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ABSTRACT The real-time analysis of gas flares is one of the most challenging problems in the operation
of various combustion-involving industries, such as oil and gas refineries. Despite the crucial role of gas
flares in securing safe plant operation and lowering environmental pollution, they are among the least
monitored components of petrochemical plants due to their harsh working environments. Remote sensing
techniques are emerging as potential alternatives for conventional sampling-based techniques in visual
inspection and performance analysis. This paper presents an in-depth review of significant achievements in
Gas flaresmonitoring over past two decades and highlights ongoing challenges inArtificial Intelligence (AI)-
enhanced remote inspection. By reading the content, both industry professionals and academic researchers
can gain a comprehensive knowledge of improvements from the integration of AI and remote sensing,
understanding the trend of Gas flares monitoring. The paper commences with an analysis of RGB camera-
based methods, focusing on how their combination with cutting-edge machine learning and deep learning
algorithms can significantly improve the detection, segmentation, and measurement of gas flare systems.
It then explores the use of hyper-spectral imaging techniques, including infrared cameras and space-borne
satellite sensors, underscoring their potential in remote monitoring and performance analysis. Additionally,
the effectiveness of multi-view inspection methods is assessed, highlighting how these approaches enhance
the monitoring capabilities. Finally, the paper identifies key research areas that require further attention.
It also presents a clearer direction for future progress, emphasizing the importance of continuous research
to foster advancements and facilitate broader commercial adoption.

INDEX TERMS Remote sensing, AI-enhanced visual inspection, gas flares monitoring, hyper-spectral
imaging, deep learning.

I. INTRODUCTION
Petrochemical fuels, such as oil and natural gas, are among
the most important energy resources worldwide in various
types of sectors, like transportation, process industries, and
power production [1], [2]. Recognizing the huge amount of
oil production and consumption, robust safety considerations
are increasingly desired to be included in refineries and petro-
chemical plants.

The associate editor coordinating the review of this manuscript and

approving it for publication was Gerardo Di Martino .

In every oil refinery and petrochemical plant, the flare stack
plays a crucial role in ensuring the safe operation of the plant
under abnormal conditions and minimizing the amount of
harmful gases released to the atmosphere. The flare stack
burns the excess gas that results from various defects in
the plant’s operation, such as water shortage, gas shortage,
power shutdown, and equipment failure. This burning largely
reduces the negative environmental effects of exhaust gas
by converting harmful methane, carbon monoxide, and other
large carbon compounds to safe water vapor and carbon
dioxide. Despite its important role in the plant’s operation,
the flare stack is one of the least monitored components and
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FIGURE 1. The increasing number of publications in gas flaring and its
analysis from 2000 to 2023, data obtained using Google Scholar
advanced search.

its operation is hard to regulate. This is due to the com-
bustion condition that takes place in open air, at very high
temperatures, and in high elevations. Inadequate monitoring
of the flare system results in slow detection of abnormal
flare operation which results in the release of hazardous
gases to the environment and may lead to deadly fires and
explosions. Contact monitoring of the flare system’s oper-
ation is extremely difficult due to the highly corrosive and
hot combustion environment. This makes remote monitoring
of the flare’s operation using remote sensing cameras and
other optical sensors a high potential alternative for real-time
monitoring and regulation [1].

An excellent flare remote sensing system should satisfy
several requirements [3]. First, it should provide sufficiently
accurate measures that can be relied on to reflect the actual
flare’s performance. Both qualitative and quantitative flare
performance measures should be accurately evaluated so that
the flare’s operation can be easily assessed. Second, it should
have low equipment and operation costs so that it can be
easily adopted worldwide. Third, it should be implemented in
a way that does not interfere with the operation of other plant
components. By looking at these requirements, remote mon-
itoring using visual sensors emerges as an excellent option
for both real-time and scheduled monitoring of combustion
flares [4], [5], [6], [7].

There has been a growing interest in the analysis of com-
bustion flares in the last few years. Fig. 1 shows the increasing
number of publications related to gas flaring and its inspec-
tion. In this work, the progress done on the application of
various vision-based inspection techniques for themonitoring
of combustion flares is reviewed. Few surveys on various
aspects of flare monitoring are available in literature [8], [9].
However, our work is the first to comprehensively cover all
aspects of vision-based inspection of flare systems, includ-
ing RGB imaging, hyperspectral imaging, and multi-view
inspection. A taxonomy of the progress done on vision-based
inspection of combustion flares is shown in Fig. 2. A chrono-
logical overview of the most important flare analysis works
throughout the last 20 years is illustrated in Fig. 3.

By looking at the existing works in literature, the most
significant contributions of this survey are summarized as
follows:

• This is the first work to comprehensively cover all
aspects of visual inspection of combustion flare sys-
tems, including RGB imaging, hyperspectral imaging,
andmulti-view inspection, and their analysis techniques,
such as image processing, machine learning, and deep
learning.

• This work focuses on the application of various visual
sensing techniques specifically for combustion flare
monitoring rather than all types of combustion-related
applications.

• Comprehensive comparisons of the existing inspec-
tion techniques on the publicly available datasets are
included (in Tables 3, and 4), with summaries, discus-
sions, and potential future research direction.

The main contents of this work are as follows. Section II
illustrates the publicly available datasets and the used flare
quality inspection measures. measures. Section III sum-
marizes the application of RGB imaging techniques for
detection, segmentation, and measurement for combustion
flares and the implementation of different RGB images anal-
ysis techniques, such as image processing, machine learning,
and deep learning. Section IV presents a survey of the appli-
cation of various hyperspectral imaging techniques for the
monitoring of flare systems and flaring activities including
the use of infrared cameras, spaceborne satellite sensors,
and theoretical modelling of hyperspectral data. Section V
reviews the application of multi-view imaging techniques for
flare inspection. Section VI highlights some critical future
research directions and perspectives for further improving
this technology and pushing it closer to commercialization.

II. BACKGROUND
In this section, background aspects on vision-based inspec-
tion of flare stacks are included. The main quality measures
that are commonly used in the inspection of gas flares and
the publicly-available datasets that are used in literature are
overviewed.

A. GAS FLARES QUALITY MEASURES
In order to acquire an accurate insight into the performance
of the Gas flare, several qualitative and quantitative quality
measures are used. Obtaining appropriate and accurate flare
efficiency measures is a crucial step for improving the overall
flare performance. In this section, quality measures that are
commonly used for evaluating flare’s performance are illus-
trated.

1) EXISTENCE OF FLAME [2], [10]
In recent studies, Al Radi et al. [2], [10] pointed out that
‘‘an important measure qualitative that must be considered
when analyzing the performance of flares is the existence
of visible flame from the flare pilot. If the flare pilot is
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FIGURE 2. Taxonomy of visual inspection of flares.

FIGURE 3. Chronological overview of the most important flare analysis works in the last 20 years.

working properly, it will ensure the combustion of the flared
gases and their safe release to the environment. On the other
hand, failures in the flare pilot system can result in major
hazards due to abnormal operation such as dangerous gas
leaks, fires, and explosions [11]. If the state of the flare pilot
is not determined accurately and quickly during operation,
abnormal operation will be hard to detect and mitigate. The
proper operation of the flare pilot ensures that the flare system
is ignited and is working efficiently. The ignition of the
flare pilot can be observed visually through the existence of
visible flame. Thus, the detection of flame is an important
quality measure that must be considered when analyzing flare
systems.’’

2) EXISTENCE AND QUANTIFICATION OF SMOKE/SOOT [10]
Referring to Al Radi, Li et al. [10]: ‘‘the release of smoke
is an important measure to monitor in the operation of flare

systems. As combustion flares convert the excess gas to
carbon dioxide and water vapor, the released gases should
be transparent in the ideal case. However, when other types
of carbon compounds result from the incomplete combustion
process, dark smoke can be observed clearly. Soot, which
is a combination of various large carbonaceous compounds,
results from cases of inefficient flare operation and has very
hazardous effects on the environment. The density of soot
emission is indicated by the darkness of the released smoke
where darker smoke has a higher soot amount and vice versa.
Thus, the detection of released smoke from the combustion
flare is an effective indicator for incomplete combustion and
harmful gas release to the environment.’’

3) COMBUSTION EFFICIENCY (CE)
The combustion efficiency is one of the most important quan-
titative quality measures of combustion flares. It indicates the
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flare’s performance in converting harmful carbon monoxide
and other large hydrocarbons to safe carbon dioxide. The
following equation is used to evaluate the combustion effi-
ciency [12]:

CE(%) =
[C]CO2∑

i ni[C]HCi + [C]CO + [C]CO2

(1)

where CE(%) is the flares percentage combustion efficiency,
[C] is the mole fraction or the volumetric concentration of
the specie in the flare’s plume, CO and CO2 subscripts refer
to carbon monoxide and carbon dioxide, respectively, HCi
refers to the i-th produced unburned hydrocarbon, such as
methane (CH4), and ni is the number of carbon atoms in the
i-th produced unburned hydrocarbon. When there are no pro-
duced carbon monoxide and other hydrocarbon compounds,
the flare’s entire carbon emission will be only carbon diox-
ide and the combustion efficiency will be 100%. However,
additional carbon compounds such as soot and methane are
almost always present and must be taken into consideration.
On the other hand, if the concentration of some compound
is negligible compared to the other produced compounds,
it can be omitted from the equation and an accurate flare
efficiency estimate can still be obtained. For example, if the
concentration of produced carbon monoxide is very small,
Eq. 1 can be reduced as follows:

CE(%) =
[C]CO2∑

i ni[C]HCi + [C]CO2

(2)

Detecting precursors of combustion instabilities has also
been a hot topic of recent research. An example, the paper
published by Cellier et al [13] proposed a method for detect-
ing precursors of combustion instability. The authors inves-
tigated Convolutional Recurrent Neural Networks (CRNNs)
and trained them on acoustic signals collected from a com-
bustor to classify them as either stable or unstable. The
approach involved processing the signals using a spectro-
gram, followed by a CRNN architecture that combines both
convolutional and recurrent layers. The proposed method
shows encouraging results with high accuracies in predicting
the onset of combustion instability, making it a promising tool
for early detection and real-time prevention of combustion
instability.

