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ABSTRACT Ametaverse is composed of a physical-space and virtual-space, with the aim of having users in
both the virtual reality and the real world experience. Prioritization is essential, but it is not straight-forwarded
due to the limitation of computing resources in real-world, making it impossible to synchronize all data.
Therefore, it is crucial to allocate resources based on regional preferences in physical-space and content
preferences of users in virtual-space. The referencing system consists of two-stage sub-computations,
1) spatial-prioritization for more data gathering under the consideration of avatar-popularity one top of
physical-space and 2) temporal-prioritization for virtual-space rendering under the avatar-popularity. Both
prioritization tasks are combinatorics problems and are well-knownNP-hard. The problem scale is also large,
making it difficult to solve within given times. The classical deep learning cannot be the solution. Quantum-
based learning algorithms can be the potential solutions due to high-performance computing capabilities,
because a small number of qubits can represent an exponentially large amount of information. On top of
these advantages, an improved quantum reinforcement learning (QRL) algorithm is proposed for reducing
the control dimensions into a logarithmic scale. We corroborate that our proposed QRL-based algorithm for
low-dimensional spatio-temporal prioritization improves convergence and performance.

INDEX TERMS Metaverse, scheduling, quantum neural network, quantum reinforcement learning.

I. INTRODUCTION
Recently, the metaverse has been establishing itself as a
contact-free social interaction service. The metaverse is a
space where the real world and virtual space coexist, allowing
users to experience both real and virtual environments. It has
been utilized in various applications, ranging from company
offices and classrooms to museums and concert halls [1].
In order to improve service quality, metaverse platforms
have been extensively researched. Starting with early virtual
space such as GatherTown, which provided 2D pixel art-style
virtual environments [2], the development has progressed to
metaverse platforms built on actual 3D maps [3], [4] and
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further to digital twins achieved through synchronization
between the real world and virtual reality using multiple
sensors [5]. This evolution has been aimed at enhancing
the user’s sense of realism. As the metaverse provides
services that allow users to experience 3Dmedia experiences,
the amount of data exchanged increases significantly [6].
In addition, to enhance the user’s sense of realism, low-
latency communication such as the tactile Internet must be
ensured. Due to the presence of these technical hurdles,
ongoing discussions are being held in both industry and
academia.

One of main differences between the metaverse system
and the other systems is that the metaverse’s places where
users physically exist have no association with the places
where they are interested in [7]. In conventional social media
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FIGURE 1. Overview of QRL scheduling for spatio-temporal prioritization.

platforms, the places where the users exist are the ones
where they are also interested in. For example, the users on
social networks tag their locations because they are physically
present and interested. However, in metaverse-based con-
certs, the users are generally at home while their associated
avatars are located at the concert halls. In this paper, the
metaverse focuses on a 3D immersive experience involving
various physical space. As the physical space changes over
time due to sensor information, synchronization between
the physical and virtual space is crucial. However, as previ-
ously mentioned, transmitting 3D data requires tremendous
network throughput, making it impossible to stream 3D
data to entire areas. Consequently, this paper proposes two
consecutive methods: (i) data gathering scheduling based
on avatar-popularity in physical space and (ii) improving
user service quality within the virtual space. As depicted in

Fig. 1, users in the real world request services in various
virtual space. By collecting these requests, the central server
calculates the avatar’s demand, where the avatar is the
user identity in virtual space. The statistical distribution of
user interests is referred to as avatar-popularity. Then, the
central server collects whether to receive the physical-space’s
data. Improving the avatar-popularity and reducing the gap
between physical and virtual space is achieved through
a process called spatial-prioritization. Furthermore, when
users experience services within virtual reality, users with
similar viewpoints are grouped, creating a group-popularity
for specific content. The sampling ratio for viewpoints is
then adjusted to provide the service, while non-prioritized
areas are not updated. This corresponds to the temporal-
prioritization. By implementing these two processes, the
metaspace can achieve high spatio-temporal prioritization.
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However, these problems are combinatorial in nature and
are well-known to be NP-hard [8]. As a result, they cannot
be solved within a given time as the problem size increases.
To address this, standard deep learning can be employed to
find sub-optimal solutions. Although standard deep learning
has demonstrated effectiveness in combinatorial problems,
the model convergence and performance deteriorate as the
control size increases [9]. To tackle this issue, we explore the
potential of quantum computing [10]. Recent advancements
in quantum computing has theoretically enabled the quadratic
acceleration of combinatorial problems [11]. Nevertheless,
scalability concerning problem size remains a challenge.
When a large-scale quantum computer attempts to solve
optimization problems, quantum noise impedes the attain-
ment of suboptimal solutions. Consequently, the quantum
computing system is a noisy intermediate-scale quantum
(NISQ) device [12].

