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ABSTRACT ‘Ballet’ is a 15™- century concert performing dance form that originated in Italy. Current
Al models for ballet dance pose identification in live performance videos is challenging due to variational
pixel distribution of human actions across backgrounds. Notably, their performance on online video datasets
improved with both channel (CA) and spatial attention (SA) models but tend to generate over-smoothed
Convolutional features due to feature averaging in the attention network. Alternatively, wavelet attention
preserves both high and low frequency components in the features which improves the test accuracy.
Applying CA and SA on wavelet features simultaneously resulted in hyper-refined features due to double
averaging. To overcome this drawback, Alternating Wavelet Channel and Spatial Attention (AWCSA)
across any learning network as backbone architecture is proposed. The global features across the residual
connections in the backbone (ResNet50) are amplified exclusively with low and high-frequency local
features across the channel and spatial dimensions alternatively one after the other. The Ballet online dance
video dataset (BOVD23) evaluates the performance of the proposed AWCSA along with baseline action
datasets. The end-to-end trained AWCSA has recorded a 6-8% higher performance metrics on BOVD23
dataset over the counterparts.

INDEX TERMS Ballet classical dance, deep feature fusion, multi-head attention, wavelet channel and spatial
attention.

I. INTRODUCTION

Ballet is a physically intense type of performing art form
developed in Italy in the early 157 century. Later it
was practiced and promoted extensively by France and
Russia. Ballet demands the highest possible bodily strength,
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endurance and flexibility that compliments beauty. The
dance moves in ballet are complex human actions and
reproducing them by untrained learners is an impossible and
dangerous task. This dance form is one of the most difficult
performing arts which involves jumps, rotations, spins
hunches, bending and aerobatic maneuvers. Professional
ballet dancing requires precision and skill practiced over
many years. To help learners practice professional ballet
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efficiently and effectively, this work proposes to initiate
the development of a rapid feedback mechanism. This
mechanism is a software solution that provides on-the-spot
feedback on the performance of the ballet learner in real time.

However, the objective of this work is not to develop
a complete tool, but rather initiate the first process by
building a computer vision-based ballet dance classifier. The
unavailability of online benchmark datasets has triggered to
create one from ballet dance pose sequences available online.
Consequently, this work establishes a 10-class 10 subject
online ballet dance video dataset for recognition. The
frames in most of the labels are blurry due to faster
subject movements during a ballet performance. As a
result, the automated feature representation layers in deep
networks lose key information in the end layers causing
poor training and testing of the dataset. To overcome this
loss of key feature representation in the depth layers of
CNN, attention is proposed as a solution that has indeed
improved accuracy across multiple types of image and video
datasets.

The goal of automated ballet dance pose recognition
(BDPR) is to help performing art lovers get a deeper
experience. As a result, the primary choice for imple-
menting BDPR is Convolutional Neural Networks(CNN)
[1]. Specifically, the visual attention models further divide
into channel and spatial domains [2]. Channel attention
(CA) computes the weighted average across all the filter
channels and outputs a reduced dimensionality feature vector.
This reduced channel attention feature fuses with backbone
network generated image features in specific layers thereby
producing dominating features from regular networks. Global
average pooling (GAP) [3] is the most widely applied channel
scalar given in SENet [4]. However, in the case of object
recognition tasks, the averaging features across channels
precipitate spatial information and this loss affects the overall
outcome of the classifier. In order to prevent the spatial
loss, global maximum pooling across channels is used in
the convolutional block attention module (CBAM) [5] and
global standard deviation pooling in the style-based re-
calibration module (SRM) [6]. Though simple, the results of
CA are deprived of the necessary channel information that
can only be extracted with proper weighing function between
channels.

In contrast, the spatial domain attention (SA) computes
weighted pooling on the image features in the form of
maximum or average pooling [7]. This preserves the spatial
information in the image thereby reducing the resolution
of the image after the attention layer. Further, the SA
compresses the image and retains the spatial relationships
that help in reducing complexity and boosting recognition
accuracy. However, the operating window size in maximum
and average pooling affects the ability of SA in preserving
important features. To further enhance the convolution
feature capabilities in SA and CA, a multi scale feature
fusion attention was proposed with coordinate attention (CA)
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mechanism [8] on a light weight bidirectional feature pyramid
network.

The output of the attention layers is fused with that of con-
volutional layers spatially. Frequency domain compressive
fusion is also practiced by transforming the channel scalar
representation as in FcaNet [9]. This transformation was
achieved using discrete cosine transform(DCT). Meanwhile,
the DCT compresses the scalars as well as preserves the
information encoded in the features. Though the methods
using DCT as an attention model produce good accuracy,
they have to accommodate information loss in the form of
quantization during reconstruction. The other transformation
that has the ability to nullify the information loss in DCT
is the discrete wavelet transform (DWT). The conventional
advantage of DWT lies in its ability to generate contextual
image features in orthogonal space [10]. Specifically, 3D
DWT was applied to extract relational features from video
data [11].

In recent times wavelet-based attention has gained impor-
tance due to its ability to represent contextual features
that have been fused with any backbone CNN features
to maximize accuracy [12], [13], [14]. Specifically, the
dual wavelet attention networks (DWAN) [15] has further
increased the accuracy on complex datasets. The DWAN
is a mixture of both channel and spatial attention. The
DWT channel attention specifically compresses the features,
and a unique channel scalar is provided as the weight for
each channel. Consequently, DWT spatial attention provides
structural components of the objects in the image. The DWT
channel and spatial networks are joined in sequence [15].
They were primarily applied to the features obtained in the
deep layers such as just before the dense or in the dense
layers. Subsequently, this paper proposes Alternative Wavelet
Channel and Spatial Attention (AWCSA) by following the
work in [15]. The AWCSA applies wavelet channel and
spatial attention modules across the backbone features over
multiple resolutions. This will preserve contextual informa-
tion across the video sequence for maximizing recognition.
Conventionally, the subjects in the ballet dance videos move
rapidly during a performance which induces scale changes
in the required pose information for recognition. feature
fusion at multiple resolutions retains information during scale
changes. The proposed method experiments on our Ballet
Online Dance Video dataset (BODV23) and benchmark
person re-identification action datasets such as NTU RGB
D [16], Kinetics-700 [17] and MPII Human Pose [18].

A more technical reason for selecting ‘Ballet’ dance
recognition is to validate two challenges encountered in
human action recognition using video data [19]. The 1%
challenge was to establish the fact that human motion
is nonuniform across video frames. Now creating a full
motion constrain human action dataset showing the same
action at different speeds was found to be challenging.
Alternatively, searching for actions with uneven distribution
of human motion across a singular class, we discovered
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Ballet. This is the reason why ‘Ballet’ was selected. The
2" challenge would be to construct a model that can
effectively characterize these unsymmetrical motion features
from online ballet dance videos.

On the whole, this work offers the following contributions:

1) Constructing and benchmarking a Ballet Online Dance
Video dataset (BODV23) that has demonstrated effec-
tiveness for training the proposed approach across
multiple subjects, music, and background changes.

2) The proposed alternating wavelet spatial channel
attention mechanism has enhanced backbone classifi-
cation network’s ability to capture spatial variations in
complex human actions such as Ballet.

3) Established significance and substantiated the impor-
tance of learned features through alternating wavelet
spatial channel attention on benchmark datasets
through comparison with existing state - of - the - arts.

The rest of the manuscript is organized into 4 sections.

The second section outlines the past research with strong
and weak areas for further investigation. The methodology to
examine the proposed hypotheses that led to the formulation
of the above contributions is discussed in section III. The
experiments conducted and results obtained were analyzed in
section IV. Finally, the overall impact of the proposed work
on the selected research problem is presented in section V.

II. LITERATURE REVIEW

The literature reviews show the past and current trends
in research on the recognition of dance forms. The goal
of this part of the work is to generate insights into the
methods which in turn provide merits and demerits. Finally,
we summarize these methods based on the tolerance to
recognition accuracies. This section highlights four key
components required for a BDP identification problem, dance
data, feature engineering, model building and performance
evaluation.

