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ABSTRACT Diabetes is a long-term condition in which a person’s body cannot break down blood sugar
adequately due to a shortage of insulin. The most crucial element of health care is continuously monitoring
blood glucose (BG) levels. The main concern of effective glucose monitoring equipment is based on the
blood-pricking technique. However, this may not be suggested for frequent glucose measurement. The
paper presents various glucose-measuring technologies. The research discusses various non-invasive glucose
measurement techniques and their management using advanced medical technologies. The configuration of
the precise measuring device is essential to meet the blood glucose monitoring requirements that are not
invasive systems. Non-invasive glucose monitoring devices solve the issue of frequently pricking patients for
blood samples for clinical tests. For the goal of continuous health monitoring, a Smart Healthcare framework
would be built on the Internet-of-Medical-Things (IoMT) and a Healthcare Cyber-Physical System (H-CPS)
to estimate blood glucose. The study also discusses a few consumer devices and cutting-edge methods
for measuring glucose. The paper also outlines the several difficulties and open challenges with glucose
prediction.

INDEX TERMS Non-invasive intelligent system, glucose monitoring, healthcare, edge computing devices,
diabetes, glucose controlling paradigm.

I. INTRODUCTION
The human body uses glucose as an effective origin of energy.
The Normal blood glucose (BG) range (80-150 mg/dl)
is required to perform daily activities by the human [1].
However, fluctuations in the normal blood glucose range
might cause complications in the body. In addition, insulin is
a vital hormone the body produces for glucose balance after
food consumption. Food digestion produces glucose, which
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provides energy for routine work in daily life. If insulin is
not produced properly, excessive glucose concentrations will
build up in the blood. The controlling feedback system of
glucose generation and utilization in the body is examined
in Fig. 1 [2]. If the development of alpha cells is greater
than that of beta cells, a persistently high blood glucose
level may result. This disorder prevents the body from
producing enough insulin to neutralize the glucose. Diabetes
mellitus is a disease distinguished by increased blood
glucose (beyond the normal range) in the body. The key
contributing factor to diabetes is an irregular sugar profile [3].
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FIGURE 1. An example of the closed-loop production and consumption of
glucose [2].

FIGURE 2. Global tendency of diabetes, assumed from [7].

Non-communicable disease (NCD) and chronic disease
prevalence rates have multiplied during the past several
years. An estimated 20 million deaths from cardiovascular
disease are recorded yearly, and high blood sugar is a critical
risk factor. Additionally, those with diabetes are particularly
impacted by viral pandemic epidemics [4], [5], [6]. Diabetes
patients have increased considerably over the past several
years due to obesity, poor diet, an aging population, and
sedentary lifestyles. Since the number of individuals living
with diabetes has more than quadrupled over the past two
decades, diabetes is one of the health issues with a rapidly
increasing number of patients in the last decades (Refer
Fig. 2) [7]. 2019 had a 9.3% global prevalence of diabetes,
affecting over 463 million people. With a 10.2% prevalence
rate, it is anticipated to increase to over 600 million people by
the end of two decades and reach 700 million by the end of
four decades. Prevalence is 10.8% in urban areas compared
to 7.2% in rural areas. Almost half of diabetes patients are
ignorant of their glycemic profile. Indeed, diabetes is on
the rise globally, affecting roughly 1 in 10 individuals now.
In the next ten years, more than 0.5 billion individuals are
predicted to have diabetes [8]. According to research from
the International Diabetes Federation (IDF), more people die

from diabetes than from malaria (0.6 million), HIV/AIDS
(1.5 million), and TB (1.5 million) combined [9]. Diabetes is
one of the primary chronic diseases that has a long-term effect
on a person’s health and quality of life. Insufficient insulin,
insulin resistance, or excessive glucagon production are all
regarded to be the causes of diabetes mellitus (DM), which is
characterized by physiological dysfunctions and high blood
glucose levels [10]. It is the most important health concern
of the 21st century. Since a few years ago, Type 2 Diabetes
(T2DM) has seen tremendous global expansion. Any form of
diabetes can cause complications in the human body that may
raise the risk of death. Hyperglycemia, also known as a high
blood glucose level, causes blood vessels to harden, which
can damage kidneys, cause vision problems, and, in rare
cases, even cause these organs to fail. Diabetes is linked to
cardiac disease, peripheral vascular disease, and amputation
of limbs. Contrarily, Type 1 Diabetes Patients (T1DM) may
have low blood sugar or hypoglycemia due to high insulin
administration [11]. Dizziness, over-sweating, and tiredness
are the most typical signs of hypoglycemia in patients, and in
the worst cases, it can result in coma and death. The diseases
caused by diabetes in a picture is represented in Fig. 3

FIGURE 3. Diseases caused by diabetes in humans.

The signs of diabetes include frequent hunger, thirst,
fatigue, changes in eyesight, persistent hunger, suddenweight
loss, and the quick outflow of urine [12]. Diabetes can
result in blindness, heart attacks, renal illness, lower limb
amputations, and blindness if left untreated for an extended
time. Diabetes would increase the risk of death and add to
the cost of care at the moment of delivery and treatment.
Additionally, diabetic people may become less productive
at work, resulting in the inability to perform certain tasks.
Diabetes can also lead to several health concerns, including
eating disorders, mood disorders, anxiety disorders, and
digestive troubles. It would raise the risk of mortality
by about 50%. Diabetes also counts toward the cost of
care for treatment. With oral medications, diabetes can be
controlled in its early stages. Reducing the risk of amputation,
cardiovascular disease, and high blood pressure also controls
diabetes. This paper is structured with specific records, which
demonstrate themeasurement techniques, corresponding lim-
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FIGURE 4. Statistical report of review records.

itations, future challenges, and vision. The statistical report
of review records is presented in Fig. 4. The paper is framed
with segregation of records, which are based on commercially
available systems, measurement frameworks and proper
descriptions of methodologies. These are represented in
Fig. 5. The remainder of the article is structured as follows:
Section II briefly discusses various types of diabetes along
with the history of glucose-measuring technologies.

Section III explores a summary of different blood glucose-
level prediction methods. Section IV explains various
available procedures for non-invasive blood glucose-level
prediction. Section V explores miscellaneous data processing
and training of the models for non-invasive body glucose-
level monitoring. Section VI briefly explains different
commercial devices for non-invasive blood glucose predic-
tion. Section VII explores the controlling procedures for
body glucose-level and various available related commercial
devices. Section VIII describes how glucose level estimations
and control in smart health are made feasible by the Internet
of Medical Things (IoMT). The limitation and open issues of
glucose-level measurements are described in Section IX. The
conclusion of the work is outlined in Section X. The future
work is summarized in Section XI.

II. PUBLIC HEALTH ISSUES OF DIABETES AND THE
REQUIREMENT FOR GLUCOSE MONITORING
This section explains the issues of diabetes and the health
problems caused by diabetes. It also describes the necessity
of blood glucose level prediction.

A. LEVEL OF DIABETES
Diabetes develops due to inadequate insulin about glucose
produced within the body [13]. The beta cells in the pancreas
produce the body’s insulin, which is either inadequate or
nonexistent. Diabetes impairs the ability of the liver, muscles,

and fat cells to balance glucose and insulin adequately. Three
categories are used to classify diabetes: type 1 diabetes,
type 2 diabetes, and gestational diabetes (Refer Fig. 6) [14].
For a person with type-1 diabetes, their immune system is
weakened because the pancreas does not generate insulin
within the body As a result, they cannot produce insulin
naturally [2], [15]. When a person has type 2 diabetes,
their pancreas produces insufficient insulin to stabilize their
body’s glycemic profile. Pregnant women typically develop
gestational diabetes later in the birth process. Globally,
2 billion individuals will be overweight in 2020, with
300 million of those adults being obese. Additionally,
there are at least 155 million overweight or obese children
worldwide. By 2025, it is anticipated that 8% of people
will have hyperglycemia, which will rise to 10% [8]. The
significant rise in Type 2 Diabetes incidence at younger ages,
has raised concerns for diabetic individuals, particularly in
developing nations. In contrast, in nations with maximum
industries, most people begin to have high blood sugar around
60 years of age. In the highly developed nations, middle-aged
people between the ages of 35 and 64 are most commonly
affected [7]. In India, Type-2 diabetes affected 69.2 million
people in 2019. Adults with Type-1 diabetes number 2.35mil-
lion on average. In general, only around 5% of individuals
are considered to be Type-1 diabetics, whereas the remaining
90% to 95% are Type-2 diabetics. Insulin is required for type-
1 diabetic patients to maintain blood glucose control. Patients
with type-2 diabetes canmanage their blood glucose levels by
adhering to an optimized diet, taking their medications, and
engaging in regular physical activity.