In this paper, we revisit quantum neural network (QNN)
based quantum reinforcement learning (QRL) and signif-
icantly enhance the scalability of control sizes in spatio-
temporal prioritization [13], [14], [15], [16]. Baek et al.
employed a specific measurement method called basis
measurement (BM) [17]. By leveraging BM, a small number
of quantum bits (qubits) can represent a exponentially large
amount of information compared to classical bits, allowing
for more efficient computation and data storage. Motivated
by this, the resources can bemanaged with logarithmic output
size. Motivated by this, we re-design a BM-suitable quantum
actor critic for QNN-based QRL to logarithmically reduce
the control size. On top of the proposed QRL algorithm,
both spatio-temporal prioritization can be realized even if the
control size increases. This approach can be a milestone in
order to realize the advantages of QNN on top of metaverse
systems, which can be one of emerging future research
directions.

A. CONTRIBUTIONS
The major contributions of this study can be summarized as
follows.
• First of all, this research is the first attempt to charac-
terize the space separation between physical-space and
virtual-space in metaverse systems. Based on this key
characteristic in metaverse, the corresponding objective
aims at the virtual-space quality maximization subject to
physical-space constraints.

• In addition, the proposed algorithm is the inaugural
approach to employ low-complexity quantum actor-
critic neural networks for scalable spatial prioritiza-
tion in physical-space data gathering. As well-studied
in [17], the use of quantum neural network algo-
rithms can realize output dimension reduction into
a logarithmic-scale which introduce low-complexity
computation.

• Moreover, the algorithm takes into account avatar-
popularity for differentiated quality control in con-
structing high-reality virtual-space under limited

physical-space resources concerning temporal
prioritization.

• Finally, an innovative system-wide approach is intro-
duced for faster spatio-temporal prioritization to fully
utilize the realistic virtual worlds, in real-time.

B. ORGANIZATION
The rest of this paper is organized as follows. Sec. II illus-
trates the basic concepts of metaverse network architecture
and related work. Sec. III presents our proposed QRL-based
spatio-temporal prioritization in metaverse systems. Sec. IV
evaluates the performance of our proposed algorithm and
Sec. V concludes this paper.

II. PRELIMINARIES
A. METAVERSE NETWORK ARCHITECTURE
Metaverse system consists of two different spaces, named
physical-space and virtual-space [18]. The physical-space
is a target space that the metaverse aims to mimic. The
virtual-space is a result space where the users want to
interact or see the objects which are physically apart.
Due to the advantage of a virtual-space that can reflect
anywhere and anytime, users can break the spatio-temporal
limitations. However, there is a huge challenge to service
the metaverse efficiently as the realistic metaverse utilizes
3D contents format, such as points cloud and depth images,
due to their realistic representation ability [19]. However,
there is still a challenge in processing these extensive data
with small delay [20]. These delays primarily occur in the
two-stage prioritization process that precedes the provision
of metaverse services.
• Spatial-Prioritization. When updating the virtual-
space to reflect the physical-space, the most naïve
approach is to update all target physical-spaces for
all users. However, this method is not suitable for
serving the metaverse in a resource-constrained envi-
ronment [21]. Consequently, spatial-prioritization opti-
mizes metaverse establishment by synchronizing in a
manner that considers the popularity of avatars, the
virtual-space representations of users [22]. By allocat-
ing more computing and communication resources to
update virtual hotspots with high avatar popularity, the
user experience of a larger number of users can be
enhanced [23].

• Temporal-Prioritization. Temporal-prioritization is a
method of prioritizing physical-space and virtual-space
by considering group popularity. Even if avatars are in
the same spatial area, the objects in the virtual-space
with which they interact in reality may differ over time.
Accordingly, this approach groups users with similar
preferences at each time point and adjusts the quality of
objects within the virtual-space by reflecting the popu-
larity of the respective group. This method, like frustum
culling commonly used in resource-intensive games,
selectively provides only the necessary objects within
the virtual-space to the group, preventing unnecessary
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use of computing and communication resources and
contributing to the overall stability of the system [24].

Motivated by this, we design avatar popularity and group
popularity in each prioritization process as referred to
Sec. III-D2. We design the metaverse system based on these
factors in this paper.

