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ABSTRACT In the field of medical image analysis, MRI and CT, among other multimodal medical images,
play crucial roles. To overcome the limitations of image acquisition, researchers have proposed medical
image synthesis techniques, including both traditional methods and deep learning approaches. In this study,
we introduce a universal framework based on cycleGAN for generating CT images from MRI data.This
framework incorporates a hinge loss function to establish mappings between different modalities and
enhance structural consistency between input and output images.We also employ a switchable normalization
technique to improve model stability and reduce manual intervention. These enhancements result in the
generation of higher-quality synthetic images while avoiding gradient issues and mode collapse.The results
of this research demonstrate significant progress in medical image synthesis. Compared to existing methods,
our model exhibits superior performance in quantitative evaluation metrics while maintaining better diversity
and structural consistency. This indicates that our framework holds promise in medical image synthesis and
can provide valuable support in areas such as disease prediction and treatment.

INDEX TERMS CycleGAN, image translation, generative adversarial network, image synthetic, medical
images.

I. INTRODUCTION
Medical imaging technology plays a crucial role in clinical
diagnosis and treatment. They not only help doctors accu-
rately judge the type and grade of diseases but also improve
diagnostic efficiency and save time. Four types of medical
imaging are commonly used, namely MRI [1], CT [2],
PET (positron emission tomography) [3], and SPECT (single
photon emission computed tomography) [4]. Among them,
MRI and CT are the most commonly used images in radiation
therapy plans. They are widely used in various imaging
tasks, such as image segmentation [5], classification [6],
detection [7], and image registration [8]. Medical imaging
can help reveal internal anatomical structures, for example,
MRI can distinguishmalignant tumors from soft tissue organs
at risk, and CT provides detailed information about bone
structure. However, medical imaging has some challenges,
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such as cost, radiation dose, time, and specific imaging
methods. Especially in the head, brain, pelvic,and neck areas,
CT imaging has limited ability to reveal soft tissue contrast,
which poses a challenge to accurately outline the contours of
organs at risk and target areas. In addition, CT scans involve
the use of X-ray radiation, and repeated scans can expose
patients to ionizing radiation, which can cause radiation
damage to the human body. Therefore, the number of scans is
strictly controlled. In contrast, MRI is an alternative method
that can produce noise radiation, is lower in cost, can provide
more soft tissue details, and produces satisfactory results
in organ visualization compared to CT. Recently, research
has increasingly focused on generating CT images from
MRI. Previously, the network structure of synthetic CT was
relatively simple, but it demonstrates superior performance
compared to traditional synthetic CT generation methods.
Compared with traditional atlas-based methods, existing
studies have proposed using different frameworks to generate
sCT [9], [10], [11], [12], [13] From a broader perspective,
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the generation of synthetic CT can be considered as a style
transfer task of magnetic resonance imaging. Generative
adversarial networks (GAN) [14] have received widespread
attention in the field of medical imaging. Existing studies
have used GAN to solve style transfer problems in medical
imaging [15], [16], [17], [18], [19] Although previous
MR-based CT synthesis methods have shown encouraging
results, most existing methods are applied to training on
registered images from two or more domains. However,
it is very difficult to obtain one-to-one paired images
with the same content but different styles. To address the
challenge of generating CT images fromMRI, Zhu et al. [20]
proposed cycleGAN, an upgraded version of GAN, with two
generators and two discriminators. CycleGAN can achieve
mutual conversion of images between two domains without
the need for data pairing or registration. Similar methods,
such as DualGAN [21] and discoGAN [22], have also
shown considerable performance. Recently, researchers have
begun to apply cycleGAN to the medical field to generate
synthetic CT images. For example, Wolterink et al. [23]
successfully generated higher-quality head and neck sCT
images using cycleGAN. However, in the CycleGAN model,
the lack of direct constraints between input and output images
may affect structural consistency. To improve this problem,
Yang et al. [24] introduced an additional structural consis-
tency loss, and Liu et al. [25] adjusted the loss function of
cycleGAN by merging the pseudo-cycle consistency module
and domain control module, thereby improving the accuracy
of generated images. In addition, Kang et al. [26] proposed a
cycleGANwith perceptual loss, and Sun et al. [27] proposed a
DU-CycleGANmodel using U-Net as the discriminator, both
of which achieved good synthetic performance.

Although methods based on cycleGAN have made
progress in unsupervised image generation, challenges still
exist in improving the overall quality of the generated
images. To address this issue, our study introduces hinge loss
and switchable normalization in cycleGAN (HLSNC-GAN),
which combines these mechanisms to tackle key challenges
in medical image synthesis. Firstly, hinge loss is introduced
to enhance the mapping relationship between different modes
and ensure the consistency between input and output images.
Secondly, the introduction of switchable normalization (SN)
in the generator reduces manual intervention within the
model. Additionally, the embedding of deep residual network
modules and the use of the root mean square propagation
(RMSprop) optimizer help maintain image details and
enhance the stability and convergence of the model during
training. Lastly, we implemented an enhanced convolutional
neural network (CNN) architecture, convolutional layer with
SN and leaky ReLU activation (Conv2d-SN-LReLu), in the
discriminator to improve its classification efficiency. The
main contributions of our proposed HLSNC-GAN method
are as follows:

• Hinge loss function: The introduction of the hinge loss
function enforces structural consistency between input

MR and synthetic CT images, proving more effective
than traditional adversarial loss techniques.

• Switchable normalization (SN): The introduction of
switchable normalization into the network, including
differentiable normalization layers, allows the model to
automatically learn the normalization method for each
layer based on the input data, enhancing the stability of
model learning and reducing manual intervention.

• RMSprop optimizer: The use of the RMSprop optimizer
improves the quality and stability of the generated
images.

• Gradient penalty: To preserve the diversity of the
generated samples and avoid excessive punishment
of outliers, the gradient penalty is weakened in the
experiments.

• MR-CT conversion: HLSNC-GAN is used for MR-CT
conversion of medical images. It can be trained with
unpaired images in unsupervised learning and is also
applicable to paired and unpaired medical image
datasets.

• Enhanced image details: By introducing resnet into the
generator and utilizing skip connections, the diversity
and quality of the generated synthetic images are
enhanced.

• Activation function: The use of the leakyRelu activation
function ensures that parameters do not scale during
backpropagation, helping to avoid mode collapse and
gradient explosion or vanishing issues.

The organization of this thesis is as follows: section II
reviews related literature, section III introduces our method-
ology, section IV presents experiments and results, section V
discusses potential limitations and future research directions,
and section VI concludes the study.