B. THE DIABETES-RELATED HEALTH CRISIS
Diabetes is mostly brought on by an uneven level of BG-
insulin in the body, where insulin cannot be produced from
natural processes [15], [16]. In contrast to non-diabetes cases,
the likelihood of mortality would also rise by up to 50%.
Because of continuous monitoring, diabetes can be controlled
with correct precautions. The main requirement is a smart
healthcare system that enables real-time and precise, accurate
self-measurement of blood glucose. Many health organi-
zations worldwide have identified hyperglycemia as the
primary problem [17], [18]. There are a lot of techniques for
BGmeasurement [19]. Substantial methods have familiarised
professionals and patients with the device [20]. Diabetes
often develops between the ages of 18 and 80 [21], [22]. Glu-
cose levels should be between 70 and 150mg/dl in the normal
range and 40 to 550 mg/dl in the pathological range [23].
Developing a device for measuring glucose levels without
pricking is one of the challenging issues for healthcare [24].
For the past 20 years, glucose monitoring equipment has been
available with features advancement [25].

C. NEED OF GLUCOSE MEASUREMENT FOR DIABETES
MANAGEMENT
The glucometer is a device to measure the blood glucose level
of the body. Diabetic patients can use such type of devices for
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FIGURE 5. Data segregation reports from review records.

FIGURE 6. Different category of diabetes with symptoms.

frequent glucosemeasurement. Accordingly, they canmodify
their food habits and medication to keep their blood sugar
levels within the desired range. There is a correlation between
tight glycemic control and a lower risk of complications
from diabetes. This makes it possible to customize diabetes
treatment programs to improve blood sugar regulation and
general health. Diabetic people are the main end users
of glucometers Diabetic patients are conscious about their
blood sugar levels and the variables that affect them through
routine monitoring. The device would also be able to provide
feedback for control mechanisms adopted by people for
diabetic management.

D. A HISTORICAL OVERVIEW OF GLUCOSE MONITORING
A portable medical tool for determining blood sugar
levels in the body is the glucose measurement device
(also known as a glucometer) [13], [26]. Additionally, the
glucose profile (different glucose measurement test) might
be demonstrated using a strip-based test dipped in any

substance. It is an excellent tool for measuring blood glucose
in those with diabetes or hypoglycemia. Lyons and Clark
from Cincinnati first proposed the biosensor in 1962 to
improve glucose monitoring devices. A lot of people use
glucose sensors for measurement. This glucose biosensor
comprised an exterior dialysis membrane, an electrode of
oxygen, a thin layered GOx, and an inner semipermeable
oxygen membrane. To create an enzyme electrode, enzymes
might be drawn towards a detector [27]. Nevertheless, the
fundamental drawback of first-generation glucose biosensors
was the need for high hydrogen peroxide amperometric mea-
surement operating potential for good selectivity. Second-
generation glucose sensors (mediated glucose biosensors)
have replaced the first-generation glucose biosensors. The
suggested biosensors up to this point reflect breakthroughs
in terms of device mobility and measurement precision.
Nevertheless, these sensing devices weren’t utilized for real-
time diagnosis because of several proportions and environ-
mental restrictions. Fig. 7 depicts the timeline of glucose
measurement [28].

E. DISCUSSED PRIOR TECHNIQUES FOR GLUCOSE
MEASUREMENT
Currently, laboratory-based or self-monitoring is used for
glucose monitoring. Both of these methods involve pricking
of the blood, which is uncomfortable and only provides the
facility to monitor blood glucose at that specific moment.
Additionally, multiple-time pricking during the day is also
uncomfortable for the user. Hence, numerous people are
doubtful about choosing this kind of solution. Because of
this process of measurement, people don’t measure glucose
timely. This might result in incorrect insulin doses and
unplanned dietary ingredients. However, they are a reliable
solution because of their excellent accuracy and strong
sensitivity for measuring glucose [29], [30].

61910 VOLUME 12, 2024



P. Jain et al.: Non-Invasive Glucose Measurement Technologies

FIGURE 7. The historical evolution of glucometer with technology
development.

Since a few years ago, scientists have been investigating
several approaches to predict body glucose based on physical
detection rather than conventional pricking approaches. The
interstitial fluid (ISF) is used in this non-invasive approach
instead of blood to detect glucose molecules. The difference
in approaches of invasive and non-invasive measurement
is represented in Fig. 8. There have been several attempts

FIGURE 8. Invasive versus noninvasive glucose measurement.

to assess glucose through sweat, tears, saliva, and body
skin [31]. The key difficulty is having accurate measurements
with excellent sensitivity and dependability. Such a method

couldworkwell for self- and ContinuousGlucoseMonitoring
(CGM) applications. These CGM methods provide measure-
ments on fixed time slots during the day, which would be
helpful for better controlling glucose levels and also for vital
early detection. Appropriate treatment would be possible for
patients with hypoglycemia and hyperglycemia. These tech-
niques would help the dietitian and medical representative to
prescribe a proper diet plan for the individual.

F. BASIC REQUIREMENT OF CONTINUOUS GLUCOSE
MONITORING
There are non-invasive, semi-invasive (or minimally inva-
sive), and invasive methods for measuring glucose. An inva-
sive method may result in trauma, which confirms the
impossible situation of continuous monitoring. Without
drawing blood, non-invasive procedures may be helpful for
Continuous body Glucose monitoring. However, the most
effective method for comfortably measuring blood glucose
is non-invasive glucose measurement [32].

The CGM helps to analyze blood glucose levels at each
mealtime properly. Fluctuation in glucose-insulin values can
be seen after insulin secretion, physical activity, and pre-
scribed medicine with diet. Regular glucose level fluctuation
analysis is also helpful for the diabetologist to prescribe the
required treatment. Patients with type 1 diabetes whomonitor
glucose values for insulin doses would benefit from CGM.
Continuous monitoring makes it easier to control diets. The
CGM flow diagram is presented in Fig. 9 [29], [30]. Patients
can use the CGM to assess their BG level at any time.
Estimating the prior three months’ BG level for identifying
HbA1c value would be useful.

FIGURE 9. Purposes of continuously monitoring blood sugar.

III. A GENERAL OVERVIEW OF GLUCOSE-LEVEL
MEASUREMENT METHODS
An overview of the various glucose-level measuring tech-
niques is included in this section. Much work has been
done to measure BG levels using invasive, semi-invasive, and
non-invasive methods. A lot of researchers have explored
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using non-invasive BGmeasurement techniques. Technically,
Optical and non-optical processes stand for precise mea-
surement. Some optical approaches used the PPG method,
NIR spectroscopy, and Raman spectroscopy. In Fig. 10,
a taxonomy of the various techniques is shown [26], [29],
[30], [33].

A. INVASIVE METHODS
Commercially available electrochemical sensors are widely
used in continuous blood glucose measuring systems [34].
When blood glucose molecules are detected, the value is
monitored instantly using strip-based measurement [35].
The initial stage of blood glucose monitoring for various
commercially available devices uses the lancets (for pricking
the blood) [36]. Due to measurement, the process involves
taking a blood sample from the fingertip more than three
to four times a day, there is a factor of anxiety [37].
The minimally invasive biosensor for glucose monitoring
was created using glucose oxidase and only needs a 1mm
skin puncture to take measurements [38]. A small drop of
blood drawn represents the photometric method for BG level
estimation [39].

B. SEMI-INVASIVE PROCEDURES
A semi-invasive technique employing an embedded sensor
has been proposed to monitor glucose tissue levels regularly.
The sensor is wearable and placed on a membrane containing
immobilized glucose oxidase. The development of implanted
devices for glucose monitoring is presented in the paper [40].
The diabetes patient-specific semi- or minimally invasive
technique employing biosensors [41]. The wearable micro
system investigated for routine glucose measurement is
presented as [42]. One similar method is explored for BG
level estimation using a transponder chip and a micro-
fabricated biosensor [43]. The Dexcom sensor’s semi-
invasive technique was represented for BG-level prediction
using the transponder chip signal. The artificial pancreas
system with glucose sensor for diabetes management is
discussed in work [44]. The primary drawbacks of minimally
invasive techniques are the survival of sensors for a long time
and limited corresponding environmental constraints.

