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ABSTRACT Path planning for a point-mass robot moving in a cluttered two-dimensional environment
is a well studied but non-trivial problem. In this paper we propose a novel computationally efficient and
resolution-complete path generation method based on electrostatics. The proposed scheme comprises two
stages. First, an auxiliary electrostatic problem is formulated where the boundary conditions of the Laplace
equation are specified based on the map of the original path planning problem and is solved to obtain a
map-specific electrostatic potential. Second, feasible paths are constructed by following any equipotential
curve whose potential value is different from those of obstacles and boundaries. The electrostatic potential
in the proposed method differs from the celebrated repulsive/attractive force-based potential field by its non-
vanishing gradient, based on which the resolution-completeness is established. The computational efficiency
of the proposed method arises from a novel electrostatic solver based on complex analysis, and on an
original collision-checking algorithm inspired by the Residue theorem. Extensive numerical examples are
provided to demonstrate the effectiveness and limitations of the proposed method. We believe this work
provides an unconventional strategy for quantitatively encoding global map information and can play a role
complementary to prevailing path planning methods.

INDEX TERMS Complex analysis, electric potential solver, path planning.

I. INTRODUCTION
Path planning, meaning the generation of a feasible path to
a target position while avoiding all obstacles in the envi-
ronment, is a classic and fundamental problem in robotics.
It is typically the first requirement for applications such
as autonomous driving, robotic motion planning, etc. [1],
[2], [3]. This problem has been extensively studied in
the past several decades and numerous results have been
presented. Established methods include Rapidly-exploring
Random Tree (RRT) [4], [5], [6], [7], [8], [9], [10], [11],
Probabilistic RoadMap (PRM) [12], [13], [14], [15], [16],
Potential Field based methods [17], [18], [19], [20], [21],
[22], Bug algorithms [23], [24], [25], A* [26] and its
variants [27], [28], [29], [30], and visibility or tangent
graph [31], [32], to name a few. Despite being an area of
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active research for decades, this problem remains open in
several ways.

Completeness guarantee and computational efficiency are
two main objectives of any path planning scheme, but it is
generally difficult to design algorithms having both features
simultaneously. For example, sampling-based methods are
complete and can even provide some asymptotic optimality
guarantees, but they become inefficient for pathological
cases such as for maps with narrow passages. Graph-based
methods, such as A*, rely on estimated ‘‘cost-to-go’’ to
guide the search. As encoding the map information into
cost-to-go is very challenging, A* could be misguided and
thus suffers from low computation efficiency. Potential Field
methods are computationally efficient, but the searching
process can be trapped in local minima and therefore
cannot be complete. Due to non-convexity of collision-
free configuration space, most of the optimization-based
path planning methods struggle to find feasible solutions in
cluttered environments [33], [34].
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Most of prior path generation methods make use of only
local map information, even if all obstacles are given. For
example, both sampling-based and visibility-based methods
use global information to generate collision-free samples,
while planning is done by searching over neighboring
points. The Potential Field approach regards each obstacle
as a short-ranged repulsive potential whose strength decays
exponentially away from the obstacles. Indeed it is not
obvious whether the obstacles and boundaries far away
could affect the local path planning, and if one developed a
procedure to include these effects, what the benefits could be.
This is the very aspect that this work attempts to explore.

This paper presents a computationally efficient and
resolution-complete path planning method in a two-
dimensional (2D) space by means of an innovative use of
the global map information. The proposed method breaks
the path planning into two sub-problems. In the first sub-
problem, an auxiliary electrostatic problem is setup based
on the map, and solved for the electrostatic potential.
Specifically, boundaries and obstacles are represented by
perfect metals, with boundaries carrying different amounts
of charge whereas obstacles are charge neutral. A highly
efficient electrostatic potential solver is developed via
the use of complex analytical functions [35], [36], [37].
In the second sub-problem, feasible (collision-free) paths
are constructed by exploiting the electrostatic potential as a
roadmap or graph. In particular using the property that each
metallic surface has a constant potential, feasible paths can
be generated by following any equipotential curve whose
potential value is different from those of all obstacles and
boundaries. Each feasible path is labeled by a potential within
the known upper and lower bounds; multiple topologically
non-equivalent paths can be generated by scanning the
potential values. Associating each path with a finite scalar
value is a manifestation of quantitative utilization of global
information. We regard this as the most distinctive feature
compared to other existing methods. Major advantages of the
proposed method are three-fold: 1) resolution-completeness;
2) flexibility to construct a family of collision-free paths
parameterized by the potential value; and 3) computation
and memory efficiency. The practical limitations of our
method can be traced to the numerical resolution, and can be
circumvented by performing a few additional calculations.
This paper considers only a point-mass robot for clarity of
presentation. The geometric size of the robot can be treated
by inflating/shrinking the obstacles/boundaries.

The rest of this paper is organized as follows. Section II
is devoted to a brief literature review. Section III defines
the problem and outlines the proposed approach. Section IV
is dedicated to formulating and solving the auxiliary
electrostatic problem for an electrostatic potential field.
Section V details how path construction is done by using
the electrostatic potential field. Section VI establishes the
resolution-completeness of the proposed method, addresses
the limitations and corresponding remedies, and discusses the
differences to the Potential Field approach. In Section VII

two examples are presented. In Section VIII we consider
two alternative boundary conditions that could be useful for
specific tasks. Brief conclusions are given in Section IX.
In the Appendix we provide details for the developed 2D
electrostatic potential solver. As a general comment on
notation, in this paper we use complex numbers to represent
2D points and vectors: Z = X + iY or z = x + iy denotes
a point. A vector E = [Ex ,Ey]⊤ ∈ R2 is represented by
E = Ex + iEy and can be normalized as Ê = E/|E|.

II. RELATED WORK
There have been several different approaches presented for
the path planning and motion planning problems. We briefly
review a few known path generation schemes that are relevant
to the proposed method.

The Potential Field approach [17], [18], [19], [20], [21],
[22] constructs a potential field that has a higher value at the
initial point and a lower value at the target point. A feasible
path is generated by following the gradient of the potential
field. The potential in our scheme is different from the
potential in Potential Field approach, and we shall make a
detailed comparison in Section VI-C.
Graph-based path generation schemes contain two main

steps: (i) constructing a graph (i.e., points and connections)
that covers at least one feasible path; (ii) connecting neigh-
boring points to create a feasible path. Sample-basedmethods
generate a graph/tree by randomly sampling the collision-
free points. Well-established sampling-based algorithms for
graph construction include PRM [12], RRT [6], etc. Interested
readers are referred to [38] for more information. The
Visibility-based method [31], [32] deterministically uses the
vertices of polygonal obstacles to construct a graph. Once a
graph is given, feasible paths subject to some optimization
criterion such as shortest distance or energy minimum [4],
[13], [28] are generated. The potential in our scheme plays a
role very similar to the graph.

The Bug algorithm [23], [24], [25], which is shown to be
complete, implements the following rule: when encountering
an obstacle, circle around the obstacle and leave it at the point
closest to the target point. The Bug algorithm is fast as it does
not require graph construction, but it cannot easily generate
multiple paths. A part of our proposed path generation is
similar to the Bug algorithm, but with the criterion to leave
an obstacle depending on the obtained potential field.

