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ABSTRACT Cloud computing has become the cornerstone of modern technology, propelling industries to
unprecedented heights with its remarkable and recent advances. However, the fundamental challenge for
cloud service providers is real-time workload prediction and management for optimal resource allocation.
Cloudworkloads are characterized by their heterogeneous, unpredictable, and fluctuating nature, making this
task even more challenging. As a result of the remarkable achievements of deep learning (DL) algorithms
across diverse fields, scholars have begun to embrace this approach to addressing such challenges. It has
become the defacto standard for cloud workload prediction. Unfortunately, DL algorithms have been widely
recognized for their vulnerability to adversarial examples, which poses a significant challenge to DL-based
forecasting models. In this study, we utilize established white-box adversarial attack generation methods
from the field of computer vision to construct adversarial cloud workload examples for four cutting-edge
deep learning regression models, including Recurrent Neural Network (RNN), Long Short-Term Memory
(LSTM), Gated Recurrent Unit (GRU), 1D Convolutional Neural Network (1D-CNN) and attention-based
models. We evaluate our study with three widely recognized cloud benchmark datasets: Google trace,
Alibaba trace, and Bitbrain. The findings of our analysis unequivocally indicate that DL-based cloud
workload forecasting models are highly vulnerable to adversarial attacks. To the best of our knowledge,
we are the first to conduct systematic research exploring the vulnerability of DL-based models for workload
forecasting in the cloud data center, highlighting the inherent hazards to both security and cost-effectiveness
in cloud data centers. By raising awareness of these vulnerabilities, we advocate the urgent development of
robust defensive mechanisms to enhance the security of cloud workload forecasting in a constantly evolving
technical landscape.

INDEX TERMS Cloud computing, workload prediction, cloud security, deep learning, adversarial attack.

I. INTRODUCTION
The cloud computing [1], [2] offers the potential for users
to access computing, storage, and networking resources as
needed, accompanied by service level agreements (SLAs)
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established among providers of cloud services (CSPs) and
users. The key objective of the cloud computing strategy is to
facilitate the provisioning of resources on-demand, ensuring
economic satisfaction for both cloud providers and users [3].
Simultaneous user requests can lead to burst workloads,
potentially causing insufficient availability of resources.
Conversely, the idle status is characterized by low workloads,
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leading to the inefficient utilization of resources. Workload
fluctuations result in resource over-provisioning or under-
provisioning, leading to high overhead costs or inadequate
SLAs [4], [5]. Therefore, it is essential for CSPs to efficiently
ascertain resource allocation strategies that ensure SLAs
and enhance resource utilization [4]. To attain these goals,
cloud computing requires rapid and adaptable workload
forecast systems [6]. Proactive resource configuration and
allocation strategies enable efficient resource provisioning
through precise workload prediction. In recent decades,
multiple methods have been developed for predicting cloud
workloads. The schemes discussed in this context can be cate-
gorized into three primary groups: statistical models, machine
learning techniques, and deep learning-based approaches [7].
Analytical forecast approaches assume linear dependence
and stationary behavior among time-series samples. Standard
statistical techniques like Holt-winter [8], ARIMA (Autore-
gressive integrated moving average) [9], seasonal ARIMA
(SARIMA) [10], and Markov models [11], [12] are widely
used. However, these methods have shown limited success
in accurately forecasting excessively unstable time series and
long-term applications [13]. In contrast, another classifica-
tion of machine learning methodologies has been utilized
to overcome the limitations of traditional approaches [13].
Several approaches, including particle swarm-optimization
(PSO), support-vector-regression (SVR), and relevance-
vector-machine (RVM), have been employed for predicting
the workload in cloud data centers [13]. Although these
methodologies are not suitable for managing large datasets,
their effectiveness greatly depends on fine-tuning param-
eters [14]. DL-based forecasting algorithms have recently
gained popularity for their superior performance compared
to classical machine learning techniques in solving com-
plex problems, including cloud workload forecasting [15],
[16]. With the rising popularity of cloud services such
as location-based services (LBS) [17], e-health [18] and
others, which are managed through containers or virtual
machines across multiple clouds, there is an increasing
demand to develop intelligent workload prediction models.
These models should be trained using trace data that
covers various cloud environments. Since the practice of
transferring data to cloud servers increases to reduce the
burden of local storage and computation, it also intensifies
worries about security [19], [20]. The dilemma of data
privacy, driven by concerns about sharing trace data between
clouds, prevents the use of traditional distributed training
methods. To address this difficulty, researchers have lately
turned to federated learning [21] as a feasible approach
for anticipating workloads in inter-cloud environments [22].
Notably, federated learning algorithms are based on the
assumption of trust among users participating in collaborative
model training. However, practical circumstances contradict
this assumption, as participants in federated learning systems
frequently struggle with a lack of mutual trust [23]. This
trust deficit results from possible external threats or resource

FIGURE 1. Overview of an external attack on workload predictive models
in a cloud datacenter.

limits, which contribute to the dependability of individual
participant activity.

Additionally, cloud environments are an essential frame-
work that hackers can target, as the data maintained in the
cloud is typically sensitive and confidential. External attacks
on forecasting frameworks can distract security teams from
focusing on actual threats [24]. When data center operators
are faced with the consequences of unreliable workload
predictions, they might overlook other, potentially more
serious security incidents or vulnerabilities that are being
exploited at the same time. Figure 1 illustrates the impact of
an external attack on predictive models in a cloud datacenter.