The dance video data selected in most of the previous
works is quite skeptical. The video data used for experiments
has been generated in controlled laboratory conditions where
the dancer has no costume, and the background is constant
across the entire video sequence. Traditional methods used
feature representations using computer vision algorithms
such as histogram of oriented optical flow [20] and histogram
of gradients [21]. These features across each frame are
collected temporally in the video sequence to generate a
spatiotemporal representation of the dance poses. Subse-
quently, the Spatio-temporal features were classified with a
multivariate support vector machine (SVM) or an Adaboost
classifier [22]. Few research methods used multi-modal data
such as depth [23] and skeletal datasets [24] recorded with
a Kinect sensor. Even though the results reported on these
multi-modal data such as depth and skeleton are encour-
aging, they critically underestimate the finger joint shapes,
costumes, lighting, and viewing angles. The recognition
accuracies of SVM with HoG features have excelled over
others. The conclusion drawn is fairly inconsistent due to
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the datasets used for training. As discussed, most of the
dance datasets were constructed by the researchers and are
not publicly available to others. This is the first difference
between the previous works and the work presented in
this paper. This work proposes the online ballet dance
dataset created largely from YouTube videos. These videos
are in raw format with many anomalies such as costume
variations, lighting inconsistency, camera source movements,
occlusions, and video background changes. Under the given
challenges in the BDP video dataset, the task is to discover
the best machine-learning model for classification.

In order to come up with the best possible architecture
for the BDP identification problem, we performed an
independent assessment of the previous works. With the
expansion of GPUs and deep learning architectures, the
performance of these training algorithms also improved
considerably. The first models to apply dance classification
were developed using pre-trained neural networks on skeletal
datasets [25]. Though there has been an improvement in test
accuracy, they have some serious limitations. They fail to
enumerate the actual physical characteristics of the dance like
the costume, hand gestures, pose invariance, and missing joint
movements due to view variations. These limitations were
addressed by using RGB images and Kinect depth data on
a convolutional neural network (CNN). Though the dataset
is small, results obtained from the feature fusion of RGB
and depth are ordinary [26]. This ordinary improvement is
enhanced by 3D point clouds using the recurrence condition
of neural networks [27]. Improvements were proposed by
applying image pre-processing of dance video frames and
then extracting features such as motion information [28],
dancer parts [29], body shapes [1] and global automated
features using conventional layers [29], [30]. All the above
models used either CNN dense layers for classification or
represented frame-level features as time series information
using recurrent neural networks.

As the above networks are liable to the scarce input video
data variations, recognition accuracies of dance lyrics have
been improved through the use of multiple types of deep
neural networks. The first model used hybrid particle swarm
and grey wolf algorithms as the optimizers [31] during the
training process instead of regular stochastic gradient descent
(SGD) or Adam. Apart from influencing optimizers, the work
in [32] applied reinforcement learning to impact dense layer
outputs. This has improved the recognition accuracy due to
the influence of pre-trained convolutional layers. Instead of
focusing on automated feature classification with a dense
layer of CNN, feature engineering has been initiated with
automated CNN or CNN-RNN variations [33] which are then
classified with machine learning methods such as k-nearest
neighborhood, Bayes, fuzzy and SVM [34]. A slight enhance-
ment in accuracy has been achieved by using a capsule
network for training and testing on dance image data [35].
Capsule networks are part-based training algorithms that
translate encoded features for recognition using hierarchical
relationships between data samples. Though the results on
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the non-noisy dance video datasets have been satisfactory
they could not be transferred to online or real-time BDP
identification. The latest model [36] shows the semantics of
dance pose as the underlying features that have enhanced the
performance of backbone networks such as VGG and ResNet.

Finally, the proposed model is designed to overcome the
most challenging problems from the previous works. Firstly,
it overcomes the problem of highly structured dance datasets
by creating a more robust BDP dataset from recorded live
performances. Secondly, the drawbacks associated with 2D
dance data will be diminished by applying an alternating
wavelet channel and spatial attention (AWCSA) learning
framework on a sequence of BDP frames. Lastly, the attention
score is improved by applying channel and spatial attention
modules alternatively across layers which is otherwise
applied on the dense layer features.

lIl. METHODOLOGY
This article proposes an alternating wavelet channel and
spatial attention (AWCSA) deep neural network with a
ResNet50 backbone. The work on dual wavelet attention
in [15] has been an inspiration for the proposed methodology.
Wavelet channel attention (WCA) and wavelet spatial
attention (WSA) are models incepted from the work in [15].
The WCA and WSA are attention models operating on
wavelet coefficients. In WCA the approximate and detailed
coefficients are averaged and pooled to construct features that
are focused on a particular object of interest in the image. The
channel-wise global averaging across the wavelet coefficients
results in a numerical representation for each channel, which
are learned to model attention. In contrast WSA operates
averaging is performed on detailed wavelet coefficients and
concentrated with average coefficients. As a result, WSA
or WCA will ensure that future features generated from
backbone layers are concentrated around the focused regions
in the image. The previous works using wavelet attention
use all the subbands directly or as a single map of averaged
subbands [15], [37], [38], [39]. Moreover, data compression
is the dominant advantage propagated by these works on
top of attention, which comes as an integral part of the
1 x 1 convolutional network.

Three aspects create a difference between AWCSA and
similar previous works.

1) AWCSA uses both types of attention maps one after the
other, alternatively.

2) The alternative WCA and WSA ensure a good channel
and spatial information selection to improve the overall
learning of the classifier.

3) The multi-resolution attention ensures that the dom-
inant structural and textural features in the primary
layers of the backbone network sustain till the final
layers.

The proposed method is illustrated in figure 1. The ResNet50
backbone model takes a batch of video frames with a resized
resolution of 256 x 256 x 3 as input. The 2D discrete
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wavelet transform with biorthogonal filters maps into average
and detailed components respectively. The attention map
is constructed with low and high-frequency components
to create dominant structural and textural features for
recognition. Moreover, the attention maps are generated at
multiple resolutions throughout the learning process to attain
attention sustainability till the end of the feature generating
network as can be seen in figure 1.

A. 2D DISCRETE WAVELET TRANSFORM

Given an image I (x,y) € JIM*N where 3 is the set of
integers of size M x N, the coefficients of 2D discrete
wavelet transform (2D DWT) are extracted by applying a

scale function

M N
Wo Go.m.m) = Z5z5 2 2130 X g (2:3) (1)
x=0 y=|
where jo is the starting scale and @j, ., is the scaling
function. Similarly, the detailed coefficients can be obtained
by applying the following formulation as

M N
. 1
Wlﬁ (]7 m7 n) = mxg()ygof (x’ )’) X 110].,1’11,11 (xv y) (2)
where v, , is the wavelet function. The orthogonality
principle is satisfied by the scale function resulting in
¢ (x,y) = ¢ (x) ¢ (), transforming eq’n(1) into

L MoN
W§0 (iO’ m, n) = W o ()I (X, y) X Qjo,m ()C) X Qjy,n (}’) (3)

x=0y=
The above equation draws parallels with convolutional
operation with scale kernels along x and y directions.
In previous works, it has been proved that the HAAR
wavelet transform can be formulated by the following relation

®jo,mn X) * @jo.mn (v) = 11in eq’n(3), which results in

M N
S Wolnmm = =33 1)

m,ne0,1,2,.....,2/~1 x=0 y=0
- (\/MN) GAP (I (x, y))
@

The GAP is, Global Average Pooling. Consequently, the
Wy (jo, m, n) characterizes the approximate or low frequency
components with HAAR wavelet basis. Therefore, it has
been proved in [3], that the summation of low frequency
components results in a functionality equivalent to GAP.
This has been explored in many of the channel attention
models using DWT [40], [41]. Since the online BDP
video dataset is quite vibrant in pixel variations across
frames, the experiments showed that bi-orthogonal wavelets
have the ability to represent such transformations. Figure 2
shows the variation between Haar and Bior filters on a frame
from BDP.