B. RELATED WORK
In recent years, AI-based system optimization can be
categorized into two main fields: i) real-world system
optimization and ii) metaverse system optimization. In real-
world optimization, AI is widely used to minimize the
required cost of the system. In real-world optimization,
AI is widely used to minimize the required cost of the
system. In [25], AI is leveraged to predict future load
consumption based on historical data. Tanwar et al. [26],
adopts AI techniques to maintain the robustness of the system
by identifying energy theft, thereby preventing cost leakage.
Kumari et al. [27] leverage AI to optimize the scheduling
algorithm for charging and discharging in electrical vehicle
environments. On the other hand, several studies leverage
AI for metaverse system optimization. In [28], an extensive
survey of metaverse technologies is conducted, addressing
key challenges, security, and privacy. The fundamental
architectures and components of the metaverse are presented
in [29], where user interactions, implementations, and
applications are also explored. Additionally, blockchain-
based metaverse technologies are introduced and proposed
in various research results, i.e., fusing of building informa-
tion modeling and blockchain for metaverse [30], fusing
blockchain and AI with metaverse [31], blockchain-aided
secure semantic communications for AI-generated metaverse
contents [32], and promoting the sustainability of blockchain
in Web 3.0 and the metaverse via incentive mechanisms [33].
Furthermore, Meng et al. [34] underscore a critical technical
challenge pertinent to this paper and propose a corresponding
solution. The solution relies on prediction mechanisms, while
the proposed algorithm offers a system-wide solution encom-
passing data-gathering and the quality of experience. Lastly,
in [35], as an example of metaverse systems, financial crimes
in Web 3.0-empowered metaverse is introduced in terms of
taxonomy, countermeasures, and research opportunities.

C. QUANTUM REINFORCEMENT LEARNING
Fig. 2(a) illustrates the operations of a standard QNN. The
primary objective of machine learning is to approximate
target values based on given data points. In classical NNs, the
encoding process is straightforward because both trainable
parameters and data points are real values in Euclidean space.
However, processing data points in QNNs is not straightfor-
ward, as data points exist in Euclidean space while quantum
states reside in complex Hilbert space. To address this, the
state encoder in QNNs utilizes rotation gates, contrasting
with the linear operations on unbounded real values employed
in classical NNs. In QNNs, data points are mapped to

quantum states by transforming their positions using rotation
gates, facilitating quantum computing. Indeed, quantum
states are mapped onto the surface of a 3-dimensional unit
sphere, as depicted in Fig. 2(b), and can be processed with
rotation gates along the x, y, and z axes. Entanglement is
a crucial aspect of quantum computing due to its inherent
non-linearity. Entanglement establishes connections between
distinct quantum systems and is analogous to the non-linear
activation functions utilized in classical NNs. Furthermore,
the universal function approximation theorem relies on
non-linearity. Without quantum entanglement, measurements
would be constrained to a linear structure, impeding the
realization of quantum advantages. Consequently, entangle-
ment assumes a significant role in quantum machine learning
(QML), enabling quantum computers to perform intricate
calculations and enhance machine learning algorithms.

The measurement process is indispensable for extracting
information from quantum states since direct observation of
these states is unfeasible. To obtain the outputs of QNNs,
measurements must be conducted to convert probabilistic
outcomes into deterministic ones [36]. Baek et al. have
discovered that BM provides a more flexible measurement
approach in quantum machine learning, as it enables the
acquisition of probabilistic information about all potential
quantum states [17]. As a result, probabilistic policies in
quantum machine learning can achieve superior scalability
compared to classical alternatives.

Given the aforementioned insights, we will adopt BM
in QRL to improve the scalability and control size of
probabilistic policies in contrast to classical methods.

III. QRL-BASED SPATIO-TEMPORAL PRIORITIZATION IN
METAVERSE
A. OVERALL PROCEDURE AND OBJECTIVE
Our proposed algorithm consists of following two stages.
• Spatial-Prioritization: Due to the dynamic nature
of physical-space information changing over time,
an inevitable gap arises between virtual-space infor-
mation and physical-space information. To address this
issue, the concept of spatial prioritization is introduced
(refer to Sec. III-D1), which enables the updating
of physical-space information in prioritized regions
with a high concentration of avatars (i.e., high avatar
popularity) to virtual-space information. By conducting
real-time spatial prioritization, the objective is to
reduce the spatial gap in age-of-information, focus on
prioritization in areas with high avatar popularity, and
simultaneously minimize the communication cost for
updating the regions.