Therefore, it is essential to consider not only how accurate
cloud workload forecasts are but also how secure they
are against attack. Current studies have indicated that DL
algorithms are prone to vulnerability when subjected to
adversarial attacks [25], [26]. Thus, using DL involves
risks and provides attackers with new attack possibilities.
Adversarial attacks subtly alter the initial data of Machine
Learning (ML) methods in order to produce false forecasts.
This particular hazard poses a significant risk to DL models
that receive input data from interfaces that are crucial for
ensuring safety. Different cloud trace data are frequently used
as input features in cloud workload forecasting models. Such
information is commonly obtained from publicly accessible
data sources, whichmight be tampered by hackers. Hence, the
primary concern of this study lies in the topic of adversarial
attacks on cloud workload prediction and it aims to answer
the following inquiries: Can adversarial examples be used
to attack state-of-the-art DL models for cloud workload
prediction? The significant contributions of this study are as
follows:

• Adversarial workload construction:We introduce two
well-established white-box adversarial attack methods
named FGSM and PGD from the field of computer
vision which can effectively construct adversarial cloud
workload samples.
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• Reliability assessment framework: We propose a
novel framework to evaluate the robustness of the
state-of-the-art deep learning-based cloud workload pre-
diction models. This assessment is conducted through
white-box adversarial attacks to uncover the vulnerabil-
ities of cloud workload forecasting models.

• Transferability analysis: We investigate an in-depth
analysis of the transferability properties inherent in
adversarial samples within deep learning-based work-
load prediction models. This investigation sheds light on
potential cross-model vulnerabilities.

• Comprehensive experiments: We conduct extensive
experiments with the most well-known real-world cloud
workload datasets from Bitbrain, Google trace, and
Alibaba trace. The results indicate the effectiveness
of our proposed white-box adversarial attack strategy
in challenging the robustness of existing workload
forecasting methods.

• Defense Mechanism Discussion: We carry out a com-
prehensive discussion about potential defense strategies,
which are crucial for future research in this domain.
This will contribute to developing more robust cloud
workload prediction techniques that are resistant to
adversarial attacks.

The remaining parts of this study are structured in the
following manner. Section II provides a concise overview of
the existing literature. Section III and IV provide the technical
background and methodology of this research, respectively.
Section V of the research paper presents the experimental
setup employed in the study, as well as a thorough analysis of
the obtained results. Sections VI and VII of the work present
a brief discussion of the potential defense mechanism and
conclusion, respectively.

II. RELATED WORK
A. DEEP LEARNING FOR WORKLOAD FORECASTING
In light of the recent achievements of deep learning (DL)
in diverse domains, numerous studies have utilized DL
methodologies for analyzing and predicting time-series data.
Notably, the recurrent neural network (RNNs) offers excep-
tional capacities for sequential processing. Consequently, the
authors of [27], [28], and [29] employed the RNN-based
approach to forecast the workload in a cloud environment.
However, prior studies have indicated that vanilla RNNs
encounter difficulties in capturing long-term dependencies
as a result of the vanishing gradient problem [30]. In order
to alleviate this difficulty, LSTM [31] and GRU [32] were
formed to address long-term dependencies more effectively.
Therefore, the authors of [33] used the LSTM network
to predict workload, which was an improvement over
their RNN-based work. Compared to LSTM, GRU requires
significantly less processing power due to its capacity
to converge with fewer parameters [32]. Hence, a few
studies [34], [35] utilized GRU-based architecture to predict
cloud workload. In contemporary research, the reliability of

cloud workload forecasting has been substantially improved
by the implementation of more advanced deep learning
methods. Authors of [36] demonstrate the effectiveness of
the BHyPreC architecture, which is a Hybrid Recurrent
Neural Network (RNN) that utilizes stacked LSTM and GRU
components to predict CPU consumptionworkloads for cloud
virtual machines via Bidirectional Long Short-TermMemory
(Bi-LSTM). Hybrid generative adversarial networks emerge
victorious in [37], demonstrating remarkable precision in
forecasting forthcoming duties and differentiating patterns.
In comparison to extant models, authors in [38] and [39],
introduce an ensemble architecture incorporating Attention
Mechanisms (AM), LSTM, Bidirectional Long Short-Term
Memory (BiLSTM), and Convolutional Neural Networks
(CNN), resulting in substantial reductions in RMSE and
MAE compared to existing models. The MAG-D model,
proposed in the article [7], utilizes Multivariate Attention
and Gated Recurrent Units to effectively capture long-range
dependencies, resulting in superior performance compared
to existing techniques. In addition, a Convolutional Neural
Network (CNN) effectively retrieves spatial features and
incorporates them seamlessly into a Gated Recurrent Unit
(GRU) network that has been optimized for temporal
correlation with an attention mechanism [40].

B. ADVERSARIAL ATTACK
The majority of adversarial attack strategies were initially
developed for image classification in the deep learning
domain. Szegedy et al. [25] introduced adversarial examples
for image recognition, paving the way to study adversarial
attacks across multiple disciplines. The Fast Gradient Sign
Method (FGSM) was proposed by Goodfellow et al. [26]
as a single-step attack. The initial adversarial attacks
on Time Series Classification (TSC) were introduced by
Oregi et al. [41]. Fawaz et al. [42] employed established
adversarial attack methods, including the Fast Gradient Sign
Method (FGSM) andBasic IterativeMethod (BIM), to reduce
the performance of residual networks in terms of Time Series
Classification. Rathore et al. [43] introduce the concept of
targeted attacks on time series data. The targeted attacks
primarily focus on TSC tasks. Yang et al. [44] introduce
a black-box technique referred to TSadv for the TSC task.
Additionally, Mode and Hoque et al. [45] investigate the
susceptibility of deep learning multi-time series regression
methods to adversarial samples in the context of time series
forecasting. Additionally, the work concentrates on gradient-
based white box attacks on several deep learning methods
(including 1D-CNNs, GRUs, and LSTMs).