The problem becomes much more complicated when
taking the robot dynamics into account. Generally the energy-
optimal/time-optimal collision-free motion planning can be
categorized into decomposition-based [39] and kinodynamic
approaches [40]. The former divides the problem into a
purely geometric path generation part and a dynamics-related
motion planning part, whereas the latter deals with both
simultaneously and is usually more computationally demand-
ing. More involved techniques such as the minimum
principle [41], [42], dynamic programming [43], numerical
optimization [44], [45], [46], and Mixed-Integer Linear
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Programming [47] have been used to find the feasible/optimal
solution. This aspect is not considered in this work.

III. PROBLEM STATEMENT AND ALGORITHM OUTLINE
This section defines the path planning problem and outlines
the proposed algorithm.

A. PROBLEM STATEMENT
A configuration q of a robot is a minimum-dimension
parameterization which uniquely defines the positions of all
points on the robot. The configuration space, including all
possible configurations, is denoted as C. A configuration q is
collision-free if the robot at q does not overlap with obstacles
in the environment. The set of all collision-free configurations
is denoted Cfree ⊂ C.
This work considers a point-mass robot which moves in a

compact set D of the global 2D plane where

D ≜ [xmin, xmax] × [ymin, ymax] ⊂ R2. (1)

Here xmin, xmax, ymin, ymax are constants. The robot configu-
ration q has a parameterization: (x, y). The robot is confined
in the region of interest specified by

DROI ≜ {q | q ∈ D, f1(q) > 0, f2(q) > 0}, (2)

where f1(x, y) > 0 and f2(x, y) > 0 further restrict the
workspace of the robot. For example f1(x, y) = 0 and
f2(x, y) = 0 can be used to represent two boundaries of a non-
straight passage. Note that f1(x, y) = 0 and f2(x, y) = 0 do
not necessarily lie within D, in which case, D and DROI are
the same. If DROI is the rectangular area as specified in (1),
we can take either f1(x, y) = x− xmin and f2(x, y) = xmax − x
or f1(x, y) = y− ymin and f2(x, y) = ymax − y.
Remark 1: Constraints f1 = 0 and f2 = 0 represent two

boundaries that are needed to define the boundary conditions
of the electrostatic problem in Section IV-A. In the case that
there is no physical restriction on the workspace other than
D, one can introduce f1(x, y), f2(x, y) as virtual boundaries.
□

Denote the region occupied by the ith obstacle Dobs,i. The
collision-free configuration is given by

Cfree = DROI \ ∪
nobs
i=1Dobs,i (3)

where nobs is the number of obstacles. For simplicity, the
information {D, f1, f2,Dobs,i for 1 ≤ i ≤ n} is named after
the map. Given the definitions of map and configuration,
we are ready to state the path planning problem as follows.
Problem 2: Given the initial configuration qinit ∈ Cfree

and the target configuration qtarget ∈ Cfree; find a path
P : [0, 1] → Cfree which starts at qinit and ends at qtarget.
As the analytical properties of complex functions will

be used to solve for the electrostatic potential field, it is
convenient to use complex numbers to represent the robot
configurations. A complex number Z equivalently represents
the robot configuration q ∈ R2 and forms a space C
where C = {x + iy|x, y ∈ R}. Using complex numbers,

FIGURE 1. (a) Problem illustration. Two elliptical and one rectangular
obstacles are between two zig-zag boundaries. The initial and target
points are respectively represented by the dot and cross. The goal is to
find a path that connects the initial and target points, stays between two
boundaries, and avoids all obstacles. Two feasible paths, obtained by the
proposed scheme, are given. (b) For the auxiliary electrostatic problem,
+1/-1 charge are placed on the right/left zig-zag boundaries respectively
whereas three obstacles are charge neutral. The resulting potential (color
scale) and equipotential curves are used for generating feasible paths.
Path 1 and Path 2 shown in (a) correspond to 8 = −0.1 and
8 = 0.1 respectively.

Problem 2 is solved over complex space: the initial and
target points are respectively represented by Zinit = Xinit +

iYinit, Ztarget = Xtarget + iYtarget; a feasible path P is
represented by a collection of complex numbers P =

(Zinit, z1, z2, · · · ,Ztarget).

B. OUTLINE OF PATH GENERATION SCHEME
Problem 2 is divided into two sub-problems. First, we relate a
givenmap to an auxiliary electrostatic problem and solve for a
potential field. Second, the resulting potential field is used as
a graph (roadmap) to construct feasible paths. The proposed
path planning method is outlined in Algorithm 1: steps 1-
2 correspond to the first sub-problem and is discussed in
Section IV; steps 3-5 correspond to the second sub-problem
and is elaborated in Section V.

Equipotential curve in Alg. 1 has the following definition.
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Algorithm 1: Equipotential-Based Path Generation
1. Given a map, setup an auxiliary electrostatic
problem by regarding obstacles and boundaries as
conductors, and assigning opposite charges to two
boundaries.

2. Solve the auxiliary electrostatic problem for the 2D
electrostatic potential.

3. Pick a potential 8ref which is different from the
potentials of any obstacles, and computes its
equipotential curve, denoted as C(8ref).

4. Construct a path P1 connecting Zinit to a point
Zref,1 ∈ C(8ref); construct a path P2 connecting a
point Zref,2 ∈ C(8ref) to Ztarget.

5. Concatenate P1,C(8),P2 to obtain one feasible
path P(8ref).

Definition 3: Let 8(X ,Y ) be the potential of an electric
vector field E(X ,Y ) = −∇8(X ,Y ), the level curve
8(X ,Y ) = C , denoted by C(8), is called the Equipotential
Curve or the Contour.

C. ILLUSTRATIVE EXAMPLE
Fig.1(a) illustrates how Alg. 1 is applied to construct a path
from initial point Zinit = −1 − 1.5 i to target point Ztarget =

−1 + 4.8 i. The map is characterized by D ≜ [−2.5, 2.5] ×

[−2, 5]; f1 and f2 for the two zig-zag boundaries #1 and #2,
respectively; and three obstacles.

First, the auxiliary electrostatic problem is setup and solved
for the electrostatic potential which is shown as a color map
in Fig.1(b). Then, the potential is used as a roadmap or a
graph to construct feasible paths. Each feasible path contains
an equipotential curve and can be labeled by its potential
value. In this example, path 1 and path 2 shown in Fig. 1(a)
correspond to 8ref = −0.1 and 8ref = 0.1, respectively.

IV. ELECTROSTATIC POTENTIAL FIELD
In this section we elaborate how to setup the auxiliary
electrostatic problem and highlight relevant features that will
be used in path generation.