In general, bi-orthogonal wavelets eliminate the problem
of phase distortions caused by the unsymmetrical nature of
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FIGURE 1. The complete end-to-end architecture of alternating wavelet channel and spatial attention (AWCSA) for Ballet dance recognition on online

multi-source video data.

(a) HAAR Wavelet Filter (b) Biorl.1 Wavelet Filter

FIGURE 2. Visual comparison between HAAR and Bior1.1 wavelet filters
on a ballet dance pose frame in a class label.
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FIGURE 3. 2D Wavelet transform on a tensor.

orthogonal wavelets. The multiresolution analysis is consid-
ered the basis for bi-orthogonal wavelets. The approximate
and detailed coefficients in bior 2D DWT are given as

M N
Wy Gom,n) =D > 100 Yimn (6,3) (5)
x=0y=0
and
M N _
Wy Gomn) =" > T @) Vjmn (06,3)  (6)
x=0 y=0

55268

where the wavelets ¥ and ¥ are biorthogonal wavelets. This
is the most suitable wavelet for representing the detailed
components of BDP online video data as they contain vast
amounts of non-linearity. In the following subsection, the
attention mechanism and the involvement of wavelets is
formulated.

B. WAVELET ATTENTION MODELS (WAM)

The theoretical analysis leads to the formulation of
wavelet-based attention mechanisms(WAM). The wavelet
decompositions on a 2D tensor has been disclosed in figure 3.
The outputs of figure 3 are applied in different combinations
across the learning systems to induce attention into the
convolutional features. However, to understand the difference
between the regular channel or spatial attention models used
previously to the wavelet-based channel and spatial attention,
figure 4 is reproduced from works [15]. Figure 4(a) describes
the process followed in channel-based attention across 2D

tensor features f(©) = [fl(c) U A fZ(C)JT
0—to—Z channel representations in a particular layer € using
global average pooling (GAP) [3] and the spatial attention
based on the maximum pooling of features. The GAP is
expressed as the average of X,EK) € R "™Z features across
all channels c at layer £ with Z learnable convolutional filters
is

with z €

n
x € R1I%X1%Z 7
XEXn

() —
Jn O}

x4

where n gives the dimensionality of the feature matrix and
is called as channel attention module (CAM) as shown
in figure.4(a). Similarly, the spatial attention (SAM) in
figure.4(a) is obtained as the maximum pooling across X,EZ) €
R™"*Z features in layer £ as

Y = arg max (x) € RiI*5%Z ®)

XE€Xn
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Average Pooling 2D DWT|
||
dA)
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(a) CAM( & SAM) Module (b) WCAM Module (c) WSAM Module

FIGURE 4. Attention based networks. (a) Channel and Spatial attention
mechanisms - CAM or SAM. (b) Wavelet based channel attention (WCAM)
and (c) Wavelet Spatial attention mechanism(WSAM).

The features f,l(c) (channel) and f,,(‘v) (spatial) are being
learned at the output of fully connected layers as shown
in the figure.4(a). Finally, £\, £ fuses multiplicatively
with the original features to generate attentive features
(fcc =xe fn(c)) (fcs =xe fn(s)). Interestingly, both channel

and spatial (fcc — (x .fn(c)) . n(&))

been applied in series which has shown to improve the
overall accuracy of the classifier. However, the average or
maximum pooling decreases the intensity of the feature being
learned by the fully connected attention layers. Consequently,
this has been improved by applying the discrete wavelet
transform (DWT) which has proved to compress and preserve
the structural information. Simultaneously, these advantages
empower the DWT to be used as an efficient attention
generating network.

attentions have also

C. WAVELET CHANNEL ATTENTION MODEL (WCAM)

The WCAM takes inspiration from the channel attention
module [42] shown in figure.4(a). The 2D input features of
image I (x,y) € R%orframe I (x,y,t = T) € R*V T frames
represented by x transforms into approximate low frequency
coefficients denoted by (LL) and high frequency coefficients
(LH,HL,HH).

The 2D DWT results in the coefficients

LL,LH,HL, HH = 2D_DWT (x) C)

The above decomposition is a Level-2 decomposition and
as the decomposition levels increases, the number of sub
bands also get inflated with 2"mber—of levels Eor C channels
in input feature x € RE*M>*N the 1 x 1 convolutions with
C filters will produce a statistical averaging at the output
as RCVMXN "The output of the wavelet channel attention
module in figure.4(b) formulates into

N/2N/2
=0 (@AZ (relu (@A, (Z > (LL + LH + HL + HH))))) (10)
i=0 j=0

where, {@Al, ®A2} are trainable parameters of the attention
network on input features {LL, HL, HH,LH} and o is of
the sigmoid function. The x input features are transformed
into wavelet domain as low and high frequency components.

=
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Subsequently, in channel attention network in figure.4(b),
they are averaged and channel scalars across each of the
channels are learned by the combination of two fully
connected and two activation layers. The output of the
channel attention network for an input feature x is formulated
as

fcc:argncz)inLc((ac:wx (x)) ®x (11)

where the operator (e) indicates an element wise multiplica-
N/2N/2

tion. The wy (x) = > > (LL + LH + HL + HH) wavelet

i=0 j=0
features are trained withj channel model parameters ®, using
a loss function L.. The output features X, of the learned
channel attention network are element wise multiplied with
the original features x.

D. WAVELET SPATIAL ATTENTION MODEL (WSAM)

The spatial attention model using wavelets is shown in
figure.4(c), which is compared with WCAM and CAM(&
SAM) if figure’s 4(a) and 4(b) respectively. The spatial
wavelet features are

0
wy (x) = || | LL,

> (LH.HL.HH) (12)
0

(M/2,N/2)

o0
where || is a concatenation operator for all the elements in the

wavele? low frequency (LL) and high frequency (LH,HL,HH)
feature representations. The obtained spatial wavelet features
are learned by the fully connected and activation layers. The
output of the WSAM in figure.4(c) is formulated as

X=o0 (@Az (VEZM (®A1 (Wx (x))))) (13)

The output of the spatial attention network for an input feature
X is given as

Xy = arg n(l)inLS (Og : wy (x)) ox (14)

where the operator (e) indicates an element wise multipli-
cation. The w, (x) spatial wavelet features are trained with
channel model parameters ®; using a loss function L;. The
output features X, of the learned attention network are element
wise multiplied with the original features x. However,
concatenating the low frequency wavelet coefficients has
equivalence to GAP in figure.4(a). This in turn influences the
attention values produced by the network.

E. ALTERNATING WAVELET CHANNEL AND SPATIAL
ATTENTION MODEL (AWCSA)

Figure.5 shows previously used multi attention feature
integration modules along with the proposed ones. The first
row of figure.5 describes the models from the past works.
The models in figure’s 5(a) and (b) integrate either wavelet
channel or spatial features in between the Resnet50 blocks.
The WCA_RS50 and WSA_RS50 can either have attention
layers across one ResNet50 block or at multiple blocks.
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Both these models have shown good attention capabilities
with respect to standard datasets such as CIFAR100, SVHN
and WHURS-19. Further improvements were observed
with the use of dual wavelet attention models [15] in
figure’s 5(c) and (d), where sequential channel and spa-
tial attention layers were used for integration. Though
WCSA_R50 and WSCA_RS50 recorded highest accuracy
on the above benchmark datasets, they failed to formulate
structural and textural information for good recognition
on ballet dance and human action online video datasets.
Moreover, if all the blocks in the ResNet50 were inflated
with attention layers, the training process of dual wavelet
attention model became extremely complicated. To avoid
the above shortcomings, we propose alternating wavelet
channel and spatial attention model (AWCSA). The multiple
block integration of attention layers is shown in figure’s 5(e)
and (f). This has been elevated by alternating the channel
and spatial attention layers across the ResNet50 blocks. The
proposed models AWCSA_R50 and AWSCA_RS50 are shown
in figure’s 5(g) and (h) respectively.