III. TECHNICAL BACKGROUND
A. PROBLEM DEFINITION
1) CLOUD WORKLOAD FORECASTING
An univariate time series refers to a collection of measure-
ments of a single variable that are recorded over a period
of time. We analyze univariate time-series data of workload
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FIGURE 2. Recurrent neural network architecture.

FIGURE 3. Long short term memory architecture.

(CPU usages) obtained at regular intervals from real-world
cloud trace datasets.

Given a workload W = [w1,w2, ..wT ], a workload
forecasting task predicts the value of wT + 1 based on the
previous samples [wT − L,wT−L + 1, . . .wT ], where L is
the lookback period under consideration. The sample wT +

1 corresponds to the forecasted value and is often represented
by Ŷ .

2) ADVERSARIAL WORKLOAD
An adversarial perturbation ϵ, typically superposed on a given
workload W, to construct Ŵ given by [ŵ1, ŵ2, . . . , ŵT ]. The
adversarial workload Ŵ (Wad ) is intended to significantly
worsen the output prediction Ŷ of a workload forecasting
model.

3) GOAL OF ADVERSARY
The goal of the attacker is to create a targeted output impact
on the time series. We consider L∞-bounded perturbation
that causes a targeted attack. The definition of white-box
access is examined in this context, which refers to the
availability of the model’s gradients for loss computation.
We denote the regressor f : R(M )

→ R(N ) with parameters
θ , the predicted output for input x ∈ R(M ) is represented as
y = f (x).

4) PROPERTIES OF THE PERTURBATION
Usually, the introduction of a perturbation to the input
tends to impair the performance of the model’s prediction.
Additionally, it is also important for the perturbation to
satisfy additional requirements including: 1. Small changes
to the input to create bigger performance degradation on
the output. Larger perturbations to the inputs are also easily
detectable by the input plausibility check modules. Notably,
it is more expensive to achieve higher input perturbation. 2.
Imperceptible perturbations, attributing to reduced risk due to
detection of the input perturbation. The perturbation is hence
formulated as a constrained optimization problem, where F
is the workload forecasting model under consideration and ϵ

indicates the strength of the attack.

B. WORKLOAD FORECASTING MODELS
1) RECURRENT NEURAL NETWORK
Recurrent Neural Networks (RNNs) belong to a category
of Artificial Neural Network (ANN) algorithms specifically
designed to process sequential data, particularly time-series
data. An RNN’s network architecture uses a feedback loop
to handle variable-length input sequences. It uses the output
from the previous step (n-1) as input for the current step
n, performing an iterative procedure for each successive
step. This network architecture is useful for predicting cloud
workloads by predicting past load levels to anticipate future
workloads [36]. The RNN model, depicted in Figure 2, has a
single hidden layer and an extended structure, with input data
xt , hidden state ht , and output yt . Historical data on cloud
workload, specifically CPU consumption (xt ), will be used
for forecasting. According to Figure 2, the calculation of ht
in the RNN is based on the previously hidden state values and
the output at the current time step and can be determined by
the following equation:

ht = βh(rxt + qht + eh) (1)

The computation of the output state yt for the input xt is
contingent upon the hidden state ht at time step t in the
following manner:

yt = βy(aht + ey) (2)

Here, βh and βy represent non-linear activation functions,
such as tanh, ReLU, or sigmoid functions. Once again,
the parameter matrices and vectors are denoted as r , a, q,
and e. An RNN employs a consistent set of parameters,
matrices, and vectors across all stages, reducing the number
of parameters required for training, unlike a conventional
deep neural network.

2) LONG SHORT-TERM MEMORY
Long Short-Term Memory (LSTM) models are commonly
favored for addressing the challenge of long-range reliance
and have demonstrated exceptional performance in tasks
that involve sequences. The incorporation of a hidden layer
within the LSTM structure distinguishes it from the RNN
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FIGURE 4. Gated recurrent unit architecture.

FIGURE 5. Architecture of the LSTM network incorporating the attention
mechanism.

design. The concealed stratum inside the LSTM model is
commonly referred to as the LSTM cell [7]. The architectural
representation of the basic LSTM block is illustrated in
Figure 3. The LSTM architecture consists of a memory
cell, input gate, output gate, and forget gate. The activation
functions used are the Sigmoid function and hyperbolic
tangent function. The variable x t represents the input at a
specific time, while ht represents the concealed state. The
process of quantifying input data in the cell state involves
using K t as the candidate state. Recurrent and input weights
are represented as � and α, respectively. The bias associated
with the forget gate is denoted by oK . The sigmoid function
determines the permissible range of values that can be
transmitted. The forget gate kt verifies the contents of the cell
state and determines what needs removal. Additionally, it can
be presented as:

k t = σ (x t × αk + ok + ht−1 × �k ) (3)

The subsequent step involves updating the cell state pt

by incorporating the newly acquired information from the

preceding cell state pt−1, as well as the input and forget gates.

pt = pt−1
× k t + l t × jt (4)

The tanh activation function is commonly chosen to generate
the new candidate values l t in the construction process. The
formulation for this activation function is as follows:

l t = tanh(ol + x t × αl + ht−1
× �l) (5)

jt = σ (oj + αj × x t−1
+ �j

× ht−1) (6)

The weight matrices, bias vector, and output gate W t are
represented by (�l , αl , ol) and (�j, αj, oj), respectively. The
output gateW t is determined by the cell state content, with the
sigmoid activation function identifying the fragment portion
to output. The formulation of this concept can be expressed
as:

wt = σ (ow + x t × �w
+ ht−1

× �w) (7)

ht = wt × tanh(pt ) (8)

The weight metrics assigned to the recurrent and input
components are symbolized as (�w, αw), while the bias of
the output gate is represented as oG in the equation. In the
provided diagram, the symbol ⊗ denotes the operation of
element-wise multiplication.