A. AUXILIARY ELECTROSTATIC PROBLEM
Given a map for Problem 2, i.e., DROI and all obstacles
∪
nobs
i=1Dobs,i, the auxiliary electrostatic problem is setup as

follows: boundaries and obstacles are regarded as perfect con-
ductors; charges of +1/-1 are placed on the two boundaries,
respectively, whereas the obstacles are charge neutral. The
electrostatic potential 8(X ,Y ) in DROI satisfies the Laplace
equation [

∂2

∂X2 +
∂2

∂Y 2

]
8(X ,Y ) = 0. (4)

Remark 4: Assigning the total charge on each con-
ductor determines the 2D electrostatic potential up to a

FIGURE 2. Potential contours, obtained by a 2D potential solver, are
needed for the path generation scheme. In this example, charges of -1
and +1 are placed on the top and bottom line boundaries, respectively.
A few charge neutral conductors, which will represent obstacles in the
proposed path generation method, are placed between these two
boundaries. Notice that the potential is a constant over the area occupied
by a conductor. The dots indicate the surface charge distributions (with
size representing amplitude, and the colors red/blue representing sign.)
Each boundary has a constant potential.

position-independent constant and uniquely determines the
electric field [48]. Charge assignment is equivalent to
specifying the boundary conditions for the Laplace equation.
Positions of initial and target points are not part of the
boundary conditions and thus do not affect the resulting
potential field. That is: the potential field is fully determined
by the map, and can be treated as a roadmap for both single-
and multi-query uses. □

B. THE 2D POTENTIAL SOLVER
We develop an efficient 2D potential solver for the auxiliary
electrostatic problem. Detailed procedures, benchmarks, and
distinct advantages are detailed in the Appendix. A repre-
sentative result is shown in Fig. 2, where charges of −1
and +1 are respectively placed on the top and bottom
line boundaries, and all obstacle-related conductors are
charge neutral. Because charges are free to move inside the
conductor, a static solution is only possible when the charges
of each conductor adjust themselves such that each conductor
has a constant potential and thus zero electric field. This is
seen in Fig. 2 where equipotential curves do not enter any of
the conductors (up to numerical errors).

C. IMPORTANT FEATURES
We list four general features of the electrostatic potential that
are crucial to path construction.

• (F1): all points within a metallic object have the same
potential. This implies that boundaries and obstacles,
albeit spatially extended, can be described by their
corresponding potential values.

• (F2): the potential is defined over the entire Z -plane.
If only two of objects carry opposite charges, the
potential over the entire plane is bounded by the
potentials of these two objects. Denote the potentials at
upper and lower boundaries as 8b,1, 8b,2, and that at ith
obstacle as 8obs,i which satisfies

8b,1 < 8obs,i < 8b,2. (5)

As described in the Appendix, the solver provides the
potential 8 and its gradient E = −∇8 efficiently. Both
quantities are important in our path generation scheme.

55022 VOLUME 12, 2024



C. Lin et al.: Path Generation Based on Electrostatic Equipotential Curves

• (F3): any equipotential curve C(8) is collision-free as
long as 8 is different from 8b,1, 8b,2 and 8obs. i.

• (F4): within the region between the two boundaries, i.e.
DROI, the potential has no local extrema or saddle points.
In other words, the gradient E = −∇8 is non-zero
everywhere in the collision-free region.

Remark 5: Generally, points of the same potential can
belong to two disconnected contours. The auxiliary electro-
static potential problem setup prevents this from happening
by imposing charge-neutrality on obstacles, ruling out local
extrema or saddle points from the potential 8 in the region of
interest DROI. □
Remark 6: A complex function F(Z ) = FR(X ,Y ) +

iFI (X ,Y ) has real and imaginary parts. In the proposed solver
we solve for a complex 8(Z ) whose real part represents the
electrostatic potential, i.e., Re[8(Z )] = 8(X ,Y ). To simplify
the notation, 8(Z ) should be understood to refer to the
potential 8(X ,Y ) for the remainder of this paper. □

V. PATH GENERATION BASED ON EQUIPOTENTIAL
CURVES
In this section, we complete our path generation method by
elaborating steps that solve the second sub-problem: how to
generate feasible paths given the potential 8(Z ). We also
provide an efficient and robust 2D collision checking method
based on complex analysis.

A. EQUIPOTENTIAL-BASED PATH CONSTRUCTION
Steps 1-2 in Alg. 1 result in an electrostatic potential field
8(Z ) and have been discussed in Section IV-B. Given the
electrostatic potential field 8(Z ) for Z ∈ DROI, we follow
Steps 3-5 in Alg. 1 to construct a path from Zinit to Ztarget.
In Step 3: one picks any potential8ref ∈ (8b,1, 8b,2)\8obs

where 8obs ≜ {8obs,1, · · · , 8obs,nobs} and determines
the equipotential curve C(8ref). An equipotential curve is
generated by following the direction (denoted as T̂ ≡

(Ey−iEx)/|E|) that is perpendicular to the potential gradient
(which is Ê ≡ (Ex + iEy)/|E|). As shown in Fig. 3, to find
the next equipotential point of Zi, we first propose Z ′

i+1 =

Zi ± T̂ (Zi)|dZ | with |dZ | a chosen stepsize. To eliminate
the discretization error caused by |dZ |, we perform a
one-dimensional search on the line segment between Z ′

i+1 ±

Ê(Zi)|dZ | to find the next equipotential point

Zi+1 = argminZ
[
8(Zi) − 8(Z )

]2
,

with Z ∈ Z ′

i+1 + αÊ(Zi)|dZ |, |α| < 1. (6)

Note that ±T̂ are both allowed.
In Step 4: we connect the initial point and the target point

to C(8ref) without crossing any obstacles or boundaries,
i.e., constructing paths P1 and P2 in Alg. 1. Paths P1 and
P2 usually cross equipotential curves. To construct them,
we recognize the fact that the potential has no local extrema
and propose to follow the gradient direction to move
downstream (if 8(Zinit) > 8ref) or upstream (8(Zinit) <

8ref). Once hitting an obstacle, the equipotential curve is

FIGURE 3. Procedure to generate a contour from Zi (left circle) to Zi+1
(star). The contour is generated by two steps: first following the
transverse direction (denoted as T̂ ), the direction perpendicular to the
potential gradient (along the electric field, denoted as Ê), to Zi+1 (right
circle); second to perform a line search along Ê to find the equilpotential
point. Note that the transverse directions has two options and we keep
both paths as long as they stay within the region of interest.

followed until reaching a point at which following the
gradient direction once again avoids obstacles. As shown in
Fig. 4, the procedure involves three scenarios: (i) following
the gradient consistent with the potential difference; (ii-a)
when the proposed point using (i) hits an obstacle, then
following the transverse direction; (ii-b) if the point proposed
by (ii-a) hits an obstacle, then adding a gradient component to
bring the path back to Cfree. Again there are two directions in
which to follow the equipotential curve; we keep both as long
as they each stay within the region of interest. For numerical
stability, we avoid saddle points resulting from discretization
error by choosing aminimumfield strengthEmin belowwhich
one follows the equipotential curve. Emin is chosen to be
much smaller than the electric field defined by |8b,1−8b,2|

L
where L is the distance between two boundaries.