• Temporal-Prioritization: In temporal prioritization
(refer to Sec. III-D2), the objective is to provide
high-quality service to users for regions with temporal
prioritization. It should be noted that delays occur due
to not providing high-quality service for areas without
temporal prioritization. To achieve this, when users
receive metaverse services, they prefer certain items
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FIGURE 2. Quantum neural networks and geometric qubit representation.

and backgrounds, and the user-preferred information is
grouped to create group popularity. The popularity of
a group represents the preference for each content, and
adjusting the rendering ratio based on the preference,
it plays a role in enhancing the quality. In this paper,
the aim is to promote an improved sense of immersion
quality based on the preferences of the entire user
population for the virtual space being served while
ensuring that the computing queue does not overflow.

B. OBJECTIVE
The main objective is about to maximize avatar-popularity,
minimize communication costs, and minimize the gap
between physical-space and virtual-space when gathering
information from the physical-space. Moreover, it aims to
maximize user immersion quality and minimize delay by
adjusting the sampling rate to reflect group-popularity while
rendering each user’s interests.

C. QUANTUM ACTOR-CRITIC NETWORKS DESIGN
1) ALGORITHM CONCEPTS
Our proposed QRL algorithm is fundamentally based on
actor-critic networks where the actor and critic networks
are designed by QNNs. Our considering QNN-based QRL
architecture consists of state encoding, parameterized quan-
tum circuit (PQC), and lastly, measurement. For state
encoding, the classical data/information will be encoded as
the data/information over quantum domain. After the state
encoding procedure, PQC will be executed which equivalent
to the computation in hidden layers. Therefore, according
to the fact that hidden layers are for linear and nonlinear
transformation of given data for neural network-based
function approximation [37], PQC is also for linear and
nonlinear transformation over quantum domain by utilizing

rotation gates and entanglement gates, respectively. Finally,
measurement is for the deterministic computation for the
result of PQC in order to derive final output, i.e., actions in
RL computation. Here, the input and output data will be state
and action data due to the nature of QRL/RL.

This QRL architecture is beneficial in terms of high-
scalability because it can reduce RL action dimensions into
a logarithmic-scale [14]. This is further beneficial in our
considering metaverse application because it has huge action
dimensions as massive users can exist over metaverse virtual-
space.

2) ALGORITHM DETAILS
In our proposed algorithm, we assume that our proposed
algorithm should work even if the number of available qubits
is limited. This assumption is realistic because our proposed
QNN-based actor-critic RL algorithm is fundamentally for
NISQ-aware algorithm which can work with strictly limited
number of qubits [38].

Within our metaverse system, the computational burden
increases exponentially, corresponding to the expansion
of virtual-space due to the curse of dimensionality [39].
Moreover, employing naïve QRL-based scheduling through
QNN inmetaverse systems is difficult to use in real-life, as the
action dimension within QNN is larger than the number of
qubits in NISQ era [40], [41].

Therefore, it is essential to design a new scheduling
algorithm under the consideration of high-dimensional
decision-making in a quantum domain. Thus, this paper
revisits the parameterized quantum policy [42], and the QNN
actor is defined as follows:
Definition 1 (QNN Actor): Given a QNN acting on Q

qubits, taking as input state s ∈ R|s|, rotation angles
θθθ ∈ [0,2π]|θθθ |, such that its corresponding unitary U(s,θθθ )
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produces the quantum state |ψs,θθθ ⟩ =U(s,θθθ )|0⊗Q⟩, we define
its associated QNN-based policy as:

πθθθ (a|s) = ⟨Pa⟩s,θθθ (1)

where ⟨Pa⟩s,θθθ is the expectation value of a projection Pa
associated to action a, such that ∑a Pa = I and PaPa′ = 0. The
variable θθθ constitute all of its trainable parameters.
It should be noted that the number of projections Pa can
be extended to the exponential of the number of qubits.
In the proposed metaverse system, 2Q actions are required
as a consequence of the QRL-based spatial-prioritization
and temporal-prioritization. It is evident that the number of
actions is extremely large. In the QNN actor, the output
size can be expanded to 2Q. As a result, the number
of qubits can be reduced logarithmically, which facilitates
successful spatio-temporal prioritization. To efficiently train
the quantum actor, we define the quantum critic as follows:
Definition 2 (QNN Critic): Given a QNN acting on mul-

tiple qubits, taking as input state s ∈ R|s| and corresponding
actions a, rotation angles φφφ ∈ [0,2π]|φφφ |, such that its corre-
sponding unitaryU(s,φφφ ) approximates the action values, i.e.,
V (s) = ⟨P⟩s,φφφ .