The portable small system checks BG levels continuously.
It is a semi-invasive technique for measuring glucose. The
main concept of the approach is that it employs a wearable
micro-actuator that is made of shape memory alloy (SMA) to
take blood samples. The implementation of PCB makes use
of an enhanced version of SMA. It may be regarded as the
earliest portable glucose monitoring device due to its efficacy
and viability, but its size makes it uncomfortable.

C. NON-INVASIVE METHODS
All of the above-mentioned issues would be eliminated by
non-invasivemeasurement [45], [46]. The glucose-measuring
is possible without pricking through intelligent healthcare
technologies [32]. Many strategies are explored for glucose

estimation [47]. Compared to invasive and semi-invasive
methods, non-invasive measurements are more practical for
continuous glucose monitoring [45], [46]. The literature
has found that glucose measurement using the optical
approach is more accurate and dependable [48]. Non-
invasive measurements using Raman spectroscopy, near-
infrared spectroscopy, photo spectroscopy, polarimetric, and
scattering spectroscopy are among the common optical
techniques [49], [50] etc. According to the researcher, the
development of non-invasive measuring equipment would
be considerably more practical from the user’s point of
view [51], [52]. Recently developed non-invasive systems
are trained using serum glucose values, which provide an
impressive level of precision (refer to Fig. 11). Fluctuation
of the body glucose to interstitial body glucose dynamics is
thought of for a continuous body glucosemonitoring system’s
accuracy [53], [54]. For portable setup, several calibration
techniques have been explored and implemented [55].
A number of deliberate attempts have been made to develop
the self-monitoring system [56].

D. THE TRADE-OFFS BETWEEN INVASIVE AND
NON-INVASIVE GLUCOSE MEASUREMENTS
Current glucosemonitoring techniques for the growing global
population of sugar patients are invasive, time-consuming,
uncomfortable, and need a lot of disposable goods, which
continually add to family expenses. Such restrictions are
overcome by the non-invasive glucose measuring technology,
an area of study that has grown substantially in recent
years. However, there is a compromise between these two
approaches, as seen in Fig. 12.

E. NON-INVASIVE PREDICTION FOR SERUM VS
CAPILLARY GLUCOSE
When compared to the capillary glucose level, the serum
glucose value is more accurate. Most traditional methods
test capillary glucose rapidly using a one-touch device, but
it is challenging to identify serum glucose measurements
instantly. It has been seen that capillary blood glucose
levels are consistently greater than serum glucose levels.
An accurate blood glucose reading would aid in taking the
proper management measures. Because serum glucose is
more reliable for diagnostic purposes compared to capillary
glucose, it is crucial to monitor it. Capillary blood glucose
prediction is preferred more frequently than serum glucose
estimation. Blood glucose cannot be measured continuously
or frequently enough to treat diabetes. Blood sugar can be
managed considerably more effectively if serum glucose
can be measured regularly. Only serum blood is used
for the laboratory examination of HbA1c, which offers a
three-month body glucose prediction. Serum and capillary
glucose levels are being monitored using optical methods for
non-invasive measurements. The basis for measuring blood
glucose is IR light that has been obtained after being absorbed
and scattered by glucose molecules flowing through blood
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FIGURE 10. An overview of the Options for Glucose Measurement [26], [29], [30], [33].

capillaries. Except for the post-processing computing models
needed for blood glucose estimates, the methodologies

for the two glucose measurement methods are relatively
comparable.
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FIGURE 11. Measurement of Serum Glucose using NIR Spectroscopy.

F. A NON-INVASIVE METHOD FOR SALIVARY GLUCOSE
LEVEL ESTIMATION
Salivary glucose measurement has been performed on adults
and children [57]. There are distinct elements in saliva are
categorized: (1) Saliva from certain glands, and (2) total
saliva. Individual glands collect the gland-specific saliva,
including the parotid, sub-mandibular, sublingual, and minor
salivary glands. The knowledge of salivary composition helps
to diagnose diabetic patients.

Based on the patient’s risk factors, family history, age,
and sex, diabetes level can be confirmed after justifying the
symptoms. Other glucose measurement techniques include
photo-metric measurements, which only require extremely
tiny sample volumes [39]. The fundamental method provides
the predicted BG value using a chemical test strip. The test
area’s reflections are measured, and the estimated glucose
level is obtained.

IV. TECHNIQUES HIGHLIGHTED FOR NON-INVASIVE
BLOOD GLUCOSE-LEVEL PREDICTION
This section provides an in-depth analysis of the different
body glucose monitoring methods without pricking. The
methods are currently being considered for future aspects
of non-invasive measurement. There have been several
attempts to monitor glucose non-invasively utilizing optical
methods [28], [30], [58], [59]. These methods primarily
rely on a variety of spectroscopy-based approaches. The
researcher believes that designing a non-invasive measuring
system would be considerably more practical from the user’s
standpoint. Fig. 13 shows an overview of different kinds of
body glucose measuring techniques without pricking. Their
pictorial representation is shown in Fig. 14. A comparative
and qualitative analysis of different methods without pricking
is summarized in Table 1.

A. NEAR-INFRARED (NIR) SPECTROSCOPY
When infrared radiation is incident on an object, the
mechanism refers to vibration spectroscopy and infrared
spectroscopy (IR spectroscopy) [60], [61]. The many IR
spectroscopy types are displayed in Fig. 15. Reflection,
scattering, and absorption spectroscopy are the most common
types of IR spectroscopy [62]. The IR absorption wave
induces molecular vibrations that result in a spectrum band
with a wavelength of cm−1 [63]. The basic data acquisition

module using IR spectroscopy is represented (refer to
Fig. 16).
In this instance, the item (which may be a finger or an

ear lobe) is exposed to light with a near-infrared wavelength
range of 700 nm to 2500 nm [65]. According to [66], [67],
it is possible for the light to interact with blood constituents
and be dispersed, absorbed, and reflected. According to
the Beer-Lambert law, the received light’s intensity varies
with blood glucose levels [68], [69]. The receiver would aid
in measuring the amount of glucose present in the blood
artery, according to Nikawa et al. [70]. A vernier effect-based
ultra-sensitive optical sensor for measuring glucose levels
is disclosed. Using the lateral offset single side-hole optical
fiber (SSHF) construction. Two integrated parallel Mach-
Zehnder interferometers (MZIs) have differing free spectral
ranges (FSRs). The problem is then resolved by a unique FSR
regulating technique that is developed using the optical path
difference (OPD) theory [71].

1) LONG AND SHORT-WAVE NIRS
An effective method for measuring glucose precisely is
optical detection. An optical approach based on FIR (far
infrared) aids in obtaining the resonance process between
O-H and C-H for the initial overtone. Long-range NIR,
however, performs well in in-vitro tests. Similarly, for vitro-
based glucose monitoring, a fiber-optic sensor is utilized
in conjunction with laser-based mid-infrared spectroscopy.
Continuous glucose measurement has been made possible
using a multivariate calibration model for error analysis [72].
Compared to short-wave NIR, the FIR method has a
restriction of shallow penetration. The short NIR would aid in
more precise detection of the glucose molecule [73]. Fig. 17
illustrates the idea of NIR spectroscopy for glucose detection.
NIR spectroscopy’s unique wavelength has previously been
used for accurate non-invasive glucose measurement in
the past [74]. For the detection of glucose, a particular
wavelength, such as 940 nm, has been investigated [75]. With
NIR spectroscopy, the vibration of the C-Hmolecule has been
seen at 920 nm [74]. In several additional studies, the validity
of glucose absorption in the 1300 to 1350 nm range and the
identification of glucose stretching in the NIR range [76],
[77]. The existence of glucose element has been estimated
at 1300 nm in related work [78].

2) PRIOR APPROACHES OF NIR SPECTROSCOPY
In the literature, a technique to calculate non-invasive blood
glucose utilizing NIR spectroscopy and PPG has been
proposed [79]. This technique uses a photodetector, NIR
LED, and an optode pair. An analog front-end system
produces a PPG signal at NIR wavelengths (935, 950, and
1070 nm). The glucose levels have been assessed using
an FPGA-based Artificial Neural Network (ANN). For
painless and autonomous blood extraction, a microcontroller
is utilized [80]. The best solution uses Blood Glucose
Measurement (BGM), which transmits and displays blood
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FIGURE 12. Glucose measurement trade-offs between invasive and non-invasive methods.