B. DATASETS
There have been several datasets that were proposed in the
literature for analyzing different aspects of combustion flares.
Tables 1 and 2 show the most important datasets that are com-
monly used for evaluating flare analysis algorithms which
include image and video datasets for detection and segmen-
tation tasks evaluation. There are two main types of datasets
that were used previously in literature. The first is video
datasets that contain datasets designed for flame detection
tasks, such as VisiFire [14], and others designed for smoke,
such as Visor [15]. The second type is image datasets that
contain separate images of the required object whether for

flame detection, such as BoWFire [16], or for smoke detec-
tion, such as Yuan et al. [17]. Some of these image datasets
were obtained by splitting frames from smoke/flame videos
and collecting the images in positive and negative folders.
There is also a very important trend in the use of these datasets
is that datasets with similar type are combined together to
provide a more comprehensive training and testing dataset.
For example, Muhammad et al. [18] used a combination of
Khan et al. [19] and Foggia et al. [20] datasets. However,
there is a crucial problem in flame and smoke detection
research is that there are no unified datasets on which all
new proposed methods are tested. Because of that, it is hard
to compare the performance of different techniques as the
used datasets for training and testing are mostly different.
Unified datasets for detection and segmentation are highly
required as theywill make accurate performance comparisons
possible. Moreover, there are very limited publicly available
datasets of multispectral or hyperspectral imagery of flame
and smoke. A dataset that was proposed by Toulouse [21]
includes a wide range of flame images, including some mul-
tispectral images in the Near-Infrared (NIR) region combined
with their corresponding RGB images. However, more work
on providing comprehensive multispectral and hyperspectral
benchmarking datasets is crucial.

In the field of Gas Flares analysis, the lack of unified
publicly-available datasets is mainly because none of the
existing data sets can satisfy four important aspects: large
scale, diverse, balanced, and up-to-date. For example, data
sets like Visor [15] are more focused on smoke (which is
regarded as an early indication of flare), so they contain
more smoke instances than flare. On the other hand, some
sets (like BoWFire [16]) are more interested in Flare event,
so they collected the region of flare more. Besides, some
researchers conducted their own Gas Flares experiments in
a scale-down manner and therefore, collecting data sets in a
near distance with simple background (such as white wall),
this kind of data collection method may have limitations in
simulating real Gas Flares scenario which is always a large-
scale, background-mixed environment. Another issue results
in the lack of benchmark data set is the inadequacy of up-
to-date data sets. Starting from 2021, new technologies like
CLIP (Contrastive Language-Image Pre-training) [22] are
demonstrating its obvious improvement over previous image
pattern detection model such as ViT (Vision Transformer)
[23]. However, to use this text-image contrastive learning
technique in analyzing Gas Flares, not only image instances
of flare or soot are required, corresponding language prompts
for each of these instances are also required. Unfortunately,
in the current literature, no such data set is available. In the
end of this data set section, the author is calling for col-
laborative efforts to develop a benchmark dataset that can
include everyone to build up. This huge work can start with
combining existing data sets like what Muhammad et al.
[18] did in their work. This open benchmark building job
is inspiring because once it is completed (even in its first
version), different Gas Flares experiments can compare with
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TABLE 1. Overview of the available video flame and smoke datasets.

TABLE 2. Overview of the available image flame and smoke datasets.

each other and the data set itself can also gradually become
more large, diverse, balanced and up-to-date with upcoming
technologies.

III. RGB IMAGING FOR COMBUSTION FLARE ANALYSIS
The basic and most important method for visual inspection of
any structure is the use of RGB cameras. These cameras are
advantageous in terms of their simple operation and produced
data format. However, the highest effort in such inspection
techniques is focused on the image analysis method that can
produce useful information about the flare system using the
RGB data. Obtained RGB images can be used in different
modalities, such as detection, segmentation, and measure-
ment. Detection algorithms can use RGB images to detect
various flare-related objects, such as flame and smoke, and
the detection can be used as a feedback signal for controlling
the operation of the flare system. Similarly, image segmen-
tation algorithms can be used to highlight the location of
important objects in the observed flare image as it provides
richer information about the detected object. Finally, the
segmented smoke and flame pixel locations can be combined
with detailed combustion mathematical models to measure
important parameters of the flare’s performance, such as the
temperature distribution. In this section, the application of
RGB imaging for detection, segmentation, and parameter
measurement of combustion flare systems is reviewed and
discussed.

A. DETECTION
In this subsection, the progress done on the detection of
combustion-related object, namely flame and smoke, in gas
flares scenes is summarized.

1) FLAME DETECTION
A study by Aslan et al. [30] implemented a novel Deep
Convolutional Generative Adversarial Network (DCGAN)

for detection of fire from video data. Their model utilizes
the spatial and temporal characteristics of flame evolution
throughout the video frames for achieving accurate flame
detection. In order to extract the temporal characteristics of
flame evolution, the values of pixels on the same vertical
line were aligned with all other pixels falling on the same
line from the other video frames so that evolution of flame
throughout time is captured, a shown in Fig. 4 (a) and (b).
Those temporal slices were collected and were used to train
the generator and discriminator networks which are shown in
Fig. 4 (c) and (d), respectively. Trainingwas carried out in two
steps. First, both the generator and discriminator networks are
trained by giving a noise vector to the generator network and
using the discriminator to distinguish between the generator’s
output and actual flame images, as shown in Fig. 4 (e). Next,
the discriminator network is further trained alone using actual
flame images and actual non-flame images, as shown in Fig. 4
(f). This training mechanismmakes the DCGAN-based flame
detector more robust compared to conventional CNN-based
detectors. During testing, the discriminator network is used to
distinguish flame-containing frames from non-flame frames.
The proposed model with temporal slices was compared two
similar DCGAN models but without temporal information
and without the second training stage as well as to a CNN
model with similar temporal slices. The results showed the
DCGAN model with temporal slices achieved a high True
Positive Rate of 92.19% and a low False Negative Rate of
3.91% which is better than the other compared models. The
result indicates the robustness of the proposed GAN-based
fire detection method and we highly recommended more
works that investigate real-time application of such network
for other flare analysis-related tasks such as smoke detection.

Another study by Xie et al. [11] implemented a Siamese
network for detecting abnormal operation of flare pilot. The
authors constructed a flare pilot anomaly detection dataset
that contain picture of the flare in both normal and abnormal
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FIGURE 4. (a) A Flame smoke frame from the live video, (b) Presented
temporal slice corresponding to the green line in Fig. (a), and structures
of (c) the generator network, and (d) the discriminator network, (e) First
training stage, (f) Second training stage [30].

operation conditions. Next, a Siamese network with a triplet
loss function was designed for the detection of abnormal
working conditions. During the training process, triplets of
data were chosen so that the anchor image is similar to both
positive (same type) and negative (opposite type) images
which further improves the results of training. The network
estimates the similarity of the picture with both positive and
negative images to decide which category does the sample
fit in. The accuracy of this model was compared to several
popular deep learningmodels. The proposedmodel surpassed
all other models in terms of classification accuracy which
shows the huge potential of siamese networks in classification
and detection tasks.

A novel approach for fire detection using video analy-
sis, is proposed by [31]. The proposed method employs a
deep learning model based on Xception [32] and Conv-
Long-Short Term Memory (CONV-LSTM) networks. The
Xception model is used to extract features from the input

FIGURE 5. The sub-classification for the early-smoke recognition [44].

video frames, while the Conv-LSTM network is used to
model the temporal dynamics (spatio-temporal information)
of the video. The proposed model is trained on a large dataset
of videos containing both fire and non-fire events. The results
show that the proposed method achieves high accuracy in
detecting fires in video sequences, where the classification
accuracy of 95.83% has been reported. The authors also com-
pare their approach with similar methods and demonstrate its
superiority.

A recent study by Shahid and Hua [33] implemented
a Vision Transformer (ViT) for the detection of fire in
images. Vision Transformers have attracted huge atten-
tion from computer vision researchers recently as they can
extract meaningful features spread throughout the spatial
context [23].The authors used two sizes of the ViT network
which are Base (Vit-B) and Large (ViT-L) and compared the
obtained results from the ViT to those of other deep learning
models, namely InceptionV1 [34] and SqueezeNet [35]. The
models were tested using two popular fire detection data sets
which were presented by Chino et al. [16] and Foggia et al.
[20]. Comparison of the results showed that the ViT networks
achieved higher classification performance compared to the
other deep learning models. This work shows the huge poten-
tial of ViTs in fire detection and we recommend more works
that use a similar method for smoke detection or real-time
flare monitoring.

2) SMOKE DETECTION
The presence of smoke serves as an initial indication of fire,
and its prompt identification has the potential to prevent
the propagation of fire and minimize the associated risks to
human life and material assets. However, the detection of
smoke in natural surroundings presents an enormous chal-
lenge because of the diverse and fluctuating nature of smoke
attributes, including its shape, color, transparency, motion,
and texture [36]. Furthermore, the detection of smoke in
outdoor environments is affected by awide range of elements,
such as but not limited to lighting conditions, weather condi-
tions, camera resolution, and background clutter. Hence, it is
imperative to develop robust and dependable techniques for
the early detection of smoke using video processing.