The final feasible path is a concatenation of (i) a curve
connecting Zinit and Zref,1, (ii) the contour C(8ref) between
Zref,1 and Zref,2, and (iii) a curve connecting Zref,2 and Ztarget.
(i) and (iii) will be referred to as the ‘‘downstream’’ or
‘‘upstream’’ parts of the path whereas (ii) is the equipotential
part of the path. Zref,1 and Zref,2 are not unique, and one can
post-process a feasible path to make it smoother and shorter.
Remark 7: Due to the concatenation, a generated path

P is usually piece-wise smooth. Using P as the starting
point, the trajectory can be smoothed with well-established
interpolation methods using, for example, Bézier Curves [49]
or B-splines [50]. □
Each feasible path Pf(8ref) is parameterized by a potential

value 8ref. It is collision-free because 8ref /∈ 8obs and the
ith obstacle has a constant potential 8obs,i; it is confined
between two boundaries because 8b,1 < 8ref < 8b,2. The
stepsize |dZ |, which nearly appears in all path generation
schemes, is a tuning parameter: |dZ | has to be sufficiently
small for the scheme to work, but using a larger |dZ | reduces
the computation time. In practice we start with a |dZ | that is
much shorter than the characteristic scale of any obstacles,
and may gradually increase its value after trials.

B. RESIDUE THEOREM-BASED COLLISION CHECK
Many path planning schemes, including the proposed one,
require a robust and efficient procedure to check whether
a point Z lies inside or outside a polygon, the boundary
of which is represented by a sequence of ordered points
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FIGURE 4. Procedure to connect two points of different potentials.
To connect two points of different potentials, first follow the steepest
direction (i), i.e., either the steepest ascent or descent. If following this
gradient hits a obstacle, then one follows the transverse direction (ii-a).
If (ii-a) hits a obstacle, then we add a small gradient component to bring
it back into the allowed region. Note that the transverse directions has
two options and we keep both paths as long as they stay within the
region of interest.

(z0, z1, · · · , zn−1, zn = z0). This can be done by utilizing the
residue theorem, i.e., the point Z satisfies

1
2π i

∮
dz

z− Z
=

1
2π i

n−1∑
i=0

log
[
zi+1 − Z
zi − Z

]

=

{
1 Z inside the polygon
0 Z outside the polygon.

(7)

Eq. (7) assumes a counter-clockwise ordering of {zi}. We can
remove this consideration by using the absolute value of the
integral. Eq. (7) can deal with any polygon, convex or not,
and is particularly efficient when specifying a large obstacle
using only a few vertices. The computation efficiency of (7)
stems from the analytical expression whereas the robustness
comes from the binary output; it is used in all path finding
schemes in this paper.

Eq. (7) can also be used to examine the topological
equivalence of two feasible paths. Consider two feasible
paths:

P1 = (z(1)0 = Zinit, z
(1)
1 , · · · , z(1)n−1, z

(1)
n = Ztarget)

P2 = (z(2)0 = Zinit, z
(2)
1 , · · · , z(2)m−1, z

(2)
m = Ztarget), (8)

where their concatenation results in a closed loop, denoted as
L1−2. To check if two paths are topologically equivalent or
not, we compute

T (j)
1−2 =

1
2π i

∮
L1−2

dz
z− Zj

=
1
2π i

[
n−1∑
i=0

log
z(1)i+1 − Zj

z(1)i − Zj
−

m−1∑
i=0

log
z(2)i+1 − Zj

z(2)i − Zj

]
(9)

where Zj is any point inside the jth obstacle. |T (j)
1−2| is either

zero or one. The former implies that the two paths are

topologically equivalent with respect to the jth obstacle, i.e.,
the two paths can continuously deform to each other without
crossing the jth obstacle. The latter implies topological non-
equivalence, i.e., continuously deforming one path to the
other forces it to cross the jth obstacle.

VI. ANALYSIS
This section provides analysis of the proposed method.
We first show that under some assumptions our method
is complete. We then examine the scenarios in which
the proposed scheme can run into numerical difficulty
and discuss how to get around them. Finally a detailed
comparison with the Potential Field approach is presented to
highlight the distinct features of our method.

A. COMPLETENESS
In this subsection the Cartesian coordinate (X ,Y ) (instead of
the complex number Z = X + iY ) is used to represent the
location.
Proposition 8: Alg.1 is resolution-complete.
As long as there exists a feasible path, Alg. 1 can find

one if the auxiliary electrostatic potential problem is solved
exactly. However, in order to balance computation and
memory efficiency, the potential field solution to the auxiliary
electrostatic potential problem has a limited resolution. Thus
Alg. 1 is resolution-complete.
Lemma 9: Given any 80 ∈ (8b,1, 8b,2) and 80 /∈ 8obs,

the contour 8(X ,Y ) = 80 is not a closed curve in DROI.
Proof: Assume 8(X ,Y ) = 80 is a closed curve, and

intersects with a straight line at (X1,Y1) and (X2,Y2). Along
the straight line (X (t),Y (t)) = (X1,Y1)+ t(X2 −X1,Y2 −Y1)
with t ∈ [0, 1], there has to be a local minimum or maximum
because 8(X ,Y ) is continuous. This leads to a contradiction
with the feature (F4), and thus the assumption is invalid.
Lemma 10: Contour 8(X ,Y ) = 80 in DROI with 80 /∈

8obs and 80 ∈ (8b, 1, 8b, 2) is unique.
Proof: From Lemma 9, all contours 8(X ,Y ) = 80 with

80 /∈ 8obs are not closed curves and thus intersect with the
boundaries ofDROI. Assume8(X ,Y ) = 80 has two different
contours, denoted as C1(80) and C2(80), and (X1,Y1) ∈

C1(80) and (X2,Y2) ∈ C2(80). Along the straight line
(X (t),Y (t)) = (X1,Y1) + t(X2 − X1,Y2 − Y1) with t ∈

[0, 1], there has to be a local minimum or maximum because
8(X ,Y ) is continuous. Because8(X ,Y ) has no local extrema
in DROI, the assumption cannot be true.

Given Lemmas 9 -10 and the feature (F4), Proposition 8 is
shown below.

Proof: As stated in Step 5, our generated path contains
three parts: one upstream, one equipotential, and one
downstream. The equipotential connects two points of the
same potential by following the contour, i.e., by the direction
perpendicular to the gradient. From Lemma 10, the contour
of a given potential is unique. The upstream/downstream
segments are constructed by following the gradient (when
away from obstacles) and following the equipotential (when
colliding with an obstacle). Because there are no local
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FIGURE 5. Limitations due to small gradients and heuristics from
electrostatics:. (a) When the middle gap is narrow and two boundaries
are horizontal, the potential around the gap is almost constant (vanishing
gradient) and our scheme cannot identify it. (b) when the gap becomes
wider, the potential has some distribution and our scheme identifies the
gap as a feasible path. (c) and (d): the same gap as (a) but placing two
boundaries along the vertical directions and with a 45◦ rotation. In these
setups the gradient around the gap is strong enough that the scheme can
identify the gap as one of feasible paths. Boundary charges of each case
are indicated in red.

extremal, this procedure is guaranteed to work in principle.

B. LIMITATIONS AND REMEDY STRATEGIES
Alg. 1 suffers from two types of numerical issues, both of
which can be traced back to the resolution of the potential
field. First, due to the discretization error the potentials
inside each conductor are not strictly constant but have a
very weak spatial dependence. This is explicitly seen in
Fig. 5(a) and (b) where some equipotential curves penetrate
into obstacles. This issue becomes more pronounced if the
obstacle boundary has large or even diverging curvature.
A straightforward remedy to this issue is to increase the
number of points around the high-curvature part of the
obstacle boundary. Alternatively one can choose a feasible
path P(8) whose potential value excludes the small potential
range of the obstacle.

