 2D TALKING FACE GENERATION
Facial expressions play a pivotal role in the generation of
natural talking heads [23]. Researchers [3], [24], [25], [26],
[27], [28], [29], [30] attempt to synthesize vivid facial details
while produce precise lip-synchronization.

Early approaches [31], [32], [33], [34], [35] represent
expressions using a limited set of emotion labels encoded
as one-hot representations. To capture nuanced talking face
expressions, another slew of methodologies [3], [28], [29]
incorporate reference videos as a more diverse stylistic
source. While operating on RGB videos, these approaches
rely on intricately designed disentanglement strategies.
However, such practice often results in constrained expres-
siveness due to the inherent challenges of disentanglement.
Meanwhile, these 2D animation stylized talking facemethods
have limited applicability in scenarios that demand 3D
representations, such as in augmented reality (AR).

Instead of requiring users to seek out a stylized source,
a more user-friendly approach involves directly exploiting
speaking styles from the input audio. While some meth-
ods [26], [27], [36] derive networks to extract emotion labels,
their capacity is limited to inferring only a discrete number
of emotion classes from audio signals. Other researchers aim
to achieve rhythmic synthesis by aligning head poses [1]
or expressions [6] with audio cues. However, these efforts
often result in coarse alignment without adequately con-
sidering the emotional content of the audio, leading to
a lack of expressiveness. To enhance the vividness and
controllability of talking head generation, recent works
leverage text as an interface, allowing users to specify their
desired styles [4], [37]. In contrast to the aforementioned
approaches, we explore harnessing the generative power of
large language models (LLMs) to act as a multi-modality
reasoning engine. This will actively hallucinates diverse and

plausible facial details based on the emotional content of
the input audio, thereby offering a more comprehensive and
nuanced synthesis.

B. SPEECH-DRIVEN 3D TALKING HEAD GENERATION
Unlike 2D facial animation, which operates on RGB videos,
3D talking head generation employs speech-conditioned
animation, utilizing geometric representations like the neural
radius field (NerF) [38] or 3D parametric templates [19].
While methods such as [5], [19], [21], and [39] successfully
synchronize facial motion with the driven audio, they often
learn deterministic models, resulting in rigid motion within
speech-irrelevant regions, leading to unnatural synthesis.
To address these limitations, recent approaches [2] introduce
a diffusion mechanism for its remarkable generative capabil-
ity, yielding diverse high-quality synthesis results [40], [41].
However, while modeling various poses and expressions,
these approaches neglect to capture the emotional content
implied within the audio. Furthermore, methods relying
on end-to-end diffusion, from reference video or style
embedding to parametric models, lack explainability. There-
fore, we propose integrating a large language model into
our system to firstly generate an interpretable audio-visual
instruction, which is leveraged to guide the speech-driven
3D talking head generation. To augment emotion awareness,
we apply the diffusion process coupled with contrastive
learning solely to the speech-irrelevant space.

C. LLM FOR CROSS-MODAL LEARNING
Large language models (LLMs) have demonstrated profound
capabilities [42], [43] as remarkable reasoning engines
in various language generation tasks, attributed to their
emergent ability [44]. Diverse LLMs, such as OPT [45],
LLaMA [46], and GLM [47], can be fine-tuned or instructed
for various purposes [48]. Specifically, many studies attempt
to construct LLMs proficient in multi-modal reasoning and
actioning [8], leading to the emergence of MM-LLMs.
Some studies point out that LLMs could even outperform
diffusion models on standard image and video generation
benchmarks [9]. In the pursuit of LLMs capable of handling
both multi-modal input and output, some approaches explore
employing LLMs as decision-makers [49] and utilizing
existing off-the-shelf multi-modal encoders and decoders as
tools for executing multi-modal input [50] and output [51],
[52], [53].

Recent advancements in talking face generation have
demonstrated the language model’s capacity to generate
multi-modal content [54] and synthesize facial motions [37],
[55]. Typically, these approaches involve deriving special
tokens for another modality and learning a projection layer
to align them with language space [55]. However, this
process demands substantial paired data and intricate training
techniques for effective alignment. In contrast to these
methodologies, our approach takes a direct path by predicting
the text description of emotional status and facial details. This
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FIGURE 2. The overall pipeline of our Audio-Visual Instruction Talking (AVI-Talking) Framework. Given a clip of speaker speech {ai }
Ta
i=1, it is first

processed by Large Language Models (LLMs) to propose visual instructions encompassing plausible facial detail descriptions. Subsequently, these visual
instructions, together with audio clip, are separately fed into the talking face instruction system to generate a time series of 3D parametric coefficients
{θi , ψi }

Ta
i=1.

eliminates the need for challenging cross-modal alignment
procedures, which also provides enhanced explainability and
flexibility to users.