For more effective training of the QNN actor, the QNN
critic evaluates the optimality of the prioritization determined
by the QNN actor. The temporal difference (TD) is adopted
as the objective and loss functions, which can be formulated
as follows:

∇θθθ J(θθθ ) = Es[ ∑
(s,a,r,s′)∈B

δφφφ (s,a,s′) ·∇θθθ logπ(a|s;θθθ )] (2)

∇φφφ L (φφφ ) = ∑
(s,a,r,s′)∈B

∥∥∇φφφ δφφφ (s,a,s′)
∥∥2 (3)

such that

δφφφ (s,a,s′) = R (s,a) + γVφφφ (s′)−Vφφφ (s), (4)

where R (s,a) denotes the reward function. Here, (2) rep-
resents an objective function for the QNN actor, while (3)
denotes a loss function for the QNN critic. Here, the Bellman
optimality in (4) is utilized for computation of the TD error.
During the process of the loss function minimization with
the TD error of the QNN critic, the derivatives of the QNN
actor and critic’s k-th entry are as following (5) and (6),
respectively,

∂J(θθθ )
∂θk

=
∂J(θθθ )
∂πθθθ

· ∂πθθθ

∂ ⟨Ps,θθθ ⟩︸ ︷︷ ︸
(SGD)

·
∂ ⟨Po,θθθ ⟩

∂θk︸ ︷︷ ︸
(parameter-shift rule)

, (5)

∂L (φφφ )
∂φk

=
∂L (φφφ )

∂Vφφφ

·
∂Vφφφ

∂ ⟨Ps,φφφ ⟩︸ ︷︷ ︸
(SGD)

·
∂ ⟨Ps,φφφ ⟩

∂φk︸ ︷︷ ︸
(parameter-shift rule)

, (6)

where SGD means stochastic gradient descent; (s,a,r,s′) and
B denote the current state, current action, reward, next state,
and Markov decision process trajectory, respectively. Here,
the parameters of QNN actor/critic are represented by θθθ

and φφφ , respectively. The first and second derivatives of the
right-hand side in (5) and (6) can be computed using classical
partial derivative methods, such as gradient descent methods.
However, the third derivative cannot be calculated using
classical methods, as the quantum state remains unknown
prior to measurement. To address this, the parameter-shift
rule is adopted to calculate the loss gradient [43]. This
parameter-shift rule is applied to (5) for the derivative of the
QNN actor’s k-th parameter. In addition, it can be determined
using the 0-th derivative as follows:

∂ ⟨P⟩s,θθθ
∂θk

= ⟨P⟩s,θθθ+ π

2 ek
−⟨P⟩s,θθθ− π

2 ek
, (7)

where ek represents the k-th basis of θθθ . Correspondingly, the
left-hand side of (6) can be derived from (7). Similarly, the
loss gradient of the QNN critic can be obtained by following
the same process as mentioned above. Finally, the gradient of
the objective function can be computed as formulated in (2).

D. QRL-BASED SPATIO-TEMPORAL PRIORITIZATION
1) SPATIAL-PRIORITIZATION: QRL-BASED SCHEDULING VIA
AVATAR-POPULARITY
This section introduces the spatial-prioritization algorithm
that is specifically created for spatial-prioritized synchro-
nization between physical-space and virtual-space using the
proposed QRL. It should be noted that the entire process is
depicted in Fig. 1.

• State Space: The state is defined as the information of
the physical-space that the central server (an agent in
our RL formulation) observes. The state contains i) the
environmental information, ii) the shared virtual-space
information through the server. The server collects the
avatar position, the avatar-popularity in virtual-space,
the data size of physical-space information, and the age-
of-information of physical-space data of all physical
space.

• Action Space: In spatial-prioritization, the action space
is defined as a set of Boolean variables,

A ≜ {an}N
n=1 ∈ {0,1}N , (8)

where N stands for the number of virtual/physical space.
Note that when an = 1, the n-th virtual-space is updated
with the n-th physical space information. On the other
hand, if an = 0, the virtual-space remains unaltered.

• Reward Function: The reward function is designed with
the objective and penalty, formulated as follows,

R(s(t),a(t)) =
N

∑
n=1

an(t) ·
(

pn(t)
qn(t)

−λ · fc(Dn(t))
)

, (9)

where pn(t), qn(t), and Dn(t) denote the avatar popular-
ity, age-of-information, and the accumulated data size
in the n-th physical space at time-step t, respectively.
Furthermore, fc(·) represents a quality function as
introduced by the authors in [44]. Note that the
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age-of-information qn(t) adheres to a time-dependent
and non-zero monotonic increasing function.

