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ABSTRACT Video Anomaly Detection (VAD) has garnered significant attention in computer vision,
especially with the exponential growth of surveillance videos. Recently, the synthetic dataset has been
released to address the imbalance problem between normal and abnormal scenarios in real-world datasets
by providing various combinations of events. Motivated by the release of synthetic datasets, many studies
have attempted to handle domain shifts by generating synthetic-real or real-synthetic abnormal scenarios.
However, these approaches still suffer from a substantial computation burden due to the generation model.
In this paper, we aim to alleviate the domain gap without relying on any generation model. We propose
a novel framework named the SYnthetic-to-Real via Feature Alignment (SYRFA) for VAD. The SYRFA
consists of two learning phases: learning synthetic knowledge and adaptation to the real-world domain.
These two learning phases facilitate the incorporation of rich synthetic knowledge into the real-world domain.
To address the domain shift between synthetic and real domains, we introduce consistency learning, aligning
feature representations to map closely between the synthetic and real-world domains. Additionally, in the
adaptation phase, we propose the Residual Additional Parameters (RAP), a simple yet effective approach
for handling domain gaps. RAP is designed with a residual path for learning local patterns, crucial in VAD
due to circumstantial feature representation. It contributes to obtaining transferable feature representations
with fewer additional computations. The proposed framework demonstrates superior performance on VAD
benchmark datasets. Especially, Our framework outperforms other methods by a margin of 0.8% on
ShanghaiTech. Moreover, the ablation study highlights the effectiveness of the proposed framework and
RAP.

INDEX TERMS Video anomaly detection, domain adaptation, synthetic-to-real.

I. INTRODUCTION
Detection plays a pivotal role in the realm of conventional
surveillance tasks in computer vision [1], [2], [3], [4]. Within
the domain of surveillance and factory automation, Video
Anomaly Detection (VAD) has emerged as a critical pursuit.
This significance is attributed to the exponential proliferation
of surveillance video data, underlining the pressing need for
effective anomaly detection mechanisms to enhance security
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and operational efficiency. VAD aims to identify exceptional
events that deviate from typical scenarios. In a typical surveil-
lance scenario, VAD operates under an open-set condition,
characterized by an unbounded categorization of normal and
abnormal samples. The challenges in VAD arise from the
existence of such open-set conditions and the scarcity of
training data related to abnormal events. Accordingly, the
supervised learning approach encounters inherent limitations
due to the impracticality of achieving a balanced training
dataset encompassing both normal and abnormal scenarios.
Therefore, most studies treat the VAD task as a one-class
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FIGURE 1. A comparison with existing methods and ours. Existing
methods using synthetic data generate the synthetic-real or real-synthetic
scenarios with generation model (A). Our method can render the
transferable feature representation via feature alignments without any
generation model (B).

classification problem, training exclusively on normal events
while subjecting both normal and abnormal events to testing.
With this paradigm, methods for VAD are categorized into
three approaches: reconstruction-based methods, prediction-
based methods, and synthetic-to-real-based methods.

Reconstruction-based methods are designed to construct
networks capable of restoring input frames, thereby flagging
anomalies through the identification of samples associated
with high reconstruction errors. In contrast, prediction-based
methods formulate models to generate missing frames in
pursuit of temporal consistency, subsequently discerning
anomalies as deviations between predicted frames and
corresponding ground truth. While Such approaches show
significant performance, examples with high reconstruction
or prediction error do not contribute to adequate solutions for
detecting anomalies due to the implicit generalization ability
of deep networks. Such robust deep networks yield well-
reconstructed or predicted samples.