3) GATED RECURRENT UNIT
TheGated Recurrent Unit (GRU) design, which is recognized
as a viable alternative to LSTM, is characterized by its simpler
structure and widespread popularity [32]. The update gate in
the GRU architecture combines the functions of the forget
gate and input gate into a unified element. This update gate
operates using a single hidden state. The basic framework of
a conventional GRU cell is seen in Figure 4.The input weight
matrix, recurrent weight matrix, and bias are represented by
Pi, Z i, and L i at a specific time-step t. The reset gate, St ,
integrates previous memory and new input. After the function
f t is terminated, associated data becomes inapplicable for the
current hidden state, and is disregarded.

S t = σ (Z tbt−1
+ Ptyt + L t ) (9)

The formulation of the candidate cell vt is based on the input
weight matrix Pn, recurrent weight matrix Zn, as well as bias
Ln. It takes into account the input yt , the previous hidden state
bt−1, and the reset gate St .

vt = tanh(Zn((S t ⊕ bt−1
+ Pnyt + Ln))) (10)

The gate k t is updated using the weight matrices (Zm, Pm)
for recurrent and input connections and the bias term Lm.
The function of this gate is to regulate the transmission of
information from the preceding concealed state to the present
concealed state.

k t = σ (Zmbt−1
+ Pmyt + Lm) (11)
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FIGURE 6. Overall workflow of this study where the upper section depicts the input of the actual cloud workload
into predictive models to generate perturbation, and the lower section illustrates how implementing adversarial
attacks disrupts the accurate prediction of future values.

The final hidden state bt can be computed by adding two
composite equations. These equations involve the element-
wise product ⊗ of (1 − k t ), bt−1, and k t , resulting in vt .

bt = (1 − k t ) ⊗ bt−1
+ k t ⊗ vt (12)

The utilization of smaller gates in combination with the GRU
results in a more streamlined and effective architecture that
requires fewer parameters. This leads to accelerated training
times as compared to the LSTM network.

4) 1D CONVOLUTIONAL NEURAL NETWORK
Convolutional Neural Networks (CNNs) are powerful tools
for feature extraction and deep mining of information. The
two-dimensional nature of image data makes it ideal for pro-
cessing image data. However, most data used to forecast roller
bearings’ useful life consists of uni-dimensional vibration
signals, which cannot be efficiently handled using a two-
dimensional convolution kernel. A 1D-CNN approach is used
to extract features from these signals, considering specific
sequence data attributes [46]. 1D-CNNs offer a unique
method for feature extraction, allowing for autonomous
retrieval of data features without requiring extensive operator
input or specialized expertise. The horizontal vibration
signal undergoes fast Fourier transformation to reduce
the sequence length and improve data representation. The
positive segment, 0 Hz points, and central symmetry points
are selected to minimize computational requirements. The

sequence data is inputted into the 1D-CNN model, and
feature data is retrieved through iterative movement of
the one-dimensional convolution kernel. By analyzing data
variations across multiple time points, specific characteristics
can be extracted for prediction. The spectral characteristics of
bearings vary over their life cycles, with notable differences
observed in the middle and later stages of degeneration.
Thus, 1D-CNN models enable the extraction of diverse
feature information from sequential input at distinct temporal
intervals for prediction.

5) ATTENTION MECHANISM
The attention mechanism, introduced in [47], is proposed
as a way to comprehensively analyze all input words in a
natural language processing (NLP) issue and assign relative
priority to each word. Due to the similarities between
NLP and time series forecasting, the attention mechanism
also attracted the eye of the time series community [48].
The majority of attention models utilize the Encoder-
Decoder framework, which initiates by analyzing the input
sequence for a set of encoder-generated annotations. The
concealed state of the decoder is determined by an operator-
defined neural network recurrent architecture (Regarding
this study, LSTM blocks are utilized). Figure 5 depicts the
structure of the LSTM network integrated with the attention
mechanism. The attention mechanism is executed primarily
through the subsequent procedures. The LSTM produces the
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output [h1, h2, h3, .., hn], which is nonlinearly transformed
into [u1, u2, u3, . . . , un]. Certain components of the cloud
workload forecasting method have a significant impact on
the workload prediction; therefore, greater weight needs to
be assigned to these portions. The attention weight matrix
[α1, α2, α3, . . . ., αn], which can represent the significance
of each intermediate state, is generated by the attention
mechanism. As a final step, the input parameter and weight
are combined via weighted sum to produce the encoding
vector V. Decoding the input y by the encoding vector V
yields the desired result y. The following is the detailed
equation of the attention mechanism:

Uj = tanh(Wjhj + cj), (13)

αj =
exp(UjTUm)∑n
j=1 exp(UjTUm)

, (14)

V =

n∑
j=1

αjhj, (15)

where Wj is the weight matrix, cj is the value of the offset
number, αj is the attention weight that has been normalized,
and Um is the attention time series matrix that has been
randomly initialized.

C. GRADIENT BASED WHITE BOX ADVERSARIAL ATTACK
FOR CLOUD WORKLOAD FORECASTING
In white box adversarial attacks, the attacker possesses
complete access to the targeted system. This includes
comprehensive knowledge of the model, encompassing its
gradient, parameters, hyperparameters, as well as the training
dataset [49]. According to [50], the attack algorithms that
yield the highest success rates primarily utilize optimization
techniques based on gradients. The researchers extract a
substantial volume of data from the method through the
utilization of adversarial assaults generated by the gradients
of a loss function. The research literature frequently uses two
optimization-based attacks: the Fast Gradient Sign Method
(FGSM) and Projected Gradient Descent (PGD). These
attacks were initially introduced [26] and [51] respectively.