The obtained attention maps for individual frames in a
class label are fused with the mainstream Resnet50 features
for classification during the training operation. Above, the
classifier in figure.1 is shown to be ResNet50. However, any
classifier can be used, and it would be interesting to find
the usefulness of attention maps as a generalized attention
provider. Moreover, the capabilities of ResNet50 as a feature
extractor can also be challenged by using other standard
networks. The attention maps generated from each of the
layers in the global feature extractor ResNet are represented
as

Toa = {facan) Faan)s focas) s fuan } € REPMNiyp < [1, N]
(15)

where, the variable a gives the attention at the output of the
Residual layer and n denotes the frame number. Here {A{, A3}
are channel attention modules described above and {A;, A4}
are spatial and vice versa as shown in figure’s 5(g) and (h).
The attention maps at the output of Residual layers have
the same dimensions as that of the features in the classifier
net denoted by M; x N; where [ is the layer number. The
dimensions will be reduced to half with each passing layer.
The training of the AWCSA_R50 or AWSCA_RS50 results in
attention features {Fn(Ll), Fn(L2) s Fn(LS)» Fn(L4)} across each
of the residual layers in the ResNet backbone as

class
Foany = an(Al) fnckl;lléjs VRC2>MP<Ni
i=1

| — number representing residual layers (16)

The AWCSA_R50 or AWSCA_R50 model is trained with
categorical cross entropy loss function and Adam optimizer.
The classifier model in figure.l trains on the local features
from Fyy) (X) using the trainable parameters ©awcsa
(®awsca) by optimizing the loss function Lawcsa (Lawsca)
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on the entire dataset as
Oawcsa = arg_min Lawcsa (Oawcas : Fawn (X))
Oawcsa

7)

Here class labels y denotes the lyrics of the song for which
the ballet dance poses are recorded. The trainable parameters
Oawcsa are optimized using the cross-entropy loss Lawcsa
defined as
Class
Lawcsa=— Y, (ixlog () +(1—y;) xlog (1—y;)) (18)
i=1
where, Class is the total number of labels in the ballet dance
song used during the training process. The trained model
M (®awcsa) outputs a set of spatial features x; representing
RGB BDP data at the end of each Residual block using the
following function
c C
0= D DK (k=) (k=) Vi=ltod (19)
i=1 j=1

where k is the kernel size across each of the layers and x is the
feature matrix in [ Residual block. The final spatial feature
at the input of the dense layer is of size N X kgense- The
activation function used in convolutional layers is rectified
linear unit defined as

R (z) = max (0, 2) (20

where z is the output of the neuron. Similarly, the dense layers
have tanh and the SoftMax layer has sigmoid activations.

The proposed AWCSA or AWSCA is on end-to-end
trainable model. The global BDP features x for all classes
are extracted through the backbone ResNet50 architecture as
shown in figure.1. There are 96 frames in each video sample.
The learning rate for the entire network was fixed at 0.0001.
Whenever the error rate of the classifier became constant for
more than 10 epochs, the learning rate was decreased by 10%.
The weights and biases are initialized randomly through zero
mean unit gaussian distribution function. The momentum
factor was kept at 0.84. All the models (Proposed and State-
of-the-art) were trained with Adam optimizer on an 8GB
NVDIA A4000 GPU with 16GB memory using TensorFlow
2.5 APIs.

The focused information losses are minimized in our
proposed AWCSA model during the training process. This
is due to the alternating channel and spatial attention
layers that control the flow of information passing through
the network. On the other hand, the number of attention
layers is halved when compared to dual attention networks
WCSA_R50 or WSCA_R50 models [15]. Moreover, the
feature combinations in AWCSA_R50 occur at multiple
resolutions with alternating spatial and channel pooling
which has produced accurate localizations on complex video
datasets. Subsequent sections provide a detailed description
of the results obtained through rigorous experimentation on
various BDP video datasets to evaluate the performance of
the proposed method against similar frameworks.
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FIGURE 5. Attention feature integration modules into ResNet50 blocks. (a) Wavelet channel attention (WCA_R50) [4],
(b) Wavelet Spatial Attention (WSA_R50) [43]. Dual wavelet attention models [15], (c) Wavelet channel spatial attention
(WCSA_R50), (d) Wavelet spatial channel attention (WSCA_R50). Proposed Alternating wavelet channel spatial attention
(AWSCA), (e) wavelet alternating channel attention (WACA_R50), (f) wavelet alternating spatial attention
(WASA_R50),(g) alternating wavelet channel spatial attention (AWCSA_R50),(h) alternating wavelet spatial channel

attention (AWSCA_R50).

IV. RESULTS AND DISCUSSION

Two architectures AWCSA_R50 and AWSCA_RS50 are built
and trained from scratch on online sourced ballet dance poses
which are further validated with benchmark human action
recognition (HAR) RGB video datasets. The BDP online
videos are transformed into frames at specific intervals which
are further split into train, validate and test data. The output
labels for each of the video sequences are sourced from online
ballet dance learning portals. Correspondingly, the attention
mechanisms employed in AWCSA_R50(AWSCA_R50) are
tested against the models from figure.5 on different backbone
architectures to estimate their robustness. Additionally,
the findings of AWCSA_RS50 were validated against the
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other state - of - the - art on human action recognition
methods.

The following research has broader implications in the
fields of human computer interactions, automated training
tools for dancers, and application domains of fine-grained
human motion recognition. Intuitively, a real time interface
can help dance learners with precision feedback on their
movements for refining their technique and enhance spectator
engagement statistics. Additionally, the automated dance
interfaces can help prevent injuries during practice and at
times help them fine tune their problem moves by comparing
them with the best performances. On the other hand,
machine automated the fine-grained human motions can
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FIGURE 6. Ballet Online Dance Video dataset (BODV23), All the rows describe a lyrical video song named ‘Arabesque’. Each column describes different
samples from different dancers for the same lyrics or class labels. In some cases, as we can see, the samples are found to be missing in the online

source. The dataset is unstructured.

benefit individuals with disabilities for gesture recognition
using natural interfaces and aid in developing custom fit
rehabilitation programs. Moreover, it can also be applied
to improve sports performance as well as to enhance video
surveillance for human detection and tracking.

A. BALLET ONLINE DANCE VIDEO DATASET (BODV23)
This work generates Ballet Online Dance Video dataset
(BODV23), an online BDP video dataset with 10 classes.
A set of 10 popular poses have been sourced from [44]
and the corresponding videos of different dancers was
downloaded from various online sources [45]. Specifically,
YouTube has been the largest source of our BODV23
dataset produced at KL Biomechanics and Vision Com-
puting Research Centre and is available for download
https://github.com/pvvkishore/Ballet_Dance_Recognition_
2023. Historically, no such BDP dataset is available for
training and testing. Hence, to validate the AWCSA_R50
(AWSCA_RS50) against the baselines, this work selected
benchmark human action datasets such as NTU RGB D [16],
Kinetics-700 [17] and MPII Human Pose [18].