To mitigate the dependence solely on the knowledge
related to normal distribution, Acsintoae et al. [5] propose the
synthetic VAD dataset, denoted as UBnormal. This dataset
encompasses diverse scenarios crafted by 3D animators
and 2D backgrounds. Motivated by the UBnormal dataset,
Acsintoae et al. [5] and Liu et al. [6] proposed an innovative
framework for rendering real-to-synthetic and synthetic-
to-real abnormal samples, addressing the challenges of
unbounded categories and the scarcity of abnormal training
data, as shown in Fig. 1 (A). Although these generation
methods for VAD demonstrate notable improvements in
public VAD datasets, they neglect to handle some challenges.
First, These methods primarily focus on an explicit approach
to generating abnormal samples and do not consider the

implicit domain shift between real and synthetic data. It is
crucial to learn domain-invariant representations to alleviate
domain shifts. Second, their methodologies demand signifi-
cant computational resources for generating novel abnormal
samples. These samples are derived from auxiliary generation
networks, such as Cycle-GAN and VAE, necessitating the
training of the feature extractor using both synthetic and
real data. This training workflow inevitably leads to an
increase in the number of network parameters, memory
consumption, and training time. Third, the application of
these methods to unseen data domains necessitates pre-
training of the additional networks, as their effectiveness
relies on the generation network during the training process.
Therefore, the resource-intensive training process becomes
indispensable when striving to generate high-quality data for
learning from unseen domains.

Our method is motivated by such challenges and we pro-
pose a novel framework called SYnthetic-to-Real adaptation
via Feature Alignment (SYRFA) to solve the problems,
as shown in Fig. 1 (B). The proposed SYRFA operates in
two distinct phases: ‘‘Learning on Synthetic Knowledge’’
and ‘‘Adaptation to the Real Domain’’, as depicted in Fig. 2.
In the ‘‘Learning on Synthetic Knowledge’’ phase, the feature
extractor is trained on synthetic data containing the various
combinations of scene and action categories to provide
abundant feature representation. In the ‘Adaptation to the
Real Domain’ phase, the feature extractor adapts to the
real domain via feature alignment, aiming to minimize the
difference among source and target domains for learning
domain-invariant representations. In contrast to previous
works such as [5] and [6], our framework leverages the
extensive knowledge provided by synthetic data to enhance
its capability in the real data domain. This is achieved
through learning domain-invariant representations without
the reliance on any generation models, thus allowing for
the design of an efficient network architecture. In addition,
inspired by [7] which applies the adaptive parameters for
adaptation, we introduce the Residual Additional Parameters
(RAP). RAP is a developed version of adaptive parameters,
proving more suitable for the VAD task due to its capacity to
leverage local patterns with minimal computational burden.
RAP effectively addresses domain shifts by aligning different
domain features, leading to improved performance.

The main contributions are summarized as follows:

• We propose a novel framework SYRFAwhich leverages
the plentiful knowledge of synthetic data by learning the
domain-invariant representation without reliance on any
generation.

• We propose the Residual Additional Parameters (RAP)
which is effective for the VAD task and hase fewer com-
putational burdens. The RAP shows effective adaptation
abilities from the synthetic domain to the real domain.

• Our SYRFA demonstrates the effectiveness of the
proposed framework on VAD benchmark datasets.
In the ablation study, extensive experiments show that
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the proposed framework and RAP perform significant
results without any generation model.

II. RELATED WORK
A. VIDEO ANOMALY DETECTION
The purpose of VAD is to detect abnormal events in
videos. Traditional VAD methods [8], [9], [10], [11] mainly
rely on hand-crafted features or classical machine learning
techniques. For instance, Adam et al. [8] describe the
normal local histogram of optical low-level observations.
Cong et al. [10] introduce a sparse reconstruction cost to
measure normality. However, these methods face challenges
in handling complex scenarios. Recently, deep learning
methods [6], [12], [13], [14], [15], [16], [17], [18] have
demonstrated superior performance, leveraging the powerful
representation abilities of neural networks. Many studies,
including reconstruction and prediction methods, train on
the normal distribution and aim to detect out-of-distribution
events, considering the lack of abnormal scenarios in real
datasets. Reconstruction-basedmethods [15], [19], [20] focus
on restoring the input frames and detecting the abnormalities
through high reconstruction errors. Hasan et al. [19], for
example, use an autoencoder to extract the features and
calculate the scores based on the reconstruction errors.
In contrast, prediction methods [14], [16], [21] emphasize
temporal consistency. These methods learn to predict missing
frames and identify the anomalies through the difference
between the ground truth and the predicted frame. However,
due to the powerful generalization capabilities of deep neural
networks, their outputs are well generated and challenging to
distinguish from the corresponding ground truth. To address
the limitations of poor abnormal scenarios in real datasets,
Acsintoae et al. [5] release the synthetic dataset. Studies on
synthetic data propose novel approaches for generating real-
to-synthetic and synthetic-to-real samples. However, these
approaches have two limitations as they do not consider
domain-invariant representation to reduce domain differences
and require additional generation models such as VAE and
Cycle-GAN. In this work, we present a novel framework to
alleviate these issues.