2) TEMPORAL-PRIORITIZATION: PRIORITIZED
VIRTUAL-SPACE RENDERING
This paper aims to adjust the sampling rate of virtual space
items, reflecting the user’s interest in the updated virtual
space information. By doing so, it aims to selectively transmit
a reduced amount of data, thereby enhancing our metaverse
system.

a: STATE SPACE
First of all, group-popularity is determined according to user
preferences, in which each item is assigned a weight, and
the sum of these weights is equal to 1, i.e., ∑

I
i=1 gi(t) =

1, ∀t ∈ [1,T ], and ∀gi ≥ 0. In order to modify the sampling
rate for each item, it is essential to take into account the
group popularity. Secondly, we examine the computational
stability constraints. As the sampling rate increases, the
computational load correspondingly rises. Therefore, we take
into consideration a computing queue and aim to prevent
divergence. The computing queue dynamics are as follows,

Q(t +1) = max(Q(t)−
I

∑
i=1

b(a′i(t)),0)+ c(t), (10)

where a′i(t), b(a′i(t)), and c(t) stand for action at time t, non-
zero monotonic decreasing function, and randomly arrived
computing tasks, respectively. Finally, both group popularity
and the computing queue are subject to fluctuations over time.
Given those components from previous time steps constitute
vital information, we incorporate current and historical data
into the input state.

b: ACTION SPACE
The action space is designed to adjust the sampling rate for
each item. Assuming a total of I items and J quality levels,
the action space is defined by the sampling rate for each item,
i.e.,

A ′ ≜ {{a′i}I
i=1} ∈ {1/J,2/J, · · · ,1.0}I , (11)

and this will also be determined via QRL.

c: REWARD FUNCTION
For every item, the sum of the product of group popularity and
the sampling ratio is designed as a quality metric that reflects
group popularity. The objective is to maximize this quality
metric while simultaneously achieving queue stabilization.
Finally, the reward function is formulated as,

R′(s(t),a′(t)) =
I

∑
i=1

[ν ·gi(t) ·a′i(t) +Q(t) ·b(a′i(t))], (12)

where ν , Q(t), and b(·) stand for the tradeoff factor between
utility and delay, queue backlog at t, and departure process
depending on the action taking, which is associated with its
quality factor.

Algorithm 1 QRL-Based Scheduler Training
Initialize QNN actor and QNN critic parameters (θθθ and φφφ )
for (Epoch = 1, · · · , Training epochs) do

Initialize Spatio-temporal prioritization environment
Initialize Replay buffer B←{}
for (Time-step = 1, · · · , T ) do

Execute Policy πθθθ (a(t) |s(t)) to obtain a(t)
Update Spatio-temporal environment
Store Experience ξ = {s(t),a(t),r(t),s(t +1)}
Update Replay buffer B←B∪ξ

Execute QNN critic Vφφφ with replay buffer B
Calculate Zeroth derivative using (7)
Update QNN actor network with (2)
Update QNN critic network with (3)

E. PSEUDO-CODE AND COMPUTATIONAL COMPLEXITY
Algorithm 1 represents the comprehensive QRL training
procedure for the central server QRL actor-critic networks.
First, the weights of the QNN actor and QNN critic networks
are established, represented as θθθ and φφφ , respectively (line 1).
Then, the server continues to train its QNN actor until
the conclusion of the training process (lines 2-15). For
every training epoch, both the physical-space and virtual-
space environments are reset to their initial states, and
the server’s replay buffer B is initialized (lines 3-4). The
QNN actor, guided by its policy, determines the action a(t)
(line 6). Subsequently, the current state s(t) transitions to the
succeeding state s(t + 1), as dictated by the central server’s
action decisions (line 7). The transformed environment yields
the reward r(t) and transition pairs ξ = {s(t),a(t),r(t),s(t +
1)}, which are stored in the server’s experience replay buffer
B (lines 8-9). Once the time step reaches the terminal time T ,
the QNN critic evaluates the value Vφφφ (s) for all experiences
within the replay buffer B (line 11). The weights of the
QNN actor and QNN critic networks are updated using the
parameter-shift rule and the policy gradient (lines 12-14).
After completing the training, the central server acquires the
optimal QNN actor/critic for spatio-temporal prioritization.

