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ABSTRACT Recent efforts on person re-identification have shown promising results by learning
discriminative features via the multi-branch network. To further boost feature discrimination, attention
mechanism has also been extensively employed. However, the branches on the main level rarely
communicate with others in existing branching models, which may compromise the ability of mining diverse
features. To mitigate this issue, a novel framework called Hierarchical Attentive Feature Aggregation (Hi-
AFA) is proposed. In Hi-AFA, a hierarchical aggregation mechanism is applied to learn attentive features.
The current feature map is not only fed into the next stage, but also aggregated into another branch, leading to
hierarchical feature flows along depth and parallel branches. We also present a simple Feature Suppression
Operation (FSO) and a Lightweight Dual Attention Module (LDAM) to guide feature learning. The FSO
can partially erase the salient features already discovered, such that more potential clues can be mined by
other branches with the help of LDAM. By this manner, the branches could cooperate to mine richer and
more diverse feature representations. The hierarchical aggregation and multi-granularity feature learning are
integrated into a unified architecture that builds upon OSNet, resulting a resource-economical and effective
person re-identification model. Extensive experiments on four mainstream datasets, including Market-1501,
DukeMTMC-reID, MSMT17, and CUHK03, are conducted to validate the effectiveness of the proposed
method, and results show that state-of-the-art performance is achieved.

INDEX TERMS Attention, diverse features, feature aggregation, person re-identification.

I. INTRODUCTION
Person re-identification aims to match a specific person
captured by non-overlapping cameras, or across time using
the same camera. In many surveillance applications, such
as cross-camera tracking [1] and multi-person associa-
tion [2], person re-identification serves as a fundamental
technique and it is generally considered as an image retrieval
problem. Despite great progress in recent years, person
re-identification still remains an open research challenge.
Due to large appearance variation arising from viewpoint
changes, varying illumination conditions, occlusion, and
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complex background, it is rather difficult to match cross-view
image pairs.

Extracting discriminative features that fully characterize
the query person, and distinguish from others at the same
time, is of vital importance for any person re-identification
systems. Owing to remarkable ability of learning discrim-
inative features, solutions based on Convolutional Neural
Networks (CNNs) have become the mainstream for person
re-identification [3], [4]. In practice, because global features
are prone to ignore the information of small regions, it has
been a trend to fuse global features with part-based local
features [5], [6]. These local features are generally learned
from multi-branch architectures with supervision, they can
help re-identification models focus on fine-grained details
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in each individual local part. Thus higher performance
can be achieved when comparing to merely use global
features [7], [8].

To further enhance the discrimination of feature repre-
sentations, the visual attention mechanism has also been
introduced into person re-identification [9], [10], [11], [12].
By endowing more distinguishable patterns with higher
weights, attention mechanism equips networks with the
ability of laying emphasis on more informative regions. In the
meantime, the irrelevant background interference would
be suppressed. Therefore, representations strengthened by
attention mechanism can better represent pedestrian images
and provide more distinguishable information.

Despite observed effectiveness of adopting local features
and visual attention mechanism, there are two shortcomings
of most existing person re-identification approaches. First,
the branches on the main level rarely communicate with
others in existing branching networks, the ability of finding
potential clues remains improvement. Second, the widely
used branching architecture usually brings high computa-
tional cost at the time of boosting performance. Especially
in some works like [6] and [7] that several convolutional
blocks are duplicated, or in [10] and [11] that heavy
matrix multiplications are executed for attentions, the model
complexity may increase greatly.

In this paper, we propose to address above problems by
hierarchically aggregating features based on the Omni-Scale
Network (OSNet) [13]. Technically, we first introduce a
hierarchical feature aggregation strategy to progressively
combine multi-scale features. The pre-stage feature map
is not only fed into the next stage in current branch,
but also aggregated into another parallel branch. In this
way, the semantic and detail information at different stages
and different branches are aggregated. During aggregation,
a Feature Suppression Operation (FSO) is applied to partially
erase feature maps with the aim of mining more diversified
features. Intuitively, the erased regions generally correspond
to the areas where network has strong activations, so other
potential clues would stand out in the next branch. As a
result, the branches are forced to work together, and all
salient features can be extracted in a branch-by-branch
manner. Besides, we also design a novel lightweight attention
module to guide feature learning. Comparing to other
typical attentions, the number of parameters and computation
complexity are significantly reduced. To better leverage
the multi-branch structure, the final feature maps in each
branch are processed via different pooling strategy to obtain
global, multi-granularity part-based, and channel-based
features.

We name our model Hierarchical Attentive Feature
Aggregation (Hi-AFA). Taking the advantage of lightweight
OSNet [13] architecture, the number of parameters is kept
in a low magnitude by using it as backbone. We note
that our Hi-AFA is not restricted to the usage of OSNet,
other lightweight architectures can also be employed as the
backbone.

The main contributions of our work can be summarized as
follows:

(1) We design a novel hierarchical feature aggregation
framework (Hi-AFA), which aims to generate more discrim-
inative features by combining the features of different levels
and branches. By partially erasing feature maps via Feature
Suppression Operation (FSO), the branches can cooperate to
mine richer and more diversified features.

(2) We design a Lightweight Dual Attention Module
(LDAM), which contains two complementary parts: Spatial
Attention Module (SAM) and Channel Attention Module
(CAM). Due to the adoption of group convolution, it has
much less parameters than existing attentions, and the
computational cost is quite low.

We integrate Hi-AFA and LDAM into the OSNet, forming
a resource-economical and effective multi-branch network.
From the branches, diverse features are computed for
person re-identification. We conduct extensive experiments
on four public person re-identification datasets. The proposed
method achieves better performance or comparable results to
a broad range of existing models, while keeping much lower
model complexity.

The rest of this work is organized as follows. Section II
briefly reviews related works. In Section III, the structure of
Hi-AFA and LDAM will be elaborated. Section IV presents
the experimental evaluations and some discussions. Finally,
the whole work is concluded in Section V.

II. RELATED WORK
As one of the most active research areas in computer vision,
a large number of solutions have been reported for person re-
identification [14], [15]. In this section, wewill briefly review
some closely related works, including local feature learning,
attention mechanism, and feature aggregation.