There exist various approaches for detecting smoke, espe-
cially video-based smoke detectionmethods being commonly
used [37]. These techniques can potentially be divided into
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two primary categories: traditional techniques and deep
learning techniques. Smoke detection in images or videos tra-
ditionally depends on manually designed features, including
color, texture, motion, shape, and edge, to identify the pres-
ence of smoke. The aforementioned techniques frequently
employ threshold, geometric segmentation, filtering, match-
ing or clustering methodologies to extract relevant features.
Subsequently, classifiers such as support vector machines
(SVMs), KNN, and decision trees are utilized to differentiate
between smoke and non-smoke regions. Nevertheless, it is
important to acknowledge that these methods do possess
certain limitations. For instance, they may be susceptible
to noise, illumination variations, background interference,
and occlusion. Additionally, they often necessitate manual
parameter adjustments and exhibit a limited capacity for
generalization. On the other hand, deep learning techniques
employ neural networks to acquire knowledge about features
and classifiers through the analysis of extensive datasets.
These techniques possess the capability to autonomously
extract high-level and abstract characteristics that exhibit
enhanced resilience and distinctiveness for smoke detec-
tion. One typical realization of aforementioned methods
are Convolutional Neural Networks (CNNs)-based struc-
ture, and Two-dimensional (2D) CNNs are predominantly
employed for the purpose of detecting smoke in images,
whereas Three-Dimensional (3D) CNNs are primarily uti-
lized for smoke detection in videos [38], [39]. More recently,
You Only Look Once (YOLO)-based [40], [41] structures
are applied in this smoke detection field and YOLO now
is at its 8th version [42]. Another subgroup for smoke
detection is transformer-based structure such as Detection
Transformer [43], [44], and temporal event transformers [45],
[46]. In all, deep learning-based techniques can automatically
extract features, eliminating the need for hand-engineered
features. They excel at handling large and complex data sets,
performing well across many tasks, and finding non-linear
relationships in the data. These techniques can process
images, text, and audio while requiring a lot of data and
computation for training.

a: EARLY SMOKE DETECTION
Early smoke detection is a complex task which requires
innovations that are both quick and precise to determine the
presence of smoke in a variety of different environments.
The nascent smoke is hard to be discovered both because
of its light color, bad contrast with the background, and
the distance [47]. Besides, since there is no benchmark (as
different groups own different private data sets and can not
build up each other), the instance number of existing early
smoke data sets is limited [40], [48], [49], this fact makes the
research even more difficult.

However, there are still some new signs of progress coming
out from this field. For example Zhan et al. [50] applied
a CNN-based Lightweight Model for seeking early-stage
smoke from satellite images, they applied a Spatial Attention

and Channel Attention combined method to achieve a
regional and global attention combined attention structure
so as to fully exploit the information inside the limited
data set and achieved a final accuracy of more than 86%.
In [51], Xiong et al. present a method to detect smoke in
single-frame video sequences for forest fire prevention. The
process has four steps: Firstly, the Simple Linear Iterative
Clustering (SLIC) algorithm are applied to divide an image
into small homogeneous regions for superpixel segmentation.
Secondly, color similarity and edge information are used to
merge superpixels, reducing over-segmentation and improv-
ing efficiency. Later, an improved algorithm is introduced
to eliminate clouds and sky (which are often confused with
smoke) so that the horizon line in one image can be iden-
tified. Finally, a Support Vector Machine (SVM) machine
learning will classify those super-pixel blocks as smoke or
non-smoke based on smoke spectral features. According to
the paper, this method can eliminate noise like clouds and
fog and detect smoke with 77% accuracy in a forest scene.
Moreover, experimental results and comparisons with other
methods are presented to demonstrate the method’s efficacy
and feasibility. This method may be used to monitor forest
fires and provide early warning and automatic detection.

In 2022, Yazdi et al. [44] applied a structure that is based
on the DEtection TRsformer (DETR) [43] while using a
ResNet [52] as the backbone after the positional encoding.
After defining special sub-classes for incipient-stage smoke,
they achieved a successful classification for the early smoke
even at a remote distance shown in Fig.5. Their obtained
results illustrate the difficulty in recognizing and detecting
search stages of smoke using only a single frame which
highlights the importance of utilizing the temporal dynamics
from multiple frames as an indicator for early-stage smoke
evolution. Also in the same year, Masoom et al. [40] used a
YOLO-PCA (Principle Component Analysis) methodwith an
extra 4th scale specialized for the incipient-stage smoke and
achieved a better-improved result than the traditional YOLO-
V3 network in recognizing the smoke, however, no separate
result for early-stage smoke detection was mentioned in this
paper.

Kim and Muminov [39] adopted a methodology that uti-
lizes YOLOv7 which is an advanced object detection model
known for its ability to perform real-time image processing.
In their paper, the YOLOv7 model is enhanced through the
incorporation of a CBAM attention mechanism, an SPPF+

layer, and decoupled heads. These modifications aim to
improve both the feature extraction and detection capabilities
of the model. The employed approach additionally incor-
porates a BiFPN for the purpose of integrating multi-scale
smoke features and acquiring learning weights to assign
priority to the most significant feature maps. The approach
assesses the performance of the model using a dataset com-
prising UAV images of forest fire smoke. Another approach
employs the utilization of Xception, a deep convolutional
neural network that employs depthwise separable convolu-
tions to decrease parameter count and enhance computational
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efficiency [53]. The proposed approach utilizes transfer learn-
ing by leveraging the Xception model, which has been
pre-trained on the ImageNet dataset. Subsequently, the model
is fine-tuned using a specialized dataset focused on fire and
early smoke detection. The approach also incorporates the
utilization of the learning without forgetting (LwF) tech-
nique, which is a method that maintains the initial capabilities
of the model while acquiring knowledge related to a novel
task. The approach evaluates the efficacy of incorporating
learning without Forgetting (LwF) in the model across vari-
ous datasets, demonstrating its ability to attain a notable level
of accuracy and recall. In terms of early-stage smoke detec-
tion, another issue to be considered, again, is the required
quick time response for the real-time video processing prob-
lem. Liu et al. [48] achieved this goal in an embedded
platform by using a cascaded structure of AdaBoost clas-
sifiers together with some techniques such as Local Binary
Pattern (LBP), histogram equalization, and image denoising
(by Gaussian filter). They highlight that the smoke detection
results can be derived by a lightweight device and achieve
real-time monitoring of potential smoke. Those early-stage
smoke will be sent back to the control center with a warning
email and appended smoke frames from the video.

b: NORMAL SMOKE DETECTION
A study by Yin et al. [27] used a deep normalization and con-
volutional neural network (DNCNN) deep learning model for
the detection of smoke in images. The DNCNN is a CNN that
relies on sequences of normalization and convoutional layers
for feature extraction followed by max-pooling and a fully-
connected neural network classifier. The use of combined
normalization and convolution layers helps in improving the
detection performance and accelerating the training process.
A database of smoke and non-smoke images was collected
and used for training, validating, and testing the proposed
model. The total number of images was 24217 and was
divided as 10712 for training, 10617 for validation, and
2888 for testing. The obtained results showed excellent
smoke detection performance with a detection rate of more
than 96% and a low false alarm rate of less than 0.60%. The
authors compared the performance of their model to those
of other classical deep learning models which are VGG16
[54], ZF-Net [55], and Alex-Net [56]. It was found that the
proposed DNCNN model showed superior detection perfor-
mance compared to the other deep learning models while
having a lower number of trainable parameters thus lowering
the training time required. Finally, the authors compared
their model to two other conventional smoke detection algo-
rithms which are High-order Local Ternary Patterns based
on Magnitudes of noise removed derivatives and values of
Center pixels (HLTPMC) [57] and the Multichannel decoded
Local Binary Patterns (MCLBP) [58]. The method achieved
better performance compared to MCLBP and a comparable
performance compared to HLTPMC as it showed a lower
false alarm rate and a slightly lower detection rate. This work

shows the potential of deep learning models for smoke detec-
tion compared to classical image processing and machine
learning methods.

Another study by Gu et al. [59] proposed a dual-channel
neural network (DCNN) deep learning model for the
vision-based detection of smoke. The DCNN model consists
of two subnetworks that work together and their outputs are
concatenated to yield the model’s detection output. The first
subnetwork is a convolutional neural network (CNN) consist-
ing of a sequence of convolutional layers and max-pooling
layers with the addition of several batch normalization lay-
ers after some specific convolutional layers. The addition
of batch normalization helps in mitigating the problem of
overfitting and accelerates the training procedure. The sec-
ond subnetwork is a CNN with components similar to the
first sub network but with the addition of two extra compo-
nents which are skip connections and global average pooling.
The skip connection helps in reducing the effect of van-
ishing learning gradient and improves the propagation of
image features while the global average pooling helps in
overcoming the problem of overfitting and reduces the total
number of parameters in the network. The first subnetwork
was found to show good performance in extracting smoke
features while the second subnetwork was better at capturing
global information about the smoke present in the images.
Concatenation of the outputs of the two networks helped in
complementing the shortcomings of each of the subnetworks
using the outputs of the second network. The DCNN model
was trained and tested using the public smoke detection
dataset published by Yin et al. [27]. The performance of
the combined model was compared to that of eight state-
of-the-art deep learning models which are Xception [32],
Dense-Net [60], Res-Net [52], VGG-Net [54], Alex-Net [56].
ZF-Net [55], GoogLe-Net [61], and the deep normalization
and convolutional neural network (DNCNN) [27]. The used
model showed superior smoke detection performance with
an accuracy of more than 99% which exceeds the accuracy
values of the eight aforementioned models. Furthermore, the
model was used to detect smoke released from a combustion
flare in a petrochemical plant. The model was able to cor-
rectly classify nine images of flares as being ‘‘with smoke’’
or ‘‘smokeless’’; However, the amount of images that were
used are too small to give an accurate performance estimation
and no quantitative performance measure was mentioned
regarding this application.

Later in 2020, Gu et al [62] proposed another novel image
processing-based technique for the detection of flare soot in
images named vision-basedmonitoring of flare soot (VMFS).
The proposed method consists of three main steps. The first
step focuses on detecting the flare’s location as it is the
main source of soot in the image. This is done using a
broadly-tuned color channel based on modifying the red and
blue channels that detect the color of the flare efficiently. If a
flare is not located at this step, the algorithm terminates and
the operation is labeled as not flaring and not sooting. In the
next step, the location of the flare is extracted so that the
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TABLE 3. Progress on visual segmentation of various flare-related objects. (’A’: Accuracy, ’R’: Recall, ’P’: Precision, ’FAR’: False Alarm Rate, ’TPR’: True
Positive Rate, ’TNR’: True Negative Rate, ’mloU’: mean Intersection over Union. ’mMSE’: mean Mean Squared Error).

search for soot can be focused at that region. This is done
using saliency detection which detects the most important
objects in the image from a human inspector’s point of view.
Various saliency detection algorithms were tested and the
one proposed by Hou et al. [63] named ‘‘Image Signature’’
was chosen as it showed the best performance. The saliency
detection algorithm and the broadly-tuned color channel are
combined with K-means clustering algorithm to remove the
effect of any outlier detections. Finally, the last step uses a
sequence of image processing operations to detect the pix-
els that contain the flare, correct for the color of the sky
background, and search around the flare location for pixels
that contain flare soot. If the total area of pixels that are
labeled as ‘‘soot’’ pixels is more than zero then a conclusion
of sooting operation is obtained; otherwise, the flare is oper-
ation in sootless mode. The proposed method was tested on
four data sets of flare images in different operation modes
and the performance was compared to several state-of-the-art
deep neural networkmodels, includingXception [32], Dense-
Net [60], GoogLe-Net [61], Res-Net [52], VGG-Net [54],
Mobile-Net [64], the dual-channel deep network (DCNN)
for smoke detection [59], and the deep normalization and
convolutional neural network (DNCNN) [27]. The proposed

model achieved more accurate classification compared to all
eight before-mentioned models. The model also showed a
very reliable detection performance as it achieved accuracy
values higher than 99% on all four data sets while the other
models showed a noticeable fluctuation in their performance.
Furthermore, the proposed model showed the best execu-
tion efficiency as it required an average of 0.438 seconds
per image which is the lowest among the other considered
models. In order to improve the applicability of this detection
approach we recommend investigating lowering the execu-
tion time of this method so that it can be applied in real-time
monitoring systems.