III. PROPOSED METHODS
Our method is divided and organized into (1) learning the
synthetic knowledge and (2) adaptation to the real domain.
The feature extractor is trained on synthetic data for learning
the various combinations of scene and action categories in
advance (learning on synthetic knowledge). Subsequently,
our network is adapted to the real domain using a self-
supervised manner for reducing the synthetic-real domain
gap (adaptation to real domain). To address the domain gap,
we leverage the proposed RAP which can obtain transferable
feature representation based on synthetic knowledge.

A. LEARNING ON SYNTHETIC KNOWLEDGE
In contrast to real datasets, which suffer from imbalanced
information distribution between normal and abnormal

scenarios, synthetic datasets offer rich diverse scenarios.
Therefore, the goal of this section is to present various scenar-
ios using synthetic data that mimic real-world occurrences.
As shown in Fig. 2, the propagation of learning on synthetic
knowledge is indicated as a red arrow path. The input consists
of synthetic data obtained from object-level frames using
an object detector, represented as X s ∈ RC×T×H×W where
C,T ,H ,W represent channel size, temporal length, height,
and width, respectively. The normal and abnormal frames
within the synthetic data are denoted as X snor and X sabn,
respectively. The feature extractor network and n-th block
of feature extractor denoted by fθ (·) and f nθ (·), respectively.
The classifier for classification loss is represented as fφ . The
feature extractor comprises three blocks and yields two types
of representations: the feature representation of the input and
the augmented feature representation via the augmentation
technique from [22]. It can be formulated as

O1,O′

1 = f 1θ (X
s), (1)

O2,O′

2 = f 2θ (O1,O′

1), (2)

O,O′
= f 3θ (O2,O′

2). (3)

Three loss functions guide the training of our feature
extractor using synthetic data X s. First, given the annotated
labels of synthetic data, the network learns the classification
loss function, which includes the cross-entropy function. This
can be formulated as

Lcls = CE(fφ(O), y) + CE(fφ(O′), y), (4)

where CE is the cross entropy function and y represent the
annotated label corresponding to X s.

Second, taking inspiration from [7], the authors propose
the learnable consistency loss for test-time training domain
generalization. The consistency loss has proven effective in
reducing the domain gap between synthetic and real domains.
We employ this learnable consistency loss as follows

Lcont =∥ fc(O− O′) ∥2 . (5)

fc is the learnable parameter for aligning with classification
loss. It can be represented as

gcls = ∇θ (CE(fφ(O), y) + CE(fφ(O′), y)), (6)

gsub = ∇θ (∥ fc(O− O′) ∥2), (7)

Lc =∥ ĝcls − ĝsub ∥2, (8)

where ĝ(·) denote the normalized gradients.
Third, to enhance feature representation, we introduce

an auxiliary loss by solving temporal jigsaw puzzles. This
approach [23] has demonstrated its effectiveness in VAD.
It can formulated as

Laux =
1
lt

1∑
lt

CE(Ti, ft (ti)) (9)

where Ti, ti and ft are the ground truth, predicted position
outputs on X snor input and temporal classifier, respectively.
The alignment between the consistency and classification loss
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FIGURE 2. The architecture of SYRFA consists of a feature extractor and RAP block. Red arrow propagation is the stream of learning on
synthetic knowledge (Phase 1) and Blue arrow propagation is the stream of adaptation on the real domain (Phase 2). In phase 1, the
network is optimized on three losses. In phase 2, the network is trained on two losses. The feature extractor blocks 1, 2, and 3 are
constructed almost the same but add the AdaIN technique on blocks 1, 2.

is crucial for guiding the feature representations during the
adaptation to the real domain phase.