Figure.6 shows multiple subjects from BODV23 dataset
with class label ‘Arabesque’. Each label consists of 10 sam-
ples distributed unevenly across number of video frames.
Evenness in number of frames per video sample is guaranteed
for training and testing on AWCSA_RS50 by manually select-
ing frames of interest. The frames in BODV23 are restricted
to 96 frames per / label which covers all the pose related infor-
mation. The BODV23 embodies 10 classes per subject and
each of these 10 classes has 10 samples from multiple sources
and dancers. Consequently, there are 10 x 10 BDP videos
with 96 frames per sample. Hence, the BODV23 online BDP
dataset have 10(classes) x 10(dancers) x 96(frames) =
96000 frames. All the videos are downloaded from YouTube
with output schema resolution of 780p. Based on the
original uploaded data through multiple sources, there was
difficulty in maintaining the set resolution. Therefore, all the
videos are split into frames at a frame rate of 30fps and
96 frames are separated as labeled data. The 10 labelled
frames are first standardized by manually cropping each
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frame to keep the dancing subject at the center of the
cropped image. The cropped frames are standardized at
256 x 256 x 3. Annotating the dance poses based on labels
to include multiple subjects was really challenging as their
body movements varied along with the camera angles for
capturing the same dance pose across multiple videos. At this
point of time, the BODV23 was carefully created with dance
poses that match a particular camera angle within a class
label. More annotations such as segmentation masks and
bounding boxes are the updates planned for the next version.
The current version of BODV23 is a classification dataset
with training, validation, and test labels. BODV23 is biased
with respect to viewpoints, frame quality, temporals, and
data sampling. Mostly only the best viewpoints of a subject
within a particular label are selected. The frame quality is
most of the videos was upgraded or downgraded to 256 for
uniformity. The number of frames per video sequence was
standardized to 30fps, even though they resulted in poor
quality image frames. However, these were sampled and
removed without compromising on the sequential nature of
the dance performance. Further, a 9-fold data augmentation
is performed during training to avoid overfitting on various
backbone networks. Since there are no benchmark ballet
dance pose datasets available publicly, this work used video
human action datasets to test the performance of the proposed
method against the state-of-the-arts. This is because of the
closeness dance is a complicated version of human action that
consists of large complex structural variation of human body
as against small simple structures.

Figures.7, 8, & 9 shows the HAR benchmark datasets
from NTU RGB-D [16], Kinetics-700 [17] and MPII Human
Pose [18]. In NTU RGB-D, we have 120 action classes
with 114,480 video samples. In this work, we restricted the
datasets to 864000 frames with 120 action classes. Kinetics-
700 is a large scale human action dataset with 10K videos
in 700 classes with 10 to 40 samples per class. In this
work we restricted to 120 classes with 10 samples per class
at a maximum of 942500 frames. MPII human pose is an
online YouTube video dataset with 25000 frames covering
410 actions. In this work only 120 classes with 9 data
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FIGURE 7. The benchmark NTU RGB D dataset used in this work to test

the performance of the proposed method.
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FIGURE 8. Kinetics-700 dataset sample frames.

augmentation were used to generate around 725k frames for
training, validation and testing. However, the proposed work
has normalized the use of image resolution to 256 x 256 in
all the datasets and subsequently across the models used in
this work.

B. MODELS AND EVALUATION CRITERIA

Since the architecture and configuration of the ResNet50
backbone network has been extensively discussed in
section III, this subsection presents the training parameters
across the considered datasets. Firstly, the frame resolution
was made constant across datasets to 256 x 256 x 3.
Secondly, apart from ResNet50, other standard architectures
such as VGG-16, VGG-19, ResNetl01 and regular CNN
models were tested. In all these models, the weights and bias
initializations were fixed using a zero mean and unit variance
Gaussian function. The initial learning rate for the has been
fixed at 0.00001 throughout training process. The pose loss
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function for all the baseline networks has been categorical
cross entropy with an Adam optimizer. The momentum
factor for the network in figure.l has been selected as 0.85.
The combination of filters and other layers were used in
accordance with the works cited in the comparison phase. The
major difference between the proposed AWCSA and other
wavelet attention models is in the distribution of features
across all layers with a progressive resolution across layers
in the backbone classifier network. The previously proposed
wavelet attention models induce CA & SA attention features
one after the other at a fixed resolution as against all layers
progressively with adaptive resolution.

The proposed AWCSA_R50 (AWSCA_R50) were eval-
uvated with the help of four experiments. The first one
evaluates the performance of the proposed method on the
BODV?23 with mean average precision(mAP) over the entire
dataset and reports it in two folds. The 1-fold mAP is the
average precision after the 1% positive testing of the model
and the 5-fold mAP is the maximum average precision
across 5 successful runs of the model on the test data. This
experiment also reports the performance of individual classes
in the BODV?23. Second, the impact of the wavelet attention
mechanism proposed in this work is evaluated against the
previous models. Thirdly, the proposed work is compared
against the state-of-the-art networks on the benchmark
datasets and BODV22 respectively. Finally, ablation studies
are performed to identify the inflicting parameters while
testing the network. Another parameter called Cumulative
Matching Characteristics (CMC) is computed with the
expectation of finding the correct match for a test sample in
top n - matches. This parameter is a measure of efficiency in
recognition tasks on unseen test data.

C. EVALUATING THE PROPOSED AWCSA_R50 AND
AWSCA_R50 MODELS

The 1*" experiment trains the model in figure.1 with attention
model in figure.5(g) as AWCSA_RS50. The 96K video frames
in BODV23 are annotated manually using a predefined
bounding box model. Out of the 96K frames distributed
across 10 classes and 10 samples, 67.2K will be used
for training and 14.4K each for validation and testing.
The performance metrics are averaged over the test data.
Table 1 records mAP performance metrics computed on the
test data using the trained AWCSA_RS50 model. Similarly,
AWSCA_RS50 results were also presented in table 1.

The metrics calculated are 1-fold and 5-fold mAP’s.
The highest 1-fold is obtained for the class ‘Attitude’.
Table.1 also shows mAP’s obtained without attention model.
Undoubtedly the wavelet attention has a strong input on the
classifier performance in identifying shrewd pose formation
in BDP database. Further, the attention mechanism has indeed
highlighted the spatial content in the frame sequences that
provided highly effective shape and textural features for
classification.

In order to validate the mAP’s obtained in table 1,
sample specific testing is initiated through inferencing the
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FIGURE 9. MPII Human Pose dataset sample frames.

TABLE 1. mAP’s of the proposed method trained on BODV23 dataset with
1 and 5-fold testing.

S.No Class Labels without AWCSA_R50 AWSCA_R50
in BPD Attention | I-Fold | 5-Fold | 1-Fold | 5-Fold
1 Arabesque 0.744 0.894 0.934 0.874 0.902
2 Assemblé 0.751 0.901 0.929 0.882 0914
3 Attitude 0.802 0.958 0.979 0.942 0.961
4 En Pointe 0.726 0.886 0.907 0.853 0.886
5 Fouetté 0.724 0.842 0.873 0.851 0.869
6 Grand Jeté 0.697 0.841 0.864 0.819 0.842
7 Penché 0.670 0.808 0.836 0.787 0.807
8 Pirouette 0.713 0.867 0.895 0.838 0.891
9 Tour de reins 0.736 0.852 0.902 0.864 0.911
10 Tour en I’air 0.618 0.774 0.792 0.726 0.762

trained AWCSA_R50 model with data from each class
singularly. Table 2 presents the mAPs in 1-Fold and 5-Fold
recorded during the testing of unseen dance poses from
labels ‘Arabesque’, ‘Attitude’ and ‘Tour en 1’air’. It can
be seen that the label ‘Tour en L’air’ is least accurate of
all the classes. This is due to the paced movements within
the classes which are challenging for the feature extractor.
However, in the next section it is proposed to compare the
non-attention(ResNet50), attention (CA_R50 and SA_R50)
and wavelet attentions in figure.5.

Interestingly, table 1 also shows comparison between
AWCSA_R50 and AWSCA_RS50. The majority of the mAPs
from table 1 points to the finding that channel attention
followed by spatial attention preserves more contextual
information related to a video frame when compared to
spatial followed by channel. This is because of the GAP
in the channel attention module. It averages across all the
channel features which results in loss of dominant features.
In AWCSA_RS5O, this channel information loss is replenished
in the consecutive residual layer having wavelet spatial
attention. However, if the channel attention is after the
spatial attention, this loss is quantified significantly. To justify
this fact that the AWCSA_RS50 or AWSCA_RS50 generates
highly structural and largely discriminating features during
the training process, we validated the proposed attentions
with similar models in the following section.