1) FAST GRADIENT SIGN METHOD(FGSM)
The Fast Gradient Sign Method (FGSM) was initially intro-
duced in [26], demonstrating its effectiveness in deceiving
the GoogLeNet model through the creation of inconspicuous
hostile images. FGSM computes the gradient of the cost
function concerning the input of the neural network. This
form of attack is sometimes referred to as the one-shot
approach, as the generation of the adversarial perturbations
occurs through a single-step computation. It should be noted
that the FGSM is an approximation explanation that relies
on a linear premise [52]. Adversarial instances for cloud
workload are generated using the subsequent mathematical
expression:

η = ϵ · sign(∇wZf (W ,Y ))

Ŵ = W + η (16)

Here, Zf represents the cost function associated withmodel
f, while ∇ denotes the gradient of the model about the initial
cloud workload. In the context of this study, the variable
W is appropriately assigned the label Y. The symbol α

represents the hyper-parameter that dictates the magnitude of
the perturbation, while Ŵ refers to the adversarial workload.

Algorithm 1 FGSM Attack on Cloud Workload
Require: Actual workload W ; and it’s label Y ; defined

model parameters w; loss function Z of the recognition
model f; perturbation intensity ϵ

Ensure: Adversarial workload Ŵ
1: Get the loss Z (W ,Y ) after forward propagation.
2: Get the gradient ∇wZf (W ,Y ) of the input workload.
3: Take the sign function for the obtained gradient and get

sign(∇wZf (W ,Y )).
4: Calculate the adversarial perturbation: η = ϵ ·

sign(∇wZf (W ,Y )).
5: Add the adversarial perturbation to the input workload

and obtain the adversarial workload as follows:

Ŵ = W + η

= W + ϵ · sign(∇wZf (W ,Y ))

6: return Ŵ

2) PROJECTED GRADIENT DESCENT (PGD)
The PGD attack is a variant of the Iterative-FGSM attack,
which is commonly referred to as the Basic Iterative Method
(BIM) [51]. The initialization of PGD can be performed by
randomly selecting any point within the l∞-norm distance
of the original sample, as mentioned in the work of
Madry et al. [53]. In contrast to the single-step approach
known as the FGSM, the PGD technique involves the
execution of many iterations. With each incremental action,
the disturbance will be consistently confined within the
predetermined range.

W+t + 1 =

∏
w+P

(Wt + α · sign(∇wZf (Wt ,Y , θ))) (17)

Here, α be the length of each step, and P = r ∈ Rd

represents the perturbation set. Furthermore, the perturbation
r meets the condition that its infinity norm is less than or
equal to epsilon, denoted as ∥r∥∞ < ϵ. On the other
hand, the expression

∏
w+P denotes the projection onto

the ϵ-neighborhood range sphere. If the intensity of the
disturbance is excessively large, the surplus portion will be
drawn back towards the boundary region.

IV. METHODOLOGY
The objective of adversarial attacks in cloud workload
forecasting is to create carefully constructed hostile workload
instances to deceive prediction systems. The prediction
model demonstrates a high degree of accuracy in forecasting
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Algorithm 2 PGD Attack on Cloud Workload
Require: Input workload W ; actual label Y ; defined model

parameters θ ; loss function Z of the defined model;
perturbation intensity ϵ; the total number of iterations T

Ensure: Adversarial Workload Ŵ
1: Get the perturbation level α = ϵ/T of each iteration;
2: Initialize Ŵ0 = W ;
3: for epoch t = 0 to T − 1 do
4: Get the loss Z (W ,Y ) after forward propagation;
5: Get the gradient ∇wZθ (W ,Y ) of the input workload;
6: Take the sign function for the obtained gradient and

get sign(∇wZθ (W ,Y ));
7: Calculate the adversarial perturbation of each iteration

and get α · sign(∇wZθ (W ,Y ));
8: Use Proj{·} to project the adversarial workload in

the α − l∞ neighbor of the original workload
after each iteration as: Ŵt+1 = Projt,α

(
Ŵt + α ·

sign(∇wZθ (Ŵt , y))
)
;

9: end for
10: Return Ŵ = ŴT−1

future workload direction, particularly when considering
the workload patterns observed over a certain time frame.
Nevertheless, the utilization of an attack-based methodology
can produce adversarial perturbations that can effectively
disrupt the initial workload and mislead the prediction
techniques. It is desirable for the adversarial task to closely
resemble the original workload. This work aims to reduce
the distance between the two sequences by controlling the
perturbations. The comprehensive structure of this investi-
gation is illustrated in Figure 6. This study encompasses
the three primary elements of an adversarial attack: an
adversarial cloud workload generator, an adversarial attack,
and a transferrable attack. The intricacies of the framework
are elaborated upon in the subsequent sections. A brief
discussion of the methodology is presented below.

• Adversarial workload generator. The key aim of an
adversarial cloud workload generator is to produce
subtle yet impactful perturbations in the initial workload
that may effectively deceive the workload prediction
model while remaining undetectable.
As illustrated in the upper portion of Figure 6, the
core idea is to obtain the actual cloud workload W
and feed it to workload forecasting models to construct
the perturbation W + η, leveraging the adversarial
example generator (Algorithms 1 or 2, named FGSM
and PGD, respectively). In FGSM, as demonstrated
in Algorithm 1, the process starts by evaluating the
loss experienced by the model with the real workload.
It calculates the gradient of the loss with respect to
the input workload, determining the direction with the
highest increase in loss. Through analyzing the sign
of the gradient (positive or negative), the algorithm
crafts the adversarial perturbation. Finally, this pertur-

bation is applied to the input workload to generate
an adversarial workload. In contrast to the single-
step perturbation employed by FGSM, PGD adopts an
iterative technique to refine the adversarial workload,
as shown in Algorithm 2. The approach calculates the
loss and gradient for the current workload, projects the
resultant perturbation into an appropriate range, and
uses it to produce the workload for the next iteration.
This repeated refining process helps to generate a
more robust adversarial workload, which increases
the potential efficacy of the adversarial assault. Such
repeated modification is consistent with the larger goal
of improving adversarial resilience in the target model.
Considering the premise that the attacker possesses
knowledge of the loss function employed in the
workload prediction method, it becomes feasible for the
attacker to acquire gradient information by performing
partial derivatives on the loss value.