The networks of the feature extractor and classifier are
optimized by minimizing the above losses, and this can be
represented as

min
fθ,φ

Lcls + Lcont + Laux . (10)

Additionally, the learnable parameters of consistency loss are
trained by minimizing the Lc and can be formulated as

min
fc
Lc. (11)

The AdaIN augmentation technique is employed to extract
features that emphasize content information. Utilizing these
distinctive features, our feature extractor is trained to priori-
tize content features more robustly. This is achieved through
the classification loss of O and O′, which possess different
scene information but similar content features. To impose
more constrained learning, we introduce a consistency loss
in conjunction with the classification loss. This additional
loss function ensures close distances between O and O′,
guiding the learning process to align with the same direction
as the classification loss. Furthermore, the feature extractor is
configured to enhance feature representation by learning the
temporal order of normal input. This additional configuration
contributes to the overall robustness and temporal coherence
of the feature extraction process.

B. ADAPTATION TO REAL DOMAIN
In this section, our primary objective is to align features
between the real and synthetic domains. Optimizing on solely
classification loss leads to easily overfitting problems due
to accessing only normal real data. To mitigate the domain
shift, we introduce a pretrained consistency loss, which is
aligned with the classification loss on synthetic data and new
additional parameters called RAP. Our RAP consists of the
residual path unlike [7]. The residual architecture is used to
learn local patterns [24]. In the VAD task, such local patterns
are essential because circumstantial feature representation
is acquired along with details of object motion. Therefore,
we design RAP which is more suitable for VAD.

The weights of the pretrained feature extractor from
the prior phase are kept fixed. The adaptation process is
visualized as the blue arrow path in Fig. 2. The normal input
of real data which is obtained from object-level frames by
using an object detector is denoted as X r ∈ RC×T×H×W

where C,T ,H ,W represent channel size, temporal length,
height and width, respectively. The RAP block and n-th RAP
block are represented as fτ and f nτ . The network for adaptation
can formulated as

H1,H ′

1 = M1(X r ), (12)

H2,H ′

2 = M2(H1,H ′

1), (13)

H ,H ′
= M3(H2,H ′

2), (14)

Mn(Hn) = f nτ (f
n
θ (Hn)). (15)
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Additionally, the weight of the RAP block has the same
size as the input and is denoted as wnτ ∈ Rc×t×h×w, where
c, t , h, and w represent the channel size, temporal length,
height, and width of the input to the RAP block. This can
be formulated as

f nτ (r) = r × wnτ + r, (16)

where r and × are the input of RAP block and elementwise
multiplication, respectively. The output of the RAP block,
f nτ (r) ∈ Rc×t×h×w, has the same size as the input
because the RAP block activates the feature by elementwise
multiplication and is designed to act as a residual path.

To avoid overfitting problems and promote rich feature
representation, we apply two self-supervised loss functions
during the adaptation phase on real data X r . These loss
functions are consistent with those from the prior phase:
consistency and temporal auxiliary loss. The networks of
the RAP block and the auxiliary classifier are optimized by
minimizing the consistency and auxiliary losses, formulated
as

min
fc,τ

Lcont + Laux . (17)

C. TOTAL LOSS FUNCTIONS AND INFERENCE
The proposed SYRFA framework is trained in two phases
with a minimal number of additional parameters for adap-
tation, eliminating the need for large additional models such
as VAE and Cycle-GAN. The total loss functions consist of
the classification, consistency, and auxiliary losses. Our two-
phase loss functions can be formulated as

Lphase1 = λclsLcls + λcontLcont + λauxLaux , (18)

Lphase2 = λcontLcont + λauxLaux . (19)

Given unseen data, the input is first passed through the
feature extractor, and then the output is processed through a
classifier, resulting in a score

Score = fφ(fθ (Xunseen)). (20)

Following in [13], the instance-level anomaly scores are
assembled into an anomaly map with the same shape as the
input frame. The frame-level anomaly score is obtained by
taking the maximum value in each frame of the anomaly map.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
We evaluate the experimental results of our method on real
datasets widely used in the VAD task.