3) ONGOING RESEARCH AND CASE STUDIES
In previous sections on flare and soot detection, the chal-
lenges in AI-enhanced remote inspection are acknowledged.
To enhance the practical relevance of the article, the author
includes this section of case studies to introduce how inspir-
ing ongoing research in other areas can possibly benefit
AI-enhanced Gas Flares detection.

As discussed, flare or smoke instances can be trans-
parent and are easily mixed with a background like flog,
cloud, or glare, these natures compromise the effectiveness
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TABLE 4. Progress on visual segmentation of various flare-related objects. (’A’: Accuracy, ’R’: Recall, ’P’: Precision, ’FAR’: False Alarm Rate, ’TPR’: True
Positive Rate, ’TNR’: True Negative Rate, ’mIoU’: mean Intersection over Union ’mMSE’: mean Mean Souared Error).

of current approaches in recognizing flare or smoke. To solve
this difficulty, one possible solution is to use language
prompts [22], [65]. These kinds of prompts, either in a
fixed pattern or learnable format, can give the model extra
hints about what the ROI (Region of Interest) contains.
Besides, they can also improve the model’s performance by
using Image-to-Text Contrastive learning which can calculate
the similarity between the extracted image feature and text
feature and consequently deepen the model’s understand-
ing of complex tasks. Another potential solution mentioned
is named ‘anomaly detection’ [66], [67]. Briefly speaking,
a smoke or flare event can be regarded as a kind of abnormal-
ity, which is different from a normal event (nothing happened)
in terms of behavior patterns, and object features. By quan-
tifying patterns of normal events, abnormal events can be
found to have a higher anomaly score or stronger association
discrepancy [68] which can indicate the advent of a smoke
or flare event. One more solution for detecting interested Gas
Flares targets is to do temporal detection [69]. For the Gas
Flares Inspection case. The existence of flare or soot has
a continuous nature, which means there must be an event
evolution before they can be obviously observed. Therefore,
it is possible to embed existing models (like YOLO) with
a temporal detection module so that this powerful YOLO
module can be more specialized for Gas Flares tasks. This
solution can be feasible because originally, YOLO could only
perform single-image detection (which is called intra-image
detection), by developing this Flare-soot temporal detection
model, the YOLO may perform an inter-image detection so
that the hint of flare or soot’s existence can be easier observed.

In all, the aforementioned studies that successfully apply
AI-enhanced visual inspection techniques in real-world sce-
narios could not only illustrate the potential of these ongoing
technologies but also inspire further research to adopt them
in the realm of Gas Flares detection.

4) SUMMARY AND DISCUSSION
There have been several works that discussed the detection of
flare-related objects in images and videos. Table 3 summa-
rizes the progress made on visual detection algorithms and
their performances.

As can be seen in the table, various techniques ranging
from image processing, machine learning, and deep learn-
ing were employed for the detection of flare-related objects.
Most importantly, deep learning-based techniques were used
the most for both flame and smoke detection tasks. This
huge research interest is understandable in the shade of the
many potentials that these techniques show in all computer
vision-related tasks. The most used performance measures
are the Accuracy (A) and the Detection Rate (DR) and high
accuracy values of more than 99% were achieved by some
techniques [59], [70]. However, a significant problem in
these studies is the lack of common evaluation measures
and unified benchmarking datasets. For example, Luo et al.
[70] and Gu et al. [59] both achieved high detection accura-
cies but they tested their methods on two different datasets,
making meaningful comparisons inapproachable. Moreover,
studies that used the same dataset, for example the VisiFire
dataset [14], mostly combined it with other datsets, such as in
the case of Lin et al. [71] and Ye et al. [72] which combined
that dataset with the CVPR-Fire-Lab dataset and the Visor
dataset, respectively. Also, evenwhen twoworks use the same
datasets or the same combination of datasets, theymostly tend
to use different performance measures such as Appana et al.
[73] and Ye et al. [72] that used the same datasets but the
first only reported the Accuracy and the second only men-
tioned the Detection Rate. These problems are of extreme
importance in flame and smoke detection research and must
be addressed by proposing unified benchmarking datasets
and common evaluation measures that all future works
adhere to.
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B. SEGMENTATION
In the above section of detection, related references in the
last 13 years have been concluded [14], [18], [27], [28], [29],
[30], [33], [57], [59], [62], [70], [71], [72], [73], [74], [75],
[76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86],
[87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97].
In this subsection, the progress done on the segmentation of
combustion-related object, namely flame and smoke, in gas
flares scenes is summarized.

1) FLAME SEGMENTATION
There have been several works that discussed the visual
segmentation of flame from RGB video stream. A study
by Mlích et al. [26] implemented a state-of-the-art semantic
segmentation deep learning model named DeepLabV3 for
the segmentation of flame in images. Tested on the BoWFire
dataset [16], the proposed model a high segmentation accu-
racy of 97.79% which was higher than other methods used in
the literature. Next, the authors built their own segmentation
dataset from publicly available flame images and tested the
proposed model on it. The model achieved a high accuracy
value of 99% and an excellent Intersection over Union (IoU)
value of 70.51% on the proposed dataset. Their proposed
dataset is available online and is a promising option for
benchmarking flame segmentation models.

Another study by Choi et al. [98] proposed a novel
deep learning-based flame segmentation technique using an
improved version of the FusionNet deep learning network.
The improved model employs input and output convolutional
layers combined with middle skip connections for achiev-
ing improved feature feedback and enhanced segmentation
accuracy. The proposed model was tested on two datasets
which are the FiSmo dataset [25] and the Corsican Fire
Database [21] and showed superior segmentation perfor-
mance as it achieved segmentation accuracies of 99.19%
and 97.46% on the two datasets, respectively. Moreover, the
proposed model improvements was proven beneficial for the
model’s segmentation performance as the proposed model
showed high IoU values compared to the normal FusionNet
model and the same proposed model without the middle
skip connections. This technique is of great potential and
evaluating its performance in real-time monitoring systems
is recommended.

A recent study by Bochkov et al. [99] proposed a novel
deep learning model named wUUNet for multiclass flame
segmentation. The new model is based on the UNet deep
learning model and was improved for the flame segmentation
problem.Multiclass segmentationwas considered as different
regions of the flame have different temperatures and recog-
nizing the hottest regions in the flame is a crucial task in flame
monitoring. The improved model includes skip connections
between the decoder of the binary part and the encoder of
the multiclass part of the model. The model was adjust even
more by including the maximum number of possible skip
connections between the binary part and the multiclass part of

the model. The authors built a custom dataset of flame images
and used it for evaluating the model. The model achieved
a high mean segmentation accuracy of 95.34% and a low
segmentation accuracy variance of 3.99. Finally, the model
was shown to operate in real-time as it achieved an average
segmentation speed of 63 frames per second. This model is
of great potential for application in robotic real-time moni-
toring systems as it combines excellent flame segmentation
performance with fast operation.

2) SMOKE SEGMENTATION
Smoke segmentation is an important task in the analy-
sis of any combustion-related application. A recent study
by Khan et al. [29] proposed a deep learning model
based on Convolutional Neural Networks (CNNs) named
‘‘DeepSmoke’’ for detecting and segmenting smoke in both
clear and foggy conditions. The authors fine-tuned a state-
of-the-art deep learning network named Efficient-Net [100]
for the smoke classification task and implemented a recent
segmentation deep learning model named DeepLabv3+ [101]
for smoke pixel-wise segmentation. The proposed system
showed excellent detection performance as it achieved a high
accuracy of more than 98% and a lower false alarm rate
than other deep learning models, namely VGG-Net [54],
Alex-Net [56], GoogLe-Net [61], and Mobile-Net-V2 [102].
Moreover, the system showed exceptional segmentation
performance as it outperformed several state-of-the-art seg-
mentation algorithms, namely Deconv-Net [103], FCN [104],
DeepLab [105], and Seg-Net [106], by achieving higher mean
Intersection over Union (IoU) and global accuracy scores in
the smoke segmentation problem. The system also illustrated
fast detection operation as it required an average execution
time of less than 40 ms per frame which is equal to 25 frames
per second. By looking at the accurate and fast operation of
the system we highly recommend trying the implementation
of this model in real-time monitoring systems such as drone
inspection devices or stationary continuous monitoring sys-
tems.

Another study by Frizzi et al. [107] proposed a novel
CNN-based model for detection and segmentation of smoke
and fire from RGB images. The proposed segmentation
method consists of two main stages which are the coding
stage and the decoding stage. The first stage uses the archi-
tecture of the VGG16 network [54] and helps in extracting
the local information of smoke and fire and its deeper layers
enhance the generalization ability of the model. The second
stage uses the information extracted through the first stage
and generates a precise fire and smoke segmentation masks.
During the second stage, feature maps from both stages are
concatenated to give the model a deeper propagation of the
fire and smoke contextual information. A data base of fire
images was collected and labeled for the segmentation task.
The performance of the proposedmodel was compared to two
state-of-the-art segmentation networks which were proposed
by Yuan et al. [108] and Ronneberger et al. (U-net) [109]. The
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proposed model achieved better segmentation performance
compared to the two other models for both smoke class and
background class while have a slightly better performance to
the work of Yuan et al. [108] regarding the fire class. The
performance of the model in the fire class could be enhanced
by increasing the size of the dataset and adding more pictures
with fire.