III. METHODOLOGY
We present anAudio-Visual Instruction System for Expres-
sive Talking Face Generation (AVITalking) that aims to
achieve vivid facial expressions synthesis coherent with
speaker speech status. The whole pipeline is depicted in
Figure. 2. In this section, we start by briefly outlining the
fundamentals of the parametric 3D face model and diffusion
models (Sec. III-A). Subsequently, we present an overview
of our pipeline (Sec. III-B). We then delve into the process
of audio-visual instruction utilizing Large Language Models
(LLMs) (Sec. III-C). Finally, we provide detailed description
for instruction-following talking face synthesis (Sec. III-D).

A. PRELIMINARIES
1) PARAMETRIC 3D FACE MODEL
Animating a template mesh that encapsulates a 3D structural
representation holds promise not only for AR/VR applica-
tions but also for facilitating 2D talking face synthesis [30].
However, the availability of 3D datasets capturing expressive
facial movements is limited. Therefore, we employ a 3D
reconstruction method [56] to convert video clips from 2D
audio-visual datasets [4], [57] into 3D talking face datasets.
Meanwhile, such practice provides both 2D images and 3D
representations to enhance the training process.

Specifically, we adopt FLAME [58] as our template mesh.
The FLAMEmodel is a parametric 3D head model expressed
as a function M (β, θ, ψ) → (V ,F), where the parameters
consist of identity shape β ∈ R|β|, facial expression ψ ∈

R|ψ | and pose θ ∈ R3k+3 involving rotation R ∈ SO(3) and
translation t ∈ R3. After conversion, FLAME outputs a 3D
meshwith verticesV ∈ Rnv×3 and facesF ∈ Rnf ×3, where nv

represents the number of vertices and nf denotes the number
of faces.

2) DIFFUSION MODEL
The goal of generative models is to learn a distribution
that approximates real data distribution q(x0). The denois-
ing diffusion probabilistic models (DDPMs) [59] present
a multi-step progress to approximate q(x0) with pθ (x0)
parameterized by θ , involving both a forward and reverse
process.

The forward process, often referred to as diffusion process,
transforms the real structured distribution into Gaussian
noise, constructing a posterior distribution q(x1:T |x0). This
process follows a Markov chain that progressively introduces
Gaussian noise to the data samples. Formally,

q(x1:T |x0) =

T∏
t=1

q(xt |xt−1), (1)

q(xt |xt−1) = N (xt ;
√
1 − βtxt−1, βtI). (2)

Here, the constants βt follow an increasing trend [59] such
that when βt approximate to 1, the xt approximates the
Gaussian noise distribution N (0, I).
The reverse process, also known as generative process,

targets to reverse the Gaussian noise back to joint distribution
pθ (x0:T ). Formally,

pθ (x0:T ) = pθ (xT )
T∏
t=1

pθ (xt−1|xt ), (3)

pθ (xt−1|xt ) = N (xt−1;µθ (xt , t), 6θ (xt , t)). (4)

Here, the variance 6θ (xt , t) = βtI is set as a time-dependent
constant. Therefore, a generative model Gθ could be devised
to approximate mean value of Gaussian distribution. For
conditional generation, the conditional signal c can be
naturally integrated into the network architecture. Formally,
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FIGURE 3. The Q-Former architecture leverages the standard Perceiver
network [63] to compress speech input to a fixed-length audio
embedding F a

si ∈ Rqa×l . A contrastive loss La2i
cont is applied to encourage

the queries extract audio representation that are most relevant to visual
instructions.

the model parameters θ are optimized for all sampled
timestamps t and x with the following objective:

Lθ = Ex,t [∥x− Gθ (x, t, c)∥2]. (5)

B. OVERALL PIPELINE
Given an audio clip, our objective is to animate a template
mesh with synchronized lip movements and consistent facial
expressions. Instead of directly learning to synthesize a
talking face from speech, we propose integrating Large
Language Models (LLMs) to instruct the synthesis process.
As illustrated in Figure. 2, our framework, AVI-Talking,
comprises two main stages: an audio-visual instruction
stage and a talking face synthesis stage connected by
visual instructions of detailed facial expression descriptions.
Formally, our system accepts an input speech A1:Ta =

{ai}
Ta
i=1 and aims to generate a time series of 3D parametric

coefficients ξ1:Ta = {θi, ψi}
Ta
i=1.