The other numerical issue arises from the small gradient.
This issue also originates from resolution, as ideally the zero
gradient only occurs inside the conductors. If a feasible path
passes through a region of very small gradient, our path
search algorithmmay not be able to follow it, as the vanishing
gradient does not provide sufficient guidance. This usually
happens for a long narrow gap, where the feasible path is
sandwiched by two large obstacles. Fig. 5 provides a series
of examples. As seen in Fig. 5(a), when the gap is narrow and
the two boundaries are horizontal, the potential over the gap
is almost constant and the corresponding gradient is close to
zero. In this case our scheme does not find the path going
through the gap. When the gap becomes wider, as shown in
Fig. 5(b), the potential inside the gap has a more significant
spatial distribution, and thus larger variations, and our scheme
then identifies the gap as a feasible path.We stress that it is the
vanishing gradient, not necessarily the narrowness of allowed

space, that prevents our solver from identifying the feasible
path. As shown in Fig. 5(c) where the gap width is identical
to that of Fig. 5(a), by placing the two boundaries vertically
one gets a larger gradient along the gap. In this case, all three
topologically non-equivalent feasible paths are found.

In the proposed method, an equipotential curve is always
collision-free. The numerically challenging part is to connect
two points of different potential [Step 4 in Section V-A].
When there are no obstacles between two points of different
potentials, Step 4 can easily be achieved by following the
gradient. Otherwise the path must include both an equipoten-
tial part to avoid obstacles, and upstream/downstream parts
to match the beginning and ending potentials. Vanishing
gradients may cause numerical problems in this process.
Given a potential field, one can estimate the smallness of
gradients by examining whether any two spatially close
obstacles/boundaries have close potential values, but this
procedure does not scale well upon increasing the number
of obstacles. Given a fast potential solver, a more practical
strategy is to try a few boundary placements and double check
the feasible paths that are found. For the configuration given
in Fig. 5(a), placing two parallel boundaries tilted at 45◦

[Fig. 5(d)] also finds three topologically non-equivalent paths
comparable to those shown in Fig. 5(c). Thus the proposed
scheme can be made robust against small gradients with one
or two additional calculations. In this case the computational
times listed in the last column of Table 1 are accordingly
increased by about 50%.

C. COMPARISON TO THE POTENTIAL FIELD APPROACH
We now pinpoint the differences between our method and the
Potential Field approach [17], [18], [19], [20], [21], [22] since
both methods involve a potential field. The Potential Field
approach regards each obstacle as a short-ranged repulsive
potential and introduces a smooth potential that has a higher
value at initial point and a lower value at the target point. The
feasible path follows the gradient of the combined potential.
Because the combined potential is not the solution of Laplace
equation, there can be local minima or saddle points that trap
the path from reaching the target point. A closely related
concept is the navigation function (Chapter 8 of [38]) that can
be regarded as a potential field with only one global minimum
at the target point. If identified, the feasible path can always
be constructed by following the gradient. However a formal
construction of the navigation function needs to take actions
into account and is very computationally demanding.

Our scheme regards each obstacle as a charge neutral
conductor and the potential is found by solving amap-specific
electrostatic problem. Using (F3) described in Section IV-C,
a finite portion of path in our scheme follows the equipotential
curve that is perpendicular to the gradient of potential field.
This is fundamentally different from the way the Potential
Field or the navigation function approach utilizes its potential
field.

Our potential can be regarded as a compromise between
the Potential Field approach and the navigation function:
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Compared to the Potential Field approach, our potential
has no vanishing gradients in DROI which guarantees the
success of a gradient-based search, but it takes more effort to
construct; Compared to navigation function, our potential is
less informative since the target point is not an extreme point,
but is much easier to construct using our developed solver.
Finally the potential field in our scheme does not depend on
the initial and target points, and a single potential calculation
can be used to identify multiple paths.

VII. SIMULATION
In this section we provide two examples to illustrate our path
generation scheme. The maps are chosen such that feasible
paths are very different from straight lines connecting the
initial and target points. Paths generated using the RRT,
PRM, and Bug algorithms [23] are provided for comparison.
The stepsize dZ = 0.1 [Eq. (6)] has been used in these
calculations.

A. NARROW-GAP SCENARIO
Fig. 6(a) shows the narrow-gap scenario. The planning
problem is specified by

Zinit = −1 − 0.5i; Ztarget = 1 + 0.5i

boundary 1 (line) = [−3 + i, +3 + i]

boundary 2 (line) = [−3 − i, +3 − i]

obstacle 1 (rect.) = [−2.2 − 0.3i, −0.2 + 0.3i]

obstacle 2 (rect.) = [0.2 − 0.3i, 2.2 + 0.3i]

region of interest (rect.) = [−2 − 2i, +2 + 2i]. (10)

The boundaries comprise two horizontal lines which are each
specified by two endpoints. Two rectangular obstacles are
specified by the coordinates of their diagonal vertices. The
‘‘region of interest’’ is chosen to be rectangular and is also
specified by its diagonal vertices. We put -1 charge on (top)
boundary 1, and +1 charge on (bottom) boundary 2. The
resulting potential distribution is plotted in Fig. 6(a). The
resulting potentials at initial/target points, boundaries and
obstacle centers are:

8init = −8target = 0.337

8b,1 = −1.178, 8b,2 = 1.178

8obs,1 = 8obs,2 = 0. (11)

Fig. 6(c) shows the paths parameterized by potentials 8ref =

±0.1. Passage through the narrow gap is achieved by
the ‘‘downstream’’ part which connects Zinit and Zref,1.
To illustrate this point, we plot the positions of Zref,1 and
Zref,2 [see Step 4 in Section V-A] for a feasible path of
8ref = +0.1 and observe that it is the ‘‘downstream’’ part
of the path (i.e. between Zinit and Zref,1) that accounts for gap
passage.

B. 3-BOXES SCENARIO
Fig. 6(b) shows the 3-boxes scenario, where

Zinit = −0.5; Ztarget = +0.5

TABLE 1. Comparison on computation time.

boundary 1 (line) = [−2 + 1.5i, +2 + 1.5i]

boundary 2 (line) = [−2 − 1.5i, +2 − 1.5i]

obstacle 1 (rect.) = [−0.8 + 0.3i, +0.8 + 1.1i]

obstacle 2 (rect.) = [−0.25 − 0.25i, +0.25 + 0.25i]

obstacle 3 (rect.) = [−1. − 1.3i, +1. − 0.3i]

region of interest (rect.) = [−2 − 1.5i, +2 + 1.5i]. (12)

We put −1 charge on (top) boundary 1 and +1 charge on
(bottom) boundary 2 to solve for the electrostatic potential
field, which is plotted in Fig. 6(b). The potentials at
initial/target points, boundaries and obstacle centers are
respectively

8init = 8target = 0.277

8b,1 = −1.472, 8b,2 = 1.401

8obs,1 = −0.168 8obs,2 = 0.275, 8obs,3 = 0.719.