3) SUMMARY AND DISCUSSION
As summarized from references [16], [17], [19], [21], [25],
[26], [49], [107], [108], [110], [111], [112], [113], [114],
[115], [116], [117], [118], [119], and [120]. There are mul-
tiple works in literature that discussed the segmentation of
flame and smoke pixels in RGB images. Table 4 summarizes
the works done on visual segmentation of flame and smoke
and their performancemeasures. As shown in the table, differ-
ent segmentation techniques including deep learningmethods
and image processing methods were used to segment flame
and smoke images. Most-importantly, deep learning-based
segmentation methods were used the most for both flame and
smoke segmentation tasks. This is understandable as deep
learning-based segmentation models have shown excellent
performance in all types of segmentation tasks [121], [122].
Performance measures that were mostly used are the mean
Intersection over Union (mIoU) and Precision (P) and high
mIoU values of more than 85% were achieved in litera-
ture [98], [107]. However, similar to the case of flame-related
object detection, the works in literature do not use the same
image dataset for benchmarking which makes performance
comparison inaccessible.

C. MEASUREMENT
Inspection using RGB cameras can be used for estimating
important flare operation measures [123]. Minglu et al [124]
introduced a new method for reconstructing the 3-D soot
temperature and volume fraction of an afterburner flame
using deep learning algorithms. The proposed method uses
a two-camera setup to capture flame images from multiple
angles, and then trains a convolutional neural network (CNN)
to predict the soot temperature and volume fraction from
these images. The authors compared the performances of
their method, called StfNet-3D, with that of CNN, LSTM,
and 3D TVR for reconstruction of 3-D soot temperature
and volume fraction. The reconstruction accuracy, noise
immunity and computational costs were used to verify
the performance of each reconstruction algorithm. Over-
all, the paper’s findings suggest that the proposed deep
learning-based method has significant potential for improv-
ing the monitoring and control of afterburner flames in
various industrial applications, including flare gaz invliving-
industries.

A study by Johnson et al. [125] investigated the application
of an image-based technique named sky-line-of-sight attenu-
ation (sky-LOSA) for the estimation of soot release amount

from an operating gas flare. The method relies on two cam-
eras for visually inspecting the flare plume and estimating the
soot emission rate along the plume axis, as shown in Fig. 6
(a). The first camera is a high-frame rate camera that is used
to estimate the velocity of the emitted plume using the visual
data collected at 300 frames per second. The second camera
is a thermoelectrically-cooled CCD camera with a specific
band-pass filter and is used for collecting monochromatic
images of the plume. After data collection, the images were
processed for estimating the soot emission rate as shown in
Fig. 6 (b-g). The images were rotated, corrected for the sky
effect, and combined with the average velocity data obtained
using the high-frame rate camera. Next, the value of the soot
emission rate was estimated by summing horizontally over
the combined image using the following equation:

ṁsoot =
1
Nf

1
Nz

Nz∑
j=1

Nf∑
i=1

A
∫
U (y, z)jln(τλ(y, z)i,j)dy (3)

where Nf is the number of ensemble measurements, Nz is
the number of measurements in the z-direction, U (y, z) is
the average velocity at the point (y, z), τλ(y, z) is the trans-
missivity at the point (y, z), and A is a constant term related
to the soot characteristics and optical parameters. Using this
method, the average soot emission rate along the plume’s axis
was successfully measured as shown in Fig. 6 (h). However,
the uncertainty of this method was approximated to be around
33% which is too high to be considered reliable. Thus, fur-
ther investigations of such measurement technique is highly
recommended especially for reducing the uncertainty of the
measurement.

Another study by Castineira et al. [126] discussed the
application ofMultivariate Image Analysis (MIA) using Prin-
cipal Component Analysis (PCA) and projection to latent
structures (PLS) for the analysis of combustion flares through
the use of color RGB images. This technique estimates the
flares combustion efficiency as a function of the wind speed
and the air or steam flow rates by implementing a combi-
nation of simulations and experiments. This technique was
applied successfully for finding the combustion efficiency
using the RGB images in a specific range of operation con-
ditions. Studies that implement a similar methodology but
using deep learning regression techniques are highly recom-
mended. Moreover, studies that follow the same technique
but with the use of hyperspectral and multispectral images
are recommended as including multiple spectra will provide
more information to the predictionmodel and thus is expected
to achieve higher prediction accuracy.

Gu et al. [127] proposed a deep learning model that
combines model-agnostic meta-learning (MAML) algorithm
combined with selective ensemble for the density prediction
of flare soot using only few-shot data. As the problem of
flare soot occurs rarely on very limited data are available for
such condition, the use of few-shot learning is of extreme
importance. In the beginning, MAML was used to provide
general-purpose optimized initial parameters (GOIP) for the
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FIGURE 6. (a) The flare imaging setup used for the sky-LOSA technique,
(b) An image obtained using the CCD camera, (c) A rotated section from
the image, (d) The section with the interpolated sky intensity, (e) The
transmissivity image (the ratio of picture (c) to picture (d)),
(f) Combination of transmissivity image with ensemble-averaged velocity
data, (g) Vertical profile of the combination, (h) The measured soot
emission rate profile along the plume’s axis [125].

soot analysis task by training models on very similar other
tasks such as the detection of water vapor, cigarette smoke,
and dark clouds. This steps gives the model a high gener-
alization capability. After that, these initial parameters are
used during the training procedure with a novel ensemble
that is implemented to combine various predictions using a
wide range of learning rates and a few gradient descent steps.
The authors started the prediction task with vision-based
monitoring of flare soot (VMFS) model [62] to check for
the occurrence of flare soot. Next, the proposed model by the
authors was used to give a prediction in a binary classification
task where the output is either light soot of dense soot. The
results of the proposed model were compared to several state-
of-the-art deep learning models, including Xception [32],
Dense-Net [60], Res-Net [52], VGG-Net [54], Alex-Net [56].
ZF-Net [55], GoogLe-Net [61], and the dual-channel deep

network (DCNN) for smoke detection [59]. The proposed
model showed better performance compared to the other
models in the task of soot density recognition as it achieved a
higher average accuracy ratio, a higher average detection rate,
and a lower average false-alarm rate when the testing process
was done five times. However, the obtained results showed
a relatively high standard deviation in the accuracy values,
which shows the need for further improvements to this model
to increase its reliability.

IV. HYPERSPECTRAL IMAGING FOR COMBUSTION FLARE
ANALYSIS
In the last year, hyperspectral imaging have attracted huge
attention from many researchers as a promising tool for
various optical inspection and analysis applications. It was
applied in various fields such as food industry [128],
[129], [130], agriculture [131], [132], environmental moni-
toring [133], medical applications [134], [135], [136], and
materials engineering [137]. Hyperspectral images provide
richer information about the captured scene as they provide
continuous spectral information compared to the three spe-
cific channels in RGB images. Every pixel in a hyperspectral
image is a profile of hundreds of reflectance values cor-
responding to many narrow-band spectral channels. These
profiles can be used to derive many useful information
about the pixel such as the involved compounds, the com-
pounds ratios, the temperature profile, and the emitted
radiative power. Recent hyperspectral imaging systems pro-
vide enough spectral resolution for deep analysis of the scene
while ensuring enough spatial resolution for covering the
entire desired scene and data acquisition speed for rapidly
changing scenarios [138]. In this section, the application of
various hyperspectral imaging systems, such as infrared sen-
sors and spaceborne hyperspectral remote sensing systems,
is reviewed and discussed.

A. DIRECT FLARE PERFORMANCE ESTIMATION
One of the most common methods in analyzing combustion
flares is by using a stationary infrared imaging system that
is mounted a distance away from the flare. These infrared
sensors are directed toward the flare or toward its exhaust
gas and are used to evaluate the flare’s combustion perfor-
mance bymeasuring the ratios of the chemical products in the
exhaust gas. The composition ratios can be used to measure
the flare’s combustion efficiency and other related flare per-
formance measures. The most common infrared sensors for
flare inspection are Fourier-transform infrared spectroscopy
(FTIR) sensors which can extract useful information about
the flare system via obtaining infrared absorption/emission
spectra. In this subsection, the progress done on direct gas
flares performance estimation using hyperspectral sensors is
reviewed.

1) COMBUSTION EFFICIENCY ESTIMATION
A study by Blackwood et al. [139] applied an open-path
FTIR (OP FTIR) imaging system to estimate the combustion
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efficiency of an industrial flare. The imaging system was
implemented to be compared to several combustion models.
The imaging system was applied to low-btu flares which are
commonly known for low combustion efficiency values of
around 30% according to many combustion models. How-
ever, when the author used the OP-FTIR imaging system to
estimate the combustion efficiency, values of more than 90%
were achieved. The methods that were used to estimate the
combustion efficiency were monitoring the CO to CO2 ratio,
monitoring CO to tracer gas ratio (SF6 and CF4), and the
application of dispersion models. The experimental results
obtained illustrate that theoretical models such as the model
developed by Leahey et al. [140] need to be improved in order
to agree with experimental data.

In the work of Wormhoudt et al. [141] a comparison
between a remote sensing technique based on passive FTIR
(PFTIR) and an extractive sampling method for combustion
flare analysis was carried out. The goal of the study was
to estimate the flare combustion efficiency and to compare
the two flare analysis techniques in terms of the estimation
accuracy. The authors found that both techniques were able to
accurately determine the combustion efficiency and the flare
performance curves. However, in the cases where a noticeable
difference was found between the two measurement tech-
niques, the main reason was the inaccuracy in estimation
of the main component of the fuel by the PFTIR sensor.
Thus, improving the measurement accuracy of the elements
in the exhaust is required for the PFTIR technique to be
applied in other more complicated applications involving
combustion. The obtained results showed that the problem of
inhomogenety in the flare exhaust did not affect the measured
combustion efficiency values in a significant matter.