D. AWCSA_R50 VS STATE-OF-THE-ART ATTENTION
MECHANISMS
This part of the section accentuates the significance of

the proposed alternating wavelet channel and spatial atten-
tion (AWCSA) block in the overall BDP recognition.
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Consequently, experiments were conducted by replacing the
proposed attention block in our network with eight state-
of-the-art attention models as shown in figure.5. Out of
which 2 attention models are based on channel (CA_R50)
[4] and spatial attention (SA_RS50) [5] and the remaining
are based on wavelet attention. There is one model without
attention (Res50) [46]. Remaining all are sourced from
figure.5. They are wavelet channel attention (WCA_RS50) [4],
WSA_RS50 [43], WCSA_RS50 [15], WSCA_RS50 [15], along
with the proposed WACA_R50, WASA_R50, WACSA_RS50
and WASCA_RS50.

The results of the above experiment are quantitatively
presented through the attention visualizations as shown in
figure.10. The attention maps are shown for top 4 poses
in the class ‘Attitude’. Training and testing of all the
attention models was carried out with Resnet 50 backbone
feature network with no deviation in hyperparameters.
Figure.10 has 10 columns, with the first column representing
the original video frame from 4 top mAP class labels.
The first column figure.10(a) gives four original frames
from the class ‘Attitude’ pose in ballet dance dataset. The
column figure.10(b) is the ResNet50 architecture with no
attention mechanism induced into its layers. This map is
constructed by plotting the features from the last residual
block in ResNet50. Since there is no attention module,
the feature distribution is distorted in all the frames. The
column 10(c) uses a channel attention(CA_R50) in the final
convolution layers [4], which missed key spatial features
that were part of the initial layers. Subsequently, the results
in column 10(d) has shown improved attentions due to
spatial attention (SA_RS50) [5]. The biggest drawback of
these models is their inability to produce focused features
during the training process that preserves the structural
integrity across features for pose estimation. This drawback
was successfully extenuated by integrating wavelet features
into the attention model. Further, figure.10(e) uses a wavelet
channel attention model (WCA_RS50) in the earlier layers [4]
of the global feature extractor. This has enabled the attention
module to focus on improved distribution of convolution
features across the frames.

This is further increased by applying WSA in WSA_RS50
as can be seen in figure.10(f). The wavelet channel attention
(WCA) [4] shown in column 10(e) did well in this regard
but was consumed by global averaging of approximate and
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TABLE 2. mAP metrics obtained during the testing of the proposed model on Individual classes of the song ‘Arabesque’, ‘Attitude’ and ‘Tour en l'air.

Assemble dance Poses

Pirouette dance poses

En Pointe dance poses

Dance Poses 1-Fold | 5-Fold Dance Poses

1-Fold | 5-Fold Dance Poses 1-Fold | 5-Fold

Pose-1 0.892 0.912

Pose-1 0.875 0.899

Pose-1 0.917 0.931

Pose-2 | 0.954 0.977

Pose-2 | 0.891 0.917

Pose-2 | 0.874 0.895

Pose-3 0.876 0.907

Pose-3 0.857 0.892

Pose-3 0.937 0.952

Pose-4 | 0.841 0.884

Pose-4 | 0.912 0.942

Pose-4 | 0.928 0.947

Pose-5 0.889 0.914

Pose-5 0.928 0.957

Pose-5 0.924 0.951

(b) ResNet50 (c) CA_RS0

(a) Original Image

(d) SA_R50 (e) WCA_R50

() WSA_RS0 () WACA_R50  (h) WASA_RS0

b

R

1
IIIiiIIII|IIIiiIIII|IIIiIII|IIIIIIIIlIIIIIIIIIIIIIIIIIII

(i) WCSA_R50 (j) WSCA_R50 (k) AWCSA_R50 (1) AWSCA_RS0

FIGURE 10. Comparison of the proposed attention model with the state-of-the-arts attention layers.(a) The Original poses one from the ‘Tour en I'air’
class of BDP, (b) ResNet50 with no attention [46], (c) CA_R50 [4], (d) SA_R50 [5], (¢) WCA_R50 [4],(f) WSA_R50 [43],(g) WACA_R50 [15],(h) WASA_R50,

(i) WCSA_R50, (j) WSCA_R50, (k) AWCSA_R50 and (I) AWSCA_R50.

detailed components. However, the spatial wavelet attention
(WSA) [43] in column 10(f) preserved the spatial information
to an extent by concatenating the average and sum of detailed
components. This however gets effected when the spatial
information is distributed nonuniformly across the video
frames as in case of online Ballet dance poses. However,
if multiple attention blocks are connected as in figure.5(e)
and (f), we get a little improvement from previous models
as seen in figure’s 10(g) and (h). Interestingly, the dual
wavelet attention model (WDAM) [15] works on the above
disadvantages and improves the attention features as shown
in column 10(i) and 10(j). The training process becomes
computationally inefficient with two attention models in
series between each ResNet block.

The above disadvantage is surpassed in the proposed
alternating wavelet channel and spatial attention (AWCSA)
or wavelet spatial and channel attention (AWSCA) where the
attention network compensates for the information loss and
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reduced dimensionality. For example, the wavelet channel
attention efficiently handles reduced dimensionality but fails
to control the loss of information. This information loss is
retrieved through intermediate global features selected by
channel attention and enhanced further by the wavelet spatial
attention layers. The AWCSA and AWSCA in columns 10(k)
and 10(1) has dual advantage of reducing dimensionality
and preserving spatial relationships with improved feature
clarity for recognition. The model has shown ability to
learn intricate relationships related to textural information
in the detailed components across the global features. The
proposed attention is computed across multiple resolutions
alternatively as the features travels through the network
making a human like attention mechanism for improved
focus. Thus, the features from AWCSA_RS50 characterize
super attention which are capable of representing structural
as well as textural information in multi sourced video data.
This is proved qualitatively with the help of recognition
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accuracies computed across the test dataset of BODV23.
Confusion matrices were plotted in figure.11 for each of the
representation in figure. 10.

To evaluate the universality of AWCSA_RS50, this work
selects human action datasets that are similar to our BODV23.
Consequently, three benchmark human action datasets were
applied to validate the robustness of AWCSA_RS50 against
the state-of-the-art backbone architectures in the following
section.

E. PROPOSED VS STANDARD BACKBONE
ARCHITECTURES

The plot in figure.12 shows the mAP computations across
benchmark online video based human action and our
BODV?23 dataset processed on standard backbone architec-
tures. The baseline backbone networks are incepted from
AAM [47], DFL-CNN [48],ResNet34 [49], TASN [50] and
VGGNet [51]. Importantly, the hyper parameter selection
across these networks is flexed in accordance to the generate
maximum precision and minimum loss during training. The
1- and 5-fold mAP values are presented as a range plot,
where the variations in 1-fold mAP during multiple testing
are plotted against the top 5-fold mAP. All the above models
got an additional set of layers with AWCSA across 4 layers
at different resolutions. For example, the VGG 16 is divided
into four blocks with 2 convolution and 1 maximum pooling
layer in each block. The outputs from each of these 4 blocks
are applied to AWCSA module for generating attention maps.
The plots in figure.12 show that the proposed attention
maps are capable of generalization across baseline deep
architectures for HAR online video data.

It shows that NTU RGB-D have resulted in better mAP’s
than BODV23 dataset. This is because of the large contrast
and brightness variations in the online ballet dance videos as
they are captured in closed environments and are collected
from multiple online sources as compared to NTU RGB-D
human action dataset. However, the performance of the
AWCSA_R50 on BODV23 is better than the benchmark
online human action datasets MPII and Kinematics-700 as
shown in figure.12. Overall, there is an improvement in the
performance of the standard models with AWCSA attention
module across multiple layers. The wavelet attention module
in this work have proved valuable in learning the local
variations across frames for identification of structural and
textural features for classification. The models were also
tested by fusing the attention features at only one location
in the backbone network. The computed mAPs are found
to be always less than the attention across multiple layers.
It is customary to judge that the increasing attention layers
adds to the complexity of the overall classifiers. However, the
results in the tables were averaged across the training dataset.
Out of the 10 class labels, AWCSA reached the maximum
precision across all classes on the test set. The improvements
were large for individual classes in BODV23 (Ballet Online
Dance Video 2023 dataset) and other Human Action Datasets.
However, averaging on the number of samples across test
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dataset, this has further reduced. Table 3 shows the most used
two backbone architectures ResNet and VGG along with the
CAM and SAM.