C. AUDIO-VISUAL INSTRUCTION VIA LLMS
As illustrated on the left side of Figure 2, the audio-visual
instruction module takes a time series of a speaker’s
audio clip as input and aims to generate an instruction
sentence describing detailed facial movements that conveys
the individual’s speaking state. The key is to develop a
prompting strategy to effectively leverage the rich contextual
prior knowledge inherent in LLMs.

Specifically, we leverage a pre-trained LLaMA as our base
text generation model. In order to comprehend the speaker’s
speaking status existing in audio modality, the audio signal
needs to be projected into text embedding of language model.
Due to the success of pretrained-model such as HuBERT [60]
on Speech Emotion Recognition [61] (SER) tasks, we lever-
age HuBERT to encode the audio signal. Subsequently,
a typical Q-Former [62], [63] architecture is employed to
aggregate and extract speaking style information, bridging the
gap between acoustic feature and visual facial descriptions.
A linear projection layer is then learned to map the aligned
feature to language model’s input space. Combining the
‘‘BOS’’ (Beginning-of-Sequence) token with the instruction

embedding, the audio prompt embedding is fed to LLaMA
to prompt plausible expressive facial movements consistent
with speaker status. Note that the instruction embedding is
obtained by tokenizing the pre-defined instruction templates.
In our experiment, we utilize instruction sentences like
Analyze conveyed emotion in an audio snippet, elaborating
on facial expressions. We manually craft 10 sentences with
similar meanings and randomly sample one during the
training phase.

1) SPEECH FEATURE COMPRESSION VIA LEARNABLE
QUERIES
The audio features extracted from HuBERT encapsulate
complex information, including speech content, emotional
status, and acoustic details. To effectively prompt the
language model, it’s essential to first comprehend and extract
relevant facial movement information from the speech. Here,
we employ the Q-Former architecture [62], [63] to achieve
this task.

As depicted in left side of Figure 3, learnable queries
with fixed length are utilized to aggregate and compress
speech information by cross-attention. Notably, such practice
results in an audio embedding Fasi ∈ Rqa×l with the same
dimensionality as the query length qa. This design choice
simplifies the learning process and enhances generalization
performance when handling speech inputs of varying lengths.
Subsequently, the audio embedding is fed to a projection
module for prompt embedding in language model space.
To implement this, we fine-tune a small number of parameters
in the input projection layers for domain adaptation.

2) CONTRASTIVE AUDIO-VISUAL INSTRUCTION ALIGNMENT
To eliminate unnecessary information such as speech content,
environment noise and focus on extracting facial movements
related feature, we adopt contrastive learning [64] protocol
to constrain the output of learned queries Fasi ∈ Rqa×l . The
contrastive learning paradigm aligns audio embeddings and
instruction features to maximize their mutual information.
This is achieved by enhancing higher audio-instruction
similarity of positive pairs against those of negative pairs.
Specifically, we feed the corresponding instruction through
a text transformer and obtain an instruction embedding as
shown in the right side of Figure 3. Its output embedding
of [CLS] token is F isi ∈ Rl . Since there are qa query
embeddings, we average Fasi across all queries to obtain the
F̄asi ∈ Rl and apply contrastive learning as follows:

La2icont = −log[
exp(D(F̄asi,F

i
si))

exp(D(F̄asi,F
i
si)) +

∑N−

j=1 exp(D(F̄asi,F
i−
si(j)))

].

(6)

The paired in-batch samples are regarded as positive samples
(F̄asi,F

i
si) while the unpaired N− samples are taken as

negative samples (F̄asi,F
i−
si(j)). Here we opt for cosine distance

D(F1,F2) =
FT
1 ∗F2

|F1|·|F2|
as feature distance measurement.
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FIGURE 4. To establish a disentangled expressive motion prior, we learn
two complementary latent spaces, speech content space and content
irrelevant space. In speech content space, we represent lip movements
related to speech content, while in the content irrelevant space,
we capture facial expressions correlated with the speaking state.

3) INSTRUCTION GENERATION VIA PROJECTION LAYER
FINETUNING
After the Q-Former is pre-trained to contrastively align
acoustic features to visual facial descriptions. Subsequently,
the Q-Former is frozen, and we fine-tune the input linear
projection layer of LLaMA-7b to achieve visual instruction
prediction as shown in Figure 2. Specifically, We follow the
general text generation training paradigm [50] to learn this
projection layer.