A similar work by Gagnon et al. [142] discussed the appli-
cation of a thermal hyperspectral camera based on FTIR
spectroscopy for industrial smokestack and flare analysis.
The authors used a commercial Hyperspectral imaging sys-
tem named ‘‘Telops Hyper-Cam Very-Long-Wave’’ which
can be used to study the chemical composition and the spa-
tial distribution of the analyzed flares from large distances.
First, the instrument was used to study the composition of
a smokestack and a flare from a distance of more than
1 kilometer. The authors were able to examine the chemical
components of the smokestack and the flare by comparing
the obtained FTIR profiles to reference elements profiles.
Next, the authors used the obtained hyperspectral data to
examine the spatial distribution of the chemicals in the
smokestack. They were able to predict the regions with
relatively higher chemicals content in the obtained images.
Finally, the obtained data were used to estimate the com-
bustion efficiency of the flare by comparing the temperature
profile with the oxygen and gas profiles. This imaging
systems shows great potential for chemical analysis of com-
bustion flares and smokestacks and we recommend doing
more comparative studies with extractive sampling data.

Similarly, Huot et al. [143] discussed the application
of a hyperspectral imaging system for the analysis of a

combustion reaction. The authors used a hyperspectral cam-
era named ‘‘TelopsMS-IRMW’’ for high frame-rate imaging
combined with a motorized filter wheel of 8 filters to allow
for time-resolved imaging of the combustion products. The
imaging system was applied to analyze a candle with the
combustion and burst of black powder. The temperature of the
combustion was estimated using the obtained hyperspectral
images from the 8 filters and was compared to other conven-
tional broadband imaging techniques. Spatial and temporal
information of the temperature during the burst were obtained
using the hyperspectral imaging system and the results agreed
well with other methods that were used previously.

Another work by Zeng et al. [12] studied the application of
a novel remote method for the analysis of combustion flares
which is based on hyperspectral infrared imaging. The used
imager was first proposed by Zeng et al. [144]. This imager
has the advantages of high image resolution, high spectral
selectivity, high imaging frame rate, and the suitability for
short-term analyses and long-term continuous monitoring.
The proposed method was implemented to measure the com-
bustion efficiency of the flare and to estimate the amount of
smoke formed regardless of the lighting condition. Estimat-
ing the amount of smoke helps the operator in optimizing
the flare’s performance by reaching the ‘‘incipient smoke
point’’. The accuracy of the novel method was validated by
comparison to an extractive sampling monitoring system in
batch-scale experiments. The obtained results indicated high
accuracy for the infrared imaging-based method as it showed
great agreement with the extractive sampling results indicated
by an R2 value of 0.9856 and an average deviation of around
0.5%. The accuracy of the used methods was better in the
cases of higher combustion efficiency as the method slightly
overestimated the values at lower combustion efficiency sit-
uations. However, this is still acceptable as flares do not
typically operate at such low combustion efficiency values.
Next, the amount of smoke produced from the flare was
measured using the ‘‘smoke index’’ which is a unitless num-
ber that increases as the level of smoke generated increases.
This unitless metric was evaluated successfully to estimate
the amount of smoke in different scenarios. The proposed
system is very promising in both short-term and continuous
monitoring applications and we highly recommend doing
more experimental studies for the same technique in different
flare situations.

2) TEMPERATURE PROFILE ESTIMATION
Another study byMoore et al. [145] discussed the application
of FTIR-based hyperspectral camera named ‘‘Telops Hyper-
Cam MWE-Fast’’ for the analysis of turbojet exhaust. Due
to the highly changing nature of turbulent turbojet exhausts,
scene-change artifacts were present in the observed spectra
by the hyperspectral camera. These artifacts result in high fre-
quency noise. The authors used moderate temporal averaging
to reduce the effect of this noise on the analysis results. The
chemical composition of the turbojet exhaust that contains
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CO and CO2 was successfully analyzed and the tempera-
tures and relative concentrations of each of these elements
were obtained. The complicated nature of such flow fields
required the development of more accurate combustion and
fluid dynamics models to make analysis of such flows more
accessible.

B. INDIRECT FLARE PERFORMANCE ESTIMATION
The obtained hyperspectral data can be used indirectly for
obtaining useful information on the gas flare’s performance.
The methods that were used extensively in analyzing gas
flares include the application of combustion models and
theoretical analyses. These techniques allow for inspecting
and analyzing systems when no direct methods can be used.
In this subsection, the progress done on indirect gas flares
performance estimation using hyperspectral sensors is sum-
marized.

1) HYPERSPECTRAL DATA MODELING
There are several works that discussed the modeling of hyper-
spectral data for gas flare monitoring. A study by Panfili [3]
proposed a high-fidelity forwardmodel for the use in process-
ing hyperspectral imaging data and finding the combustion
efficiency of flares. Themodel was proposed to be an element
of a retrieval algorithm for extracting useful information from
raw hyperspectral data. The main inputs of the model were
the molecular concentrations and the layer temperatures and
the model outputs the spectral radiance for each band and the
Jacobian matrix of the parameters derivatives. This modeling
approach was implemented in a software and compared to
another applied model which is SHARC and MODTRAN
Merged Code (SAMM) [146]. The results showed close but
not identical predictions between the two algorithms due to
the differences in the assumptions and the modeling proce-
dure. This modeling approach is still incomplete and more
works that build on this proposed model are required to be
able to find the combustion efficiency of flares using hyper-
spectral data.

Another study by Grauer et al. [147] proposed a newmodel
for the estimation of emission rate from a plume of heated
gas. The methods relied on hyperspectral data obtained using
FTIR spectroscopy measurements and the radiative transfer
equation to derive a gaussian model for volume fraction
and temperature. In order to test the proposed model, the
authors estimated the emission rate of a simulated heated
methane plume by using synthetic hyperspectral images.
By comparing the gaussian distributions-based model to uni-
form distributions model, the gaussian model achieved higher
accuracy in column density estimation by 14%. Moreover,
the emission rate estimated by the gaussian model was within
4% true value. It is recommended that the same approach be
applied for the estimation of other flare parameters such as
the flare combustion efficiency.

One of the important uses of modeling in hyperspectral
imaging is for providing a reference spectrum for comparison

with the experimentally obtained spectrum. A study by Tay-
lor et al. [148] discussed the use of hyperspectral imaging
based on FTIR technology for the detection of highly-reactive
volatile organic compounds that form ozone and dangerous
human carcinogens. In order to provide reference for the
obtained FTIR images, the methods relied on spectroscopic
databases when they are available and on quantum chemistry
computation whenever spectroscopic data were not available.
The authors compared their analytical results to experimental
results obtained from the Pacific Northwest National Labora-
tory Infrared Spectral Library (PNNL IRSL) for some organic
molecules, namely formaldehyde and 2-butene. The results
showed good agreement for the smaller molecule which is
formaldehyde (Fig. 7(a)) and more deviation for the big-
ger molecule which is 2-butene (Fig. 7(b)). The differences
between the two profiles indicate that more improvements
in the theoretical model are required. This method can be a
potential solution for detection of organic compounds with
low data availability. Another similar work by Panfili et al.
[149] used an identical approach to find the spectra of large
organic molecules with no data available. The authors used
an analytical model to find the spectra of Ethyl-Benzene,
Toluene, and Ortho-xylene. They achieved similar results
where larger molecules result in less accurate modeling and
thus an improved approach is required.

Another study by Han et al. [150] discussed spectrum
modeling and the effect of different environmental factors on
the released spectrum of a combustion flare in the mid-wave
infrared region. The authors used a line-by-line modeling
strategy to model infrared spectra and increased the accuracy
of the modeled spectra by taking spectral line broadening into
consideration. Preliminary infrared spectra were obtained
using the high-temperature molecular spectroscopic database
(HITEMP) and collisional broadening at pressures higher
than 0.1 atm was considered as it is the most dominant
spectral line broadening phenomenon. The main products of
the flare that was considered for modeling were CO2, H2O,
CO, and N2. However, N2 was ignored in the analysis as
it did not interfere with the spectra in the infrared range.
Also, the temperature of the considered flare was assumed
to be 2000K. First, the effect of the instrument function
on the observed spectra was discussed. It was found that
lower spectral resolution of the instrument results in lower
observed spectra especially in wavelengths where more fluc-
tuations are present. Next, the effect of various parameters
that are related to the radiation transmission in the atmo-
sphere, namely the horizontal distance, the vertical distance,
the measurement angle, and the humidity. It was found that
increasing both horizontal and vertical distances, lowering
the measurement angle, and increasing the humidity resulted
in lowering the observed spectra. However, it was noticed
that the effect of the horizontal distance was much more
significant compared to the vertical distance as the density of
air molecules in high vertical distances decreases gradually
and thus results in lower spectral losses. Finally, the obtained
results were compared to experimental results for validation
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FIGURE 7. Comparison between experimental (blue) and analytical (red)
spectra for (a) formaldehyde and (b) 2-butene at 298.15K [148].

the two data showed excellent agreement with a root-mean-
squared (RMS) deviation of about 6.7%. We recommend
doing similar studies on different types of flares with different
reaction products such as H2S and in different operational
conditions as this will fit with a wider variety of combustion-
based applications.

2) THEORETICAL ASPECTS OF HYPERSPECTRAL FLARE
MONITORING
There are other works that discussed different theoreti-
cal aspects of hyperspectral flare monitoring. A study by
Conard et al. [151] discussed the effect of beam steering on
remote measurements of combustion flares and emissions.
Beam steering occurs when light deflects as it goes through
gases with different compositions. The phenomenon reaches
its extreme case when light goes through heated gases with
significantly different composition, which is the case for
combustion flares emissions. In order to assess the effect
of beam steering on the analysis of combustion flares, the
authors derived three multiplicative correction parameters
for the effect of beam steering on source intensity, incident
intensity, and optical depth. The results showed that even at

the most extreme cases, the correction parameters only devi-
ated very slightly from unity, and taking into consideration
the instrument error and noise, these three parameters can
practically be taken as unity. This proves the problem of beam
steering can be neglected safely when hyperspectral imaging
of combustion flares is implemented.

Another study by Miguel et al. [152] proposed a method
for selecting the optimal filters of an infrared hyperspectral
imaging system that is used for analyzing combustion flares.
The method proposed by the authors relied on ranking the
filters based on the ratio of the quantity of interest’s variance
to the noise variance where better filters will have lower ratio
values. The validity of this ranking criteria was checked by
evaluating the combustion efficiencies using different filters
and inspecting the accuracy of the obtained measures. It was
found that filters with a lower ratio values achieved more
accurate combustion efficiency estimates.