II. RELATED WORK
Various researchers have proposed medical image synthesis
techniques using both conventional and deep learning meth-
ods in recent times. The primary drawback of conventional
image synthesis models is that they are not generalized
models since humans must explicitly define the rules for
synthesizing images from one domain to another. In contrast,
deep learning allows for the application of different pairs
of image modalities to the same architecture with a little
adjustment, thereby increasing the architecture’s generaliz-
ability with minimal human involvement. The frameworks
for medical image synthesis in the deep learning subfield
can be broadly categorized into three main groups: u-
net [28], autoencoders (AE) [29], and generative adversarial
networks (GAN) [30]. These three methods are not vastly
different from one another but differ primarily in their level
of architectural complexity. Among these three categories,
GAN-based models are widely used in medical image
synthesis. GAN-based Models: With the development of
image synthesis technology, various deep learning models
have been developed, with the GAN model being the most
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popular in the field, especially for image generation due
to its unique synthesis capabilities. GAN [14] proposed in
2014, with the goal of using noise and real images as input
data to create new images. Recently, the GAN model has
aroused great interest among researchers in the medical field,
particularly in medical image conversion, and has achieved
gratifying results. GANs can be used to train and synthesize
realistic images not only in paired data sets [31] but also in
unpaired data sets [27], resulting in satisfactory experimental
results. For simplicity we can divide our literature review
in medical image synthesis into two subsections that are 1)
GANs for paired medical images and 2) GANs for unpaired
medical images. In both these two subcategories of GANs,
different researchers have proposed different GAN-based
variants in image-to-image translation tasks by modifying
either of these I. Improving the training method or loss
function of GANs; II. Applying different neural networks to
GANs; III. Combination of I and II.

GANs for paired medical images: Emami et al. [32]
presented a novel GAN model for generating CT images
from corresponding T1 MR images. They employed a
residual network as the generator and cross-validation to
assess the effectiveness of their approach. Their model
was found to be superior to the CNN model, as it better-
preserved details and abnormal regions of the synthetic
images. Kazemifar et al. [33] also proposed an improved
GAN method to synthesize MRI and CT images. They
used MI (mutual information) U-Net as the loss function,
a convolutional layer with a ReLU (Rectified linear unit),
and a discriminator network consisting of two fully connected
layers that use meta-cross entropy as the activation/loss func-
tion. The experiment achieved good results. Emami et al. [34]
proposed an attention-GANmodel to generate sCTwith brain
MRI as input. They introduced batch normalization in the
model’s discriminator to prevent overfitting. Sun et al. [35]
proposed a stacked GAN (sGAN) model based on residual
network (ResNet) and FCN. They used batch normalization
(BN) layers in the generator (G) and discriminator (D)
to speed up the training of the network and convergence.
Liu et al. [36] proposed a GAN model using a ResNet as
a generator for synthetic CT in MR-only brain radiation
therapy. Gotoh et al. [37] proposed a novel cGAN model
using ‘‘U-Net’’ as the generator and ‘‘PatchGAN’’ as the
discriminator. BN (Batch normalization layers) are intro-
duced in the generator and discriminator to control gradient
explosion and prevent gradients from disappearing during
training. Furthermore, to generate sCT images and assess
the accuracy of dose estimation, Tang et al. [38] developed
a generative adversarial network (GAN) with a ‘‘U-Net’’
shaped encoder-decoder architecture that incorporates certain
specific image translation techniques to convert T1-weighted
MRI into sCT image. Emami et al. [39] presented a SA-GAN
architecture for synthesizing CT images from MRI. The
generator in their model consists of two parallel streams,
one for reconstruction loss and the other for structural

segmentation loss, which are jointly optimized with the
GAN loss. A fusion layer is employed to merge the outputs
of the two streams to produce a pseudo-CT image. The
performance of SA-GAN is compared against a CNN model,
and the results indicate that SA-GAN outperforms CNN
in generating both consistent (e.g., bone) and inconsistent
(e.g., rectal gas) regions. In addition, the conditional GAN
(cGAN) is a general framework utilized for image-to-image
translation tasks that rely on paired datasets. Qi et al. [40]
conducted a study utilizing paired datasets of MR and CT
images to investigate how different MR sequences affect
the precision of deep learning-based synthetic CT (sCT)
generation in the intricate head and neck region. Their
findings indicate that the cGAN model, which incorporates
multiple MR sequences as input, achieved the highest level of
accuracy, outperforming the U-net network. Ranjan et al. [41]
utilized a cGAN model and presented a modified version
that incorporates residual blocks within the generator net-
work instead of conventional convolutional blocks. This
residual block architecture comprises two convolutional
layers, a normalization layer, an activation layer, and a
skip connection that bypasses the two convolutional layers.
According to their experimental results, the proposed method
shows promising performance when trained on paired MRI
and CT scan datasets. Cusumano et al. [42] generated
synthetic CT scans for low-field MR-guided radiotherapy
for lung cases by modifying the internal network of the
cGAN model. They used a 2D layer architecture with skip
connections and employed patchGAN as the discriminator
network. In 2017, Isola et al. [43] proposed the pix2pix
network model, which is also frequently used in the field
of paired image-to-image generation [44], [45], [46], [47].
Aljohani and Alharbe [48] proposed using a deep pix2pix
model similar to patchGAN, U-net, and vanilla GAN loss
as a generator to create high-quality synthetic brain MR
images. The experimental results demonstrated that the
original pix2pix GAN model outperformed other models in
terms of synthetic image quality. Phukan et al. [49] suggested
the application of ResNet-DCGAN to produce chest X-ray
images of COVID-19 patients. Specifically, they utilized
ResNet50 as the discriminator in the deep convolutional
neural network (DCNN) model and substituted the early
adam optimization algorithm with the RAdam optimiza-
tion algorithm. According to their findings, the synthetic
images generated by their proposed approach exhibited
superior performance compared to state-of-the-art DCGAN
models on paired datasets. Ellis et al. [50] experimentally
demonstrated that 3D DCGAN models exhibit greater image
variability in synthetic CT images but at the expense of
image quality. Huang et al. [51] introduced a medical
super-resolution generative adversarial network (SRGAN)
with attention-based denoising capability, referred to as AID-
SRGAN, for enhancing the resolution of medical images.
Initially, a realistic degradation model was proposed consid-
ering multiple degradation factors. Subsequently, attention
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mechanisms were integrated into the denoising module
to improve its robustness. Finally, the model achieved
high-resolution reconstruction by processing low-resolution
radiographic images. Furthermore, in the process of medical
image translation, it is often challenging to maintain the
image structure. To address this issue, Li et al. [52] proposed
a frequency-guided diffusion model (FGDM). FGDM is a
hybrid diffusion model that uses denoising diffusion GAN
as the backbone network and utilizes frequency-domain
filters to guide the diffusion process, accurately preserving
structural information during image transformation. This
method possesses zero-shot learning capabilities, requiring
training only on the target domain data and can be directly
applied to source-to-target domain conversion. The FGDM
method was evaluated on the task of transforming head-neck
and lung cone-beam CT (CBCT) to CT, demonstrating
significant advantages. Lei et al. [53] proposed a lesion
attention-conditioned generative adversarial network (LAC-
GAN) to synthesize retinal images with realistic lesion
details. The generator utilizes residual blocks to handle
randomly generated gaussian noise for synthesizing images.
Moreover, a lesion feature attention mechanism based on
the random forest (RF) method is introduced to focus on
pathological information. Additionally, multiple discrimina-
tors with shared weights are employed to enhance model
performance through affine transformations. Experimental
results demonstrate that this method contributes to improving
the performance of disease detection models.