FIGURE 13. Different spectroscopy techniques for non-invasive glucose
prediction.

FIGURE 14. Proximate outlook of different prevalent spectroscopy
approaches for glucose measure without pricking.

glucose data using a microcontroller. A remote device
monitors the insulin pump, which is necessary for managing
diabetes. Because it produces sound waves, this form
of measuring technique takes advantage of changes in
the intimidation of the susceptible body part [81]. The
acoustic waves will respond more strongly when the glucose
concentration is higher. The signal is then boosted to increase
SNR and lower noise before being sent to the computer

FIGURE 15. Classification of vibrational spectroscopy [64].

FIGURE 16. Block diagram representation of IR spectroscopy.

for additional processing. Photo-acoustic amplitude estimates
feature extraction and glucose estimation. The acoustic
signals are composed using double laser diodes and a PZT.
The arrangement is expensive and cumbersome because the
LASER is being used. A portable and precise glucose concen-
tration measuring device is developed using the well-known
photoacoustic near-infrared spectroscopy. The investigated
in-vitro instrumentation techniques have a compact form
factor, making them a good option for a non-invasive, in-
vivo wearable blood glucose monitoring system. But, due
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TABLE 1. Comparing the quality of several glucose monitoring techniques without pricking.
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FIGURE 17. Penetration depth of various infrared signals in human
skin [26], [33].

to some drawbacks, it could not be possible to consider
commercialization [82].

3) BG MONITORING DEVICE WITHOUT PRICKING (IGLU)
The prototype intelligent glucometer device (iGLU) is
employed to collect data. After processing the sensor data,
a sophisticated computing model is explored. Three channels
have been used to implement this prototype. It stores data
on the cloud and employs remote data monitoring [83]. The
explored prototype uses dual short wavelengths and a NIR
Spectroscopy [84]. It collects the sensor data in three different
ways. For optical detection, each channel includes a separate
emitter and detector. An ADC with a suitable sampling
rate has been used to handle the data for estimating BG
values. Regression analysis examines the optimized model
and calibrates and validates the data. Patients and physicians
may utilize and keep an eye on the data that is kept in the
cloud. Based on the values of the saved data, treatment may
be offered. This is a low-cost solution with greater than 90%
accuracy.

4) WHY ARE NIR METHODS PREFERRED OVER OTHER
NONINVASIVE METHODS?
Numerous non-invasive techniques have been used tomonitor
glucose, including IMPS, NIR light, and PPG signal pro-
cessing. However, other methods, except optical detection,
haven’t been able to deliver accurate measurements. One
better option is PPG. Although the PPG signal changes
depending on blood concentration [85], [86]. Accurate blood
glucose predictions might not be helpful in exceptional cases.
It means that the device should measure the precise BG
of all people. Each person has distinctive characteristics
for their sweat and saliva. As a result, it could not be an

accurate method for measuring glucose. Other spectroscopy
has also been used to measure glucose levels. Nevertheless,
they cannot offer reliable, affordable, or portable predictions
of body glucose. The optical detection of glucose utilizing
long NIR waves has shallow penetration, making it unable
to detect glucose molecules under the skin [73]. Small NIR
waves have been considered a viable remedy for real-time
glucose measurement [75], [87].

B. MID INFRA-RED (MIR) SPECTROSCOPY
Mid-infrared (MIR) spectroscopy provides high resonance
of glucose molecules comparatively [88]. Due to the skin’s
propensity for greater water absorption, skin penetration
depth is quite low. This method aids in the determination
of ISF glucose in vivo. There have been various attempts to
detect glucose accurately using samples from the palm and
saliva.

C. PRIOR PPG APPROACH FOR BLOOD GLUCOSE
MEASUREMENT
Through the PPG signal, the change in blood volume caused
by the tissue’s absorption of light has been discovered
[86]. With the use of a light detector and pressure pulse,
the change in blood volume has been detected [85]. It is
possible that the glucose molecule is not the cause of the
change in blood volume since it would be equivalent to a
change in light intensity. This might lead to incorrect glucose
readings. The difference between NIR and PPG is seen
in Fig. 18. The NIR spectroscopy principle is the primary
method of glucose measurement. The intelligent glucose
measuring device iGLU is explored for accurate BG value
prediction. There have been several studies for PPG signal-
based glucose detection [89]. The patient’s body data has
been stored to assess the existence of glucose molecules
using PPG. Different machine-learning algorithms have since
been applied to estimate the value of body glucose [90].
Using ARMA models, the various parameters from a total
of 70 healthy and diabetic participants have been considered
for the prediction [91]. There have also been several other
methods for estimating glucose utilizing PPG signals [92],
[93], [94].

Photo-plethysmography (PPG), an optically based tech-
nology, is employed in cutting-edge medical treatment. It is
a method of measuring glucose without pricking. The PPG
signal is recorded using a sensor comparable to a pulse
oximeter [86]. The detector, which will work in the NIR
area, is constructed using a photo transmitter and receiver.
A PPG signal may be measured at wavelength 920 nm
by monitoring variations in light absorption. With each
heartbeat, the veins in the finger expand and contract. Blood
flow has been observed based on this mechanism, and
glucose level estimation is explored. There is a way to
measure blood sugar using an oximeter device and transmit
the PPG signal for glucose monitoring system [89]. The
signal is first acquired as a photo-current, which is then
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FIGURE 18. Comparison of PPG and NIR for glucose prediction without
pricking [26], [33].

converted into quantifiable voltage values for filtering. Lab
View calculates the body glucose status after processing
the filtered signal. A prototype of a system that uses
machine learning methods and a PPG system to assess body
glucose statuses has been created without pricking [85].
In this prototype, a sensor, a training detector, and a signal
conditioning part are utilized to formulate the PPG data. The
functional relationship between the PPG waveform’s shape
and the BP and glucose levels may be established. PPG will
adjust the light intensity depending on variations in blood
volume. The analysis of PPG signals does not demonstrate
glucose molecule detection. Consequently, the system’s
precision is restricted [26], [33]. Fig. 18 demonstrates the
distinctions.

D. IMPS APPROACH
Dielectric spectroscopy is known as impedance spectroscopy
(IMPS) [95]. Fig. 19 depicts the stages involved in impedance
spectroscopy (IMPS). This method determines the skin’s
dielectric characteristics [96]. The skin is exposed to the
current [97]. The impedance range is acquired as a result
of the directed tiny current at various wavelengths [98].
The frequency range is 100 Hz to 100 MHz [99], [100].
Changes in sodium ions and potassium ions concentration
will be reflected in changes in glucose concentration [89].
Thus, there will be a shift in the cell membrane potential
differential [101]. As a result, the dielectric value will alter
and forecast the human body’s glucose level [102].
The detection of salivary glucose using a sensor of

detecting enzymes in a cell has been investigated [103].
To detect glucose in human saliva, polypyrrole (PPy)
supported with copper (Cu) nanoparticles on an alkali
anodized steel (AS) electrode is available in [104]. Because
each person’s sweat and saliva have different qualities, a high
accuracy level cannot be achieved using these procedures.
This method cannot be used to monitor glucose in smart
healthcare.

FIGURE 19. Representation of Steps of IMPS.

E. RAMAN SPECTROSCOPY
A glucose molecule’s polarization will alter due to light’s
interaction with it [105]. Through the use of LASER light,
this method makes it feasible for the solution’s molecules
to rotate and oscillate [106]. The molecule’s vibration
influences the scattered light emission [107]. This idea allows
for predicting blood glucose levels as [108]. When compared
to infrared spectroscopy, this method offers more preci-
sion [109]. Numerous studies using Raman spectroscopy
have been conducted to detect glucose precisely. ‘‘In-vivo’’
measurement has also been used for the validation. Fig. 20
outlines the fundamentals of Raman spectroscopy, while
Fig. 21 explains how to use it to measure glucose without
using a needle.

FIGURE 20. Building blocks of raman spectroscopy.

F. TIME OF FLIGHT AND THz DOMAIN
Time of Flight (TOF) measurements are used to estimate
blood glucose levels during in vitro measurement [110].
A brief laser pulse is introduced into the sample to measure
photon migration. While leaving the sample, this photon will
encounter scattering and absorption phenomena. The optical
analysis of the photons would be beneficial for accurate
glucose measurement.