(13)

Fig. 6(d) shows the feasible paths parameterized by potentials
8ref = 1, 0.5, 0, −1. These four representative paths reach
the target point via traversing four different gaps between
boundaries and boxes. In this example, passing through a
horizontal gap is done by following an equipotential curve.
To illustrate this point, we plot the positions of Zref,1 and
Zref,2 [see Step 4 in Section V-A] for the feasible path of
8ref = −1 and see that it is the ‘‘equipotential’’ part of the
path (between Zref,1 and Zref,2) that accounts for the horizontal
path segment.

C. COMPARISONS WITH RRT, PRM, AND BUG
ALGORITHMS
Feasible paths are generated by using RRT, PRM, and Bug
algorithms. The results of RRT and Bug are shown in
Fig. 6(e) and (f); those of PRM in Fig. 6(g) and (h). For the
Bug algorithm we adopt a variant ‘‘Bug 1’’ where the bug
leaves an obstacle at the point of its perimeter closest to the
target point. Using a knowledge of the obstacle’s surface,
one could, in this case, skip the step to go around the whole
obstacle to identify that perimeter point. For both the RRT and
the Bug schemes we use a stepsize of ≲ 0.1. Implementing
PRM requires sampling nodes in the collision-free space and
a roadmap that specifies the connections between sampling
nodes. We use 200 and 100 points inDROI for the narrow-gap
and 3-boxes scenarios, respectively, and it takes 286 and
136 random samplings to achieve the results shown in
Fig. 6(g) and (h). When building the roadmap we keep
10 edges (nearest neighbors) for each sampling node.

All three methods find feasible paths. In Fig. 6(f) and (h)
we purposely enlarge the middle box to close the narrow gaps
between boxes; this forces the RRT, PRM and Bug schemes
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FIGURE 6. Path generation for narrow gap scenario (a), (c), (e), (g) and
3-boxes scenario (b), (d), (f), (h). (a) and (b): the potential. ‘‘obs’’
represents the obstacle. Charges of -1 and +1 are respectively placed on
boundary 1 and boundary 2. (c) and (d): feasible paths generated by the
proposed scheme. The curve between Zref,1 and Zref,2 represent the
‘‘equipotential’’ of a feasible path. (e) and (f): paths generated by RRT and
Bug 1. (g) and (h): paths generated by PRM. In (f), (h) we purposely
increase the size of mid box to eliminate narrow gaps between boxes.

to go around the top or bottom box. If there is a narrow gap,
as in Fig. 6(d), all schemes can find the feasible path through
one of the narrow gaps. In terms of the time to construct a
path, the Bug algorithm is the fastest among all schemes.
This is because Bug follows either a straight line or the
perimeter of an obstacle. The former is very easy to construct
and the latter is already known. The proposed scheme
and RRT are comparable in speed. Usually the proposed
method appears slightly faster, but RRT is stochastic so its
computation time varies. PRM is slightly slower than both
RRT and the proposed scheme. Table 1 summarizes the time
taken (for RRT and PRM, the average time over 50 Monte
Carlo runs are reported) to construct paths using different
schemes. A CPUwith 3.00 GHz Processor Base Frequency is
used. Our method becomes significantly more time-efficient
when the task involves generating multiple paths of different
initial/target points.

In terms of the smoothness of the path, the Bug algorithm
is as smooth as the obstacle shape except at a few sharp
turns where the path goes from the straight line to the

FIGURE 7. Path generation based on two orthogonal external electric
fields. Eight rectangles represent the obstacles. Two sets of potentials
(8(x)

tot, 8
(y )
tot), one corresponding to the uniform field along x and the other

y , are obtained from the 2D potential solver. A feasible path can be
labeled by either 8

(x)
ref = 8

(x)
tot(X , Y ) or 8

(y )
ref = 8

(y )
tot(X , Y ); here the latter is

used. Four topologically non-equivalent paths are shown.

obstacle perimeter or vice versa. RRT and PRM paths
are fragmented due to their random nature. The proposed
scheme is in between. The path is mostly smooth except
for two sharp turns between the equipotential part and
the upstream/downstream parts. There may also be some
small fluctuations when going around an obstacle due to
the procedure shown in Fig. 4 (ii-b). Compared to the
Bug algorithm, our scheme provides a different criterion
for leaving an obstacle, guided by the potential. Compared
to PRM, solving for the potential 8(Z ) corresponds to the
roadmap construction phase, while following the equipoten-
tial (including the upstream and the downstream path) is
analogous to the query phase of PRM.
Themain advantage of the proposed scheme is the ability to

generate multiple topologically non-equivalent paths from a
single electrostatic calculation. In a sense, the Bug algorithm
is fast in generating one feasible path because it only cares
about the obstacles between the initial and target points. All
other obstacles do not play any role in the path generation.
RRT and PRM stochastically explore the entire allowed space
and thus spend some time wandering around. The established
tree is certainly useful for searching a path that has to pass
some specifiedmiddle points. In our scheme, the feasible path
is parameterized by the potential8ref. By sampling or simply
scanning a few 8ref’s, multiple feasible paths can be readily
generated. The ability to generate multiple paths comes from
the global information quantitatively encoded in the potential
distribution. In any case, a hybrid of this type is expected to
be useful for some applications.

VIII. EXTENSIONS
In this section we consider two alternatives for setting up
boundary conditions that can be useful for task-specific
applications.

A. EXTENSION 1: USE OF TWO EXTERNAL FIELDS
In auxiliary electrostatic problems considered so far, the
charged objects are the sources of the spatially-varying
potential field. This is not essential and an external electric
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FIGURE 8. (a) For narrow-gap configuration [Fig. 6(a)], placing charges on
obstacle 1 facilitates generating paths that avoid obstacle 1. (b) For the
3-boxes configuration [Fig. 6(b)], placing charges on obstacle 2 facilitates
generating paths that avoid obstacle 2.

field can serve the same purpose. An illustrating example
is given in Fig. 7. Like previous examples eight rectangular
obstacles are represented by charge-neutral conductors, but
unlike previous examples there are no boundaries with
non-zero net charges. Instead, two orthogonal electric fields
are applied. For the electric fields uniformly applied along
the x and y directions, the external potentials are given by
8

(x)
ext = −ExX and 8

(y)
ext = −EyY , respectively, based on

which we get potential fields 8
(x)
tot (Z ) and 8

(y)
tot(Z ). Ex and Ey

can be arbitrary and are chosen to be one in Fig. 7. With two
sets of potential fields, a feasible path can be labeled by either
8

(x)
ref = 8

(x)
tot (Z ) or 8

(y)
ref = 8

(y)
tot(Z ) and can be constructed as

follows. For a given initial point Zinit and a target point Ztarget,
a feasible path, labeled by8

(y)
ref, is generated by concatenating

three arcs:

Zinit →
(i)
Zref,1 →

(ii)
Zref,2 →

(iii)
Ztarget, (14)

where arc (i) is determined by 8
(x)
tot (Zinit) = 8

(x)
tot (Zref,1);

arc (ii) by 8
(y)
tot(Zref,1) = 8

(y)
tot(Zref,2) = 8

(y)
ref; arc (iii) by

8
(x)
tot (Zref,2) = 8

(x)
tot (Ztarget). Eq. (14) is analogous to Steps 4-5

in Alg. 1; the only difference is that the downstream/upstream
arcs in Alg. 1 are replaced by the equipotential curves of
the potential field caused by the orthogonal applied field.
In Fig. 7, we use 8

(y)
ref to label feasible paths and four

topologically non-equivalent paths are shown. Removing
the boundaries reduces the dimension of the electrostatic
problem (see Appendix) and thus shortens the time to obtain
the potential; the price to pay is that we need to solve for
at least two potential fields, corresponding to two linearly
independent applied electric fields, in order to construct
feasible paths. Depending on the applications, this option can
be beneficial.