A. LOCAL FEATURE LEARNING FOR PERSON
RE-IDENTIFICATION
The prevailing success of deep learning has made person
reidentification no-exception. The earlier approaches based
on deep learning, such as [3], [16], [17], and [18], naively
applied CNN backbones to extract global features. Due to
the limitation of being prone to ignore local information from
small regions [19], more and more works focus on learning
local features.

To obtain local features, the works in [20] and [21] firstly
partitioned pedestrian images according to some predefined
rules, and then computed local features from each sub-image
separately. This approach is easy to implement, but the
predefined partitions are not often ideally aligned with human
body parts. Instead of using rough partition strategy, some
methods extracted body part features via external clues like
pose estimation and human part parsing. In [22], Zhang et al.
constructed densely semantically aligned part images to assist
feature learning. Rao et al. [23] learned multi-scale skeleton
representations. However, these methods need to detect key
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FIGURE 1. The architecture of Hierarchical Attentive Feature Aggregation (Hi-AFA) model. The OSNet is used as the backbone, and its transition stages
are omitted for simplicity. There are four parallel branches in Hi-AFA, and their numbers of convolution blocks gradually decrease to 1 from branch-1 to
branch-4. The feature maps are not only fed into the next convolution block in current branch, but also aggregated into next branch after suppression.
Multi-granularity part-based local features and global features are computed from the first three branches. For branch-4, global and channel-based
features are extracted, and DropBlock is applied to obtain another feature tensor. All pooled feature volumes are further forwarded to BNNeck to
produce final embeddings.

points or perform semantic parsing with additional models,
extra computation cost is inevitable [24].
Recently, splitting feature maps into a bunch of spatial

parts has become the mainstream [4], [6], [7], [25], [26].
Generally speaking, the feature maps are obtained by
multi-branch deep architectures first, and multi-granularity
features are then acquired by pooling with different sizes.
Part-based Convolutional Baseline (PCB) [4] is a typical
representative of this type, which splits the last feature map
into horizontal stripes of the same size. Multiple Granularity
Networks (MGN) [7] improved PCB by adding a global
branch to utilize the global features. Pyramid [6] learned
multi-granularity features by dividing the final feature map
into a pyramidal partition set. Although impressive perfor-
mance is achieved, the branches mainly work separately in
these works, the capability of mining diverse features is
limited.While in Hi-AFA this is addressed by the aggregation
structure assisted with feature suppression operation.

B. ATTENTION MECHANISM IN PERSON
RE-IDENTIFICATION
The attention mechanism has also been introduced to
person re-identification after success in other computer
vision tasks like visual question answering [27] and scene
segmentation [28]. As attention can guide model to focus
on informative features while suppress irrelevant ones,
it well matches the goal of handling challenges in person
re-identification.

Directly incorporating a separate stream of spatial atten-
tion in deep networks is a common strategy for feature
enhancement [29]. Li et al. [9] proposed a multi-granularity

attention selection mechanism to better select region of
interest. Si et al. [29] captured spatial dependencies among
different pedestrian images by incorporating a correlation
attention module. Chen et al. [30] learned the attention with
counterfactual causality which can measure the attention
quality and provide supervisory signal to guide learning
process. Xun et al. [31] designed a local attention guided
network to extract approximate semantic local features of
human body parts. To better model long range dependencies,
second order non-local attentions are computed in [8]
and [11]. However, one potential limitation is that the
computation cost is a bit high.

Channel-wise attention [32] has also been introduced
to explore the correlations among different channels, the
combination of spatial attention and channel attention can
enhance feature representation further [10], [33]. To this end,
Zhang et al. [34] captured the global structural information
for better attention learning via mining pairwise correlations
among feature positions and channels. Chen et al. [10]
applied orthogonal regularizations to enforce diversity on
attentionmaps. In [35], an attention-guidedmaskmodule was
proposed to address occlusion problem. In [36], holistic and
partial attentions are jointly learned to increase the feature
robustness against pose variations.

C. FEATURE AGGREGATION FOR PERSON
RE-IDENTIFICATION
Feature aggregation is a common strategy to make full
use of features. In deep architectures like ResNet [37] and
DenseNet [38], feature aggregation plays a vital role in reliev-
ing the vanishing gradient problem for feasible optimization.
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In person re-identification, a number of solutions with feature
aggregation have been reported [12], [39], [40], [41].

Chen et al. [12] employed a salience suppression strategy
to mine diverse visual clues at different stages. Xu et al.
[42] aggregated the predictions of multiple networks to
mimic the decision process of multi-experts. Fu et al. [43]
designed an iterative impression aggregation module to
update features for similarity computation. Hou et al. [44]
proposed to enhance feature representations by selectively
aggregating correlated spatial and channel features. The
typical two-stream network is employed to fuse the features
extracted from different spaces in [45] and [46]. Based on
the Vision Transformer (ViT) with impressive capability of
exploiting structural patterns, Zhang et al. [47] proposed a
hierarchical and iterative structure to refine and aggregate
multi-level features. Wang et al. [48] proposed a neighbor
transformer network to model interactions across all input
images. However, one shortcoming of ViT based methods is
that they are thirsty for training samples [49].

The proposed Hi-AFA learns local features via a
multi-branch architecture and it splits feature maps into
horizontal parts. To guide feature learning, both spatial and
channel-wise attentions are included to build a lightweight
dual attention module. Due to the branching architecture,
Hi-AFA might look like PyConv [50], FractalNet [51],
CliqueNet [52], and BranchyNet [53] at first glance.
However, the branches of FractalNet are trained alternately,
which implies the sub-paths still work separately in essence.
The parameters in CliqueNet [52] are recurrently updated
many times, the computational cost is too high. For
BranchyNet and PyConv, there are no aggregations to utilize
features of different stages. The Hi-AFA is also related
to [41] and [47] that sharing the same idea of aggregating
intermediate features. But there are notable differences with
Hi-AFA: (1) A Feature Suppression Operation (FSO) is
applied to partially erase feature maps, thereby allowing the
network to discover diverse visual clues. (2) The attentive
features at intermediate stages are aggregated along both
depth and parallel branches. (3) Multi-granularity part-based
and channel-based features are extracted from the branches
for better utilization.