G. PHOTO ACOUSTIC SPECTROSCOPY
The photo-acoustic technique is the acoustic effect for
assembling the acoustic strain wave from an object (direct
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FIGURE 21. Noninvasive glucose measurement using raman spectroscopy.

Fig. 22) [111]. The estimate of blood glucose detection in
this spectroscopic method is provided by the absorption of
modulated light input [112]. According to its optical circum-
stances, an item absorbs high-intensity optical light [81]. This
procedure enabled excitations of certain molecules based on
their resonance frequencies [113]. The absorbed light is seen
as heat, causing a rise in the sample’s local temperature and
thermal expansion [114]. The increase in volume creates
acoustic pressure [115]. Through particular keenwavelengths
that are vibrant for the vibration of glucose molecules, the
resulting photoacoustic wave may be utilized to estimate the
glucose concentration [116]. The glucose molecule modifies
its properties at a certain resonance frequency. The acoustic
waveform has changed [117]. Previously, optical light with a
wavelength of 905 nmwas utilized for excitation [118], [119].

FIGURE 22. Photo acoustic spectroscopy.

H. CAPACITANCE SPECTROSCOPY
The inductor stray capacitance in the capacitance spec-
troscopy technique changes with body capacitance (Fig. 23)
[120]. To gauge body glucose levels, one uses the body
capacitance [121]. A flexible inductor-based sensor uses the
coupling capacitance concept to detect body glucose. The
inductive sensor and skin of the body do not come into contact
in this method due to the current [122]. Depending on body
glucose, the inductive sensor’s stray capacitance will change.
With this method, the impact of fat and muscle on blood
glucose will be minimal [123].

FIGURE 23. The typical steps of capacitance spectroscopy.

I. SURFACE PLASMON RESONANCE (SPR)
The Surface Plasmon Resonance (SPR) uses an electron
oscillation technique at the metal and dielectric contact
to detect glucose [124]. It primarily picks up changes in
refractive index before and after analyte contact. Due to its
mobility, the optical fibre-based SPR is employed for glucose
PoC monitoring.

J. RF & MICROWAVE SENSING APPROACH
The fluctuation in the s-parameters response in the RF
method directs the difference in body glucose [125], [126].
Fig. 24 illustrates specific stages of this approach. The output
is determined via the antenna or resonator [127], [128].
They observe the transitions in dielectric constant value via
the dispatch [129]. Through the antenna or resonator, the
change in resonance frequency spectrum may be used to
detect changes in the dielectric constant [130], [131]. Blood
dielectric constant changes according to the distinct blood
glucose levels. The human finger is a suitable measuring
object, but the measurement accuracy is affected because
of method limitations and constraints. These include the
consistency of the skin, fingerprints, pressure exerted by
the object during measuring, and object placement on the
sensor [132].

Reduced flexible antenna size prevents installation issues
and skin-crumbling effects on the signal acquisition region.
Furthermore, an effective antenna sensor design is necessary
for continuous diabetes monitoring. An adjustable antenna
detector positioned within the thumb spica splint glove has
created a continuous glucose monitoring device [133].

K. OCULAR SPECTROSCOPY
Through the tears, glucose concentration is assessed using the
Ocular Spectroscopy method. To forecast the body’s glucose
content, a certain lens is used [134]. The lens has a hydrogel
wafer put on it. This wafer’s 7 µm thickness was achieved
using boronic acid preparation. After the wafer has been
placed on the lens, optical rays are introduced to the lens. The
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FIGURE 24. Glucose measurement using RF sensing technique.

wavelength of the reflected light will then alter. A difference
in light range will be interpreted as a difference in the amount
of glucose present in tears.

L. IONTOPHORESIS
A tiny electric current diffusely flows through the skin during
the iontophoresis or ionization procedure. For the same
procedure, three electrodes are employed [135]. The various
behavioral electrodes get a tiny voltage through the elec-
trodes. Glucose is transported to the cathode during this
process. The working electrode may perform the biosensing
function by producing current during involved voltage via
electrodes. This biosensor measures the body’s glucose
passively. The wrist is commonly used for measuring [136].

M. OPTICAL COHERENCE TOMOGRAPHY
The reflectance spectroscopy principle is the foundation for
the optical coherence tomography method. In this method,
the sample (which is positioned in an interferometer) is
stimulated using low coherent light. A moving mirror is
set up in the reference arc of an interferometer. Conversely,
a photodetector is positioned to pick up the interferometric
signal. The light in this signal has been reflected and
backscattered. We were able to obtain excellent 2-D photos
thanks to this approach. In interstitial fluids, the glucose
concentration rises as the refractive index rises. The scattering
coefficient changes as the refractive index changes [107]. So,
indirectly, the scattering coefficient and glucose levels are
related.

N. POLARIMETRY
With greater precision, the polarimetry technique is fre-
quently utilized in clinical laboratories. For glucose mon-
itoring, the optical linear polarization-based method is
employed [137]. This method is often based on the trajectory
of a vector caused by the consistency, temperature, and BG
content. Polarized light is passed through the path, retaining
glucose molecules due to glucose prediction. Increased
dispersal via the skin makes it feasible for the beam to

depolarize. A polarimetric trial is performed using the eye to
overcome this limitation. Due to the blood’s temperature and
pH level rotation, this procedure is completely affected [138].
The measurement process is represented in Fig. 25.

FIGURE 25. Non-invasive glucose measurement using polarimetry.

O. THERMAL EMISSION SPECTROSCOPY
The thermal emission technique is based on the body’s
infrared wave, which is created naturally. The body’s glucose
level will influence the IR waves that are released. The
tympanic membrane of the human body’s typical mid-IR
emission is modified by tissue emitting. This method’s
selectivity is identical to that of absorption spectroscopy. This
method allows for determining glucose through the boneless
part of the body. A similar approach is used for measuring
glucose in the paper [139]. Measuring heat emission from the
tympanic membrane might offer an accurate and acceptable
practical solution in the clinical setting.

P. ULTRASOUND
Like the reverse iontophoresis method, the ultrasound
approach relies on lower-frequency segments to remove
molecules from skin [140]. Additionally, it has greater skin
permeability than reverse iontophoresis and is similar to
sonophoresis. For glucose to be taken externally via the
skin, an ultrasonic exposure lasting a few minutes to several
minutes is required. Few attempts have been made to utilize
this kind of technology, and no commercial devices have been
developed.

Q. METABOLIC HEAT CONFORMATION (MHC)
MHC procedure aids in measuring the value of glucose
combined with metabolic heat and oxygen levels, as well as
numerous physiological parameters consideration [141]. The
computing prototype for metabolic energy preservation is
altered by considering various physiological characteristics,
including blood flow volume, heat metabolic rate, oxygen
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saturation in the hemoglobin, and pulse rate. In tests on
people, this technique demonstrated high repeatability and
passable accuracy.

R. FLUORESCENCE
The Fluorescence approach relies on UV radiation’s ability
to excite blood vessels at certain frequency ranges [142]. The
next step is the detection of fluorescence at the designated
wavelength. Using fluorescence through tears, glucose may
be detected. Visible light diffraction was used for this
purpose. A UV LASER excites the glucose solution medium
at 380 nm. Estimates of fluorescence, which is directly related
to glucose content, were made. The signal is unaffected by
changes in light intensity across the surroundings while using
this approach.

S. KROMOSCOPY
The Kromoscopy method uses four distinct wavelengths and
diverse spectroscopic responses to NIR light [143]. It uses
a multi-channel method with overlapping band-pass series
filters to identify the glucose molecule. In this procedure, the
sample is exposed to IR radiation, which is then distributed
among four detectors equipped with band-pass filters. Each
detector will pick up the light from the tissue’s identical
structural features. The glucose concentration was then
determined using a complicated vector analysis.

T. ELECTROMAGNETIC SENSING
Changes in blood glucose content allow the Electromagnetic
Sensing technique to detect differences in blood sample con-
ductivity [144]. Every time the blood glucose concentration
changes, an electromagnetic sensor will monitor the alterna-
tion of the electric field. This approachmakes use of the blood
samples’ dielectric parameters. The electromagnetic sensing
frequency band lies between 2.4 and 2.9 MHz. The glucose
molecule is most sensitive at a certain frequency that is
ideal for the medium’s temperature. An enduring, positively
discreet, and semi-invasive implant-type electromagnetic
sensor is investigated for continued body glucose monitoring
that can follow differences in the glucose level [145].