GANs for unpaired medical images several image syn-
theses models have been developed for unsupervised model
training, which can use unpaired datasets as input target data,
among which cycle-consistent adversarial networks (Cycle-
GAN) is the most prominent. Kearney et al. [54] proposed
an attention-aware cyclegan model for unpaired MR-to-CT
image conversion. According to the results, unpaired cycle-
GANs are a better choice for MR-to-CT image conversion
based on paired images. Boni et al. [55] introduced an
enhanced version of cycleGAN, known as augCGAN, for
generating synthetic CT images in an unpaired fashion. They
evaluated the mean absolute error (MAE) between actual
and synthetic CT images across multiple patient-specific
sequences, with the goal of improving the overall general-
ization performance of MR-to-CT synthesis. Liu et al. [25]
suggested employing a multi-cycle GAN for synthesizing
CT images from MRI scans of the head and neck. In their
study, a z-Net was devised as a generator to incorporate rules
for skip connections, and a pseudo-cycle consistent module
was developed to ensure generation consistency, thereby
enhancing the precision of detail transformation. To ensure
the quality of image generation, Gu et al. 62000 proposed
a Dual3D&PatchGAN model based on transfer learning.
This model enables bidirectional conversion between two
classes of images without the need for paired datasets. It also
addresses the issue of shadows that occur during the image
generation process in traditional dualGAN. Compared to

other medical image generation models, it exhibits superior
generative performance. Additionally, Abu-Srhan et al. [56]
proposed a paired-unpaired unsupervised attention-guided
generative adversarial network (uagGAN) model to generate
more accurate and clearer images. The authors initially
pre-trained the uagGAN model using paired datasets, and
simultaneously employed a novel composite loss function
during the pre-training phase to enhance the model’s
generative performance. The composite loss includes both
adversarial loss from wasserstein GAN and non-adversarial
losses (content loss and L1 loss). Subsequently, the model
was retrained using unpaired datasets. Experimental results
demonstrated better performance compared to existing image
transformation models. Kang et al. [26] proposed a deep
learning-based approach based on a cycle-consistent GAN
framework for unpaired MR-to-CT image translation. They
introduced a perceptual loss to cycleGAN to enhance the
performance of synthetic CT generation. Moreover, their
experiments demonstrated that the use of cycleGAN with
perceptual loss achieved superior results in sCT generation
when trained with weakly paired deformed CT (dCT)-
MRI for MRgRT, outperforming u-net. Sun et al. [57]
introduced a multi-discriminator-based cycleGAN (MD-
CycleGAN) model to generate high-quality synthetic CT
images from MRI scans. The model utilized DenseNet as
the primary generator architecture and was evaluated using
the quadruple cross-validation method. Experimental results
indicate that the proposed approach outperforms some of the
most advanced existing models. Sun et al. [27] suggested a
novel approach using the cycleGAN model from MR images
to generate CT in medical applications. The researchers
enhanced the accuracy of the discriminator by utilizing
a u-Net network and introduced a content-aware feature
recombination (CARAFE) method instead of a fixed kernel
for all samples, resulting in superior performance compared
to existing state-of-the-art methods.Wang et al. [58] proposed
a method for better and more efficient MRI-to-CT synthesis.
A new framework for image-to-image conversion called
cycleCUT has been proposed. The study incorporates a con-
trastive learning module, inspired by the contrastive unpaired
translation (CUT) network, into the cycleGAN framework.
The experimental outcomes confirm the practicability of the
suggested cycleCUT model in training on image data that
is not aligned. Furthermore, compared to cycleGAN and
CUT models, cycleCUT is optimal in terms of the structural
details of the generated sCT images. On the other hand,
obtaining matched MRI and CT images in the field of
medicine is constrained by factors such as cost, radiation
dose, and modality limitations. To address this limitation,
[59] proposed the DC-cycleGAN model, which synthesizes
medical images from unpaired data. The discriminator of
DC-cycleGAN introduces dual contrastive loss, indirectly
establishing constraints between real source images and
synthesized images by using samples from the source
domain as negative samples and compelling the synthesized
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images to diverge from the source domain. Additionally, the
author integrated cross-entropy and the structural similarity
index (SSIM) to simultaneously consider the brightness and
structure of the samples during image synthesis. Compared to
other cycleGAN-based methods for medical image synthesis,
DC-cycleGAN demonstrates promising results.Furthermore,
in the domain of medical image transformation, prompt
diagnosis and treatment of diabetic retinopathy play a crucial
role in preventing vision loss. To enhance diagnostic accuracy
beyond previous techniques, Alwakid et al. [60] proposed
the utilization of the contrast-limited adaptive histogram
equalization (CLAHE) filtering algorithm combined with
enhanced super-resolution generative adversarial networks
(ESRGAN) for image enhancement, achieving an accuracy
rate of 98.7%. Experimental findings demonstrated that
the integration of CLAHE and ESRGAN can augment
the model’s performance and learning capabilities. Addi-
tionally, within the realm of medical imaging, training
an effective model using image synthesis techniques is
challenging due to limited lesion data. Addressing this
concern, Iskandar et al. [61] introduced a novel approach
employing generative adversarial networks (GANs) to tackle
the scarcity and limited diversity of fetal ultrasound image
data. The proposed method involves the adoption of dif-
fusion super-resolution GAN and transformer-based GAN,
leveraging publicly accessible datasets to generate synthetic
fetal ultrasound brain plane images. The study’s results
underscore the promising potential of GAN-based techniques
in generating realistic and high-resolution ultrasound images.
To tackle the issue of limited image quality in generat-
ing medical images using generative adversarial networks
(GANs) on minority-class datasets, Huang and Jafari [62]
proposed balanced adversarial generative adversarial net-
works (BAGAN). However, BAGAN exhibits instability
when dealing with similar image categories. To mitigate this,
a supervised autoencoder with intermediate embedding mod-
els was introduced to untangle the latent vectors of labeled
data. By leveraging an enhanced autoencoder initialization,
the BAGAN architecture with gradient penalty (BAGAN-
GP) was constructed. This method effectively addressed the
instability issue of the original BAGAN, resulting in faster
convergence and the production of high-quality generated
images. Moreover, to address the problems of poor visual
quality and structural distortion in image super-resolution
reconstruction models, Ma and Li [63] introduced a deep
gradient-guided method based on generative adversarial
networks. This approach incorporates a gradient branch
for feature propagation and fusion with the image branch
to prevent edge distortion. Improved multi-scale residual
blocks are employed to capture multi-scale information,
and WGAN-GP is utilized to stabilize network train-
ing. In comparison to SRGAN and ESRGAN algorithms,
this method effectively prevents structural distortion and
enhances the quality of generated images. The model’s
computational complexity is 23.7 GFLOPs, surpassing other
methods.

In the domain of medical image transformation,
GAN-based models outperform traditional translation
methods. Using unpaired datasets for model training has
obvious advantages compared to using paired image data,
this is especially true in the field of medical imaging,
where data scarcity poses a major challenge due to cost
constraints. Additionally, due to patient privacy protection,
paired datasets are extremely rare.While using existing
GAN techniques to generate medical images, several issues
may arise. Firstly, the generated images may lose details,
resulting in poor image quality. Secondly, the diversity
of generated images may be insufficient, leading to high
similarity among them. Thirdly, excessive punishment for
insufficient diversity may result in generated images that are
too smooth or unrealistic. Additionally, inadequate model
stability may cause overfitting, gradient disappearance, and
gradient explosion problems.