B. EXTENSION 2: TASK SPECIFIC CHARGE ASSIGNMENT
We now explore the ‘‘charge’’ degree of freedom. When the
goal of the feasible path is to go from one side to the other
side of one specific obstacle, we could put a net charge only
on that obstacle so that all equipotential contours enclose
that obstacle. Following equipotentials is the easier part
within our scheme.With this heuristic based on electrostatics,
we reconsider the examples shown in Fig. 6. In Fig. 8(a)
which represents the narrow-gap configuration [Fig. 6(a)],
placing charges on obstacle 1 facilitates generating paths

that avoid obstacle 1. In Fig. 8 (b), which represents
the 3-boxes configuration [Fig. 6(b)], placing charges on
obstacle 2 facilitates generating paths that avoid obstacle
2. Comparing Fig. 8(a) and (b) to their counterparts in
Fig. 6(a) and (b), the former has two numeric advantages.
First, two line boundaries are removed, which reduces the
computational time to obtain the 2D potential. Second the
majority of the feasible paths follow an equipotential curve
which is easier to construct. However, we must bear in
mind that placing net charge on the obstacle results in local
extrema in the region of interest and can potentially ruin the
path construction; we suggest that one should avoid placing
non-zero charges on more than two obstacles.

IX. CONCLUSION
Path planning is a classical problem in robotics and an active
area of research in autonomous driving, manipulation, etc.
In this paper, we proposed a resolution-complete method to
generate feasible paths in obstacle-cluttered 2D environments
that involves solving for a 2D electrostatic potential. In our
proposed method, all obstacles are represented by conductors
of zero total charges whereas two boundaries are two
metallic curves having different amounts of net charge. The
electrostatics demand a constant potential for the surface of
each obstacle, and therefore a feasible trajectory that avoids
all obstacles can be generated by following the equipotential
curve whose potential value is different from those of
obstacles. In this manner each feasible path is associated with
its potential value and one can in principle generate an infinite
number of feasible paths.

The most distinct feature brought by our method is
the quantitative use of global information – the obstacles
and boundaries far away affect the equipotential curves
at a given local point via the 2D long-ranged Coulomb
interaction. Upon solving the 2D electrostatic potentials, all
obstacles and boundaries affect one another. By following
the equipotential curve the distant information influences the
local path planning. The most critical step of our scheme
is to accurately and rapidly solve the 2D potential, and
we develop a very effective 2D potential solver utilizing
the analytical properties of complex functions to fulfill this
demanding task. A different look at a classic problem can
bring new heuristics. In this case, intuition about electric
fields can be helpful. The proposed path generation scheme
provides a novel and quantitative device to encode the
global information that can be complementary to existing
methods.

APPENDIX
ELECTROSTATIC POTENTIAL SOLVER
The proposed 2D electrostatic potential solver, including its
benchmarking and convergence, is detailed below.

A. ADAPTIVE REAL-SPACE EXPANSION OF POTENTIAL
To obtain the electrostatic potential for systems composed of
2D metallic objects, one needs to specify the surface of each
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FIGURE 9. (a) Parametrization of the metallic surface by {zi } and the
corresponding surface charge density by {λi }. (b) A collection of metallic
surfaces and the corresponding surface charge densities.

object. We define the following parameters for the metallic
surface locations z(n)i and charge densities λ

(n)
i of object n:

z(n)(s) → {z(n)i } = (z(n)0 , · · · , z(n)
N (n) )

→ {z̄(n)i } =
( z(n)0 + z(n)1

2
, · · · ,

z(n)
N (n)−1

+ z(n)
N (n)

2

)
λ(n)(s) → {λ

(n)
i } = (λ(n)1 , λ

(n)
2 , · · · , λ

(n)
N (n) )

dz(n)(s) → {dz(n)i } = (dz(n)1 , · · · , dz(n)
N (n) )

≡
(
z(n)1 − z(n)0 , · · · , z(n)

N (n) − z(n)
N (n)−1

)
. (15)

Here z(n)(s) describes the nth metallic surface (i.e., the
boundary of nth metallic object) with s a continuous
parameter of a curve. In practicewe use a set of discrete points
{z(n)i } (i = 0 to N (n)) to represent the nth metallic surface
(s is replaced by the subscript i); λ

(n)
i (i = 1 to N (n)) is the

corresponding surface charge density at z̄(n)i =
1
2 (z

(n)
i + z(n)i+1)

[see Fig. 9(a) for illustration]. {dz(n)i } (i = 1 to N (n)) is the
difference between adjacent points which will be used later.

Following [35], the potential at a field point Z caused by a
segment from z1 to z2 with line charge density λ is given by

WE (Z | z1, z2)

= −2λ
[
h(z1 − Z ) − h(z2 − Z )

]
×

|z2 − z1|
z2 − z1

+ const.(z1, z2)

= −
2|z2 − z1|
z2 − z1

λ

[(
Z −

z1 + z2
2

)
· log

(
z2 − Z
z1 − Z

)
−
z2 − z1

2
log

[
(z2 − Z )(z1 − Z )

]
+ (z2 − z1)

]
≡ −λφr (Z | z1, z2). (16)

In the first equality h(r) = r log[r]. φr (Z | z1, z2) will be
referred to as the potential basis function. The second equality
of Eq. (16) ensures an integration constant consistent with

Re
[
WE (Z | z1, z2)

]
= 2λ

∫
|z2−z1|

0
dt log(| Z − z(t) |),

(17)

where z(t) = z1 + t z2−z1
|z2−z1|

. The single-valued potential is
given by 8 = −Re[WE ]. Im[WE ] has no physical meaning.
With Eqs. (15) and (16), the superposition principle

demands that the potential at location Z generated by the nth

surface be

8
(n)
ind(Z | {z(n)i }, {λ

(n)
i }) =

N (n)∑
i=1

λ
(n)
i φr (Z | z(n)i , z(n)i+1). (18)

The overall induced potential 8ind =
∑

n 8
(n)
ind, and the total

potential includes the contribution from any external field.
The complex electric field corresponding to the gradient of
the potential generated by nth surface is [35]

E
(n)
ind(Z | {z(n)i }, {λ

(n)
i })

=

N (n)∑
i=1

2λ(n)i Br (Z | z(n)i , z(n)i+1) = EX−iEY ,

where Br (Z | z1, z2) =
| z2 − z1 |

z2 − z1
log

[
z1 − Z
z2 − Z

]
(19)

and the total induced electric field is the summation over all
surfaces. The total electric field must include the external
contribution.