III. METHODOLOGY
Let T = {I i, yi}ni=1 be a set of training images, where
I i ∈ RH×W×3 is the ith pedestrian image with corresponding
label yi ∈ {1, 2, · · · , c} and c is the number of identities. For
each image, our goal is to compute its rich and diverse feature
representations via a multi-branch architecture. To achieve
this goal, the proposed Hi-AFA relies on a given CNN
backbone and enriches it with hierarchical aggregation
branches. By this manner, more potential clues can be
mined for fine-grained cross-view matching. The overall
architecture of Hi-AFA is illustrated in Figure 1.
Due to outstanding ability of feature extraction, the off-

the-shelf OSNet [13] is utilized as the backbone of Hi-AFA.
Similar to PyConv [50], multiple filters are utilized to learn

FIGURE 2. The bottleneck of OSNet [13]. The Lite 3 × 3 convolution
consists of a 1 × 1 convolution, a depth-wise 3 × 3 convolution, Batch
normalization, and ReLU activation. AG means aggregation gate, which is
a learnable neural network. ×2, ×3, and ×4 represent the Lite
3 × 3 convolution is repeated 2, 3, and 4 times.

diverse features in each convolutional block of OSNet. There
are five convolutional blocks inOSNet, whichwill be referred
to as Conv1 to Conv5 hereafter, and the key component of
them is the bottleneck illustrated in Figure 2. The Conv1
block contains a standard 7 × 7 convolution layer and a 3 ×

3 max pooling layer, both are conducted with stride 2. From
Conv2 to Conv4, each contains two bottlenecks. A transition
block, which serves as down sampler, is followed after Conv2
and Conv3. The Conv5 block contains a 1 × 1 convolution
only. Benefiting from the design of multiple convolutional
feature streams in bottleneck, OSNet [13] outperforms
ResNet50 [37] and its variants (e.g., PyramidNet [54]) with
much lower model complexity on the re-identification task.

Our Hi-AFA can be roughly divided into three parts:
the common OSNet-Conv1&2 blocks, hierarchical attentive
feature aggregation, and final feature processing. Images are
first passed through OSNet backbone, up until its Conv3
block. After forwarding images through the initial layers,
the network forms an upper triangle structure of multiple
branches, which comprise the remaining layers of OSNet up
to Conv5 block. By this design, the layers up to Conv3 are
shared by all the branches. This concept has been employed
in a few person re-identification solutions like [7], [25], and
[26], which can decrease model size effectively. Finally, the
feature volumes in each branch are pooled with different
size, such that we can obtain multi-granularity features. The
part-based local features are computed via average pooling,
and max pooling is utilized to get global features. The key
components of Hi-AFA are detailed in the following.

A. HIERARCHICAL FEATURE AGGREGATION
It has been demonstrated multi-scale feature aggregation can
help to improve person re-identification performance [42],
[44], [47]. However, traditional aggregation operations
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generally only consider aggregating high- and low-level
features. Few efforts have been devoted to the cooperation
of branches for potential clues mining in multi-branch
architecture. In this work, the proposed hierarchical fea-
ture aggregation aims to combine features from different
branches, such that richer and more diverse features can be
explored.

As shown in Figure 1, from branch-1 to branch-4 the
numbers of convolutional blocks gradually decrease to 1 due
to aggregation structure. And extra links are added between
adjacent branches in Hi-AFA, which makes it differ from
previous multi-branch network with independent branches.
By this design, the feature stream also flows along parallel
branches for aggregation. As a consequence, the branches are
forced to cooperate with each other.

Let Fl : RH×W×C
7→ Rd be the feature extraction

function parameterized by a set of trainable parameters Wl ,
where l ∈ {1, 2, · · · , 5} is the stage index of OSNet [13]
backbone, H , W , C are the height, width, and channels of
a tensor. The feature representation of an image I at lth
stage (l ≥ 2) can be denoted as Xb,l = Fb,l

(
I;Wb,l

)
,

where b ∈ {1, · · · , 4} is the branch index in Hi-AFA. If we
denote Fb,l

(
I;Wb,l

)
= 0 (2 ≤ b = l ≤ 4), then the feature

aggregation can be formulated as

Xb,l =A
(
Fb,l−1

(
I;Wb,l−1

))
+ S

(
A

(
Fb−1,l

(
I;Wb−1,l

)))
2 ≤ b ≤ 4, b+ 1 ≤ l ≤ 5, (1)

where A (·) and S (·) represent the computation of attention
and FSO respectively. Here we introduce FSO first, the
attention will be detailed in the next section.

FIGURE 3. A schematic of the proposed feature suppression operation.

Although the branches are enforced to cooperate in the
aggregation structure, they may fall into the trivial salient
features if no extra guidance is provided. To address this
problem, FSO is particularly applied to attentive features
before aggregation, which functions a little like the dropout.
But unlike dropout that randomly chooses units to deactivate,
FSO only filters out high responses, so as to suppress
the salient features discovered in previous branch. Despite
some information loss due to the thresholding process, the
branches are endowed with the ability to mine more potential
visual clues for visual matching, and this is critical to the
re-identification task.

As illustrated in Figure 3, we first apply channel-wise
average pooling to get averaged 2-D feature map Yb,l given
Xb,l , and obtain its normalized version Ȳb,l by min-max
normalization. Then, we compute a thresholding mask Mb,l

as follows:

Mb,l (x, y) =

{
0, if Ȳb,l (x, y) > τ

1, otherwise
(2)

where τ ∈ (0, 1] is a thresholding parameter assigned
manually, and Ȳb,l (x, y) stands for the intensity value at
position (x, y). With obtained Mb,l , the suppressed features
Ỹb,l can be computed as Ỹ cb,l = Y cb,l ⊗ Mb,l (c is the
channel index of Yb,l , and ⊗ represents the elementwise
multiplication). Because there are only simple average
pooling, normalization, and thresholding operation in FSO,
it can be performed efficiently.