D. INSTRUCTION-FOLLOWING TALKING FACE SYNTHESIS
With the obtained facial instructions, a talking face synthesis
network aims to animate a mesh template with synchronized
lip movements and expressions as illustrated on the right
side of Figure 2. The movements of the lips and facial
expressions exhibit a high degree of correlation with each
other [3]. For example, specific pronunciations often convey
relevant emotions. To address this correlation and potential
entanglement, we propose initially training a disentangled
talking prior [31], [65], wherein the speech content space
and content irrelevant space are distinguished (shown in
Figure 4). Subsequently, a diffusion prior module (shown in
Figure 5) is devised to bridge the gap between instruction
text and talking styles within the identified content irrelevant
space.

1) DISENTANGLED EXPRESSIVE MOTION PRIOR
As depicted in Figure. 4, we target to establish a disentangled
latent space, where the speech content related lip-movements
and facial expressions correlated with speaking state are
distinctly represented in speech content space and content
irrelevant space, respectively. Concretely, in speech content
space we employ a pretrained ASR network, Wav2Vec
2.0 [66] to encode the speaker audio A1:Ta . These extracted
speech features capture semantic content information, which
is subsequently utilized by the talking generator for syllable
pronunciation. In order to encode additional talking style
information, we point out the existence of content irrelevant

FIGURE 5. Within the content irrelevant space, we contrastively align the
visual instruction with style embedding to obtain a aligned feature c ,
upon which a diffusion prior network is employed to further map it
towards the distribution of the pre-trained talking prior.

space for representing content-repelling information such as
talking styles, poses and speaker identity.

To learn the content irrelevant space, we employ a
transformer-based style encoder [3] designed to capture
content-repelling information. For a given talking video,
we randomly select S reference frames to serve as the source
for the speaking state. These frames are then processed
by the FLAME model to obtain coefficients {θs, ψs}

S
s=1,

where the coefficient at time t is excluded. Subsequently,
these coefficients are fed into the style encoder to extract a
comprehensive speaking state representation for the video.
To successfully predict coefficients at the current time step
{θt , ψt }, we rely on both the speech feature At in the speech
content space and the extracted style information in the
content irrelevant space. The complementary nature of these
properties naturally facilitates the learning of disentangled
spaces.

2) CONTRASTIVE INSTRUCTION-STYLE ALIGNMENT AND
DIFFUSION
Once the content irrelevant space is identified, a natural way
for cross-modality generation is to map visual instruction
to the representation within this space [4]. As depicted in
Figure 5, aMulti-Layer-Perceptron (MLP) network is derived
to first align latent instruction representation with style
embedding. The typical contrastive loss Li2scont is employed,
following standard CLIP training process [67]. Formally,

Li2scont = −log[
exp(D(F ici,F

s
ci))

exp(D(F ici,F
s
ci)) +

∑N−

j=1 exp(D(F ici,F
s−
ci(j)))

].

(7)

The F ici indicates the content-irrelevant instruction feature,
which is obtained by passing the aligned latent instruction
representation c through a projection layer. The F sci denotes
its corresponding embedded style feature within the content-
irrelevant space. The batch-wise (F ici,F

s
ci) instruction and

style feature pairs are taken as positive samples while the
unpairedN− instances (F ici,F

s−
ci(j)) are considered as negatives

samples. Similarly, we adopt cosine distance D(F1,F2) =

FT
1 ∗F2

|F1|·|F2|
as feature distance measurement.
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TABLE 1. The quantitative results on MeadText [4] and RAVEDESS [57]. For all approaches, we compare them under three metrics including FID [69],
KID [70] and LSE-D [71]. Lower scores indicate better performance.

FIGURE 6. Qualitative Results. In the top row are ground truth videos. Our generated audio-visual instructions are shown in green line. In the
bottom row demonstrates synthesis results guided by above instructions. Compared to other competitive approaches, our method achieves superior
detailed expressions. Notably, our system is capable of generate facial movements distinct from Ground Truth but convey consistent speaking state
(See second and third case).

However, since this multi-modal contrastive learning
strategy only pushes the instruction embeddings to hold close
direction with their associated style image features, which
is prone to cause disjoint embeddings due to the existance
of modality gap [68]. To further activate motion prior that
expects visual style embeddings, we introduce a diffusion
prior network to bridge the modality gap by mapping to their
distributions.