In recent years, various researchers have proposed a
variety of medical image synthesis techniques using both
traditional and deep learning methods Table 1. One popular
approach among these methods is to utilize GAN-based
models for image synthesis, especially in the case of CT
and MRI, the two most widely used modalities. Despite
significant advancements made by deep GAN models, the
generation of high-quality medical images still faces several
limitations. For instance, GAN models based on U-net, such
as Pix2Pix, require highly curated training data where the
training data must be paired. Another GAN variant, the
LSGAN model, excessively penalizes outliers during the
training process, resulting in insufficient sample generation
and a lack of ‘‘diversity’’ and mode collapse.Furthermore,
many GAN-based variants lack constraints on the mapping
relationship between different modalities, thus unable to gen-
erate high-quality synthetic images. Additionally, networks
with too many layers and parameters lead to loss of image
details, and parameters are scaled during backpropagation,
resulting in vanishing gradients and affecting the stability of
model learning.

This study aims to propose a novel framework that utilizes
a generalized cycleGAN approach to generate CT images
from MRI data. Our proposed framework effectively handles
unpaired training data, overcoming limitations imposed by
scarce paired data. To enhance correlation between various
modalities and maintain structural consistency between input
and output images, we introduce a novel loss function for the
generator. Additionally, we employ switchable normalization
techniques to enhance the stability of model training,
accelerate convergence, and reduce manual intervention.
Moreover, we utilize a new adaptive learning rate method in
the optimizer to effectively prevent overfitting on the training
data, enhancing fidelity and robustness of the generated
images.We also alleviate excessive penalty on outliers during
the model training process, enhancing the model’s learning
capability and increasing the diversity of generated samples.
Furthermore, we utilize skip connections in the generator
ResNet architecture to preserve more image details, further
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TABLE 1. Comparison of some GAN based image synthesis models. (Peak Signal-to-Noise Ratio : PSNR).

improving the diversity and quality of synthesized samples.
Finally, we use the leaky ReLU activation function to pre-
vent parameter scaling during backpropagation, effectively
preventingmode collapse and gradient explosion or vanishing
issues.

III. MODEL
The development based on cycleGAN for unsupervised
image generation has made significant progress, but there
is still considerable room for improvement in enhancing the
overall quality of generated images. Many details are lost
during the image transformation process, which may lead
to an overly strong discriminator and excessive penalization
of outliers, resulting in insufficient sample diversity and
mode collapse. Additionally, as the number of parameters and
network layers increases, various models based on enhanced
GANs have been developed. However, parameter scaling
during backpropagation leads to the vanishing gradients
problem in the later stages of training, affecting the stability
of model learning.

This study aims to generate high-quality CT images from
unpaired MRI data and proposes a new model based on
cycleGAN called HLSNC-GAN. In the generator of HLSNC-
GAN, we introduce a novel hinge loss function, combined
with cycle consistency and L1 norm expectation constraints,

to establish better mode mapping relationships and ensure
consistency between input and output images. Furthermore,
we introduce a switchable normalization (SN) mechanism,
allowing normalization layers to automatically adjust batch
sizes based on input data, thereby enhancing the stability
of model learning and improving overall performance. The
residual convolutional network in the generator preserves
more feature details through skip connections, increasing
sample diversity, aiding in preventing parameter scaling
issues, and stabilizing model learning. Additionally, we mod-
erately relax the gradient penalty in the model to avoid
excessive punishment of discrete data, thereby improving
the quality of generated images. These improvements
collectively address the limitations of early GAN-based
image-to-image transformation techniques and significantly
enhance the quality of synthetic CT images generated from
unpaired MRI data. Our model is applicable to both paired
and unpaired MRI-CT image datasets, providing a more
reliable foundation for medical image synthesis.

A. CYCLEGAN-BASE
CycleGAN (Cycle-consistent GAN) is a framework that
integrates the concept of dual learning into the original
GAN model. CycleGAN is capable of transforming images
between different domains. In 2016, Microsoft Research
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FIGURE 1. Cycle-GAN.

Asia (MSRA) introduced dual learning as an unsupervised
reinforcement learningmethod for machine translation. It can
address the problem of lacking paired annotations in massive
data. Dual learning operates on a dual task mechanism
similar to bilingual translation, utilizing feedback signals
between the original task and the dual task to train the
model. CycleGAN consists of two generators and two
discriminators, forming a pair of symmetrical GANnetworks.
It involves two mapping relationships, as illustrated in the
diagram (FIGURE.1).

While the original GAN and cGAN/Pix2Pix can also
be used for tasks such as image translation and style
transfer, the key difference between them and the cycleGAN-
based HLSNC-GAN lies in the requirement of input as
paired datasets. In contrast, the HLSNC-GAN framework of
cycleGAN does not have this restriction and can be trained
and generate desired images even with unpaired data. In the
following sections, we will provide a detailed presentation of
our optimization strategies. We will showcase the research
model of HLSNC-GAN based on the cycleGAN framework
and describe the architecture of the generator and discrim-
inator in the HLSNC-GAN network. Furthermore, we will
explain the loss functions, optimizers, and normalization
techniques utilized in the training process of the HLSNC-
GAN framework. The following FIGURE 2 illustrates the
schematic diagram of HLSNC-GAN.

B. HLSNC-GAN’S GENERATOR
The generator is a key component in the HLSNC-GAN
network architecture (Table 2), which is based on the cycle-
GAN framework and consists of two generators (FIGURE 3):
GGenerator and FGenerator.GGenerator is responsible for mapping
input MR images to CT images in the target domain, while
FGenerator is responsible for mapping CT images back to
MR images. Each generator is composed of convolutional
layers, resNet modules (FIGURE 4), and deconvolutional
layers. Both GGenerator and FGenerator contain 9 residual
blocks (Table 3), with each block comprising convolutional
layers, SN normalization, and ReLU activation functions.
The models also incorporate skip connections to preserve
and propagate fine-grained details of the images. During the

TABLE 2. HLSNC-GAN’s generator network structure.

training process,GGenerator aims to generate high-quality syn-
thesized CT’ images by minimizing the difference between
the generated CT’ images and the real CT images. Similarly,
FGenerator strives to generate high-quality synthesized MR’
images by minimizing the difference between the generated
MR’ images and the real MR images. To increase the depth
and expressive power of the network, the two generators
leverage the stacking of residual blocks to capture the
relationship between input MR images and CT images.
Through the operations of convolutional and deconvolutional
layers, GGenerator and FGenerator gradually extract features
from the images and preserve and propagate these features
to subsequent layers via skip connections to maintain the
integrity of image details.The weights of GGenerator and
FGenerator are updated using the backpropagation algorithm
to better adapt to the image features in the target domain.
Through this training process, GGenerator learns the mapping
relationship between input MR images and target CT images,
resulting in the generation of high-quality synthesized CT’
images. Similarly, FGenerator learns the mapping relationship
between input CT images and target MR images, generating
high-quality synthesized MR’ images. As a result, the entire
model achieves bidirectional image translation. Additionally,
the hinge Loss function is employed to measure the
feature distance between generated images and real images,
encouraging the generators to generate more realistic and
structurally consistent images. Byminimizing the Hinge Loss
function, the generators learn how to generate CT images that
match the input MR images, ensuring structural consistency
and high-quality synthesis.