Based on the hierarchical aggregation structure, diversified
features can be obtained for person re-identification. First,
the multi-level attentive features in different branches are
recurrently aggregated, thus diversified information can be
utilized. Second, potential important features may stand out
in the next branch after the previous salient feature being
suppressed. The network is thereby enabled to extract all
potential useful features branch-by-branch.

B. LIGHTWEIGHT DUAL ATTENTION MODULE
The proposed Lightweight Dual Attention Module (LDAM)
can be viewed as a variant of the classical Convolutional
Block Attention Module (CBAM) [55], which consists of
Channel Attention Module (CAM) and Spatial Attention
Module (SAM). The two types of attention modules work in
a complementary manner to enhance feature representations.
CAM explores the correlation between channel features, and
SAM aims to capture and aggregate semantically related
spatial features. But LDAM differs from CBAM in atten-
tion computation process, especially the group convolution
employed in CAM and SAM, which leads to much less
parameters than CBAM. As a result, the computational cost is
quite low. Besides, the softmax activation is used in LDAM,
other than sigmoid in CBAM. The detail of LDAM is as
follows.

1) CHANNEL ATTENTION MODULE
It is well known that each channel map of high-level
convolutional feature can be viewed as a class-specific
response, and the responses are generally semantic-related.
In person re-identification task, it will contribute to better
fine-grained recognition if some channels sharing similar
sematic contexts (e.g., foreground and background) are
more correlated. Thus, we group and aggregate those
semantically correlated channels by explicitly exploiting the
interdependencies between channel maps.

FIGURE 4. Structure of channel attention module.
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The structure of CAM is illustrated in Figure 4. Given a
local feature tensor X ∈ RH×W×C , we first squeeze the
spatial dimension with average pooling and max pooling.
It is known that average pooling can well retain structural
information, but it is easily distracted by background inter-
ference. Max pooling overcomes this problem by focusing
on the most salient part, while the cost is some structural
information loss. In CAM, we jointly use them to obtain two
context descriptors of xavg ∈ R1×1×C and xmax ∈ R1×1×C ,
and aggregate them via summation to obtain x̃ = xavg+xmax .
Then, we use group convolution to squeeze the channel size
of x̃ to C/r , where r is a shrinkage parameter. After dividing
x̃ to g independent fractions, we apply 1 × 1 × C/g filters
on each of them and concatenate the resulting intermediate
descriptors. By such group convolution, we can achieve the
typical convolution with much less parameters. Similarly,
a second group convolution layer is applied to restore the
channel size to C . At last, a softmax activation is applied.
The whole procedure of CAM can be formulated as

h = softmax
(
gconv2

(
gconv1 (̃x)

))
, (3)

where gconv1 (·) and gconv2 (·) represent the two group
convolutions. Finally, we can obtain the output of CAM by

Ach = γX ⊗ h+ X, (4)

where γ is a hyperparameter to adjust the impact of CAM.
In equation (4), each position of X is multiplied with h along
the channel dimension.

FIGURE 5. Structure of spatial attention module.

2) SPATIAL ATTENTION MODULE
An illustration of SAM is shown in Figure 5. In contrast
to CAM, SAM captures and aggregates related features in
the spatial domain. Given a local feature map X with size
H × W × C , SAM first obtains a 2-D matrix M ∈ RH×W

by summation over the channels for each spatial position,
i.e., M (x, y) =

∑C
c=0 X

c (x, y). Here, Xc represents the
submap of X at cth channel. Then M is reshaped to 1 ×

1 × HW for convenience of applying two sets of 1 ×

1 convolutions. Similar to the two group convolution layers
in CAM, a context descriptor with the shape of 1×1×HW/r
is obtained after the first convolution, and the second one
restores its shape back to 1 × 1 × HW . After that, a softmax
function is applied, and 2-D attention map H ∈ RH×W

is obtained by restoring the shape back. The value at each
position of H indicates the degree of importance for that
location. Formally, the spatial attention map H is computed
as

H = vec−1 (
softmax

(
gconv2

(
gconv1 (vec (M))

)))
, (5)

where vec (·) and vec−1 (·) represent the vectorization of a
2-D matrix and its inverse operation, respectively. With H ,
the output of SAM can be computed as

Asp = γ

C∑
c=1

Xc
⊗H + X . (6)

It can be found that there are only simple operations
of pooling, 1 × 1 convolution, and softmax in LDAM,
the computational cost is rather low. For CAM and SAM
both, two group convolutional layers are applied, which
make LDAM differ from CBAM [55] in structure. The
usage of group convolutions follows the squeeze and
excitation process in SENet [32], which can enable network
increase its sensitivity to informative features while greatly
reduce the parameters. Consequently, the channel and spatial
dependencies will be better modeled. Besides, softmax rather
than sigmoid activation function is used in two types of
attention modules. This is because softmax can encourage
filters to learn diverse features, hence making the model more
robust.

FIGURE 6. Sequential combination of SAM and CAM in LDAM.

It has been proved that sequential combination of SAM and
CAM can lead to better performance [34], [55], we follow
the same scheme to place SAM in front of CAM for attention
learning (see Figure 6 for illustration). Due to the lightweight
design of LDAM, it is quite flexible and can be easily plugged
into networks multiple times if necessary.

C. FEATURE PROCESSING IN EACH BRANCH
In order to learn multi-granularity features and make a better
usage of them, we employ a simple partition strategy to
obtain global, part-based, and channel-based features. The
final feature maps in each branch are equally partitioned
with different size to get multiple granularity local features.
Both global and local features are extracted from each
branch. In addition, we also extract channel-based features
via channel partition.

To extract part-based local features, we simply divide
the final feature map into nb submaps according to the
number of convolutional blocks in each branch. That is,
nb equals 5, 3, and 2, from branch-1 to branch-3. The local
features

{
pib

}nb
i=1 (B = {1, 2, 3}, b ∈ B) are all acquired

by spatial average pooling, and their shapes are of 24 ×

8 × 512. Additionally, we use max pooling on the initial
feature maps, obtaining global representations

{
gb

}
(b ∈ B)

of 512-dimension. The hybrid usage of average and max
pooling here can help to retain structural information and
obtain robust global feature simultaneously.
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FIGURE 7. Example images randomly chosen from three benchmark datasets. Images in each row are of the same person in each dataset.