Experimentation on the ballet dataset has been initiated to
identify the computational complexity, model performance
and robustness of the proposed and considered attention
mechanisms. Table 3 reports the computational complexity
and table 4 gives the performance and computational
complexity of the models in table 3 along with the other
state-of-the-art video-based classification techniques. Any
attention model in spatial domain on ballet dance dataset must
deal with noises such as blurring and background variations.
These are considerably reduced due to DWT which are then
applied to compute the attention in our proposed AWSCA
and AWCSA. These additional wavelet layers have added a
good amount of computational complexity to the backbone
network as shown in table 3 below. However, this is far
less than the transformer based self-attention models which
use a 8 multi head attention layers to more than 6 self-
attention layers to compute the attention scores. Though these
transformer-based attentions are computationally complex,
they generated good accuracies on the considered ballet dance
dataset. The CViT has mAP almost equal to our proposed
AWCSA model. Table 4 records the accuracies of all the
considered datasets on the state - of - the - art models. The
proposed AWCSA is more robust to changes in datasets
and the model maintains a rather uniform reactions to test
data which is not observed across other models. This is
explainable as the wavelet-based attention are pixel regions
are well refined in both edges and regions from source
induced noises. Further the layers after the attention learn
these focused regions which assist in making maximally
correct classifications in the dense layers. We can visually
confirm this fact by observing the attention maps across
multiple layers as shown in fig.10.

F. VALIDATING AWCSA_R50(AWSCA_R50) THROUGH
COMPARISON WITH STATE-OF-THE-ARTS

A chronicle validation has been conducted to judge
AWCSA_RS50(AWSCA_RS50) against state-of-the-art human
action recognition methods. These comparison networks
are trained from scratch on the selected human action
datasets and the hyperparameters are adjusted to extract
maximum average precision (mAP). The results of this
experiment are tabulated in Table 4. Contemplating on
table 4, AWCSA_RS0(AWSCA_RS50) has precipitated max-
imum mAP when compared to previous similar methods on
human action datasets. Since most of the models in table 4 are
build using standard CNN architectures. The reconstruction
and trains from scratch was effortlessly executed on a 8GB
A4000 NVIDIA GPU. Accordingly, BOVD23 data was also
trained and tested to validate AWCSA_RS50 against the
top rated HAR models. Table 4 concludes that ResNet50
with AWCSA(AWSCA) has produced good representations
on 65536 input pixels because of its depth and residual
connections. As the network depth increases (Resnet101) or
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FIGURE 11. Confusion matrices to show the attention maps obtained in the figure.10 is valid for all the classes in the dataset of
(a) ResNet50 with no attention [46], (b) CA_R50 [4], (c) SA_R50 [5], (d) WCA_R50 [4],(e) WSA_R50 [43],(f) WACA_R50
[15].(g) WASA_R50, (h) WCSA_R50, (i) WSCA_R50, (j) AWCSA_R50 and (k) AWSCA_R50.
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FIGURE 12. Plots show variation of mAP between 1- and 5-fold ranks on our BODV23 and three frequently used online video
based human action datasets. It also shows the variations with respect to various backbone networks such as AAM [47],
DFL-CNN [48],ResNet34 [49], TASN [50] and VGGNet [51].

decreases (Resnet34), the deep or shallow layers are deprived The last two columns in table 4 indicates that the dance
of good discriminating features for the set input image dataset representation needs improvement in the areas of
resolution. In case of ResNet101, increasing the input image contrast, background reduction and dancer body resolutions.
resolution and decreasing it in case of ResNet 34 improves In future endeavours, we are working on creating a 3D motion
mAP. capture-based ballet dance pose dataset for real time dance
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TABLE 3. Implementation details of the network in figure.1 along with two standard backbone architectures.
Model Backbone | Input | Learning Trainable Hyperparameter Allowable AP
ode Network Size Rate Parameters Initialization Inferencing Loss m
Alternating wavelet
channel and spatial 256 0.0001 26.1M 0.01 91.7
attention (AWCSA) (Fig.1)
alternating wavelet
spatial and channel 256 0.0001 26.1M 0.01 91.3
attention (AWSCA)
CAM (SAM) 256 0.001 25.34M 0.05 87.4
Spatial Transformer ResNet 50
Networks (STN) 256 0.001 20.02M 0.002 88.1
Squeeze — and — Excitation
Network (SENet) 256 0.0001 24.31M 0.003 89.7
_ Scl-Attention 256 | 0.000001 | 54.22M 0.05 87.6
Vision Transformer (ViT) .
Convolutional (.}au.ssmln
. . 256 0.0001 42.8TM Distribution 0.04 87.9
ViT (CViT) .
- with mean 0
Alternating wavelet d
channel and spatial 256 0.00001 141M an 1 0.05 89.9
attention (AWCSA) (Fig.1) varance 1.
alternating wavelet
spatial and channel 256 0.00001 141M 0.05 89.1
attention (AWSCA)
CAM (SAM) 256 0.0001 140.IM 0.1 86.2
Spatial Transformer VGG16
Networks (STN) 256 0.001 161M 0.006 85.9
Squeeze — and — Excitation
Network (SENet) 256 0.0001 162.8M 0.008 87.3
Self-Attention
Vision Transformer (ViT) 256 0.000001 211M 0.06 84.7
Convolutional
ViT (CViT) 256 0.0001 195.6M 0.05 84.2
TABLE 4. Comparison of the proposed AWCSA against the state-of-the-art Human Action Recognition methods trained from scratch on the considered
datasets.
Method Backbone RAID Partial-iLIDS Market-1501 RPlIfield BODV23
5-Fold | mAP | CMC | 5-Fold | mAP | CMC | 5-Fold | mAP | CMC | 5-Fold | mAP | CMC | 5-Fold | mAP | CMC
VGGNet VGG19 0.814 0.764 | 0.843 0.758 0.683 | 0.807 0.751 0.647 | 0.801 0.729 0.681 | 0.797 0.823 0.784 0.85
MA-CNN VGG19 0.799 0.759 | 0.815 0.769 0.713 | 0.799 0.769 0.711 | 0.794 0.715 0.593 | 0.749 0.845 0.769 | 0.858
DFL-CNN | VGGI16 0.791 0.724 | 0.786 0.744 0.729 | 0.727 0.759 0.689 | 0.783 0.721 0.642 | 0.728 0.814 0.728 | 0.794
ResNet ResNet50 0.883 0.816 | 0.893 0.861 0.798 | 0.859 0.807 0.813 | 0.813 0.829 0.764 | 0.838 0.897 0.834 | 0912
TASN ResNet50 0.867 0.854 | 0.861 0.845 0.789 | 0.849 0.822 0.735 | 0.842 0.792 0.673 | 0.791 0.874 0.849 | 0.855
AAM VGG16 0.783 0.733 | 0.798 0.758 0.675 | 0.763 0.771 0.712 | 0.797 0.767 0.678 | 0.807 0.88 0.764 | 0.898
MGN ResNet-50 0.881 0.821 0.907 0.871 0.859 | 0.874 0.879 0.795 | 0.883 0.829 0.755 | 0.861 0.911 0.815 | 0.927
BOT ResNet-50 0.876 0.856 | 0.897 0.864 0.797 | 0.875 0.867 0.817 | 0.879 0.826 0.803 | 0.837 0.917 0.872 | 0.923
S-MIL-T CNN 0.833 0.714 | 0.819 0.829 0.738 | 0.847 0.832 0.767 | 0.837 0.792 0.734 | 0.817 0.934 0.886 | 0.945
HAN CNN 0.856 0.804 | 0.867 0.822 0.781 | 0.838 0.851 0.797 | 0.868 0.819 0.761 | 0.839 0.928 0.881 | 0.921
TANet CNN 0.849 0.759 | 0.858 0.827 0.746 | 0.821 0.844 0.753 | 0.842 0.831 0.793 | 0.837 0.937 0.898 | 0.951
AGW ResNet-50 0.875 0.812 | 0.882 0.857 0.806 | 0.863 0.884 0.813 | 0.894 0.827 0.775 | 0.839 0.941 0.904 | 0.939
FPR FCN 0.853 0.798 | 0.862 0.862 0.793 | 0.876 0.846 0.772 | 0.873 0.855 0.786 | 0.867 0.929 0.899 | 0.948
PGFA ResNet-50 0.915 0.852 | 0911 0.869 0.816 | 0.872 0.907 0.816 | 0911 0.878 0.811 | 0.893 0.914 0.907 | 0.936
PAM ResNet101 0.912 0.842 | 0.909 0.881 0.793 | 0.903 0.892 0.827 | 0.907 0.879 0.803 | 0.881 0.952 0912 | 0.957
PAM ResNet50 0.919 0.873 | 0.904 0.876 0.813 | 0.884 0.914 0.797 | 0.893 0.892 0.816 | 0911 0.948 0.909 | 0.951
STN ResNet50 0.869 0.816 | 0.880 0.834 0.793 | 0.851 0.864 0.809 | 0.881 0.831 0.772 | 0.852 0.931 0.881 | 0.935
SENet ResNet50 0.871 0.808 | 0.878 0.853 0.802 | 0.859 0.880 0.809 | 0.890 0.823 0.771 | 0.835 0.934 0.897 | 0.934
ViT ResNet50 0.865 0.851 0.872 0.851 0.801 0.842 0.867 0.792 | 0.851 0.819 0.774 | 0.829 0.921 0.876 | 0.929
CViT ResNet50 0.869 0.855 | 0.876 0.855 0.805 | 0.846 0.871 0.796 | 0.855 0.823 0.778 | 0.833 0.926 0.879 | 0.934
Proposed ResNet50 0.942 0.893 | 0.957 0.904 0.846 | 0.927 0.931 0.838 | 0.938 0.923 0.902 | 0.941 0.969 0917 | 0974