C. HLSNC-GAN’S DISCRIMINATOR
The discriminator is another crucial component in the
HLSNC-GAN network architecture, consisting of two dis-
criminators (FIGURE 5): Discriminator D1 (DCT) and
discriminator D2 (DMR). DCT is responsible for assessing
the authenticity of the synthesized CT’ images gener-
ated by GGenerator, while DMR assesses the authenticity
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FIGURE 2. For this purpose, deep learning model frameworks such as cnn and resnet, as well as cycleGAN models in the python language, will be
utilized. Our proposed HLSNC-GAN model is based on cycleGAN and introduces a new hinge loss function (HL) in the generator, along with
switchable normalization (SN) in both the generator and discriminator. In the model training section, G1 and G2 are generation networks for
MRI→sCT and CT→sMRI, respectively. The path from MRI to CT’ consists of real MRI→sCT’ → reconstructed MRI, while the path from CT to MRI’
consists of real CT→sMRI’ → reconstructed CT. Furthermore, D1 and D2 are CT and MRI discriminative networks. D1 classifies synthetic CT’ and
real CT, whereas D2 classifies synthetic MRI’ and real MRI.

FIGURE 3. HLSNC-GAN’s generator.

of the synthesized MR’ images generated by FGenerator.
Both discriminators employ switchable normalization (SN),
a differentiable normalization layer that allows the model to

FIGURE 4. HLSNC-GAN’s resnet block.

automatically learn the normalization method for each layer,
thereby enhancing the stability of model learning.In DCT,
it takes CT images as input and extracts features through
convolutional layers, SN normalization, and leakyReLU
activation functions. The objective ofDCT is to accurately dis-
criminate the differences between the generated synthesized
CT’ images and the real CT images and classify them as real
or synthesized images. Similarly, inDMR, it takesMR images
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TABLE 3. HLSNC-GAN’s resnet block network structure.

FIGURE 5. HLSNC-GAN’s discriminator.

as input and extracts features through convolutional layers,
SN normalization, and leakyReLU activation functions. The
objective ofDMR is to accurately discriminate the differences
between the generated synthesized MR’ images and the
real MR images and classify them as real or synthesized
images.The training objective for discriminator D1 and D2 is
to enhance their discriminative capabilities byminimizing the
classification errors of the discriminators on the synthesized
and real images. This enables the discriminators to better
distinguish between the generated synthesized images and the
real images. Table 4 describes the hierarchical structure of the
discriminator network.By utilizing the switchable normal-
ization method and the corresponding network architecture,
D1 and D2 effectively determine the authenticity of the
synthesized images generated by GGenerator and FGenerator,
respectively. This, in turn, promotes the learning of the
generators and improves the quality of the generated images.

D. HLSNC-GAN LOSS
The loss functions used in the HLSNC-GAN model include
adversarial loss, cycle consistency loss,Identity Loss and
hinge loss. The descriptions of these loss functions and their
combined losses are provided below:

1) ADVERSARIAL LOSS
The adversarial loss is employed to ensure that the generated
images closely resemble real images, motivating the genera-
tor to produce realistic synthesized images. For the G andD1,

TABLE 4. HLSNC-GAN’s discriminator network structure.

the adversarial loss can be expressed as (Equation 1):

Ladv(G,D1) = E[log(D1(CT ))]

+ E[log(1 − D1(G(MR)))] (1)

Here, CT represents the real CT images, andMR represents
the real MR images. The objective of the G is to minimize the
ability ofD1 to accurately classify the generated CT’ images,
while the objective of discriminator D1 is to maximize its
ability to classify the generated and real images.

Similarly, for the F and D2, the adversarial loss can be
expressed as (Equation 2):

Ladv(F,D2) = E[log(D2(MR))]

+ E[log(1 − D2(F(CT )))] (2)

The objective of the F is to minimize the ability of
discriminator D2 to accurately classify the generated MR’
images, while the objective of D2 is to maximize its ability
to classify the generated and real images.

2) CYCLE CONSISTENCY LOSS
The cycle consistency loss is used to enforce the consistency
between the G and F, ensuring that the image transformations
through both generators are reversible. The cycle consistency
loss can be expressed as (Equation 3):

Lcycle(G,F) = E[∥F(G(MR)) −MR∥]

+ E[∥G(F(CT )) − CT∥] (3)

Here,||.|| represents the pixel-level difference measure-
ment, and MR and CT represent the real MR images and CT
images, respectively. The objectives of the G and F are to
minimize the differences between the cyclically transformed
images and the original input images.

3) IDENTITY LOSS
The objective of the identity loss function is to minimize the
difference between the generated composite images and the
original input images, ensuring consistency between the input
and output images. The following expression represents the
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identity loss (Equation 4):

Lidentity(G,F) = E[∥G(MR) −MR∥]

+ E[∥F(CT ) − CT∥] (4)

Here, G(MR) represents the composite result obtained by
mapping the MR image using G to the CT image, and F(CT)
represents the composite result obtained by mapping the CT
image using F back to the MR image. MR and CT denote the
real MR image and CT image, respectively.

4) HINGE LOSS
Hinge loss aims to reduce the difference between generated
images and real images by optimizing the adversarial
process between the generator and the discriminator, thereby
improving the quality of synthesized images. Specifically, the
hinge loss penalizes the distance between images generated
by the generator and real images, prompting the generator
to produce outputs closer to real images. In generative
adversarial networks, the generator tries to generate realistic
images, while the discriminator tries to distinguish between
real and generated images. The hinge loss function optimizes
this process as follows:

1. For the discriminator, the hinge loss function can be
defined as: (Equation 5)

LD = max(0, 1 − D(x)) + max(0, 1 + D(G(z))) (5)

where D(x) is the output of the discriminator for the real
image x, G(z) is the image generated by the generator
based on random noise z, and D(G(z)) is the output of the
discriminator for the generated image. This loss function
encourages the discriminator to output values close to 1 for
real images and close to -1 for generated images.
2. For the generator, the hinge loss function can be defined

as: (Equation 6)

LG = −min(0, −1 + D(G(z))) (6)

This loss function encourages the generator to produce
images that make the discriminator’s output close to 1, i.e.,
generate more realistic images.

In this way, hinge loss helps to reduce the difference
between generated images and real images, thereby improv-
ing the quality of synthesized images.

5) TOTAL LOSS
The combined loss for G and F is obtained by integrating the
adversarial loss, cycle consistency loss, and hinge loss. The
total loss can be defined as (Equation 7):

Ltotal(G,F,D1,D2) = Ladv(G,D1) + Ladv(F,D2)

+ λ · Lcycle(G,F)

+ λ · Lidentity(G,F)

+ λ · LD + λ · LG (7)

Here, λ is a weight parameter used to control the
importance of cycle consistency loss and hingeall loss in the
overloss function.