IV. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETTING
This section investigates the superiority of our proposed
QRL-based scheduling algorithm in spatio-temporal priori-
tization. In spatial-prioritization (i.e., Stage #1), QRL-based
scheduling aims to maximize the reward function as elabo-
rated on (9), considering the avatar popularity. In temporal-
prioritization (i.e., Stage #2), with the spatially optimized
virtual space, each algorithm prioritizes virtual-space in
temporal to maximize (12). In our metaverse system, the
collected data from physical-space are transmitted to the
central server. The collected data can be sent to the server
with varying levels of quality, represented by QP values
of {22, 27, 32, 37} [44]. For rendering meta-space, the
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FIGURE 3. The results of spatial-prioritization: Fig. 3(a–c) illustrate the learning curve of an essential performance metric (control size: 216),
while Fig. 3(d–f) depict the results of the scalability tests.

TABLE 1. System parameters for performance evaluation.

corresponding bit rates for each QP are 26,496Kbps,
10,658Kbps, 5,073Kbps, and 2,621Kbps [44]. We use
16 qubit system for spatio-temporal prioritization. The
experimental parameters used for performance evaluation are
in Table 1.
Benchmarks: To benchmark the proposed algorithm,

especially QRL-based scheduling algorithm, the following

benchmarks have been conducted. To perform a compara-
tive analysis of quantum computing, a classical RL-based
scheduling algorithm, or more precisely, conventional actor-
critic networks, are utilized. The primary difference between
our QRL and the classical RL lies in the employment
of conventional NNs as opposed to QNNs. By employing
Monte Carlo simulations, each scheduling participant inde-
pendently determines their respective actions, irrespective of
prevailing states, thus not employing a learning algorithm.
Consequently, this allows for the evaluation of performance
enhancements achieved through learning by comparing the
results with alternative approaches. In addition, we adopt
ScanNet point cloud segmentation dataset to visualize the pri-
oritized virtual space [45]. The examples of rendered virtual
space in each stage with heterogeneously prioritized user is
illustrated in Fig. 5 and Fig. 6, respectively.We further discuss
experimental results and their visualization in Sec. IV-D.

B. RESULTS FOR SPATIAL-PRIORITIZATION
Fig. 3 presents the performance evaluation of spatial priori-
tization. In spatial prioritization, rewards, avatar-popularity,
and cost are measured, which are crucial components in
objective achievement. Fig. 3(a–c) illustrate the learning
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FIGURE 4. The results of temporal-prioritization: Fig. 4(a–c) illustrate the learning curve of an essential performance metric (control size: 216),
while Fig. 4(d–f) depict the results of the scalability tests.

TABLE 2. Performance comparison with different algorithm at the end of training (control size by action-dimension: 216).

curve for the three metrics. As shown in Fig. 3(a), the
classical RL-based scheduling algorithm and the random
walk only achieve 0.67x to 0.48x of the cumulative reward of
the QRL-based scheduling algorithm. Furthermore, classical
RL-based scheduling algorithm and random walk achieve
0.65x and 0.61x corresponding to the popularity as depicted
in Fig. 3(b). On the other hand, the cost of the QRL-based
scheduling is higher than comparisons, as shown in Fig. 3(c).
However, it is notable that the cost is reduced by 40%
compared to the highest value during training. Based on
these results, we confirm that our proposed QRL outperforms

the comparisons. The detailed values are listed in Table 2.
To investigate the effect of control size on the scheduling
algorithm, we observe the robustness of our proposed QRL
to control size scalability. The results are represented in
Fig. 4(d–f). As the control size increases from 21 to 216,
performance degrades up to 29% due to limited resources.
On the other hand, the performance of the classical RL-based
scheduling algorithm in the large control size is degraded by
56% compared to the small control size. This is because the
efficacy of traditional RL-based scheduling algorithms can be
significantly deteriorated by the curse of dimensionality [39],
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FIGURE 5. Spatial-prioritization results on ScanNet point cloud segmentation dataset [45].

given that the control size in spatial prioritization grows
exponentially as the number of regions increases.