U. BIOIMPEDANCE SPECTROSCOPY AND DIELECTRIC
SPECTROSCOPY
The conductivity and permittivity of the membrane of
red blood cells can be used to monitor blood glucose
fluctuation [146]. Bio-impedance spectrum measurements
are made in the 0.1 to 100 MHz frequency range. It aids in
determining the resistance to electric current flowing through
human biological tissue. The alteration of plasma glucose
would enable the alteration of potassium and sodium to
have the alteration of conductivity of the red blood cell
membrane. The multi-sensor technique is typically used
with this spectroscopy for accurate glucose measurement
to monitor sweat, moisture, movement, and temperature.
A bio-impedance transducer is proposed for noninvasive

monitoring of insulin bio-availability following subcutaneous
injection. The local impedance shift caused by themedication
evaporating from the injection volume is used to measure
insulin bio-availability indirectly. Employing a second-order
polynomial function, an accuracy of 9µl was accomplished
in a healthcare application environment. The anticipation was
4.2µl, which is much less than the usual amount of one
insulin unit (10µl) [147].

V. REVERSE IONOSPHERESIS METHOD
A tiny DC current is carried from the anode to the cathode on
the skin’s surface to create interstitial fluid (ISF). Iontophore-
sis is used for ionized molecule penetration at the skin’s
surface by such a low current [148]. Electroosmotic flow
over the skin carries the electric potential from the anode and
cathode. This would make it possible to extract the molecules
via the skin as the glucose molecules are transported toward
the cathode. Through the oxidation process, the enzyme
technique aids in detecting the concentration of glucose
molecules. The technique is well-liked and has a decent
chance of measuring glucose levels accurately.

W. SONOPHORESIS
The Sonophoresis method is established on the cutaneous
permittivity of the interstitial fluid (ISF) [149]. Additionally,
the enzyme technique is used to test glucose. Glucose
molecules have been placed on the skin’s surface using a low-
frequency ultrasonic pulse. The ISF’s cutaneous permittivity
is raised to enable glucose at the skin. The stratum corneum
experiences contraction and expansion, which opens the ISF
channel. This approach has been used in certain attempts to
detect glucose, although it has been noted that it may be
more useful for medication administration than for glucose
monitoring.

X. OCCLUSION SPECTROSCOPY
The approaches based on occlusion spectroscopy rely on
the idea that light scattering is inversely proportional to
glucose content [150]. By exerting pressure with a pneumatic
cuff, the flow is stopped for a brief period of time. The
pulse brought on by the pressure excursion would cause
the blood volume to alter. The light is passed through the
sample, and the intensity fluctuation in the received light
determines the glucose concentration. The brief delay in
blood flow increases the received signal’s SNR value. As a
result, there would be an improvement in sensitivity for
glucose detection and strong resilience for precise glucose
measurement.

Y. SKIN SUCTION BLUSTER (SSB) TECHNIQUE
The Skin Suction Bluster method takes advantage of the idea
of blister formation using vacuum suction over a small region
of skin [151]. On fluid that has been taken from the blister,
glucose is measured. Although it contains fewer glucose
molecules than plasma, it is still enough for measuring
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glucose. This procedure is painless, well-tolerated, and has
a low risk of infection. The HbA1c value, which indicates
the three-month average glucose value, is always helpful to
diabetic patients.

Z. MULTIMODAL APPROACH BASED MEASUREMENT
For increased-level reproducibility of blood glucosemeasure-
ment without pricking, 2 concurrent spectroscopy merging
IMPS and mNIR spectroscopy is investigated [152]. To over-
come each technique’s limitations, these two approaches
are blended [153]. To estimate the glucose level, an IMPS-
based design predicts the skin dielectric constant using a
resonant circuit [154]. The mNIR spectroscopy technology
is employed to increase NIR spectroscopy accuracy. Three
wavelengths—850, 950, and 1300 nm are employed in
this approach [155]. IMPS and mNIR are merged by an
ANN using a processor to provide precise and accurate
measurements [78]. As a result, multimodel techniques
have been researched in the literature for accurate glucose
measurement (Fig. 26) [82], [156].

FIGURE 26. Multimodal design established non-invasive body glucose
estimation.

V. CALIBRATING AND POST-PROCESSING METHODS
FOR NON-INVASIVE BODY GLUCOSE LEVEL MONITORING
The post-processing and calibration methods are presented in
this Section. The methods are used in various frameworks or
systems for non-invasive BG level measurement.

A. AFTER SENSING TRAINING METHODS
An increased degree of precision and noise deduction from
the acquired signal has been achieved by applying several
calibration techniques. The model for errorless continu-
ous monitoring is designed using these post-processing
approaches [167], [168].

1) PERFORMANCE OPTIMIZATION USING SIGNAL
ACQUISITION
The variance of random noise has been reduced using
an adaptation of the coherent averaging approach [169].
By averaging N different individual samples from continuous
frames, the influence of noise is reduced [170]. To boost
SNR, frames with the highest count have been selected
for averaging [171]. This suggested coherent averaging
has been employed extensively through MATLAB and the
coherent averaged signal collected. It has been suggested to
calibrate measured data using the Golay code. Golay code
implementation has resulted in the filtering or elimination of
odd-measured data [169], [172], [173].

2) COMPUTATION MODELS FOR GLUCOSE MEASUREMENT
Several researchers have suggested the regularized least
square regression model for measurement [174]. Photoa-
coustic signals are used to determine the estimated value.
The calibration for estimating glucose concentration is done
using these photoacoustic signals [175]. A multivariable
linear regression model can be used to achieve this [176].
It is suggested to use a post-processing SVM approach to
achieve high levels of accuracy [177]. A glucose monitoring
system’s SVM is a superior alternative for accurate mea-
surement [178]. The use of ANN for data merging has also
been suggested [179]. The suggested neural network model
combines the measured data from several approaches [180].
The DSP processor has been involved in implementing
artificial neural networks [78], [154]. To aggregate and
calibrate data for the final estimated glucose concentration,
the proposed computing model has been employed [181].
The implanted device, which contains low-price and power-
optimized system networking and cutting-edge computing
for BG monitoring, has to be implemented as a portable
commercial device. An explored optimized neural network is
used to illustrate a novel deep learning model [182]. An opti-
mized non-invasive system design, a NIRS technology
with specified wavelengths, and physiological characteristics
are used to forecast the precise glucose value. Using the
DNN model, the proposed system demonstrated an accurate
model with MARD and AvgE of 12.50% and 12.10%,
respectively. R2 coefficient of determination was found to
be 0.97 [183].

B. MODEL VALIDATION METRICS
The calibration procedure is employed for measurements
to provide accurate blood glucose values [184]. The mea-
sured glucose concentrations are compared to the obtained
glucose concentration values [185]. The CEG analysis has
been regarded as the most accurate measuring method for
evaluating the performance of any equipment [186]. The
process flow is explored in Fig. 27.

61922 VOLUME 12, 2024



P. Jain et al.: Non-Invasive Glucose Measurement Technologies

TABLE 2. Techniques comparison with prior works [26], [33].

TABLE 3. Comparison of prior works analytically with parameters [26], [33].

C. ANALYSES OF REAL-TIME PRECISION USING THE CEG
METHOD
The clinical accuracy for biomedical applications has been
examined using the Clarke Error Grid as a benchmark
tool. It corrects for the physiological time delays involved
in measuring body glucose and offers a point and rate
accuracy prediction. The design and improvement of precise
biomedical equipment will be made substantially simpler
by utilizing Clarke error grid modeling. C.G. Clark created
this approach in 1970 to assess the reliability of clinical
trials and aid in comparing predicted blood glucose levels
to blood glucose values obtained using more traditional
methods. Diabetes treatment began to take notice of the Error
Grid Analysis in 1987. Zones A, B, C, D, and E divide
the grid’s five separate zones. If the data fall into either
zone A or B then the device represents clinical accuracy
at the desired level. It means that the particular device,

which is on trial, that can be considered for clinical use. The
Beckman analyzer has accurately or adequately forecasted
the glucose findings. Zone C values could cause unnecessary
adjustments, resulting in a bad result. If the readings are in
zone D, it denotes a dangerous failure to measure glucose
through the technology. Zone E displays the ‘‘incorrect
treatment’’ [187]. The different zones are represented using
CEG analysis in Fig. 28. CEG analysis is visualized for the
representation of accuracy. This represents the correlation
between the actual glucose value and the predicted glucose
value for every instance.