E. HLSNC-GAN RMSPROP
In deep learning, an optimizer is an algorithm used to
update model parameters in order to minimize the loss
function. Different optimizers have their own advantages and
disadvantages. In the HLSNC-GAN framework, we use the
RMSProp optimizer to update the weights of the generator
and discriminator to minimize the loss function between
them. Specifically, we update the weights of the discriminator
based on its gradients and update the weights of the generator
based on its gradients. By using the RMSProp optimizer, our
framework can automatically adjust the learning rate based on
themagnitude of gradients of the generator and discriminator,
thus adapting to the update requirements of the model’s
parameters. This improves the stability and convergence
speed of training. Moreover, RMSProp controls the variance
of parameter updates by using an exponential moving average
of squared gradients, reducing the impact of early gradients
on parameter updates. This helps improve the stability of the
model and reduce oscillations during training. Additionally,
since the gradients of the generator and discriminator are
often sparse, the RMSProp optimizer can effectively handle
this case and ensure appropriate updates to sparse gradients,
thereby improving the performance of the model.

When using the RMSProp optimizer for the calculation of
generating CT images from MR images, it is important to
understand the process of parameter updates. The following
are the calculation formulas for the RMSProp optimizer:

When given the model’s parameters θ , the loss function
L(θ ), the learning rate α, and the exponential decay rate β,
the parameter update process of the RMSProp optimizer is as
follows:

gt = ∇(L(θ )) (8)

Updating the accumulated squared gradient vi:

vt = β · vt−1 + (1 − β) · g2t (9)

where β is a decay rate parameter between 0 and 1, typically
chosen to be a larger value such as 0.9. Then, calculate the
update quantity ∇θt for the parameters.

∇θt = −
α

ε+
√
vt

· gt (10)

Here, α is the learning rate, θ is a small constant (e.g., 10−8)
used to avoid division by zero. Finally, update the model
parameters θ :

θt+1 = θt + ∇θt (11)

First, for each model parameter θi, initialize the variable vi,
which accumulates squared gradients, to 0. During each
training iteration, calculate the gradient of the model
parameters θ .

By repeating the above steps, the RMSProp optimizer can
adaptively adjust the learning rate and update the model
parameters to better accommodate the gradient variations
of different parameters. In the calculation of generating
CT images from MR images, the RMSProp optimizer
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continuously updates the parameters of the generator and
discriminator to minimize their respective loss functions.
This helps optimize our model and improve the generation
capability of the generator and the discrimination capability
of the discriminator.

F. HLSNC-GAN NORMALIZATION
Switchable normalization (SN) is a mechanism that dynam-
ically selects various normalization techniques encompass
methods like instance normalization, batch normalization,
and layer normalization. based on the current task and data.
In image synthesis, different normalization techniques can
have varying impacts on the quality of the synthesized
images. By utilizing the switchable normalization mecha-
nism, the model can dynamically choose the most suitable
normalization method, thereby improving the quality and
consistency of the synthesized images. The principle of this
mechanism is as follows:

• Combination of multiple normalization methods:The
switchable normalization mechanism typically com-
bines multiple normalization methods, such as batch
normalization (BN), layer normalization (LN), and
instance normalization (IN). Each of these normaliza-
tion methods has its advantages and disadvantages and
is suitable for different scenarios and data distributions.

• Dynamic weight allocation:In the switchable normaliza-
tion mechanism, each normalization method is assigned
a weight, and these weights are learnable parameters.
During the training process, the model automatically
adjusts these weights based on the current task and
data characteristics to select the most appropriate
normalization strategy.

• Improving model adaptability: Since different normal-
izationmethods perform differently in various scenarios,
dynamically selecting the best normalization method
allows the switchable normalizationmechanism tomake
the model better adapt to different data distributions and
task requirements, thereby improving the quality and
consistency of the synthesized images.

• Reducing training difficulty: In traditional methods,
selecting the appropriate normalization method may
require extensive experimentation and tuning. The
switchable normalization mechanism, by automatically
selecting the best method, reduces the difficulty and time
required for model tuning.

By dynamically choosing the most suitable normalization
method for the current task and data, the switchable normal-
ization mechanism enhances the model’s adaptability and the
quality of the synthesized images. In our model framework
for generating CT images fromMR, the implementation steps
for switchable normalization are as follows:

1) Selection steps:
• Input features:X (size:Batch × Channels ×

Height × Width)
• Calculate statistical information: Mean: mean =

mean(X , axis = (0, 2, 3)) (calculate mean along

the channel dimension) Standard deviation: std =

std(X , axis = (0, 2, 3)) (calculate standard devia-
tion along the channel dimension)

• Learn switchable parameters: Use fully connected
layer or convolutional layer to map input features
to a switchable parameter vector s, size: Channels

• Calculate weights for switchable parameters:
Weights: w = softmax(s) (normalize switchable
parameters using the softmax function to ensure
the weights sum up to 1)

• Select normalization method: Based on weights w,
choose the normalization method:
Batch normalization: y = batch_norm(X ,mean,
std) (apply batch normalization to each feature
channel)
Instance normalization: y = instance_norm(X )
(apply instance normalization to each sample)
Layer normalization: y = layer_norm(X ,mean,
std) (apply layer normalization to each feature
channel)
No normalization: y = X

2) Normalization step: Apply the selected normalization
method y to the input features X .

The formula for applying normalization during the process
of generating CT images from MR images is as follows:
For MR image xj(i,w, h) and CT image yj(i,w, h), where i
represents the image index, w represents the image width,
and h represents the image height, we can use switchable
normalization to normalize the feature representations of MR
and CT images. MR image normalization:

νd (xj) =
1

IjWHC

Ij∑
i=1

W∑
w=1

H∑
h=1

(xj(i,w, h) − min(xj))

(12)

τd (xj) =

√√√√√ 1
IjWHC

Ij∑
i=1

W∑
w=1

H∑
h=1

(xj(i,w, h) − min(xj))2 + ϵ

(13)

CT image normalization:

νd (yj) =
1

(Ij ·W · H · C)

Ij∑
i=1

W∑
w=1

H∑
h=1

(yj(i,w, h) − min(yj))

(14)

τd (yj)

=

√√√√√ 1
(Ij ·W · H · C)

Ij∑
i=1

W∑
w=1

H∑
h=1

(yj(i,w, h) − min(yj))2 + ϵ

(15)

where: - xj and yj are feature maps in channel j of MR and CT
images, respectively. - νd (xj) and νd (yj) are the means of the
feature maps in channel j of MR and CT images, respectively.
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- τd (xj) and τd (yj) are the standard deviations of the feature
maps in channel j of MR and CT images, respectively. - Ij is
the number of images. - W is the width of the images. - H is
the height of the images. - C is the number of channels in the
images. - xj(i,w, h) represents the pixel value of the i-th MR
image at position (w, h). - yj(i,w, h) represents the pixel value
of the i-th CT image at position (w, h). - min(xj) and min(yj)
are the minimum values of the feature maps in channel j of
MR and CT images, respectively. - ϵ is a small constant to
avoid division by zero.