• Workload forecasting adversarial attack. The bottom
section of Figure 6 demonstrates that the implementation
of adversarial attacks by the adversarial workload
hinders the correct prediction of future values. The
primary aim of an adversarial attack is to significantly
compromise the accuracy of workload prediction algo-
rithms by exploiting the high cost associated with data
tampering and the ability of adversarial perturbations to
go undetected.

• Transferable attack. Numerous modern deep neural
networks have been utilized in addressing the challenge
of workload prediction. A ‘‘transferable adversarial
attack’’ refers to a scenario where adversarial examples
crafted to deceive a certain prediction model are
effective in fooling that model, while also causing
other prediction approaches to fail. In this study,
we investigate the potential for portable adversarial
assaults and carry out extensive tests to confirm this
hypothesis.

V. EXPERIMENTS
This section provides a thorough analysis to examine the
robustness of five contemporary deep learning approaches in
the context of workload forecasting. The evaluation of these
models is conducted using two popular evaluation metrics
and three real-world cloud trace datasets.

A. EXPERIMENTS SETUP
1) DATASETS
This research employs three freely accessible cloud trace
datasets to conduct a performance evaluation. During the
training and testing of forecasting models, the dataset
sequence is partitioned into two sub-datasets. The initial
subset of the dataset contains 70% of the total data and is
employed to train the model. The remaining 30% of the data
is allocated to evaluate the performance of the model. The
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TABLE 1. Summary of Bitbrain dataset.

workload data was partitioned into multiple time windows of
size 30 to predict future workload.

a: BITBRAIN
Bitbrain is a widely recognized distributed data center that
specializes in the collection of extensive and enduring traces
of authentic data [54]. The dataset comprises performance
metrics for 1,750 virtual machines obtained from Bitbrains’
distributed data center. Bitbrains is a corporate entity that
focuses on offering regulated hosting and business computing
services tailored to meet the needs of various enterprises.
The management of computing capacity is facilitated through
the utilization of generic VMware provisioning frameworks,
such as Dynamic Resource Scheduling and Storage Dynamic
Resource Scheduling. Each file contains the performance
metrics of the virtual machine. The files are organized into
two categories: fastStorage and Rnd. FastStorage is a system
including 1250 virtual machines (VMs) that are associated
with storage devices known as Storage Area Network (SAN)
gadgets. On the other hand, Rnd is a system consisting
of 500 VMs that are associated with either faster SAN
gadgets or somewhat slower Network Attached Storage
(NAS) gadgets. The arrangement of each file follows a row-
based structure, where every row represents an analysis of
performance metrics consisting of 11 columns. The dataset
encompasses a total of 5,446,811 CPU hours, 23,214 GB
of memory, and 5,501 cores. Following the pre-processing
steps, the original dataset undergoes a conversion procedure
resulting in the formation of a DataFrame. Table 1 presents
a concise overview of the Bitbrain trace dataset. In this
study, we utilize the ‘CPU Usage’ data from the provided
DataFrame.

b: GOOGLE TRACE
Google collected and stored trace data during the entirety
of May 2019 [55]. This trace offers a comprehensive
understanding of the actual cloud data center infrastructure.
Typically, the workload is received by the cluster in the
form of jobs. The dataset contains running-time traces for
over 650,000 real-time jobs that have undergone various
scheduling methods. These traces include the start time, end
time, and execution time of the jobs over 29 days. The

TABLE 2. Summary of resource utilization in Google trace dataset.

employment positions are allocated on disparate physical
computers that possess varying quantities of cores and RAM.
Every job within the cluster trace is linked to a collection
of resource use metrics that have been gathered at various
intervals. The resource tables for all the traces are categorized
into three distinct categories: Jobs & Tasks, Machines, and
Resource Utilisation. For this study, we considered the initial
seven-day period CPU utilization data from the resource
utilization table. A concise overview of the metrics about
resource utilization is presented in Table 2.

c: ALIBABA TRACE
Alibaba cluster trace [56] includes a higher number of
machines and a longer duration. It is composed of 4K
machines, 9K online services, and 4M batch jobs that save
static and runtime data for 8 days. The dataset consists
of three distinct traces: servers, online services, and batch
jobs. Over a period of 8 days, we randomly choose 1,000
machines from the server trace, each with around 7,000
traces. Then, we extract various significant metrics relevant
to workload prediction, such as the machine ID, timestamp,
CPU utilization, memory utilization, memory bandwidth, and
disc I/O consumption of each trace. As with the previous two
datasets, we only consider CPU utilization from this trace in
our experimental investigation.

2) FORECASTING MODELS AND ADVERSARIAL ATTACK
METHODS
In order to assess the robustness of DL models against adver-
sarial attacks for the purpose of cloud workload forecasting
and to determine whether the adversarial workload generated
can be distributed across multiple models, we looked at five
popular methods for cloud workload forecasting: 1D-CNN,
LSTM, GRU, RNN and attention based LSTM along with
two white box adversarial attack methods, FGSM and PGD,
which are presented in details in III-B and III-C respectively.