For the diffusion prior network Fθ , we leverage the
typical decoder-only Transformer architecture to iteratively
predict the denoised style embedding zt conditioned on the
above representation c. Instead of imposing error prediction

formulation [59], we directly train the network to predict
unnoised style embedding z from noised embedding zt

sampled at time step t . Formally,

Li2sdiff = Ez,t [∥z− Fθ (z, t, c)∥2] (8)

where we apply the naive Mean-Square Error (MSE) to the
prediction result.

Therefore, the overall learning objective of visual instruc-
tions to speaking styles generation can be written as

Li2s = Li2scont + λi2sLi2sdiff , (9)

57294 VOLUME 12, 2024



Y. Sun et al.: AVI-Talking: Learning Audio-Visual Instructions for Expressive 3D Talking Face Generation

TABLE 2. User study measured by Mean Opinion Scores. Larger is higher, with the maximum value to be 5.

where λ is the balancing coefficient. In our experiment,
we empirically set it to 30, following a similar protocol to
previous work [67].

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
1) DATASETS
We train both audio-visual instruction module and talking
face instruction network on MeadText [4] dataset. Evaluation
is conducted on test set of RAVEDESS [57] and MeadText.
Since both datasets are made of RGB videos, we obtain
reconstruction results by Emoca [56] and render the facial
meshes as GT videos for comparison.

• MeadText [4]. This dataset is extended from Mead [35]
dataset by labeling the speaker emotional status and
facial action unit (FAU) with natural language descrip-
tions. MEAD [35] is a high-quality emotional talking-
face dataset, including recorded videos of different
actors speaking with 8 different emotions at 3 intensity
levels.

• RAVEDESS [57]. There are a total of 24 professional
actors (12 female, 12 male) covering over 1440 utter-
ances in a neutral North American accent. 8 speech
emotions includes calm, happy, sad, angry, fearful,
surprise, disgust and neutral expressions are produced
at two levels of emotional intensity (normal, strong).
For convenience, we choose speech videos of the first
6 actors as the evaluation dataset.

2) IMPLEMENTATION DETAILS
The videos are sampled at a rate of 25 FPS, and the
audios are pre-processed to 16 kHz for all stages of our
system. The training of the audio-visual instruction module
is divided into two stages. In the first stage, the audios
are fed to HuBERT [60] for speech feature extraction.
Then, the Q-Former is pre-trained to contrastively align
acoustic features to visual facial descriptions. Subsequently,
the Q-Former is frozen, and we fine-tune the input pro-
jection layer of LLaMA-7b to achieve caption prediction.
To initialize the LLaMA-7b model, we use Vicuna [72],
an open-source text-based LLM widely utilized in dialogue
generation. To enhance model performance, we leverage
common text data augmentation techniques such as synonym
replacement during the training stage.

For the talking face synthesis network, we adopt the
model architecture of EMOTE [31] as our basic facial
motion generation network. We adapt the framework with
disentangled speech content space and content irrelevant

TABLE 3. Ablation over model design of audio-visual instruction stage.

TABLE 4. Ablation over model design of talking face synthesis stage.

space. For speech content extraction, we utilize the state-of-
the-art pretrained ASR network Wav2Vec 2.0 [66] to extract
the raw waveform and compress features with temporal
convolutions following a similar protocol to EMOTE [31].
For speech style extraction, we follow the architecture design
of StyleTalk [3] and leverage the linear styling network
from EMOTE [31] as a teacher network for knowledge
distillation. Within the content irrelevant space, the training
schedule of our contrastive instruction-style alignment and
diffusion module is adapted from DALL-E2 [67]’s open-
source implementation of diffusion prior. Specifically, the
diffusion loss weight λi2s is set to 30 to balance optimization
loss. Similar to the first stage, we also employ the same
data augmentation approach to facilitate robust performance.
As our focus in this work is on modeling speaking styles, the
poses and speaker identity are set to a neutral state during
both the training and inference stages. Both our models are
implemented in PyTorch [73] and trained using 80G Tesla
A100 GPUs. In our experiment, training the Audio-Visual
Instruction network requires 12 hours, whereas training
the instruction-following synthesis network takes 48 hours.
Regarding inference time, processing a 30-second audio clip
necessitates approximately 7.14 seconds for theAudio-Visual
Instruction network to predict an instruction, and roughly
43.06 seconds for the synthesis network to generate the final
video.