UCSD Ped2 contains 16 training videos and 12 testing
videos with fixed locations. It includes abnormal events in
testing videos such as skateboarding, riding bikes and riding
vehicles, etc. Each video has a resolution of 240×360 pixels
in gray scale.

Shanghai Tech is a large-scale dataset that contains
330 training videos which contain only normal events and
107 testing videos which include both normal and abnormal

events such as fighting, riding bikes, and robbery, etc. Addi-
tionally, It captured 130 abnormal scenarios with 13 different
locations. The video frames are 480 × 856 resolutions.

1) EVALUATION METRIC
We employ the Area under ROC curve (AUC) with respect
to the ground-truth annotations to evaluate the frame-level
performance of our framework. Excellent anomaly detection
method has a high AUC value. For AUC results, we first
obtain the anomaly scores for all video frames and then
calculate the scores globally for each dataset.

B. TRAINING DETAILS
To extract the object-level input frames, we employ the
object detector named YOLOv3 which is pretrained on the
MS COCO dataset. Following [6], the equivalent object
detector, YOLOv3, is used which allows for fair comparison.
We follow [13] to set the confidence thresholds which are
0.5 and 0.8 for Ped2 and Shanghai Tech during inference.
For synthetic dataset supervised learning, we set the synthetic
data confidence thresholds 0.5, and 0.9 for Ped2, Shanghai
Tech. The cycle of phase 2 learning is executed per 20 and
10 training iterations for Ped2 and Shanghai Tech. The input
size is lt × 64 × 64 × 3 where lt is the length of frames.
Adam optimizer is used with β1 = 0.9 and β = 0.999. The
learning rates for optimizing Lphase1,Lc and Lphase2 are 1e-5,
1e-6 and 1e-6. The architecture of the feature extractor is the
same as [13] and we finetune the pretrained network [23] on
each VAD dataset.

C. ANOMALY DETECTION RESULTS
In Table 1, we provide a comprehensive comparison of our
SYRFA frameworkwith state-of-the-art (SOTA)methods [5],
[6], [12], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [37], [38], [39] in terms of frame-level AUC
(%). We further categorize the SOTA methods into four
categories, including reconstruction and prediction-based
methods, which have dominated the field of VAD. Among
the SOTA methods, [6] and [36] leverage the object-level
input frames through FPN and YOLOv3 object detectors,
respectively. The others employ the resized frame-level input
frames without object detectors.

1) RESULT ON UCSD PED2
UCSD Ped2 is one of the most popular benchmarks of VAD.
Most SOTA methods achieve over 90% AUC on this dataset,
and the differences between these methods are relatively
small. Our SYRFA is slightly lower than the method but
shows correspondingly good results when compared to SOTA
methods.

2) RESULT ON SHANGHAITECH
The ShanghaiTech dataset is a large-scale dataset encompass-
ing various scenes and events. As presented in Table 1, our
SYRFA surpasses SOTA methods with an AUC of 84.6%,
outperforming previous methods by amargin of 0.8%. Unlike
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FIGURE 3. Frame-level scores and anomaly localization examples for a test video from the Shanghai Tech and Ped2 dataset. The blue line is anomaly
scores and the red bar plot means the corresponding ground truth. The example is 07_0006 test video from the Shanghai Tech dataset (Left). The example
is the 03_0061 test video from the Shanghai Tech dataset (Middle). The example is 02 test video from the Ped2 dataset (Right).