VI. COMMERCIAL DEVICES RELATED TO GLUCOSE
MONITORING
Numerous non-invasive glucometers needed for correct
treatment are available on themarket (e.g., the Freestyle Libre
sensor and SugarBEAT from Nemaura Medical). Similar to
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FIGURE 27. Metrics model for system precision measurement.

FIGURE 28. Clarke error grid analysis.

skin patches, they would include a daily disposal function
and adhesive to enable continuous body glucose monitoring.
Since most commercial goods cannot monitor glucose
accurately, they are often used to treat diabetes. Products
like DiaMon Tech, Glucowise, Glucotrack, Glutarac, and
CNOGA medical equipment are available. Although Glutrac
is a clever medical equipment, it accurately measures
blood sugar. While the accuracy is still unacceptable, the
cost is greater. The CGM has been implemented using
the non-invasive Omelon B-2 stripless device. Glucosense,
a fluorescence technique-based product, has been developed
to monitor glucose levels continuously. Texas University cre-
ated a flexible textile-based biosensor for measuring glucose
levels. Every accessible technology has poor accuracy and is
expensive.

A. COMPARING WEARABLE AND NON-WEARABLE
GLUCOSE MONITORS
In the literature, both non-wearable and wearable systems
have been tried for glucose monitoring. Most non-wearable
methods rely on various spectroscopies, including photoa-
coustic, Raman, etc. The semi-invasive implanted devices
are mostly biosensors in nature. Wearable devices include
sweat patches, glucowatches, and smart contact lenses.
LifePlus has created a wearable, non-invasive CGM device
that is being considered for public purposes. Many non-
invasive types of equipment are portable and useful for
routine monitoring [13]. Continuous glucose monitoring is
more adequate if blood glucose levels can be measured
daily. Therefore, wearable technology has more cutting-edge
solutions than non-wearable technology.

B. CONSUMER PRODUCTS FOR NON-INVASIVE GLUCOSE
MEASUREMENT
There are several goods available such as GlucoTrack®, glu-
cometer from Labiotech [188], and similar methods are like-
wise expensive and have accuracy problems. The glucowise is
yet another non-invasive device for continuous glucose mea-
surement fromMedical Training Initiative (MTI)™. Addition-
ally, 2M Engineering has created the non-invasive solution
based on Raman scattering spectroscopy [189]. These devices
are uncommon because of their high price and high accuracy.
In addition, the high degree of glucose-measuring accuracy,
Glucotrack™ has been devised by integrity applications Ltd.
[190]. Three non-invasive glucose monitoring techniques
were employed in succession: electromagnetic, thermal emis-
sion, and ultrasonic spectroscopy. Combining three methods
provided precision and accuracy comparatively [191]. The
results of comparing many consumer goods for noninvasive
glucose measurement are summarized in Table 4. Different
glucose monitoring-based commercial devices were not
only explored to represent the corresponding methodologies
and approaches but the devices are represented with their
observations and limitations as well. The technical details of
the methodologies used have already been explained, which
were used to develop the commercial devices of glucose
monitoring.

VII. METHODS FOR GLUCOSE LEVEL CONTROL AND
CONSUMER GOODS
Different models for diet regulation have been created
utilizing different glucose-insulin balance factors. To predict
the amount of glucose consumed by diabetes patients, the
metrics primarily comprise NHGB, RTG, peripheral glucose
utilization, and glucose absorption rate. These are helpful
variables for calculating blood glucose levels using the right
insulin dosage and a predetermined eating schedule. The
blood glucose-insulin control model was created to balance
the body’s glucose and insulin levels in diabetes patients
using the right medications [192].
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TABLE 4. A comparative perspective of a specified commercial product for noninvasive glucose monitoring.
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A. DIABETES CONTROLS TECHNOLOGIES
The decision models for deliverable insulin administration
are provided to demonstrate the blood regulation factors.
A model of insulin secretion and glycemic profile has been
proposed for type 2 diabetic patients [193], [194]. With the
aid of individuals who do not have diabetes, the differential
equation with the delay model is used to create the non-
linear model [195]. A popular ‘‘Uva/Padova Simulator’’ that
had received FDA approval for the required clinical studies
was also investigated. The parameters are derived for virtual
type 1 diabetic patients [196]. Non-diabetic participants have
experienced the OGTT [197]. To describe the approach using
time monitoring, data from people with type 1 diabetes
were gathered. For type 1 diabetic patients, the model is
mathematically provided for BG value estimation in the PP
mode [198], [199]. Using data from two days of clinical
observations, the decision model for BG-insulin equilibrium
over a more extended time is investigated [200]. For the goal
of routine glucosemonitoring, ameal identification algorithm
was created for T1DM patients. The technique incorporates
a mathematical model for bolus meals that delivers insulin
and glucose [201]. To obtain the values for the inconsistent
condition extent algorithm, diabetic and healthy patients were
considered. An intelligent PID controller (iPID) was created
for a personwith type 1 diabetes after the food intake schedule
was analyzed in the absence of food profiles to keep the
balance of blood sugar level profiles [202], [203].

B. GLUCOSE CONTROLS CONSUMER PRODUCTS
When insulin secretion is not synchronized through the
pancreas for proper glucose consumption. Then, glucose
levels would be imbalanced. Anyone with type 1 diabetes
must be prepared for insulin treatment. Patients who are
going to be treated using insulin injections daily may also
use an insulin pump. Insulin can also be administered
via self-injection. Throughout the day, an insulin pump
continuously administers short-acting insulin. The insulin
pump has eliminated the need for long-acting insulin. A pump
also helps to lower blood sugar levels and replaces the need
for many daily injections and continuous insulin infusion.
Numerous varieties of insulin doses are already in demand
as commercial goods, namely insulin pumps from Animas,
Medtronic, Roche, Tandem, and Omnipod. With regard
to their enhanced features, these insulin pumps are more
sophisticated than one another. To have greater control
over the glycemic profile, a state-of-the-art technique for
measuring glucose is compared in Table 5.

VIII. MEASUREMENT AND CONTROLS OF GLUCOSE
LEVELS: IOMT PERSPECTIVES
The requirement of an intelligent and automated healthcare
system for diabetes patients in smart cities and smart villages
to improve the quality of life [209], [210]. Continuous
monitoring for emergency care, ambient intellect, & QoS
for an appropriate PoC means are characteristics of smart

healthcare systems [211], [212]. For diabetics, accurate and
non-invasive glucosemeasurement is necessary, as well as the
ability to save data utilizing IoMT for effective therapy [27].
Traditional glucose measurement techniques have limited
capabilities and cannot support patients at remote locations.
The diabetic individual would like the ability to store their
data on a cloud server and regularly check their glycemic
profile during the day. The point-of-care therapy for those
with diabetes would be possible with regular monitoring,
thanks to the smart healthcare system.

The virtual paradigm has enabled smart healthcare to
connect persons to physicians at remote locations for
quick remedy & treatment [209]. Using modern health-
care, consistent monitoring of critical problems provides
appropriate treatment. Smart healthcare can improve service
quality while lowering costs with the active assistance of
remote healthcare solutions. The intelligent sensors would
continually collect patient data and assist in storing it in a
cloud data center. Additionally, it is helpful for data analysis
and the simple information interchange between patients
and doctors via mobile applications. The healthcare real-
time system is successfully employed to apply intelligent
algorithms to meet the many difficulties of the healthcare
industry.

FIGURE 29. Diagnosis and management of blood sugar in a smart
healthcare system.