For branch-4, we first aggregate the information by global
max pooling on the tensor, resulting a vector g4 ∈ R512.
We also apply the mask computed via DropBlock [56] to the
feature map, the resulting tensor is further applied with global
max pooling. This leads to another vector gdrop ∈ R512.
In addition to g4 and gdrop, two channel-based feature vectors
are also extracted. After reducing the original feature map
using average pooling, we split the resulting 512-dimension
vector into two sub vectors and each has a length of
256. Then, 1 × 1 convolution is used to rescale them to
512-dimension, by which two channel-based vectors c1 ∈

R512 and c2 ∈ R512 are obtained.
During training, the global features in R = {gdrop, gb′}

(B′
= {1, 2, 3, 4}, b′

∈ B′) will be fed into a ranking loss to
learn distance metrics. We also use BNNeck [57] to obtain
I = {̃gdrop, g̃b′ , p̃ib, c̃

k
} (b′

∈ B′, b ∈ B, 1 ≤ i ≤ nb,
k ∈ {1, 2}), by which identity classifiers will be learned.
The BNNeck is comprised of a batch normalization and a
fully connected layer with number-of-classes units. During
inference, the network without BNNeck and classifiers will
be used as a feature extractor, which is utilized to extract
features for all query and gallery images. Then, Euclidian
distance is calculated to perform a standard information
retrieval.

D. LOSS FUNCTIONS
The combination of identification loss, ranking loss, and
center loss [57] is adopted for the optimization of network
parameters.

The cross-entropy with label smoothing [58] is used as
identification loss, which treats each identity as a distinct
class. In each minibatch, the label smoothed cross-entropy is
defined as

Lxe = −
1
N

N∑
i=1

K∑
k=1

(
(1 − ϵ) yki +

ϵ

K

)
log

(
pki

)
, (7)

where ϵ ∈ (0, 1) is a smoothing parameter, N is the mini-
batch size, K is the number of identities, yki and pki are the
ground-truth and predicted probability respectively.

For computation of ranking loss, the multi-similarity [59]
is utilized. As a pair-based list-wise loss function, multi-
similarity loss integrates pair mining and soft weighting
scheme into a single-framework. The multi-similarity loss is

computed as

Lms = −
1
N

N∑
i=1

{
1
α
log [1 +

∑
k∈Pi

exp (−α (Sik − λ)) ]

+
1
β
log [1 +

∑
k∈Ni

exp (β (Sik − λ)) }], (8)

where Sik = ⟨ψ i,ψk⟩ is the dot product of feature vectors
ψ i and ψk , α, β, and λ are manually set hyper-parameters,
Pi and Ni are the selected positive and negative pairs for an
anchor ψ i.
To enhance the compactness of each identity cluster, the

center loss [57] is also included, which is defined as

Lce =
1
2

N∑
i=1

∥ψ i − cyi∥
2
2, (9)

where cyi denotes the center of class yi.
During training, the final loss function is

L = λxe
∑
ψ∈I

Lxe + λms
∑
ψ∈R

Lms + λce
∑

ψ∈I∪R
Lce, (10)

where λxe, λms, and λce are suitable weights that can be
obtained by grid search. The identification loss Lxe, ranking
loss Lms, and center loss Lce are computed over I, R, and
I ∪R, separately.

IV. EXPERIMENTS
In this section, we report the experimental results
of the proposed Hi-AFA on four mainstream person
re-identification datasets, including Market-1501 [60],
DukeMTMC-reID [61], MSMT17 [62], and CUHK03 [63].
Figure 7 shows some randomly selected images. We compare
Hi-AFA with a line of state-of-the-art solutions, and conduct
extensive ablation studies to investigate the effectiveness of
each component.

A. DATASETS
We conduct experiments on the following four widely used
person re-identification datasets.

Market-1501 [60] is currently the most popular person re-
identification dataset, which is captured by six cameras. This
dataset contains 1,501 identities with 32,668 bounding boxes
obtained by the Deform Part Model (DPM) detector. The
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training set contains 751 identities with 12,936 images, and
in the testing set there are 750 identities with 3,368 query
images and 19,732 gallery images.

DukeMTMC-reID [61] contains 36,441 images of 1,404
pedestrians captured by eight cameras. A total of 16,552
images belonging to 702 identities make up the training set,
and the remaining 702 identities along with 408 distractors
make up the testing set. In the testing set, there are 2,268
query images and 17,661 gallery images respectively.

MSMT17 [62] is collected by twelve outdoor and three
indoor cameras. There are 4,101 identities with a total of
126,441 images. It is divided into a training set of 32,621
images and a testing set of 93,820 images. Due to its massive
scale, more complex and dynamic sciences, it is much more
challenging to perform person re-identification on MSMT17.

CUHK03 [63] consists of 14,097 pedestrian images of
1,467 identities captured from two disjoint camera views.
There are two types of bounding boxes in CUHK03, one is
obtained by human annotation, and the other is detected by
DPM. We adopt the splitting protocol of 767/700 identities
for training and testing on this dataset.

B. EXPERIMENTAL SETTINGS
1) IMPLEMENTATION DETAILS
The OSNet [13] initialized with the weights pretrained on
ImageNet is used as our backbone. All images are resized
to 384 × 128 pixels such that more detailed information can
be captured. For both training and testing, the input images
are normalized to channel-wise zero mean and a standard
variation of 1. During training, we adopt a data augmentation
strategy of random cropping, horizontal flip, as well as
random erasing. The model is trained 200 epochs with a
batch size of 64. Each mini-batch consists of 8 identities,
with 8 instances per identity. The Adam optimizer with ϵ =

1 × 10−8, β1 = 0.9, and β2 = 0.999 is used for training.
The learning rate is set to 8 × 10−4 with a weight decay of
5 × 10−4. In LDAM, the shrinkage parameter r is set to 8,
and a group size of g = 8 is used for group convolution.
The hyper-parameters α, β, and λ in equation (10) are set
to 2, 40, and 0.5. The balance parameters λxe, λms, and λce
in equation (10) are empirically set to 0.5, 0.5, and 5× 10−4.
We use the same settings for all considered datasets.