3) EVALUATION METRICS
This research study has employed two commonly used
performance indicators, specifically the root mean squared
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error (RMSE) and the empirical correlation coefficient
(CORR). The details of these specified measurements are
given as follows:

• RMSE is a statistical metric used to assess the accuracy
and reliability of predictions by quantifying the standard
deviation of the prediction errors. Mathematically, the
formulation is expressed as follows:

RMSE =

√√√√ 1
T

T∑
t=1

(Ŵt −Wt )2 (18)

where T symbolizes the quantity of samples to be taken
into account. The real values and expected values at a
specific time t are represented by the variables W and
Ŵ correspondingly.

• CORR determines the strength and direction of the
linear association between two variables. This statement
elucidates the extent to which the fluctuations in one
variable can be accounted for by the fluctuations
in another one. Mathematically, the equation can be
represented as follows:

CORR =

∑
(W − mean(W ))(Ŵ − mean(Ŵ ))√∑

(W − mean(W ))2
∑

(Ŵ − mean(Ŵ ))2

(19)

here, W and Ŵ represents the actual and foretasted
values respectively.

4) HYPERPARAMETERS
The hyperparameters for RNN, LSTM, and GRU models
followed a conventional architectural design as described in
previous studies [36], while the attention-based LSTMmodel
adhered to a standard architectural design as mentioned
in [38]. This configuration consisted of two hidden layers
with a size of 64, utilizing a tanh activation function and
including a dropout rate of 0.15 to mitigate overfitting.
1D-CNN model included two filters, each with a size of
64, and the kernel size is set to 3. The L1 loss function
is employed for training all the models due to its inherent
robustness in handling anomalies present in real-time series
data [57]. For the FGSM attack, as outlined in Algorithm 1,
the perturbation levels were set at 0.01, 0.05, 0.1, 0.15,
and 0.2, respectively. For the PGD attack, we maintained
a consistent perturbation range while keeping the number
of iterations fixed at 50 and employing a step size of 0.01.
The perturbation values were carefully chosen to assess the
resilience of workload forecasting models when subjected
to different levels of perturbation. The selected perturbation
values were determined by a systematic investigation of
the parameter space. The experiment begins by employing
lower perturbation values to investigate the sensitivity of the
model. The perturbation levels are then gradually increased
to evaluate their influence on the model’s resilience. The
purpose of this strategy was to replicate many possible hostile

TABLE 3. RMSE loss after FGSM adversarial attack against forecasting
models on Bitbrain, Google trace, and Alibaba trace dataset.

TABLE 4. RMSE loss after PGD adversarial attack against forecasting
models on Bitbrain, Google trace, and Alibaba trace dataset.

situations, ensuring that the study encompasses both nuanced
and more forceful attacks.

B. RESULT ANALYSIS
1) IMPACT OF ADVERSARIAL ATTACK
Tables 3 and 4 illustrate the results of our research on the
Bitbrain, Google trace, and Alibaba trace datasets, which
demonstrate the impact of FGSM and PGD adversarial
attacks on DL-based cloud workload forecasting models.
As the perturbation parameter ϵ is steadily increased,
we observe a consistent rise in RMSE values for all
forecasting models. Notably, lower ϵ values can also result
in a substantial decline in the performance of forecasting
models. The deliberate addition of noise, as indicated by
the perturbation parameter ϵ, provides valuable insights into
the resilience of the models against various attack scenarios.
As the value of ϵ increases in the Bitbrain dataset, we consis-
tently find an increase in RMSE values across all forecasting
models. For instance, the RMSE loss for RNN, LSTM,
GRU, 1D-CNN, and attention-based LSTM on the Bitbrain
dataset increases by 338.46%, 315.38%, 325%, 83.33%,
and 300%, respectively, when ϵ increases from 0.01 to
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TABLE 5. CORR between actual values and the forecasted values after
FGSM adversarial attack against forecasting models on Bitbrain, Google
trace, and Alibaba trace dataset.

0.05 under the FGSM attack (Table 3). This emphasizes
the vulnerability of the models to small perturbations under
the FGSM attack. However, Table 3 illustrates that 1D-
CNN is marginally more resilient than other models against
FGSM attacks. And, in terms of PGD attack, 1D-CNN is
more vulnerable than other models where the attention-based
LSTM model shows more robustness under this attack as
indicated in Table 4. Similar patterns have been observed
with the Google trace and Alibaba trace datasets, where
increasing ϵ leads to a rise in RMSE values, demonstrating
the models’ vulnerability to adversarial attacks. Figure 7
shows the visualized representation of the performance of
five DL-based workload forecasting models on the Bitbrain
dataset against both adversarial attacks. Furthermore, the
correlation values between the prediction results derived
from the adversarial workloads and the results obtained from
the actual workload are presented in Table 5 and 6. These
correlation values are calculated for the four state-of-the-
art prediction models and the attention-based LSTM model.
As the value of the disturbance ϵ is increased the data undergo
perturbation, resulting in a decrease in correlation. Based
on the findings of the aforementioned experiment, it can be
inferred that cloud workload forecasting models that rely on
deep learning techniques exhibit vulnerability to adversarial
attacks.