IV. EXPERIMENT AND RESULTS
A. HARDWARE CONFIGURATION
The experiments in this study were conducted in a hardware
environment with the following specifications:

• Processor: Intel Core i9-10900K, 3.7 GHz
• Memory: 32 GB DDR4 RAM
• Graphics Card: NVIDIA GeForce RTX 3080, 10 GB
GDDR6X

• Storage: 1 TB SSD + 2 TB HDD
• Operating System: Linux

B. DATA
In this study, we used two open public datasets: an unpaired
dataset from Kaggle [64] and a paired dataset from related
research [41], [59].

Unpaired dataset: It contains a total of 4974 cross-sectional
CT andMRI scans of the brain. For the CT scans, each patient
is represented by approximately 30 slices with a thickness
of 5 mm. For the MRI scans, only the axial cross-sections
were selected, and the images include various age groupswith
different slice orientations, including tumors. This dataset
was randomly divided into 3486 MR-CT image pairs for the
training set and 1488 pairs for the test set, with all images
resized to 512 × 512 pixels.

Paired dataset: Obtained from the related literature [41],
[59], it consists of a total of 367 pairs of 2D slices of
T2-weighted MRI and CT images, most of which have a
slice thickness of 3 mm. This dataset was randomly divided,
with 290 MR-CT scan image pairs in the training set and the
remaining 55 pairs used for the test set. Additional images
were used for the validation set to adjust parameters, with all
images also resized to 512 × 256 pixels. The image formats
for both datasets include PNG and JPG.

FIGURE 6 presents several examples of experimental
data to provide a more intuitive understanding of the
characteristics of the datasets.

C. PERFORMANCE EVALUATION METRICS
The proposed HLSNC-GAN model will be empirically
tested to generate synthetic CT images, and its performance
will be evaluated mainly by using the PSNR [65], and
SSIM [66]. Currently in the medical field, these evaluation
metrics are widely used to evaluate the synthesis of medical
images.

1) PEAK SIGNAL TO NOISE RATIO (PSNR)

PSNR = 10 · log10

(
MAX2

i
MSE

)
(16)

The expression MAX2 refers to the squared value of the
maximum pixel in the image. A greater PSNR value indicates
a stronger resemblance between rCT and sCT.

2) STRUCTURAL SIMILARITY INDEX MEASURE (SSIM)

SSIM(x, y) =
(2µxµy+c1)(2σxy+c2)

(µ2
x+µ2

y+c1)(σ 2
x +σ 2

y +c2)
(17)

SSIM, also known as the structural similarity index metric,
is utilized to gauge the resemblance between two images.
The calculation involves comparing an uncompressed, undis-
torted image with a distorted image. The SSIM values range
from 0 to 1, with a value of 1 signifying an exact match
between the two images. In the SSIM calculation, µx and µy
represent the average value of the MR and the CT image.
The variances of the MR and CT images are denoted by
σ 2
x and σ 2

y , respectively. σxy signifies the covariance of the
MR and CT images. The constants C1 and C2 are defined
as C1 = (K1 · L)2 and C2 = (K2 · L)2, respectively, with
default values of K1 = 0.01 and K2 = 0.03. L represents the
dynamic range of pixel values.

D. EXPERIMENT SETUP
In this study, we configured the HLSNC-GAN model envi-
ronment based on cycleGAN, implemented using Python 3.7
and the tensorFlow framework. Here are the detailed
configurations of the model:

• Generator structure: The generator consists of convo-
lutional layers, 9 residual blocks, and deconvolutional
layers, suitable for processing images with a resolution
of 256 × 256. We set different filter sizes (including
7 × 7 and 3 × 3) and stride values (1 and 2) to meet
the requirements of different layers.

• Discriminator structure: The discriminator uses an
improved CNN network structure with a filter size of
4 × 4 and the same stride values as the generator.

• Optimizer: The model training utilizes the RMSprop
optimizer with an exponential decay rate β = 0.9.

• Loss function: The hinge loss function is introduced,
and switchable normalization (SN) layers are used to
enhance the performance of the entire HLSNC-GAN
model. During the loss calculation process, we set the
λ value to 0.01 to control the weights.

• Normalization: For numerical stability, we added a
small constant ε = 10−8 in the normalization layer
computation to prevent division by zero errors.

• Learning rate and batch size: The initial learning rate is
set to 0.0002, and the batch size is set to 1.

• Training epochs: To ensure convergence, we conducted
training for 500 epochs.

• Data division: We divided 80% of the dataset images
into the training set, 15% for testing the model’s
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FIGURE 6. Five sets of preprocessed data were randomly selected from the two datasets. The images displayed in A, B, and C are unpaired CT and MR
images selected from the Kaggle [64] dataset. The images displayed in D and E are paired CT and MR images selected from the [41] and [59] dataset. All
the displayed images are denoised head medical images.

TABLE 5. In the A40B57 dataset, MR to CT images.

performance, and the remaining 5% as the validation set
for hyperparameter tuning.

E. RESULTS
In this chapter, we will conduct a comprehensive perfor-
mance comparison of our proposed HLSNC-GAN model.
To begin, we will perform MRI to CT image transformations
using datasets from [41] and [59], which we will denote
as A40B57. We will compare different combinations of
loss functions, normalization methods, and optimizers (see
Table 5). Additionally, we will also perform CT to MR image
transformations using the same datasets and performance
evaluation methods (see Table 6). Furthermore, we will
compare the performance of our model in MRI to CT (see
Table 7) andCT toMRI (see Table 8) transformationswith the
latest models released in the field, all using the same datasets.
Finally, we will employ the Kaggle dataset (as shown in
Table 9) for comparisons with the latest models in MR to CT
image transformation tasks.

In Table 5 and 6, we present the quantitative accuracy
of different methods for generating CT and MR images
on the datasets [41] and [59]. Based on the quantitative

TABLE 6. In the A40B57 dataset, CT to MR images.

TABLE 7. In the A40B57 dataset, MR to CT images, partially referencing
the research results from [41] and [59].

TABLE 8. In the A40B57 dataset, CT to MR images, partially referencing
the research results from [59].

results, our experimental results indicate that our proposed
HLSNC-GAN outperforms other model methods in terms
of PSNR and SSIM. This is primarily attributed to the
incorporation of hinge loss in the HLSNC-GAN architecture,
which performs better than LSGAN and WGAN losses.
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TABLE 9. The Kaggle dataset consists of MR images transformed into CT
images.

Hinge loss helps strengthen the structural consistency
between input and output images, thereby enhancing image
quality. Furthermore, using SN normalization yields superior
results compared to common normalization methods such
as IN, BN, and LN. SN allows the model to automatically
adjust normalization methods based on input data, thus
improvingmodel stability and performance. Additionally, our
model performs better when using the RMSprop optimizer
compared to commonly used Adam and SGD optimizers. The
RMSprop optimizer’s adaptive learning rate feature accel-
erates model convergence and more effectively optimizes
model parameters.

In generating CT and MR images, our model combines
hinge loss, SN, and RMSprop optimizer, resulting in achieved
PSNRs of 52.484 and 51.05101, and SSIMs of 0.969 and
0.94905, respectively. The superiority of HLSNC-GAN in
PSNR and SSIM can be attributed to the combined effects
of several factors, including improved structural consistency,
adaptive normalization, and optimizer selection. Our test
results demonstrate significant improvements compared to
existing state-of-the-art methods.