2) EVALUATION METRICS
The Cumulative Matching Characteristic (CMC) at top ranks
andmeanAverage Precision (mAP) are reported as evaluation
metrics. The value at different ranks of CMC shows the
re-identification accuracy by counting the query identities
among the top n results. The mAP reflects the overall
re-identification accuracy by calculating the area under the
precision-recall curve. We note that all experiments are
conducted under the single-shot scenario.

C. COMPARISON WITH STATE-OF-THE-ART METHODS
Table 1 shows the performance of our proposed Hi-AFA and
other state-of-the-arts on Market-1501, DukeMTMC-reID,

MSMT17, and CUHK03. The comparedmethods can be gen-
erally grouped into three categories: discriminative feature
learning based (top of the table), attention based (middle
of the table), and transformer based (bottom). We report
the mAP and CMC values at Rank-1/5 for comparison.
We observe that Hi-AFA achieves superior performance on
multiple benchmarks or competitive results compared to
previous methods.

1) RESULTS ON MARKET-1501
Our Hi-AFA achieves 91.8% mAP and 97.0%/99.0%
Rank-1/5 accuracies on this dataset. Comparing to the
previous best Rank-1 96.3% reported by LightMBN [25],
the improvement is 0.7%. Although the mAP of Hi-AFA is
lower than previous best ABD+NFormer [48], it still ranks
the second. Note that the stunning mAP of ABD+NFormer
mainly comes from NFormer, which improves the mAP
of ABD-Net [10] from 88.3% to 93.0%. As NFormer
can be viewed as a post-processing module, some higher
mAP is natural. We also conduct experiments with Hi-
AFA+NFormer. For each image, the features extracted
via Hi-AFA are concatenated to a representation vector.
NFormer is then applied to all vectors in a mini-batch
to obtain their final representations. Following [48], the
number of neighbors is also set to 20 in Hi-AFA+NFormer.
The obtained mAP and Rank-1 accuracy are as high as
95.4%/97.2% on Market-1501, exceeding other methods
significantly.

Compared to the two representative feature learning based
methods of Pyramid [6] and MGN [7], the improvements of
mAP and Rank-1 accuracy are 3.6%/4.9% and 1.3%/1.3%.
Because Hi-AFA shares similar branching structure with
them, we believe the improvements should be attributed
to the aggregation structure and attention modules. Among
the methods based on attention or transformer, IANet [44],
SCSN [12], and HAT [47] all embrace the aggregation
strategy to make better use of multi-scale features. Whereas
our Hi-AFA outperforms all of them, which demonstrates
the encouraging ability of learning discriminative features in
Hi-AFA.

2) RESULTS ON DUKEMTMC-REID
Hi-AFA achieves competitive results on this dataset. The
mAP of Hi-AFA is 82.9%, which ranks the second among
all methods. The highest score is 85.7%, reported by
ABD+NFormer [48] again. On the most important Rank-
1, Hi-AFA achieves the same score with AdaSP [67] and
BPB(Res50-IBN) [70], all report 91.7% matching accuracy.
When Hi-AFA is welded with NFormer, the mAP and
Rank-1 are improved to 91.1% and 94.0%, outperforming
all others significantly. Compared with SCSN [12] and
HAT [47] that aggregate information via cascaded attentions
or transformers, the superiority of Hi-AFA is obvious.
The mAP and Rank-1 are improved by 3.9%/1.5% and
0.7%/1.3%. Both of them have to undertake heavy com-
putation burden to mine diverse features, while in Hi-AFA
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TABLE 1. Performance comparison of Hi-AFA with the state-of-the-art methods on Market-1501, DukeMTMC-reID, MSMT, and CUHK03 datasets. R1/5
indicates Rank-1/5 accuracy. In each column, the highest score is marked in bold, and the second-best is underlined.

this is achieved by simple but effective hierarchical feature
aggregation and FSO.

3) RESULTS ON MSMT17
Our Hi-AFA achieves the best mAP (71.9%) and Rank-1
(87.6%) over all previous competitors. The previous best
is TransReID [74], which reports 69.4% mAP and 86.2%
Rank-1 accuracy. Although TransReID benefits from the
transformer-based learning structure, Hi-AFA outperforms
it with 2.5%/1.4%. On top of that, much higher perfor-
mance of 76.7% mAP and 90.2% Rank-1 accuracy can
be obtained by Hi-AFA+NFormer. From Table 1, we can
also observe that Hi-AFA has obvious superiority over
other multi-branch feature learning based and attention-
based models. Take the feature learning based AdaSP [67]
for example, its mAP and Rank-1 are 67.1% and 85.5%,
while our Hi-AFA exceeds it by 4.8% and 2.1%. When
compared with attention based DCA [69], the improvements
are even higher. The results on MSMT17 demonstrates the
scalability of Hi-AFA on such a huge person re-identification
benchmark.

4) RESULTS ON CUHK03
As shown in Table 1, Hi-AFA achieves the best in terms of
both mAP and Rank-1 accuracy, which gives 85.4%/83.6%
mAP and 87.9%/85.5%Rank-1matching accuracy on labeled
and detected settings respectively. The previous best was
reported by APNet [72], which gives 85.3%/81.5% mAP
and 87.4%/83.0% Rank-1 accuracy. The improvements are
0.1%/2.1% for mAP, and 0.5%/2.5% for Rank-1 accuracy.
With the support of NFormer, the results can be boosted to
88.7%/86.4% and 89.5%/88.6%. Compared to the backbone
OSNet [13], Hi-AFA improves themAP and Rank-1 accuracy
by as large as 15.8% and 13.2% under the detected
setting, which justifies the superiority of aggregating attentive
features.

D. ABLATION STUDY
In the following, we systematically investigate the effective-
ness of each key component of Hi-AFA, namely hierarchical
feature aggregation, FSO, LDAM, alongwith the final feature
processing. Experiments are conducted on all four considered
datasets. OnCUHK03, only the labeled version (CUHK03-L)
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TABLE 2. Results of different sub-models and backbones on four considered datasets (%), the highest score in each column is marked in bold.