UCSD Ped2, Shanghai Tech contains multiple scenes and
diverse anomaly types [5]. In particular, our SYRFA performs
significantly better than other SOTAmethods on the Shanghai
Tech, indicating that the proposed method generalizes well
when applied to a real-world environment.

D. ABLATION STUDIES
1) COMPONENTS ANALYSIS
To evaluate the contributions of different components in
our proposed SYRFA framework, we conducted a series of
ablation experiments on the ShanghaiTech dataset. In Table 2,
we present the results of these experiments.

• Experiment 1: This experiment uses only the classifi-
cation loss from Phase 1 and achieves an AUC of 83%.

• Experiment 2, 3: By adding separately both temporal
auxiliary loss and consistency loss from Phase 1, the
performance increases by 0.2% and 0.3%, respectively.

• Experiment 4: This experiment incorporates both
temporal auxiliary loss and consistency loss, resulting in
significant performance improvement, highlighting the
importance of combining these two losses.

• Experiment 5: In the comparative analysis between
Adaptive Parameters (AP) [7] and our proposed RAP,
we conduct experiments involving AP. The obtained
results reveal an increase, yet the performance remains
suboptimal.

• Experiment 6: In this experiment, we introduce the
Residual Additional Parameters (RAP) component,
which plays a crucial role in reducing the domain gap.
When all parts are combined, SYRFA achieves the
best performance with an AUC of 84.6%. Particularly,
the observed improvement in results demonstrates the
effectiveness of the proposed framework and RAP.

2) HYPERPARAMETER ANALYSIS
The overall loss function contains three hyperparameters,
called λcls, λcont and λaux . We explore the optimal hyperpa-
rameter setting and report the results in Table 4. Experiment

1 represents the outcome of a standard experiment with all
hyperparameters set to 1. Experiments 2-3 are conducted by
modifying only hyperparameter λcont , while Experiments 4-
6 are executed by altering only the hyperparameter λaux .
Subsequently, Experiments 7-9 involve various combinations
of the modified λcont and λaux . From the experimental
results, it becomes evident that while the outcomes distinctly
enhance performance depending on λaux , adjusting λcont
produces poor results. Consequently, the hyperparameters
corresponding to Experiment 6, where only the λaux is
modified, are implemented. This yields a result that is 1.5%
higher than the outcome of the standard Experiment 1.

3) AUPRC AND MAX-F1 ANALYSIS
To elaborate comparison with SOTA methods [12], [31],
We investigate additional evaluation metrics such as Area
Under the Precision-Recall Curve (AUPRC) score and Max-
F1 score which is the harmonic mean of precision and
recall. For the Max-F1 score, we report the maximum F1
score from the results of all thresholds. Likewise AUC
metric, We aggregate the anomaly scores of all video frames.
A higher score (AUPRC and F1) indicates better anomaly
detection performance. As shown in Tab. 3, the performance
of our SYRFA on AUPRC and Max-F1 scores else except
Max-F1 in ShanghaiTech achieve significant results. This
demonstrates that our method is a more effective framework
from AUC as well as AUPRC and F1 metric perspectives.
For the ShaghaiTech, the performance of our SYRFA does
not show optimal results. Because the ShanghaiTech includes
various scenes, the combinations between object contents and
backgrounds are complicated. However, our SYRFA achieves
competitive compared with other methods.

4) COMPARISON WITH EXISTING FEATURE ALIGNMENT
METHOD
Our SYRFA framework is designed to alleviate domain
shift through feature alignment. Consequently, it is crucial
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TABLE 1. Comparison with state-of-the-art methods in terms of micro-AUROC (%). The best and second-best results are shown in bold and underlined,
respectively. The methods are divided into four categories which contain reconstruction, prediction, synthetic, and others.

to compare our feature alignment methodology with other
existingmethods to substantiate its effectiveness. Liu et al. [6]
primarily focus on generating abnormal samples for VAD,

with feature alignment applied incidentally through the use
of the Gradient Reversal Layer (GRL). In our SYRFA,
we incorporate GRL with domain labels to substitute the
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TABLE 2. The results on ShanghaiTech for components experiments.