C. RESULTS FOR TEMPORAL-PRIORITIZATION
Fig. 4 presents the performance evaluation of temporal
prioritization. Similar to the experiments conducted for
spatial prioritization, temporal prioritization also assesses
the essential factors contributing to objective achievement.
Fig. 4(a–c) show the learning curve for the three metrics.
As illustrated in Fig. 4(a), the QRL-based scheduling
algorithm achieves the highest performance, followed by
classical RL-based scheduling algorithm and random walk.
At the end of the training, the cumulative rewards for each
algorithm are 0.814, 0.709, and 0.523 for QRL, classical RL,
and random walk, respectively. From the computing queue
perspective, the random walk’s computing queue overflows,
while the classical RL’s computing queue remains empty,
indicating low sampling rates. In contrast, our proposed
QRL-based scheduling algorithm stabilizes the computing
queue at a value of 1085. This result is confirmed in
Fig. 4(b). Fig. 4(c) demonstrates that the quality metric of
our proposed QRL algorithm exceeds the other comparisons.
The detailed values are listed in Table 2. Fig. 4(d–f) depict
the performance evaluation metrics for various control sizes.
Fig. 4(d) presents the reward metric for various control sizes.
When the control size is small, specifically 22, there is no
noticeable difference between the QRL-based scheduling
algorithm and the classical RL-based scheduling algorithm.
However, the QRL-based scheduling algorithm significantly
outperforms the classical RL with a value of 1.09x when the
control size increases, specifically to 216. Similar trends are
observed in cost and quality, as shown in Fig. 4(e)/(f). The

largest performance gap betweenQRL and other comparisons
occurs when the action dimension is 216. The gap amounts
to 0.086, 0.195, and 0.075 for reward, queue, and quality,
respectively.

In summary, experiments of temporal prioritization vali-
date that our QRL-based scheduling achieves a performance
improvement of up to 9%, particularly when the action
dimension increases.

D. VISUALIZATION
Along with the above experimental results, Fig. 5 visualizes
a brief example of the QRL-based spatial prioritization
process. Region A and region B represent physical
regions with high and low avatar-popularity, respectively.
To alleviate the constraints of limited communication and
computing resources, synchronization between physical
and low-prioritized virtual spaces occurs only when
there are changes in the high avatar-popularity region,
whereas high-prioritized virtual spaces synchronize when-
ever changes occur. Fig. 6 illustrates the process of temporal
prioritization. After the spatial prioritization carried out in
Stage #1, the synchronized virtual space undergoes the
sequential process based on group popularity. To account
for the heterogeneity in group popularity, each object group
within the prioritized virtual space is rendered using different
sampling ratios. Group-popularity is represented by the
corresponding colors (i.e., labels) assigned to objects in
the virtual space. For example, when the group-popularity
of group 3 is high on beds and floors, the sampling ratio
of the other objects is decreased, resulting in an overall
performance increase while maintaining the quality of user
services.
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FIGURE 6. Temporal prioritization results on ScanNet point segmentation dataset. Each column represents different data points, and each group has
different group-popularity.

In summary, we observe that our QRL-based scheduling
in temporal prioritization demonstrates feasible performance
in accurately reflecting group-popularity within the virtual-
space.

V. CONCLUDING REMARKS AND FUTURE WORK
Considering the importance of synchronization between
physical-space and virtual-space under the consideration
of limited communication and computing resources for
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realistic metaverse services, a novel spatio-temporal prior-
itization is proposed in this paper using high-performance
quantum computing techniques. The proposed prioritization
algorithm comprises two stages. The first stage (i.e., spatial
prioritization) aims for low-delay data gathering from the
physical-space to construct the realistic virtual-space. The
second stage (i.e., temporal prioritization) involves rendering
items at various sampling rates, taking them into account
to maximize high-reality rendering quality in virtual-space
under resource limitations. According to the large control
size of spatio-temporal prioritization, classical deep learning
algorithms faces challenges due to the curse of dimension-
ality. To tackle this problem, we propose a QRL-based
scheduling algorithm aims at the action space dimension
reduction in spatio-temporal prioritization. Our proposed
QRL-based scheduling algorithm with the logarithmic-scale
of qubit utilization reduction can be realized, which is crucial
in the NISQ era. By employing the QRL-based scheduling
algorithm in this paper, we confirm that our proposed
spatio-temporal prioritization can be efficiently utilized due
to logarithmic-sacle action dimension reduction. In addition,
we conduct extensive experiments by constructing realistic
metaverse systems using the ScanNet dataset, which lever-
ages point clouds for realistic representation. With these
experiments, we corroborate that our proposed algorithm
achieves superiority over other classical prioritization algo-
rithms.

As future work, it is considerable to design a new
QRL algorithms for various metaverse applications. In mod-
ern multimedia research, the system exists where the
virtual-space should be enhanced subject to physical-space
constraints, e.g., digital-twin systems. In digital-twin, the
secondary virtual images should be constructed and rendered
subject to network and original image constraints. Therfore,
it is possible to consdier to utilize QRL-based algorithms in
digital-twin networks.
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