performance estimation and learning applications. Despite
these defects, the proposed AWCSA_RS50(AWSCA_R50)
on our BODV23 has shown to learn the structure and
texture feature representations which improved the intra class
discriminations.

G. ABLATION STUDY OF THE AWCSA_R50(AWSCA_R50)
The AWCSA_RS0(AWSCA_R50) mainly alternates between
the channel and spatial attention across all layers. Therefore,

55278

it becomes necessary to evaluate the impact on the order
and length of channel and spatial wavelet attention blocks
on the overall performance of the backbone architecture.
Consequently, the ablation study focuses on estimating the
performance of the classifiers AWCSA_RS0(AWSCA_R50)
based on the number of attention blocks and the order in
which they alternate between channel and spatial layers.
[llustrations on the results in section D conclude the
superiority of WCA_R50, WSA_R50 and dual Wavelet
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TABLE 5. Results of ablation experiments to determine the number of wavelet channel and spatial attention pairs along with their locations in the

backbone network.

Name of the Location of Numbe.r of .
. Attention NTU RGB D Kinects-700 MPII Human BODV23
Network SA @Resolution
Modules

1-Fold | 5-Fold 1-Fold | 5-Fold | 1-Fold | 5-Fold | 1-Fold | 5-Fold
AWCSA_R50E 64-32 2 0.889 0.923 0.838 0.868 0.853 0.899 0.867 0.921
AWCSA_R50M | 32-16 2 0.878 0.912 0.827 0.857 0.842 0.887 0.856 0.910
AWCSA_R50L 16-8 2 0.819 0.850 0.771 0.799 0.785 0.827 0.798 0.848
AWCSA_R50 64-32-16-8 2 0.935 0.971 0.881 0.913 0.897 0.945 0.912 0.969
AWSCA_R50E 64-32 2 0.847 0.879 0.798 0.827 0.812 0.856 0.826 0.878
AWSCA_R50M | 32-16 2 0.831 0.863 0.783 0.812 0.798 0.840 0.811 0.862
AWSCA_R50L 16-8 2 0.689 0.717 0.650 0.674 0.662 0.697 0.673 0.715
AWSCA_R50 64-32-16-8 4 0.854 0.887 0.804 0.834 0.819 0.863 0.833 0.885
DWCA_RS50E 64-32 2 0.699 0.732 0.655 0.686 0.668 0.700 0.680 0.723
DWCA_R50M 32-16 2 0.738 0.766 0.695 0.720 0.708 0.746 0.720 0.765
DWCA_RS50L 16-8 2 0.712 0.740 0.671 0.696 0.683 0.720 0.695 0.738
DWCA_RS50 64-32-16-8 4 0.825 0.857 0.778 0.806 0.792 0.834 0.805 0.855
DWSA_RS0E 64-32 2 0.789 0.819 0.733 0.767 0.746 0.783 0.761 0.809
DWSA_R50M 32-16 2 0.775 0.805 0.730 0.757 0.743 0.783 0.756 0.803
DWSA_RS50L 16-8 2 0.751 0.780 0.708 0.734 0.721 0.760 0.733 0.779
DWSA_R50 64-32-16-8 4 0.841 0.882 0.789 0.826 0.804 0.843 0.819 0.871

attention(WCSA_R50)(WSCA_R50) over the traditional
attention models. Based on the finding shown above,
AWCSA_R50 has recorded improved performance metrics
over the above discussed wavelet attention models. Conse-
quently, this improved performance of AWCSA_RS50 is due
to multiple attention blocks which insists a deeps study on
the requirements of these attention blocks and their fusion
locations on the overall metrics.

The listed values in the table 5 conclude that the early
fusions across the first residual blocks have greater impact
on the overall performance of the classifier when compared
to late fusion. This is due to greater structural integrity
found across higher frame resolutions in starting layers
than the deeper layers of the backbone network. In this
subsection the number of wavelet channel and spatial
attention blocks required to maximize test mAP is evaluated.
Specifically, we will have 4 combinations for evaluation.
In AWCSA_R50, the WSA follows WCA. Accordingly there
are 4 places ResNet50 or VGG 16 backbone networks where
the WSA and WCA can fit one after the other. As a result,
we have four combination namely early(AWCSA_RSO0E),
mid(AWCSA_R50M), late(AWCSA_RS50L) and our pro-
posed AWCSA_RS50 with alternating WCSA. Consequently,
we have 3 new networks that will evaluate the proposed
AWCSA_R50 where the attention mechanism is progressive.
All considered datasets were used for training and testing
with the previously considered hyper parameters. The results
are tabulated in table 5 for 1-fold and 5-fold mAP metric.
Similar analysis is conducted for AWSCA_RS50 and the work
in DWA [15].

V. CONCLUSION

The AWCSA_RS50 proposes to enhance the feature space
of ballet online dance video data thereby reducing infer-
encing error during testing. The framework is built on the
Wavelet based attention layers in both channel and spatial
dimensions that have been integrated alternatively across
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the global features. This process have improved the feature
representation of online Ballet dance video dataset sourced
from YouTube in both structure and texture. The BODV23
challenges the existing attention based deep learning models
in generating decent accuracy due to imbalances in spatial
attention across the global features. Accordingly, attention at
different global feature resolutions using alternative wavelet
based attention modes provides a human-like focus which
resulted in excellent structural and texture information of the
dancer in the video sequence. The AWCSA enables high and
low frequency features to add focus to the weakly distributed
global pose features. The experiments on BODV23 and
human action recognition benchmarks has proved that the
proposed AWCSA_RS0(AWSCA_RS50) improved the overall
accuracy by around 7%. However, these models are burdened
computationally with more trainable parameters than the tra-
ditional models. Moreover, the attention mechanism designed
in this work is task specific and might need hyperparameter
tuning for different datasets.
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