3) COMPARISON METHODS
We compare our methods with state-of-the-art template-
based models that support speech conditional 3D talking
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face generation, including MeshTalk [65], FaceFormer [19],
CodeTalker [21], and EmoTalk [5].
MeshTalk [65] introduces a cross-modality disentangle-

ment mechanism to generate realistic face animation. Face-
Former [19] devises a transformer-based architecture capable
of synthesizing realistic 3D facial motions. CodeTalker
[21] incorporates the codebook technique [74] to enhance
the accuracy of lip movements. EmoTalk [5] employs an
emotional disentanglement strategy using one-hot emotional
labels for face animation. We also present a version of
our approach that does not utilize a large language model.
Instead, we directly employ the audio embedding obtained by
Q-Former as the instruction source for the synthesis network,
replacing its original language instruction input. For fair
comparison, we utilize the audio embedding after contrastive
audio-visual instruction alignment as a strong baseline. This
alternative approach is referred to as AVI-Talking (w/o LLM).

B. QUANTITATIVE EVALUATION
1) EVALUATION METRIC
We validate our method from the perspectives of both
instruction generation capability and talking face synthesis
quality.

• Audio-Visual Instruction Prediction. Metrics that
have popularly been involved in the field of natural
language generation (NLG) task are chosen to eval-
uate our method. Specifically, we include BLEU1,
BLEU4 [75],METEOR [76], ROUGEl [77], CIDEr [78]
and SPICE [79].

• 3D Talking Face Synthesis. To assess visual fidelity,
we utilize standardGANmetrics:FID [69] andKID [70]
on face regions of rendered images. Additionally,
to evaluate generation diversity, we report Diversity
scores [80], measuring the extent of expression diversity
generated for a given clip of human speech. Specifically,
distances across predicted style features for the same
audio with different noises are calculated. Moreover,
we adopt LSE-D [71] to evaluate lip synchronization
performance.

2) EVALUATION RESULTS
Regarding the synthesis of talking faces, our study reports
quantitative results for MeadText [4] and RAVEDESS [57]
in Table 1. Notably, our method demonstrates outstanding
performance across most metrics on both datasets. However,
our approach may exhibit comparatively weaker lip-sync
performance, particularly in terms of LSE-D, when compared
to other methods. We attribute this discrepancy partly
to the strong preference bias for neutral expressions in
SyncNet [71], which is pre-trained on predominantly expres-
sionless videos. Unlike these methods, our synthesis results
encompass expressive facial details, potentially leading to
lower scores. Furthermore, our approach achieves LSE-D
scores close to those of ground truth videos on both
datasets, suggesting robust generation of precise lip-sync

FIGURE 7. Ablation Study. The bottom row illustrates the audio-visual
instruction, while the rows above visualize the generation results across
three key aspects of model design. Without diffusion, the model tends to
produce conservative results, thereby inadequately raising the lip corner
during smiling. Not utilizing data augmentation can result in sub-optimal
convergence, failing to capture precise detailed facial movements.

videos. It’s worth noting that our full model outperforms the
variant that removes LLMs, underscoring the effectiveness of
incorporating LLMs as an additional audio-visual instruction
agent in our system.

C. QUALITATIVE EVALUATION
1) QUALITATIVE ANALYSIS
Subjective evaluation is crucial for validating model per-
formance in generative tasks. We encourage readers to
refer to our supplementary materials for additional demo
videos and comparison results. In Figure 6, we present
comparison results of our method against previous state-
of-the-art approaches in three cases. It can be seen that
our method produces plausible audio-visual instructions
and generates expressive facial details aligned with the
speaker’s state. Regarding lip synchronization performance,
we observe that CodeTalker [21] or Faceformer [19] may
generate more natural pronunciation in expressionless states.
However, when involving emotional states, slight distortions
in lip movements can be observed (e.g., the stretching of lip
corners during happy emotions). This observation aligns with
the LSE-D scores in the quantitative evaluation presented in
Table 1. Nevertheless, our approach still achieves competitive
synthesis results compared to others and approaches the
performance of ground truth videos, thus validating the
effectiveness of our approach in lip synchronization. When
compared with our variant version (without LLM), the
synthesis results exhibit richer facial details, such as raised
cheeks and creased noses (as observed in the happy and
sad cases). We believe that this phenomenon may arise
from the complexity of information embedded within human
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speech. While this complexity may slightly compromise the
performance of the synthesis network, resulting in the loss of
some subtle details