To further validate the performance of our HLSNC-GAN
model, we utilized the Kaggle dataset. Table 9 illustrates
the quantitative accuracy comparison between our model
and the latest research models for generating CT images
on the Kaggle dataset. Our model achieved a PSNR of
50.2093 and SSIM of 0.9483. Notably, our method not
only obtained favorable results on our own test set but also
demonstrated advantages when compared with other recent
research models. Clearly, HLSNC-GAN exhibits outstanding
results compared to cycleGAN.

The traditional cycleGAN method uses L1 or L2 loss
functions, which may lead to blurry synthesized images in
some cases.We introduce the hinge loss function, which helps
maintain the structural consistency of images, thus producing
clearer and more accurate synthesized images. The hinge
loss function achieves this by forcing the model to focus on
important image features rather than averaging all pixel val-
ues. In traditional cycleGAN, a fixed normalization method
such as batch normalization or instance normalization is
usually used. However, different normalization methods
may perform differently in different datasets and tasks.
Our HLSNC-GAN framework introduces a switchable nor-
malization mechanism, allowing the model to dynamically
choose the most suitable normalization method based on the
current task and data, thereby improving the adaptability and
stability of the model. Traditional cycleGAN methods may
encounter difficulties in handling multimodal medical image

synthesis, especially in maintaining consistency between dif-
ferent modalities. The HLSNC-GAN framework effectively
addresses this issue by combining the hinge loss function and
switchable normalization mechanism, improving the quality
and consistency of synthesized images.

We demonstrate the effectiveness of the HLSNC-GAN
framework through theoretical analysis and experimental
validation. By comparing with the traditional cycleGAN
method, we show the advantages of HLSNC-GAN in gen-
erating high-quality, structurally consistent medical images.
Furthermore, we explore the performance of HLSNC-GAN
under different normalization methods and loss function
choices, further confirming its application value in multi-
modal medical image synthesis.

V. POTENTIAL LIMITATIONS AND FUTURE RESEARCH
DIRECTIONS
A. LIMITATIONS
Despite the excellent performance of HLSNC-GAN in
multimodal medical image synthesis, there are still some
potential limitations and drawbacks:

• The performance of HLSNC-GAN heavily relies on the
quality and diversity of the training data. In scenarios
with limited data volume or poor data quality, the model
may struggle to generate high-quality synthetic images.

• Due to the introduction of the hinge loss function and
switchable normalization mechanism, HLSNC-GAN
has a higher model complexity, which may lead to
longer training times and higher computational resource
requirements.

• While HLSNC-GAN performs well on specific datasets,
its generalization ability to other types of medical
images or different medical conditions still needs further
validation.

B. COMPUTATIONAL EFFICIENCY AND SCALABILITY
• HLSNC-GAN requires relatively more computational
resources, including GPU memory and processing
power, which may limit its application in resource-
constrained environments.

• Although HLSNC-GAN performs well on small-
scale datasets, its scalability for processing large-scale
datasets needs further research, especially considering
the continuous growth of medical image data volumes.

C. FUTURE RESEARCH DIRECTIONS
Based on the results of this study, we propose the following
future research directions:

• Explore more advanced loss functions or normalization
techniques to further improve the quality and consis-
tency of synthetic images.

• Extend the model to support image synthesis between
more modalities, such as incorporating PET images into
the synthesis process.
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• Apply synthetic medical images to clinical scenarios,
such as early diagnosis of diseases, assessment of
treatment effects, and prognosis prediction.

• Use synthetic images to augment training datasets
to improve the performance of other medical image
analysis tasks.

• Conduct more technical validations and clinical trials to
ensure the effectiveness and safety of the model.

• Collaborate with interdisciplinary teams, including radi-
ologists, biostatisticians, and ethicists, to ensure the
comprehensiveness and practicality of the research.

VI. CONCLUSION
Over the past few years, various researchers have suggested
diverse medical image synthesis techniques using both con-
ventional and deep learningmethods. One prevalent approach
among these methods is the utilization of GAN-based
models for image synthesis particularly in the case of the
two most widely used modalities, CT and MRI. Despite
the considerable advancements made through deep GAN
models the production of superior medical images remains
constrained by various limitations. For example, Pix2Pix a u-
net-based GAN model requires very rigorous image data for
trainingwhere the training datamust be paired. Another GAN
variant, the LSGAN model, over-punishes outliers during
training, resulting in insufficient sample generation which
leads to a lack of ‘‘diversity’’ and pattern collapse. In addition,
many GAN-based variants lack constraints on the mapping
relationship between different modalities and cannot generate
high-quality synthetic images. Moreover, there are too many
network layers and parameters, resulting in the loss of
details of the synthesized image, and the parameters are
scaled during the backpropagation process. This leads to the
disappearance of the gradient in the later stage of training,
which affects the stability of model learning. This study
aims to propose a novel framework utilizing a generalized
cycleGAN approach for producing CT images from MRI
data. Our proposed HLSNC-GAN framework effectively
handles unpaired training data, overcoming limitations posed
by scarce paired data.To enhance the correlation between
various modalities and preserve the structural consistency
between the input and output images, we propose a novel loss
function for the generator. Additionally, we adopt switchable
normalization techniques to enhance model training stability,
accelerate convergence, and reduce human intervention.
Furthermore, we use a new adaptive learning rate method
in the optimizer to effectively prevent overfitting to the
training data, Enhancing the fidelity and robustness of the
generated images.We also alleviate the excessive punishment
of outliers during model training, enhancing the model’s
learning capacity and increasing the diversity of generated
samples. In addition, we utilize skip connections in the gen-
erator’s ResNet architecture to preserve more image details,
further improving the diversity and quality of synthesized
samples. Finally, we use a leaky ReLU activation function to
avoid parameter scaling during the backpropagation process,

effectively preventing mode collapse and gradient explo-
sion or vanishing problems.Through these enhancements,
we achieve higher quality synthesized images. The results of
this study demonstrate significant progress in medical image
synthesis. Our approach outperforms existing methods [41],
[59] in terms of quantitative evaluation metrics, while
also exhibiting superior diversity and structural consistency.
These findings highlight the potential of our framework
in medical image synthesis, providing valuable support for
applications such as disease prediction and treatment.In
this study, we used 2D medical slice images to train our
HLSNC-GAN model and compare it with other existing
methods. However, with the advancement of 3D and 4D
medical imaging, this study has certain limitations. In future
work, we aim to focus on researching and developing medical
image synthesis models suitable for higher dimensions
(3D/4D) to address these limitations.

ETHICAL CONSIDERATIONS AND DATA PROTECTION
Given the sensitivity and privacy concerns of medical data,
this study strictly adheres to relevant laws and regulations
such as the Health Insurance Portability and Accountability
Act (HIPAA) and takes appropriate measures to ensure
data security and patient privacy. We also recognize the
potential risks of misusing synthetic medical images, such as
misleading diagnoses or insurance fraud, and thus emphasize
the need for strict ethical guidelines and regulatory scrutiny
when using synthetic images.
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