FIGURE 8. Performance comparison of Hi-AFA under different FSO embedding settings. w/o means without FSO, Ci means FSO is embedded after the
i th convolution block, and C2-C4 means from convolution block 2 to 4.

is considered, since the two types of bounding boxes are from
same source. The results are obtained with only one setting
changed and the rest remain the same.

1) EFFECT OF HIERARCHICAL FEATURE AGGREGATION
The hierarchical feature aggregation structure plays an impor-
tant role in the proposed Hi-AFA model. To investigate its
effectiveness, different sub-models of Hi-AFA are evaluated.
We use the branch-1 in Hi-AFA as basic model, and

then gradually add other branches to it. The Hi-AFA with
independent branches (denoted as Hi-AFA-BrIndep) and
backbone OSNet [13] are also evaluated for comparison.1

Note that in Hi-AFA-BrIndep, only the first links between
branches are kept, all later ones are discarded. Thus the
branches work independently.

1OSNet did not report results on CUHK03-L. We obtain them by
ourselves.
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FIGURE 9. Variation of mAP (a), and Rank-1 accuracy (b) with respect to parameter τ on each dataset.

FIGURE 10. Performance comparison of (a) Hi-AFA with (w/) and without (w/o) LDAM, (b) I and R feature sets.

Table 2 demonstrates the results of each sub-model.
We observe that with merely branch-1 quite encouraging
results can be achieved. For example, it gives 87.6% mAP
and 95.3%Rank-1 accuracy onMarket-1501, which are 2.7%
and 0.5% higher that the results of backbone OSNet [13].
By gradually adding other branches, the re-identification
performance increases accordingly on all datasets. This
proves that the feature aggregation structure in Hi-AFA can
lead to significant performance improvements. From Table 2
we can also find that the mAP and Rank-1 of Hi-AFA-
BrIndep are obviously lower than full-state Hi-AFA with
all links (i.e., branch-{1, 2, 3, 4}). This indicates that the
lateral links between adjacent branches are vital to the final
re-identification performance, because they could enforce
the branches cooperate with each other to explore more
potential clues. While in Hi-AFA-BrIndep the branches work
independently with no correspondence, the performance
drops in consequence.

In the bottom of Table 2, the results of Hi-AFA with
two other widely used backbones of ResNet-50 [37] and
DenseNet-169 [38], are also reported. We first evaluate them
as backlines, and then apply our Hi-AFA in these backbones.

We observe that consistent improvements can be achieved
on both of them, which indicates Hi-AFA is effective for
different backbones. In general, the DenseNet-169 performs
slightly better than ResNet-50, but they are all inferior to
OSNet. Therefore, OSNet is our first choice of backbone.

2) EFFECT OF FSO
To demonstrate the effect of feature suppression, we evaluate
Hi-AFA with different FSO embedding strategies, including
without FSO (w/o), the main architecture equipped with FSO
after Conv2 to Conv4 in backbone network (C2, C3, and
C4), and different combinations of them at consecutive stages
(C2&C3, C3&C4, and C2-C4).

From the evaluation results shown in Figure 8, we can
draw the following observations. (1) FSO can boost the
re-identification performance effectively. With FSO embed-
ded, both mAP and Rank-1 accuracy can be obviously
improved. For instance, even the weakest embedding strategy
of C2 can bring 0.2% mAP gain on Market-1501 dataset. (2)
The later stage FSO is embedded, the higher performance
gain will be acquired. This is a natural result. It is well
known that the higher-stage convolutional features are more
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TABLE 3. Comparison of different attentions (%).

category-related than shallow layers. By embedding FSO into
latter stages of CNNbackbone,more diverse and discriminant
features can be obtained, thus resulting better matching
results. (3) The combination of FSOs can further boost
the re-identification performance. Similar to the usage of
single-stage FSO, the combination of C3&C4 also performs
better than C2&C3, demonstrating the superiority of later
feature suppression again. By plugging FSO into all stages,
C2-C4 gives the highest results on all datasets. Comparing to
the model without FSO, the improvements are 1.6%/1.2%,
2.5%/2.2%, 4.2%/2.1%, and 2.8%/2.5% respectively. This
comparison justifies the effectiveness of mining diverse
features by FSO.

3) FEATURE SUPPRESSION THRESHOLD ANALYSIS
The parameter threshold τ in FSO controls the degrees
of feature suppression operation in Hi-AFA, so it is of
vital importance to choose a proper threshold. With a
low threshold, too much features will be erased, which
is harmful to feature learning. On the contrary, a high
threshold may limit the removal of enough features, the
branches cannot cooperate well to mine new significant
ones. To carefully choose the optimal value of threshold τ ,
we conduct experiments by varying its value from 0.1 to 1 and
plot the corresponding mAP and Rank-1 in Figure 9. It can
be observed that results on four datasets generally present a
similar trend. Both mAP and Rank-1 accuracy increase when
threshold τ grows larger at the first stage, and highest scores
are obtained roughly at τ = 0.7. Butwhen τ keeps increasing,
the performance begins to degrade. Therefore, we set τ to
0.7 for performance consideration.

4) EFFECT OF LDAM
In the proposed Hi-AFA, LDAM plays an important role
of guiding feature learning. To investigate its effectiveness,
we conduct comparative experiments of Hi-AFA with and
without LDAM. Under the setting of Hi-AFA without
LDAM, all attention modules are removed for a clean
comparison. The result is shown in Figure 10 (a). It can
be found that, Hi-AFA consistently outperforms the model
without LDAM by a large margin. With the guidance of
LDAM, the mAP is improved by 2.0%, 1.4%, 3.7%, 3.1%,
and Rank-1 accuracy is also promoted by 1.3%, 1.1%, 1.8%,
2.8% on each dataset. This demonstrates that LDAM can
effectively guide Hi-AFA to learn discriminative and robust
features for cross-view matching.