C. FLARING ACTIVITY ANALYSIS
There have been many studies that discussed the detection
and analysis of flares using satellite-mounted remote sensing
technologies. These technologies allow for monitoring the
overall flaring activity in a region throughout time which
is an essential task in environmental emission monitoring.
There are two main types of spaceborne monitoring methods.
The first is daytime sensing that uses day time hyperspectral
sensors to locate and inspect flares. This technique is of
limited capability as the background radiation is too high
which makes detecting small flares harder. The second type is
nighttime sensing that locates flaring activities during night.
This technique is of much higher capability as it does not get
affected by solar radiation reflected from the earth surface
and thus can be easily used to detect and monitor smaller
flares. These methods are used mainly for two tasks. The first
is detection and localization where the total number of flaring
activities is analyzed spatially and temporally. The second is
parameter estimation where relevant performance parameters
such as the flare’s temperature, the flared gas volume, and the
source’s size are obtained. In this section, the progress done
on various flaring activity analysis methods is reviewed.

1) DETECTION AND LOCALIZATION
An important task in the analysis of flaring activity is detect-
ing and localizing the flares both spatially and temporally
using hyperspectral sensors mounted on satellites. A study
by Chowdhury et al. [153] discussed the use of multispectral
images taken by the Landsat-8 satellite for daytime detection
of industrial flares. A detection algorithm named Sequential
Maximum Angle Convex Cone (SMACC) was employed
to detect endmembers in the hyperspectral images and thus
detect flares as bright pixels in the hyperspectral data. The
method was applied to three locations in Alberta, Canada,
and 31 flare locations were successfully detected. The authors
verified the presence of flares by comparing the observed
locations with satellite images of the Earth surface from
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Google Maps and Microsoft Bing Maps. This method is
promising for daytime flare detection as it is a more chal-
lenging problem compared to nighttime flare detection.

Another study by Casadio et al. [154] proposed a new strat-
egy for detection of industrial flares from space using Along
Track Scanning Radiometer (ATSR) measurements. The new
strategy namedALGO3 relies on radiations in the Short-wave
infrared (SWIR) wavelengths that was observed by satellites
with ATSR family instruments. The detection scheme was
based on the idea that industrial flares will have consistent
radiations in the SWIR band throughout the year while nat-
ural fires will have much lower number of occurrences and
the night-time background radiation in the SWIR range in
negligible. This method has the advantages of only detecting
currently active flames with temperatures exceeding 850K,
working efficiently in all latitudes, and by the use of SWIR
combined with Mid-Infrared (MIR) and Thermal-Infrared
(TIR) the observed flares can be categorized in terms of the
size and temperature. The authors validated the accuracy of
their strategy by examining high resolution satellite images
of the Earth surface and verifying the presence of industrial
flares.

In another work, Schroeder et al. [155] proposed an
algorithm for the detection of various fire scenarios using
both daytime and nighttime hyperspectral satellite data. The
data were collected using Landsat-8’s Operational Land
Imager (OLI) during both daytime and nighttime from several
sites globally and were used for the detection of industrial
gas flares, active volcanoes, and biomass burning. Daytime
data are used to detect unmistakable fire locations and the
nighttime data is used to identify smaller fires that are harder
to detect using daytime data. The algorithm showed excellent
performance in detecting active fires with large areas and
improved performance for small-area fires. A low commis-
sion error value of around 0.2% was achieved for the data
collected throughout the world.

Similarly, Elvidge et al. [156] discussed extending the
detection capability of the VIIRS data-based NightFire
algorithm by including infrared spectral data from the
Day/Night Band (DNB). The inclusion of the DNB has the
potential of significantly increasing the number of detected
combustion flares by including flares with a much smaller
area of 0.001 m2 at a typical temperature of gas flaring of
1800K. The authors used DNB data alongside the conven-
tional VIIRS bands to detect flare location in a specific region
in India in 2015 and were able to detect a 15 times increased
number of flares compared to the method that only uses
the conventional bands. These results show the potential of
a VIIRS-based detection algorithm that takes into account
the DNB data to provide a more comprehensive detecting
algorithm that will further increase the practicality of this
technology.

2) PARAMETER ESTIMATION
After the flaring activities are located in the study region
and period, the next task is analyzing the collected data for

obtaining useful information about the individual flares and
the total flaring trends. This is done by estimating various
performance parameters of the flares using hyperspectral
data. A study by Elvidge et al. [157] discussed the application
of Visible Infrared Imaging Radiometer Suite (VIIRS) space-
borne sensors for detection and analysis of combustion flares
during nighttime. The authors used nighttime infrared radia-
tion date from the NIR and MWIR bands collected using the
VIIRS sensor and the Nightfire algorithm to detect the loca-
tions of flares and to estimate several important performance
measures. The algorithm relies on modeling the blackbody
radiation curve using Planck equation and then compare both
observed and modeled data to estimate the source’s temper-
ature (K ), the fire radiative power (W/m2), the total radiated
heat (MW ), and the source’s size (m2). The results showed
that the use of nighttime data is much more suitable for usage
with the proposed algorithm as the obtained data clearly
indicate locations of flares. Furthermore, the algorithms was
successfully used to estimate operational measures of several
existing combustion flares and biomass combustion sites. The
same method was used by Elvidge et al. [158] for estimating
parameters of biomass combustion in Sumatra and the results
showed excellent agreement with the data obtained by Mod-
erate Resolution Imaging Spectrometer (MODIS) spaceborne
detector.

In another study, Anejionu et al. [159] proposed two novel
techniques for the detection of gas flares and estimation of
total flared gas volumes using Moderate Resolution Imaging
Spectroradiometer (MODIS) nighttime infrared satellite data.
The two proposed techniques which are named the MODIS
flare detection technique (MODET) and the MODIS flare
volume estimation technique (MOVET) were implemented
to study the flaring activity in Niger Delta, Nigeria between
2000 and 2014. Implementation of the two methods resulted
in detailed temporal and spatial analysis of the flaring activity
in the studied region. This method is of high potential as it
allows for easy and fast analysis of flaring activities espe-
cially in regions where access to flaring data is limited or
restricted.

Also, another study by Elvidge et al. [160] used hyper-
spectral data collected using the same VIIRS spaceborne
sensor to estimate the total worldwide flares number and total
emissions in 2012. The authors located 7467 flares worldwide
using VIIRS data and specified the countries with the largest
number of flares and the larges number of flared amount,
as shown in Fig. 8. It was found that the USA had the
largest number of operational flares in 2012 of 2399 flares
while Russia had the largest amount of flared gas volume
of 24.6 billion cubic meter (BCM). The authors also ana-
lyzed the detected flares using Planck equation to estimate
the most important operation parameters. They showed that
there are two main problems in the estimation of operation
parameters using VIIRSwhich are the inaccurate estimates of
weakly detected flares and unsuitability for monitoring flares
with unsteady operation times. Finally, a correction for the
view angle from the spaceborne sensor was proposed using
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FIGURE 8. (a) Location of flares detected using VIIRS sensor in 2012,
image is presented in a global scale, (b) Number of flares detected in
each country and (c) Total amount of flared gas in billion cubic meter
(BCM) in 2012 [160].

the ellipticity coefficient which resulted in more accurate
measures. These works show the great potential of VIIRS
in nighttime spaceborne flare monitoring and similar studies
that apply the same methodologies using more recent data are
highly recommended.

Another work by Faruolo et al. [161] developed a
spaceborne inspection technique named Robust Satellite
Techniques-FLARE (RST-FLARE) algorithm that uses
nighttime Moderate Resolution Imaging Spectrometer
(MODIS) sensor data for localization and parameter estima-
tion of combustion flares. The authors used the proposed
technique to study the flaring actions in the Niger Delta
region, Nigeria, and monitor the change in flaring activity

during the period from 2000 to 2016. The algorithm suc-
cessfully estimated the number of flares and localized them
throughout the 17 year study period and illustrated good
agreement with results obtained using other spaceborne
techniques (MODET, MOVET, VIIRS NightFire) and data
from a national organization (Nigerian National Petroleum
Corporation). A localization accuracy of 95% and an error
mean in the emission volume estimates between 16% and
20%were achieved when the obtained results were compared
to the before-mentioned baselines. As an extension to their
previous work, Faruolo et al. [162] proposed a modification
of the Robust Satellite Techniques-FLARE (RST-FLARE)
algorithm to be used with the VIIRS hgperspectral data
instead of MODIS data. The motivation for this modifica-
tion was to benefit from the enhanced spectral and spatial
properties of the VIIRS sensor and to ensure the continuity
of spaceborne inspection after the possible end of MODIS
sensor’s life. The authors used the modified algorithm to
monitor the emissions from the Val d’Agri Oil Center in
Italy in the period from 2015 to 2019. The obtained results
showed great agreement with the estimated of the VIIRS
NightFire algorithm in terms of the radiant heat estimated
from the combustion site. The excellent results obtained by
this modified method suggest the development of a hybrid
RST-FLARE algorithm that uses data from both MODIS and
VIIRS sensors to obtain more accurate inspection results.

In another work, Fisher et al. [163] discussed the use of
Short-wave infrared (SWIR) radiation data for the estima-
tion of Fire Radiative Power (FRP) of industrial flares. The
authors first tried usingMid-wave Infrared (MWIR) radiation
data but these data were not suitable for FRP estimation of
industrial gas flares as the operating temperature was too high
for this methods to be used. SWIR data were used instead
and much more accurate FRP estimates were achieved.
When analyzing industrial gas flares in the temperature range
between 1600K and 2200K, the proposed estimation method
resulted in maximum errors within 13.6% and 6.3% at radia-
tion wavelengths of 1.6µm and 2.2µm, respectively. Finally,
the obtained results were compared to the estimates of multi-
spectral Visible Infrared Imaging Radiometer Suite (VIIRS)
NightFire algorithm and the two measures showed great
agreement. This method is of great importance as it can be
used to analyze industrial gas flares using old satellite sensors
such as ATSR in the period from 1991 to 2012 that can
not be directly analyzed using normal multispectral analysis
algorithms.