2) USER STUDY
We conducted a user study involving 15 participants to
gather their opinions on 30 videos generated by our method
alongside three competing methods. Among these, twenty
videos were created using randomly selected speaker audios
from the test set of MeadText, while the remaining ten were
sourced from RAVEDESS. We utilized the well-established
Mean Opinion Scores (MOS) rating protocol. Participants
were tasked with providing ratings on a scale of 1 to
5 for three specific aspects of each video: (1) Lip Sync
Quality, (2) Movement Expressiveness, and (3) Expression
Consistency. Lip sync quality evaluates mouth movements in
sync with speech content, movement expressiveness assesses
facial detail richness, and expression consistency measures
the alignment between facial movements and speaker speech
expressions.

The results are presented in Table 2. MeshTalk [65]
scores the lowest across all aspects, possibly attributed to
the architecture design of its naive UNet. By incorporating
transformer blocks, EmoTalk [5] and CodeTalker [21]
achieve higher lip-sync scores. Regarding movement expres-
siveness and expression consistency, our model significantly
surpasses other approaches, owing to its carefully derived
audio-visual instruction strategy. Overall, our AVI-Talking
model outperforms its counterparts in expressive synthesis,
highlighting the effectiveness of our approach.

D. FURTHER ANALYSIS
1) ABLATION STUDY
We conduct ablation studies on both stages of our system,
wherein we systematically remove three crucial compo-
nents from each stage to evaluate the effectiveness of our
framework design.

a: AUDIO-VISUAL INSTRUCTION MODULE
We conduct experiments on the first stage model (1) w/o
text augmentation; (2) w/o LLaMA generator and (3) w/o
Q-Former alignment. For the setting without the LLaMA
base model, we adopt the BLIP2 training paradigm [62] and
utilize image-grounded text generation loss for instruction
generation. The numerical results on theMeadText dataset [4]
are presented in Table 3. We find that without text data
augmentation, the model tends to overfit to a sub-optimal
point, leading to slightly worse performance. Removing
the LLaMA model results in the loss of rich contextual
knowledge, thereby also causing inferior performance.
Furthermore, without the Q-Former contrastive alignment
strategy, the extraction and alignment of speech features to
text embedding become inadequate, introducing significant
training difficulties and resulting in significantly inferior
performance.

FIGURE 8. Visualizations of t-SNE embeddings derived from aligned
speech features using Q-Former. The audio samples are from male
utterances in the MeadText dataset, focusing on five typical speaking
emotions. Notably, the aligned speech features corresponding to each
specific emotion exhibit closely clustered patterns.

FIGURE 9. Diverse generation results of the talking face instruction
system are depicted. The bottom row showcases the audio-visual
instruction, while the rows above demonstrate generation variations
using the same text instruction. The left columns display the sad speaker
status, where different lip curves are predicted, while the right columns
demonstrate an angry case with varying eyebrow and cheek movements.

b: 3D TALKING FACE SYNTHESIS
For the second stage, we train and evaluate the talking
face synthesis network by removing (1) text augmentation,
(2) the diffusion prior network, and (3) contrastive alignment.
The numerical results on the MeadText dataset [4] are
demonstrated in Table 4, and visualization results are
depicted in Figure 7. Similar to the first stage, without text
data augmentation, the synthesis results suffer from inferior
performance on all metrics. Visualization results in the first
row illustrate that the absence of augmentation tends to
inadequately capture the smiling lip corner motion (See the
first case in the left column).Without employing the diffusion
strategy, the generation process becomes deterministic,
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FIGURE 10. Visualization of Out-of-Distribution (OOD) results from the
Talking Face Instruction System. Within each row, we present instructed
synthesis outcomes for the same speaker’s speech, encompassing four
distinct out-of-distribution instructions. The initial three rows showcase
various successful cases while the final row illustrates an instance where
the model misinterprets the instruction.

leading to a lack of diversity. We also observe significantly
reduced performance on other metrics, possibly due to the
diverse generation nature of this problem. Visualizations in
Figure 7 indicate that without adopting the diffusion strategy,
the network tends to produce conservative generations, where
the lip corner is not as well stretched as in our full model
(See the first case in the left column). Removing contrastive
alignment also results in inferior outcomes, highlighting its
effectiveness in boosting generation performance.

2) VISUALIZATION OF ALIGNED SPEECH FEATURES
To further analyze the performance of Audio-Visual Instruc-
tion design, we visualize the intermediate speech features
that are contrastively aligned using Q-Former. In particular,
as discussed in Sec. III-C, the contrastive audio-visual
instruction alignment aims to extract audio embeddings
closely relevant to the visual instructions. Consequently, the
resulting audio embeddings are expected to include rich
speaker state information.