The diabetic patient’s diets may be planned with glu-
cose management prescribed from a dietitian along with
continuous glucose monitoring. To facilitate the CGM, the
proposed device should be precise, affordable, and easy to
use [29], [33]. The serum glucose measurement is always
considered more accurate than capillary analysis. Therefore,
the continuous monitoring solution for quick serum glucose
measurement is preferred for smart healthcare. The novel
serum glucose monitoring-based device is a portable solution
incorporating IoMT to continually record glucose data
in the cloud. Patients located at remote locations might
benefit by analyzing the data from medical professionals.
The continuous glucose monitoring in smart healthcare is
demonstrated in Fig. 29. Remote health monitoring is the
need of diabetic patients and helps patients to long-term
complications such as renal disease, CVD, sexual problems,
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TABLE 5. A comparison of a few state-of-the-art methods for measuring blood sugar.

vision issues, and airborne diseases. The other advantage of
remote health monitoring is to provide a better diagnosis from

available experts within a short duration. Patient monitoring
from a remote location is also helpful for early diagnosis of
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diabetes and diet management activities. The patients will be
aware of upcoming issues from their current lifestyles. The
role of remote monitoring has become significant since the
COVID-19 pandemic. Hence, patient remote monitoring is
an integral component of smart healthcare.

A detailed description of a closed-loop system that displays
glucose level monitoring and insulin discharge is shown
(refer to Fig. 30 [2]). By Controlling diabetes using closed-
loop automatic production of insulin, this virtual architecture
can offer a superior method for evaluating insulin dosages.
Such an integrated cloud framework may analyze diabetic

FIGURE 30. An IoMT framework-based closed-loop automated insulin
secretion diabetes control system [2].

patients, treat them for blood glucose management in
intelligent healthcare, and provide adequate healthcare in
smart infrastructure with a few healthcare staff.

Medical device security and privacy concerns are the most
important aspects of any IoT network. Because control oper-
ations often occur through wireless media, wearable device
hardware security is extremely important. The control of the
glucose monitoring device’s security flaws is demonstrated
in Fig. 31.

FIGURE 31. Our long time goal of security-assured non-invasive sugar
level measurement and controlling in our suggested iGLU.

Due to linked health systems in an unstable and unsafe
IoMT framework, device security is crucial [213]. Another
essential security component of smart healthcare is the
reliability of usable medical data. All patient medical records

are kept on a server. Thus, the safety of this information is
crucial. To have safe monitoring and appropriate patient care
regulated access with correct authentication is necessary.

FIGURE 32. Glucose-level measurement: open challenges.

IX. SHORTCOMINGS AND OPEN CHALLENGES OF
EXISTING WORK
This section outlines the shortcomings and discusses some
unresolved issues with controlling and measuring glucose
levels.

A. LIMITATIONS OF CURRENT METHODS AND PRODUCTS
1) To estimate BG level, photoacoustic spectroscopy has

been used. Real-time measurement and validation have
not been done. In the laboratory, an artificial solution
was made to monitor BG level. The prototype module
with the laser and corresponding detector is expensive.
The prototype needs much more space and does not
offer a portable option. It is, therefore, not a better
option for continuous glucose monitoring.

2) When monochromatic light interacts with a particular
material, a nonlinear scattering process called Raman
spectroscopy occurs. Raman spectroscopy can be used
as a laboratory test, but it also takes up a lot more space.
Therefore, the system built using this methodology
won’t work for regular glucose monitoring.

3) Data is also gathered using the eye retina for body
glucosemonitoring, which is one of the alternative non-
invasive glucose detection approaches. Such a method
is not always helpful for the measurement of glucose.

4) In the case of the bio-capacitance technique, a small
change in the detector’s position may impact the
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FIGURE 33. Our long-term goals for non-invasive glucose-level monitoring.

sensor’s outcome, which reflects the change in BG
level. The detector output may also be impacted by skin
sweat, body temperature, and pressure on the sensor.

5) Impedance spectroscopy (IMPS) is used to detect
glucose by connecting electrodes, influenced by skin.
Since each person’s saliva and sweat may differ,
the accuracy of the glucose measurement won’t be
consistent. As a result, this method is not accurate for
measuring glucose in smart healthcare.

6) A PPG signal is employed to remove characteristics for
predicting body glucose levels. However, the PPG can
be an accurate body glucose-measuring method whose
output value varies solely with blood volume. As a
result, the presented method has not been able to detect
the glucose molecule in the blood sample correctly.

B. OPEN CHALLENGES IN NON-INVASIVE BODY GLUCOSE
MEASURING
The expansion of a non-invasive body glucose measurement
device is analyzed with limitations. However, numerous
unresolved issues that pose serious obstacles to accurate non-
invasive glucose measurement have been explored. These
difficulties have been identified in Fig. 32. Hypoglycemic
patient monitoring is not possible without pricking for a long
time as the non-invasive devices are required to be developed
for precise measurement below 80 mg/dl [214].

• In the literature, factors that impact glucose measure-
ment results include BP, temperature, and humidity
level. However, these factors are not evaluated.

• Additionally, the affordable and portable continuous
glucose technology has not been fully addressed.

• The accurate glucose measurement is still not possible
at higher blood glucose range without the blood pricking
method

• The development of a smart healthcare framework using
the integration of a glucometer with the Internet of
Medical Things for continuous data logging to the cloud
has not been visible in commercial devices [215].

• With the use of a cloud server, the decision model
for automatically secreting insulin to monitor glucose
values has to be explored.

• The privacy and security problems with the insulin and
body glucose monitoring system have not been explored
commercially.

• Continuously monitoring glucose with an insulin supply
system requires an efficient power management system.

• The continuous glucose monitoring device would be
portable and battery-operated so power management of
the device needs to be addressed.

The non-invasive glucose measurement would be also an
ideal choice for infants. Newborn babies tend to enter into
hypoglycemia conditions during febrile seizure episodes.
It is required to adopt the continuous glucose monitoring
approach to check the glucose value during the high
fever condition. request pricking of blood samples from
newborn babies is irritating and panic. It is generally not
recommended to prick multiple times as the body’s blood
level is comparatively lower. Continuous monitoring of other
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blood parameters for newborn babies would help to provide
rapid diagnosis and treatment to avoid recurrent febrile
seizure episodes. The non-invasive glucose measurement
would be helpful for Type 1 diabetes patients for adjustment
of their insulin dosage as per their current body glucose.

X. CONCLUSION
The study provides an overview of BG measurement,
controlling mechanisms, and continuous monitoring strate-
gies. Numerous methods have been described in the state
of the art as proofs-of-concept, demonstrating a strong
connection between device response and the reference value
for blood glucose. Some techniques are not implemented
for commercial purposes. Some approaches are neither
accurate nor cost-effective solutions. The prior technologies
are discussed with design strategies, observed issues, and
measurement limitations. Due to the limitations and issues,
advancements have also been discussed in terms of solutions.
The main focus of the paper is to demonstrate various
techniques with corresponding issues and solutions, along
with advancements. Optical detection uses short NIR, which
has been considered a future appliance or prototype device
that should be more effective in various zones to support
continuous health monitoring and viable solutions to reduce
the shortcomings of all other techniques. Various method-
ologies may be utilized in the future for precise glucose
monitoring. The consumer devices should be more effective
in various zones to support continuous health monitoring.
It must be used regularly as a portable device for real-time
applications. Future devices should be low-cost and user-
friendly for continuous health monitoring systems.

XI. FUTURE WORK
The future plan for a non-invasive glucose measurement
device is highlighted in Fig. 33, which represents the future
milestone with significant features. There is a requirement
to develop a portable, durable, and user-friendly device so
that it can be used on a large scale all over the world. The
upcoming non-invasive devices should be able to check blood
glucose for all age pepole precisely. The patient’s data should
be safe and confidential. The data can be accessed by patients
and medical experts only. The upcoming device should
be low-power and send a warning signal to patients after
reaching at alarm level. These expected features are future
milestones. An advanced IoMT framework integration for the
device is necessary. This cutting-edge IoMT framework will
connect the future measuring device with all nearby diabetes
care centers for optimum care. Combining food intake
and glucose measurement of particular can significantly
provide the root cause and corresponding treatment for
smart healthcare [216]. The future of technology expects
reliable, portable, and user-friendly devices. The feature of
borderline cross indication on the device should be explored
in future measuring devices. Everyone will be aware to
check their own BG level to analyze the body’s proper
function. A secured device with end-to-end user control

and authentication is also necessary for future advancement.
Physical unclonable function (PUF) based security frame-
work is advantageous for IoMT devices [213], [217]. The
effectiveness of a suitable healthcare cyber-physical system
(H-CPS) with blockchain-based data and device management
has to be considered [218], [219]. Glucose metres could be
combined with wearables and food diaries to track individual
reactions to various meals and activities. This would enable
people to customize their diet and exercise routines for better
performance and health.
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