In addition to experiments of utilizing LDAM or not,
three other attentions including CBAM [55], RGA [34],

and Nonlocal [77] are also compared with LDAM. We use
the same Hi-AFA architecture and replace LDAM with
these attentions to conduct experiments. The performance
comparison is shown in Table 3. We can observe that
RGA [34] performs consistently better than others due to
its consideration of structural relationship between human
body parts. It outperforms the second best by 0.5%/0.2%,
0.5%/0.5%, 0.7%/0.3%, and 0.5%/0.6% on each dataset.
Although the performance of LDAM is a bit lower than
RGA [34], it performs better than CBAM [55] and Nonlo-
cal [77]. Since LDAM and CBAM have similar architectures,
we think the performance improvement should be mainly
attributed to the group convolution which endows attention
with more flexibility.

Given a tensor of shape H × W × C , the computational
complexity of LDAM is O((H2W 2

+ C2)/(gr)), and it is
O(HWC + C3/r) for CBAM. RGA and Nonlocal are at the
same level of O(H2W 2C + HWC2), which is much higher
than the former two. Owing to the group convolution in
LDAM, its complexity is the lowest. In Table 3, we also
present the Floating-Point Operations (FLOPs) and Param-
eters (Params) of each attention. The results are obtained
by feeding each attention with an input tensor of shape
32 × 24×8 × 2048. It can be found that there are only
0.26M parameters in LDAM, and the FLOPs are merely
0.006G, which is quite lightweight. On the contrary, there are
heavy matrix multiplications in Nonlocal [77] and RGA [34],
the FLOPs of them amount to as high as 32.23G and
79.89G, respectively. From the view of performance, RGA
[34] should be the best choice for guiding feature learning.
However, when our perspective shifts to the model size
and computational cost, lightweight attentions will be more
welcome, and the proposed LDAM is a good compromise.

5) EFFECT OF FINAL FEATURE PROCESSING
In Hi-AFA, two feature sets are obtained finally, namely I
and R. R consists of all global features which are obtained
by max pooling and DropBlock. Features in I contain two
groups, one is obtained by applying BNNeck to Features in
R, and the other group contains spatial- and channel-wise
partitioned local features. To investigate the effect of such
combination of global features, spatial- and channel-wise
local features, we conduct experiments with I,R, and I∪R,
respectively. The results are presented in Figure 10 (b). It can
be seen that much higher performances are obtained with I
than with R, which means that the diverse local features are
more discriminant than global ones. Besides, we can find that
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TABLE 4. Comparison of performance with different feature settings (%).

FIGURE 11. Visualization of attention maps in Hi-AFA. BiCj indicates the
attention map of j th convolution block in branch-i .

I ∪R significantly outperforms I orR alone, demonstrating
the importance of joint usage of global and local features.
Note that we apply identification loss to features in I and
ranking loss toR, and both of them are supervised by center
loss. In such way, the features can be fully utilized and the
advantages of different losses are fully exploited.

To validate the effectiveness of DropBlock and channel-
wise features, we first use all features except {gdrop, c

1, c2}
as baseline, and then add gdrop, {c1, c2}, and both of
them for evaluation. The results are shown in Table 4,
it can be found that each of DropBlock and channel
features can bring certain performance promotion.When both
gdrop and channel-wise features are added, the mAP and
rank-1 accuracy are improved by 0.3%/0.2%, 0.5%/0.2%,
0.8%/0.6%, and 1.1%/1.4% on each dataset. This indicates
that better generalization can be obtained with them.

E. VISUALIZATION OF ATTENTION MAPS
To investigate the attended image regions of each attention
module, we use Grad-CAM [78] to visualize the atten-
tion maps for qualitative analysis. In all branches, the
attention maps after each attention module are generated.

TABLE 5. Comparison of model size and complexity.

As shown in Figure 11, we can observe that the attentions at
convolution block 2 are relatively coarse, multiple parts are of
high importance in every attention map. When going deeper,
they becomemore concentrated, forming few blobs on salient
parts. For attention maps at the same stage, the attended
areas are generally consistent but differs from each other in
detail. Take B1C4, B2C4, and B3C4 in last row for example,
besides the commonly highlighted legs, they focus on left
shoulder, head, and right elbow, respectively. This proves
the capability of mining diverse salient features of different
branches. Therefore, they can greatly help to distinguish
visual similar pedestrians in person re-identification
task.

F. MODEL COMPLEXITY
The idea of learning diverse features via multi-branch
architecture is quite popular in person re-identification.
It enables networks to focus on different person features
in individual branches. However, such branching strategy
brings higher computational cost at the time of boosting
re-identification performance. Although our Hi-AFA also
embraces the branching strategy, the reduction of computa-
tional complexity is considered in the first place. In either
the backbone or attention module, much less parameters are
required. In Table 5, the space complexity and model size
of Hi-AFA, some other branching models, as well as the
backbone OSNet [13] are listed, in terms of FLOPs, Params,
and Memory size. We can find that there are only 12.76M
parameters in the proposed Hi-AFA, the consumption of
memory is 55.83MB, and the FLOPs are about 2.24G.
Although it is about 6 times larger than the backbone
OSNet [13], Hi-AFA is still quite slim when comparing to
other branching models.

V. CONCLUSION
In this paper, we present a novel Hierarchical Attentive
Feature Aggregation (Hi-AFA) network to address the
challenging person re-identification task. In Hi-AFA, the
features are aggregated not only along the depth, but also
the parallel branches. In such way, the branches can work
together to mine more diverse and richer features for fine-
grained recognition. To guide the feature learning, we design
a lightweight dual attention module, in which much less
parameters are required. With the aim of capturing essential
person features, we extract global, channel-based and multi-
granularity part-based features from the distinct branches.
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Due to the usage of lightweight backbone and attention
module, the overall model complexity of Hi-AFA is kept
on a lower level than state-of-the-art models, but superior
or comparable performance is obtained on four mainstream
person re-identification datasets. Ablation analysis is also
performed to investigate the insight of the proposed model.
The backbone of Hi-AFA is not restricted to OSNet, other
lightweight deep convolutional models can also be utilized.
In future work, we will continue the research on more
effective and lighter person re-identification.
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