As shown in Figure 8, we present samples of utterances
representing five typical emotions. Notably, there is a
discernible clustering pattern observed among embeddings
associated with the same emotional type. It is interesting
that speech features belonging to the happiness class exhibit
particularly close clustering, which could be attributed to the
distinct characteristics of a happy voice.

3) GENERATION DIVERSITY OF TALKING FACE INSTRUCTION
SYSTEM
In Table 4, we illustrate the pivotal role of diffusion strategy
in enhancing generation diversity. Additionally, in Figure 9,
we present visualizations showcasing diverse synthesis.
Observing the left column, it shows that multiple lip curves
can be synthesized for instructions conveying disappoint-
ing emotions. Similarly, the right column demonstrates

varied eyebrow and cheek movements in response to text
instructions suggesting anger. These outcomes validate the
capability of the talking face synthesis system to produce
diverse results.

4) OOD ANALYSIS OF TALKING FACE INSTRUCTION SYSTEM
To further assess the generalizability of our proposed talking
face synthesis module, we conducted experiments with out-
of-distribution (OOD) instructions. Unlike the instructions
in our dataset, which explicitly describe facial movements,
we also explored visual instructions indicated by abstract
concepts. As shown in Figure 10, our model demonstrates the
ability to capture the implicit speaking state of the speaker
in the first three rows, yielding plausible synthesis results.
This success can be attributed to the adoption of the diffusion
mechanism and the structural similarity of natural language
embeddings. However, when faced with particularly complex
and abstract instructions, our model tends to misinterpret the
implied speaking states as seen in the last row.

V. CONCLUSION
In this paper, we propose AVI-Talking, an Audio-Visual
Instruction system for expressive 3D Talking face gen-
eration. We emphasize several appealing properties of our
framework: 1) We address the speech-driven expressive
talking face generation by introducing an intermediate
visual instruction, which decomposes the challenging audio-
to-visual generation into two stages with clear learning
objective. 2) A soft prompting strategy is derived to harness
the prior contextual knowledge underlying LLMs for speaker
talking state comprehension. 3) The disentangled talking
prior learning procedure ensures complementary integration
of lip-sync movements and audio-visual instruction. 4) A
diffusion prior network is introduced to map audio-visual
instructions to latent distribution of content irrelevant space.

Limitations. Our model is currently trained on a labeled
audio-visual instruction dataset. 1) We observe it exhibits
insensitivity to certain specific speaking statuses. This
phenomenon could be attributed to uneven data distribution,
where certain speaking states are not adequately represented
in the training dataset, making them challenging to discern
from the speaker’s speech. 2) The capabilities of the
talking face synthesis network are limited to handling
visual instructions closely aligned with the overall dataset
distributions. As a consequence, for optimal instruction-
following performance, users must provide instructions that
closely resemble the predefined instructions.

Future Work. In this paper, we have investigated into
specifying a pre-trained Large Language Model (LLM)
for cross-modal audio-visual generation using finetuning
techniques. Recent studies [81] higlight the remarkable
capability of Retrieval Augmented Generation (RAG) in
injecting knowledge into Large Language Models (LLMs).
Future research will involve comparing the effectiveness of
RAG and fine-tuning performance, particularly tailored for
this task.
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Meanwhile, recent works [9] suggest that visual foundation
models can yield competitive results, provided a robust
visual tokenizer is utilized. Consequently, future researchwill
delve into directly tokenizing stylized embeddings within
the content-irrelevant space and fine-tuning general visual
foundation models for expressive talking face synthesis.
In this way, the model might be able to circumvent relying on
specific audio-visual instruction dataset, thereby achieving
superior performance with high generality.

Ethical Considerations. Our method has the potential
to be exploited for malicious purposes, such as generating
deepfakes, which can have detrimental effects on various
aspects of society, including misinformation and privacy
breaches. To mitigate this risk and ensure responsible usage,
we have decided to limit the licensing of our model
strictly to research purposes and will share it exclusively
with the deepfake detection community. In addition to
licensing restrictions, we will proactively incorporate robust
watermarks into the generation process to facilitate the
identification and tracking of deepfakes generated using our
method. These watermarks will serve as an essential tool
for forensic analysis, thereby enhancing the resilience of our
technology against potential misuse.
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