2) PERFORMANCE VARIATION VS THE AMOUNT OF
PERTURBATION
In Figure 8, the performance of the model is assessed in
relation to the varying amount of perturbations permitted for
generating the adversarial workload samples. Overall, across
all five cutting-edge forecasting models, RMSE values of the
prediction approaches exhibit an upward trend as the level
of perturbations increases. This observation highlights the
susceptibility of workload forecasting models to adversarial
attacks. Based on the findings presented in Figure 8, it can
be observed that the PGD attack poses a greater threat to
the accuracy of predictive models compared to the FGSM

TABLE 6. CORR between actual values and the forecasted values after
PGD adversarial attack against forecasting models on Bitbrain, Google
trace, and Alibaba trace dataset.

attack, particularly when considering larger values of ϵ.
When comparing different values of ϵ, it is observed that
the use of a greater ϵ in the PGD method results in a
generation of more potent adversarial instances that are
capable of deceiving all prediction models. This discrepancy
arises from the observation that PGD introduces a minor
disturbance during each iteration, while FGSM introduces
a fixed amount of noise, epsilon, for each data point.
The reason for this discrepancy [58] is that PGD intro-
duces a minor perturbation at each iteration, while FGSM
introduces an ϵ amount of disturbance for each point of
data.

3) TRANSFERABILITY OF ADVERSARIAL WORKLOADS
A transferable attack is capable of generating adversar-
ial examples that are specifically designed to deceive a
workload load prediction model. However, it is worth
noting that this attack has the potential to also mislead
other forecasting algorithms. Here, on the Bitbrain and
Google trace datasets, we investigate the transferability of
both adversarial attack methods among the four workload
prediction models. The outcomes of transferable attacks,
wherein adversarial cloud workloads are created for one
model and subsequently employed as input for the other
models at ϵ values of 0.0 and 0.1, are presented in
Table 7 and 8.

We observe that in terms of PGD attack for both datasets,
the adversarial workload examples crafted for GRU are
the most transferable. In terms of the FGSM attack for
the Bitbrain dataset, the adversarial workload generated for
GRU again is the most transferable but for the Google
trace dataset adversarial workload generated for LSTM is
the most transferable. This means most cases a higher
RMSE is observed when the adversarial workload examples
crafted for the GRU model are transferred to other models.
After a thorough investigation of the experimental outcomes
presented in Table 7 and 8, it becomes evident that both
adversarial attacks are capable of transferring between the
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FIGURE 7. The impact of FGSM and PGD adversarial attack against DL-based forecasting models in terms of CPU usage of the
Birbrain dataset. (a), (b), (c), (d), and (e) show the effects of adversarial attacks on RNN, LSTM, GRU, 1D-CNN, and
attention-based LSTM, respectively.
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FIGURE 8. RMSE values after adversarial attack against workload forecasting methods in terms of different perturbation amounts on
Bitbrain, Google Trace, and Alibaba Trace dataset. (a)-(b) shows results after FGSM and PGD attacks with different perturbation
amounts on the Bitbrain Dataset respectively. (c)-(d) shows results after FGSM and PGD attacks with different perturbation amounts on
Google Trace Dataset respectively. (e)-(f) shows results after FGSM and PGD attacks with different perturbation amounts on the Alibaba
Trace Dataset respectively.

TABLE 7. Transfer attack with FGSM.

models. Therefore, the adversarial burden generated against
other forecasting models is also able to deceive the target

prediction method, even if the particular target model is
unknown.
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TABLE 8. Transfer attack with PGD.

VI. DEFENSE AGAINST ADVERSARIAL ATTACKS
Several defense strategies against adversarial attacks have
been proposed by scholars [59], with a primary emphasis
on the visual area. There are three distinct categories in
which tactics for defending against adversarial attacks can be
classified: data change, model transformation, and the use of
additional tools. The act of modifying data involves making
alterations to the training dataset during the training phase
or adjusting the input data during the testing phase. Addi-
tionally, the techniques encompass adversarial training [26],
transferability restriction [60], compression of data [61],
gradient concealment [62], and data randomization [63].
On the other hand, the term ‘‘modifying models’’ pertains to
the alteration of DL models, which includes techniques such
as defensive distillation [64], feature compressing [65], deep
contractive network [66], and mask defense [67]. The incor-
poration of auxiliary techniques into deep learning models
is commonly known as using additional tools. These tools
encompass defense-GAN [68], MagNet [69], and high-level
representation guided denoiser [70]. Regrettably, a significant
drawback of the majority of these detectors lies in their
susceptibility to adversarial assaults. This vulnerability arises
from the deliberate design of these attacks, which aims
to deceive the aforementioned detectors [71]. Therefore,
it is imperative for researchers in the fields of time series
analysis, data mining, and machine learning to give particular
consideration to this domain. This is due to the increasing
popularity of deep learning models in cloud computing
domains that prioritize safety and cost-effectiveness. One
possible approach to identify adversarial cases in cloud
workload forecasting is to employ an inductive conformal
anomaly detection technique [72]. Another possible approach
involves utilizing the wide range of research on non-
probabilistic classifiers, which are the combination of nearest
neighbor algorithms with dynamic time warping [71].

VII. CONCLUSION AND FUTURE WORK
This research addresses the potential risks associated with
adversarial attacks targeting cloud workload prediction
methods. To the best of our understanding, there is a lack
of research conducted on adversarial attacks against cloud
workload forecasting models. Existing research has solely
concentrated on forecasting the future workload in cloud
data centers. To investigate the robustness and security of
predictive models, we therefore focus on the adversarial
attack on workload prediction. The experimental results
of this study demonstrate that all state-of-the-art workload

forecasting models are susceptible to adversarial attacks,
which can have disastrous security implications for cloud data
centers. In the future, we will focus on the development of
enhanced adversarial attack methods specifically tailored for
cloud workload data. This is due to the fact that changes
in cloud workload data are more perceptible to human
observation compared to alterations in picture data. The
notion that a change in picture usage is imperceptible to
the human eye remains inaccurate in the context of cloud
workload data. Furthermore, our research will encompass
an investigation of defense mechanisms aimed at identifying
and mitigating hostile risks inside deep-learning forecasting
models.
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