B. SELF-CONSISTENCY FROM ENERGY MINIMIZATION
Eq. (18) and (19) always represent solutions for the electro-
static potential and field corresponding to some boundary
condition, and the task now is to find the coefficients that
corresponds to the case of interest. This will be done by
minimizing the total electric energy with constraints that the
total charge on each metallic object is fixed.

Let us first specify the constraint. Assume the total charge
on nth surface isQ(n), the charge constraint using Eq. (15) can
be expressed as

Q(n)
=

∫
dsλ(n)(s) →

N (n)∑
i=1

λ
(n)
i |dz(n)i |. (20)

For M metallic surfaces, the surface charge distribution can
be obtained by minimizing the total energy:

Etot =
1
2

∫
dr ρ(r)8ind(r) +

∫
dr ρ(r)8ext(r)

→
1
2

M∑
m=1

N (m)∑
i=1

|dz(m)i |λ
(m)
i

[
28ext(z̄

(m)
i )

+

M∑
m′=1

8
(m′)
ind (z̄(m)i )

]
(21)

The induced potential comes from all M metallic surfaces.
Using Eq. (18), we have the final expression:

Etot =

M∑
m=1

N (m)∑
i=1

λ
(m)
i Vm,i

+
1
2

M∑
m=1

N (m)∑
i=1

M∑
m′=1

N (m′)∑
i′=1

λ
(m)
i λ

(m′)
i′ Pm,i;m′,i′ (22a)

Vm,i = |dz(m)i | · 8ext(z̄
(m)
i ) (22b)

Pm,i;m′,i′ = |dz(m)i | · φr (z̄
(m)
i | z(m

′)
i′ , z(m

′)
i′+1) (22c)
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There areM constraints for total charges

N (m)∑
i=1

λ
(m)
i |dz(m)i | = Q(m), for m = 1 . . .M . (23)

Minimizing Eq. (22a) with equality constraints (23) is
a standard quadratic programming (QP) optimization.
We use OSQP [51] as the solver. Some numerical
issues with the optimization process will be discussed in
Section D. Here we point out that specifying Pm,i;m′,i′

takes more than 95% of the calculation time, and it
is the most time-consuming part of our path generating
scheme.

C. CONVERGENCE CRITERION AND TWO EXAMPLES
For systems of metallic surfaces, the tangential component
of electric field at the surfaces has to vanish (otherwise the
charges will move), so the smallness of the following quantity

E[{λ(n)i }] =

∑
n

∫
ds |Et (z(n)(s), {λ

(n)
i })|2

≈

∑
n

∑
i

dz(n)i |Et (z
(n)
i , {λ

(n)
i })|2,

where z(n)i ∈ nth surface, (24)

can be used to quantify the discretization error. In Eq. (24)
λ
(n)
i is the solution and Et the tangential component of the

electric field at the surface which is determined fromEq. (19).
The magnitude of the transverse electric field also indicates
the locations where more points are needed if a solution of
higher accuracy is required.

Two simple examples are provided to illustrate the effec-
tiveness of the solver. The first example is a charge-neutral
unit circle in a uniform electric field Eext = x̂ so the
external potential 8ext = −x. Fig. 10(a) clearly shows
the expected screening effect (a constant potential inside
the circle). The induced surface charge in this case has an
analytical expression ρ(θ ) =

1
2π cos θ where θ = 0 defines

x̂. Fig. 10(b) shows that using merely 20 points to represent
the circle already gives a very good result, which is modestly
improved by using 50 points. Fig. 10(c) shows that the
tangential component of electric field decreases in amplitude
upon increasing the number of points. A more subtle case
is a 1 cm segment carrying 1 StatC charge: the ends of a
line represent the sharpest boundaries one could have and
are expected to cause some divergent behavior. As shown
in Fig. 10(e), the converged surface charge density indeed
diverges at both ends. Upon increasing the number of points
parameterizing the line, the tangential component of electric
field becomes smaller but its magnitude still blows up around
the ends of the line [Fig. 10(f)]. Despite these divergences,
the equipotential curves shown in Fig. 10(d) are reasonable
in the sense that the shapes of contours are elongated along
x to comply with the shape of the line, although some of
them actually cross the line. The results of using 10 points
and 100 points are only visibly different close to two ends

FIGURE 10. Analysis of a 2D circle (a)-(c) and a charged line (d)-(e).
(a) The equipotential curves of a charge neutral circle of radius 1 cm in a
uniform field E = +x̂ . (b) The induced surface charges using 20 and
50 points. The differences (multiplied by 100) from the analytical results
are also shown. (c) The strength of the transverse field on the circle.
(d) The equipotential curves of a 1 cm line segment carrying 1 StatC
charge: top for using 10 points and bottom for using 100 points. Their
difference is only visible for contours very close to the line segment.
(e) The induced surface charges using 10 and 100 points. (f) The strength
of the transverse field on the line.

of the segment [see the contour of potential value 2.9 in the
top and bottom of Fig. 10(d)]. In that case the contour using
100 points conforms more closely to the line shape. This nice
property turns out to be beneficial for the path generation
discussed in the main text.

D. REMARKS ON THE POTENTIAL SOLVER
We conclude by a few general remarks about the proposed
potential solver. First, our solver solves for a 2D potential
by determining a 1D charge distribution and thus offers
a memory-efficient representation of the solution. The
rationale behind the expansion is to fully respect that the
non-smoothness of the potential and electric field originates
solely from the induced charges at the metallic surfaces. The
chosen (non-orthogonal) basis functions [both Eqs. (18) and
(19)] not only satisfy the Laplace equation but also accurately
capture the non-smoothness across the charged boundary as
they are the integrated results of Coulomb’s law [35].
Second, determining the induced charges by minimizing

the total electric energy is a realization of a variational
principle – one tries to find the best charge distribution
for a given energy functional. As our solver enforces the
non-smoothness across the metallic surfaces, the resulting
potential always reflects the surface shape even for a rough
discretization. This is seen in Fig. 10(d) where contours close
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to the line are strongly stretched along x to conform to the
line shape.

Third, expressing the potential as an expansion allows
computing the potential at any point in the 2D plane.
The gradient (i.e., electric field) computed by Eq. (19)
corresponds exactly to the potential without any interpolation
errors. In other words, the discretization errors for potential
and its gradient are consistent to preserve −∇8tot = Etot.
Computation complexities for evaluating the potential and the
gradient are the same. This property is useful for constructing
the equipotential curves.

Finally, we point out an issue we have encountered
regarding QP optimization. From the physics point of view,
the P matrix in Eq. (22a) corresponds to capacitance and
should be positive definite. When the surfaces include sharp
edges, however, the P matrix usually (not always, but we do
not have control) develops a negative eigenvalue that rules
out a few QP solvers [52], [53], [54]. The negative eigenvalue
goes away when projecting the P matrix into the null space
of the linear equality constraints (23), meaning that a global
minimum exists in the space allowed by the constraints.
We use OSQP [51] as the QP solver because it can deal with
the non-positive eigenvalues of P in a robust manner.
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