A recent study by Franklin et al. [164] utilized VIIRS
hyperspectral satellite data and the Nightfire algorithm to
investigate the flaring activity in the Eagle Ford Shale region
in Texas, US. The spaceborne data were collected in the
interval from 2012 to 2016 and was used to locate the flares
and estimate their total flared gas amount in the study period.
The analysis located 43887 flares in the specified region
and period and the total flared gas volume was estimated
to be 4.5 billion cubic meters. Furthermore, the amount of
gas flared from each flare was estimated using reported flare
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emission data from the Railroad Commission of Texas and
the obtained VIIRS satellite data. This application shows the
ability of VIIRS data to provide both spatial and temporal
analysis of various flaring activities. More recently, in 2023,
Zhang et al. [165] also used the VIIRS sensor for wildfire
detection in Southeastern Australia. In their case, random for-
est (RF) data processing techniques (with its 2 variants named
RF-N and RF-D) are selected as investigation objects, while
collected spatial-temporal matching information from differ-
ent VIIRS sensors are regarded as ground-truth. After training
and several trials in finding optimal hyper-parameters, they
achieved good recognition results in association with both
RF-N and RF-D models. Besides, the author evaluated these
RF-based models via counting their feature importance and
measuring the performance uncertainty which is followed by
visual comparisons between their RF fire detection results
and that of VIIRS sensors. Presented results illustrate that the
trained RF models are highly capable in terms of detecting
wildfire within large-scale satellite images.

D. SUMMARY AND DISCUSSION
There have been several works in the literature on the appli-
cation of various hyperspectral imaging techniques for flare
analysis. These works ranged from experimental on-sitemon-
itoring using infrared sensors and space-borne remote sensing
using satellites to theoretical spectra modeling. Regarding
direct flare inspection, the most used inspection technique is
the FTIR sensor. This is due to its ability in accurate flare
performance estimation and its commercial availability. For
indirect flare analysis, various mathematical models were
employed to obtain the hyperspectral spectrum in cases where
it was not directly available. These methods are of great
benefit, especially in the case of monitoring the flaring of
uncommon compounds. Regarding flaring activity analysis,
various satellite sensors were used for detecting, localizing,
and performing measurements for gas flaring activities for
specified regions and time periods.

V. MULTI-VIEW INSPECTION OF COMBUSTION FLARES
Multi-view inspection is one of the important techniques
for achieving accurate and fast flame and smoke monitor-
ing in various applications [10], [166], [167], [168]. The
utilization of video streams from multiple cameras located
in different locations allows for detecting flame and smoke
faster and attaining a more accurate estimation of the current
combustion state. A study by Verstockt et al. [169] illus-
trated amulti-view inspection framework named ‘‘FireCube’’
for detecting and localizing flame and smoke from a com-
bustion source. This inspection techniques allows for fast
flame and smoke detection in the early stages of combustion
by merging the obtained views of multiple cameras using
homographic projections onto several vertical and horizontal
planes. By merging the obtained homographic projection
planes, a 3D grid of virtual monitoring point is obtained.
This 3D grid combined with 3D temporal and spatial fil-
tering allows for obtaining accurate and reliable localization

information of the flame, including its size and propagation
direction. The proposed method was tested with only two
cameras and the system achieved an excellent flame local-
ization performance illustrated by a high dimension accuracy
of 90% and a near-perfect position accuracy of 98%. The
method also achieved an excellent detection accuracy of 90%
when only two cameras were used. Moreover, the technique
could achieve even higher performance by using more than
two cameras as a dimension accuracy of 96%, a position
accuracy of 99%, and a flame detection accuracy of 92% can
be obtained when four cameras are used. Further increasing
the number ofmonitoring cameras is expected to further boost
the detection accuracy and dimension accuracy.

In a recent study, Cheng et al. [170] developed amulti-view
classification technique named Multi-view Generalized Sup-
port Vector Machine via Mining the Inherent Relationship
between Views (MRMvGSVM) for the application in face
and smoke detection [10]. This technique utilizes multi-view
learning in order to provide more accurate classification per-
formance. The most important sample data were selected
by multi-view regularization which helps in improving the
classification accuracy and enhancing the robustness of the
algorithm. To evaluate the performance of the model in
multi-view smoke detection, the dataset proposed by Xu et al.
[28] was used. The results showed a high mean smoke classi-
fication accuracy of 93.33% with a small standard deviation
of 2.58, which is better that several other methods which
were compared to the proposed method. This technique
shows a high smoke detection accuracy, a fast operation, and
an excellent stability, and is promising for the analysis of
combustion-related applications.

VI. CONCLUSION AND FUTURE RECOMMENDATION
In this work, the application of various AI-enhanced visual
inspection techniques for combustion flare analysis was
reviewed. The progress in the application of RGB imag-
ing, hyperspectral imaging, and multiview imaging for the
analysis of gas flares was summarized and discussed. After
reading the paper, readers can (a) have a comprehensive grasp
of the present status of AI-aided visual inspection methods,
particularly in the context of analyzing combustion flares.
(b) They can also Understand the obstacles and constraints
existing in this research domain, such as the absence of
universally accessible datasets and the necessity for standard-
ized performance assessment. (c) Moreover, they can find a
summary of potential upcoming trends in this field including
encompassing the utilization of deep learning approaches for
hyperspectral image analysis and the creation of extensive
benchmark datasets. The main conclusions of this survey are
as follows:

• RGB imaging is an approachable technique for inspect-
ing gas flares and several techniques were proposed
in literature for obtaining useful information about the
gas flare using RGB video stream. The main tasks
were flare-related objects detection, flare-related objects
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segmentation, and estimation of flaring performance
measures. Deep learning techniques attracted the highest
interest among researchers due to their high detection
and segmentation accuracies.

• Hyperspectral imaging allows for detailed analysis of
gas flare systems as it can measure various important
flare parameters such as the combustion efficiency using
the relative components amounts in the flare exhaust.
The most used hyperspectral imagers for direct gas flare
analysis are FTIR imagers due to their information-rich
extracted data.

• Multi-view inspection of combustion flare is a tech-
nique used to observe and analyze flares and/or smoke
emissions from multiple vantage points or angles. This
approach involves the use of multiple cameras or sen-
sors placed at strategic locations around a flare or
smokestack, which allows for a more comprehensive
and accurate analysis of the emissions. It can also
provide a more complete understanding of the combus-
tion process, including the size, shape, and intensity of
the flame, the temperature and pressure of the gases,
and the composition of the emissions. This informa-
tion can be used to optimize the combustion process,
improve efficiency, and reduce emissions of harmful
hazards.

• A significant problem that slows down research on gas
flare inspection is the lack of unified publicly-available
datasets for comparing different flare analysis tech-
niques and for evaluating the proposed novel techniques.
Moreover, works on gas flare inspection use different
performance measures which makes comparing their
performance hard.

Although there have been a large number of studies that
discussed the application of vision-based inspection for com-
bustion flares analysis, there are still some critical topics that
need to be investigated in the future to further improve the
current technologies’ analysis capabilities and accuracy. Here
we present some discussions on future trends and emerging
technologies in Gas Flares inspection:

• Deep Learning for hyper-spectral data analysis: Despite
the wide application of deep learning techniques in
the analysis of combustion flares using RGB images,
there have been no works that discuss the application
of deep learning techniques for the analysis of hyper-
spectral images of flares. Deep learning has shown huge
potential in the analysis of hyperspectral data [138],
[171], [172], [173], [174]. Therefore, we highly rec-
ommend studies that use various deep-learning analysis
techniques of hyperspectral imagery for the analysis of
gas flares.

• Gas Flares-oriented Vision Transformer: Vision Trans-
formers (ViT) [23] are a novel type of deep learning
models that have shown huge potential in various com-
puter vision tasks, such as detection and tracking [43],
[175], [176], [177], [178]. ViTs have the benefits of

efficiently extracting long-range dependencies between
sequential data and can accurately detect large-scale
dependencies between different parts of the image, mak-
ing them of high potential for all types of image analysis
tasks in general and visual flaring analysis tasks in
specific. However, the progress made on implementing
ViTs for gas flares analysis is extremely limited. Works
that implement ViTs for various deep learning-based
analysis tasks of industrial flares such as smoke detec-
tion, soot detection, and real-time monitoring are highly
recommended as they could outperform the currently
used deep learning methods. Besides, ViT itself can
also work as one efficient block of a deeper neu-
ral network. There are existing works that use ViT
as a feature extractor and interpret extracted informa-
tion with extra mechanisms like ‘quadrangle attention’
[179], ‘super token sampling’ [180], these works give
hints to Gas Flares-related tasks on how to improve
the model performance. Some other works process
ViT-extracted features with specialized structures such
as BLSTM [181] to finish a prediction task, this could
inspire indicator prediction tasks in Gas Flares mea-
surement. Moreover, the use of ViTs for the analysis
of hyperspectral image data was carried out in liter-
ature [182], [183], [184] and the application of this
method for gas flare analysis is a very important topic
to be investigated.

• Unified public data set construction: Even though there
are several datasets available online for flame and smoke
detection in RGB images [14], [16], [25], there is no
unified benchmarking dataset that can be used to com-
pare the performance of novel detection or segmentation
algorithms. To evaluate and compare the performance
of various approaches, unified datasets for detection
and segmentation benchmarking are therefore essen-
tial. Moreover, public datasets on multi-spectral and
hyper-spectral imaging of typical flare scenes (flame and
smoke scenes) are very limited and insufficient. Simi-
larly, there is no publicly available dataset designed for
evaluating and benchmarking multi-view flare analysis
techniques. The presence of such datasets will increase
the research interest in the realm and also make this
field easier to incorporate up-to-date technologies such
as Language-ImageContrastive Learningwhich has new
requirements on the data format.

• The standardization of evaluation metrics: There is
a wide variety of performance measures that were
used to evaluate detection and segmentation methods
in the literature. Likewise, in the case of combus-
tion flare inspection methods, published works used
different evaluation measures which makes it hard to
compare the performance of different methods. Thus,
unified performance measures on unified benchmark-
ing datasets are required to be reported by novel
works for comparison with other techniques in the
literature.
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