TABLE 3. AUPRC and Max-F1 scores of the anomaly detection results.

remaining loss while preserving the classification loss. The
experimental results, presented in Table 5, demonstrate the
significant performance of our SYRFA across all datasets.
This finding underscores the limitations of relying solely on
feature alignment through GRL, emphasizing the necessity
for a more detailed feature alignment approach. Therefore,
SYRFA has the ability to learn domain-invariant representa-
tions through advanced feature alignment without generating
abnormal samples. Also, This implies a reduction in domain
shift when applying synthetic knowledge to the real data
domain.

5) FEATURE DISTANCE ANALYSIS
We conducted an experiment measuring the L2 distance
between the original input and augmented input using AdaIN,
which is a part of our proposed RAP. This experiment aims to
demonstrate the effectiveness of RAP in handling the domain
gap. As shown in Fig. 4, RAP results in a smaller distance
compared to previous adaptive parameter approaches on
VAD datasets. This finding suggests that RAP significantly
contributes to obtaining transferable feature representations
and effectively addressing domain gaps.

E. VISUALIZATION
To validate our approach, we generated anomaly scores
for the test data and conducted visualizations of frame-
level anomaly scores as well as an example of anomaly
localization. We represent the results of this validation using
ShanghaiTech and Ped2 datasets in Fig. 3.
In the three examples provided, it is evident that the output

scores for abnormal events consistently exhibit higher values
than the output scores for normal events. This distinction
in output scores highlights the discriminative power of

TABLE 4. The results on ShanghaiTech of hyperparameter experiments.

FIGURE 4. A comparison of additional parameters methods between our
proposed RAP and [7]. The blue bar is the L2 distance of features with the
proposed RAP and the red bar means the L2 distance of features with [7].

TABLE 5. The experiments for comparison feature alignment methods.

our SYRFA framework in effectively identifying anomalies
within video data.

These visualizations provide a qualitative assessment of
the effectiveness of our approach in detecting anomalies
within video data, demonstrating its potential for real-world
applications in video anomaly detection.

V. LIMITATIONS
While our framework has shown improvements without
relying on a generation model, we acknowledge that there
are certain limitations in addressing the complexities of the
VAD task. VAD exhibits a scene-dependent nature, implying
that what may be considered anomalous in one scene, such as
riding a bicycle on a pedestrian road, could be entirely normal
in another, like a dedicated bicycle lane. However, our current
feature extractor has been primarily designed to emphasize
the acquisition of content-related features, primarily through
the use of the AdaIN technique. These results can be
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inferred from theMax-F1 score for the ShanghaiTech dataset.
Furthermore, the application in real-world environments,
characterized by a wider range of diverse scenes, may lead to
misjudgments or errors in anomaly detection. Consequently,
our future work will be dedicated to extract scene-specific
information by eliminating content information from input
features within our framework.

VI. CONCLUSION
In this paper, our objective is to attain a domain-invariant rep-
resentation, facilitating the application of knowledge derived
from synthetic data to real-world scenarios. We address
this challenge through cross-domain feature alignment. Our
proposed framework comprises two key stages: ‘‘Learning on
Synthetic Knowledge’’ and ‘‘Adaptation to Real Domain.’’ In
the former, we leverage rich data and annotated labels from
synthetic sources. The latter involves the network learning
domain-invariant representations in a self-supervisedmanner,
aimed at mitigating domain shift when exposed to real data.
Additionally, we introduced Residual Additional Parameters
(RAP), specifically designed for enhanced transferability in
the Video Anomaly Detection (VAD) task. As a result, our
feature alignment-based method, which does not rely on
additional generation models, has shown effectiveness in the
VAD dataset. However, our proposed framework exhibited
limitations as it excluded scene-specific information, focus-
ing solely on content-related information. In our future work,
we plan to explore methodologies that obtain scene-related
feature representations by eliminating content information
from input features and introducing both content and scene
information.
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