
Received 4 February 2024, accepted 22 March 2024, date of publication 16 April 2024, date of current version 24 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3389700

Enhancing Automated Microservice
Decomposition via Multi-Objective
Optimization
TAKAHIRO KINOSHITA AND HIDEYUKI KANUKA
Research and Development Group, Hitachi Ltd., Totsuka-ku, Yokohama-shi, Kanagawa 244-0817, Japan

Corresponding author: Takahiro Kinoshita (takahiro.kinoshita.jr@hitachi.com)

ABSTRACT The microservices architecture (MSA) has become widespread across various industries to
enhance the maintainability of applications. However, manual migration of monolithic applications toMSAs
via microservice decomposition (MSD) can be intricate andmay adversely impact the overall maintainability
of a system if not executed correctly. To address these challenges, a multi-objective optimization approach
can be used to generate optimal solutions, known as Pareto-optimal solutions. However, selecting the optimal
MSD solution from the set of Pareto-optimal solutions can be challenging. To mitigate this challenge,
we propose a multi-objective MSD method of using reference lines, a mathematical concept used in
multi-objective optimization approaches, to efficiently select the best MSD solutions. We also define a set of
violations and fix operations on the basis ofMSDpolicies to prevent generating a vast amount of semantically
meaningless MSD solutions. The definition of violations and fix operations and the use of reference lines
accelerates the generation of MSD solutions. Our proposed method aids information technology architects
by streamlining hyperparameter determination, a task deemed intricate for such architects.

INDEX TERMS Microservice, decomposition, multi-object optimization.

I. INTRODUCTION
The microservices architecture (MSA) is becoming
widespread in various industries as a means to enhance appli-
cation maintainability [1]. Under an MSA, applications are
created by building small services known as microservices,
each of which contains its own business logic and data and
executes a specific function. Microservices interact with one
another through interfaces such as application programing
interfaces (APIs). By embracing an MSA, microservices can
be analyzed, comprehended, and updatedwithout the need for
knowledge about the internal workings of othermicroservices
[2]. This helps localize the impact of any application changes,
thereby improving software maintainability.

Many industries are now transitioning from a monolithic
application to an MSA application to enhance the maintain-
ability of their applications. Monolithic application embody

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

multiple logics, data, and functions, making the process of
updating a singular function challenging. It is noteworthy
that many industries continue to operate with large-scale and
intricate monolithic application.

Manual migration from a monolithic application to an
MSA is a complex task for information technology (IT) archi-
tects. For example, the granularity inherent in microservices
necessitates a delicate balance between program structure and
business requirements. If one overly emphasizes the business
requirements, the resulting microservice may become too
fine-grained.While this might initially seem beneficial, it can
lead to challenges such as database (DB) consistency issues or
complications arising from frequent data-structure changes.
Conversely, if the focus leans too heavily on program
structure, it may hinder the software’s ability to evolve
and adapt to changing business needs in a timely manner.
Achieving the right equilibrium between these factors is
crucial for the successful implementation and long-term
viability of a microservice-based system. Improper MSD for

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 55697

https://orcid.org/0009-0003-4631-2384
https://orcid.org/0000-0002-8560-8714
https://orcid.org/0000-0001-9987-5584

T. Kinoshita, H. Kanuka: Enhancing Automated Microservice Decomposition via Multi-Objective Optimization

a project by overlooking the analysis of program structure
or business requirement can also compromise the overall
maintainability of the software application [3], [4] which is
metaphorically labeled as a ‘‘distributed monolith’’.

Therefore, it is imperative to conduct a thorough trade-off
analysis to determine the most suitable microservices for an
application [5]. This requires comparing various MSD solu-
tions to comprehensively analyze the associated trade-offs.

One solution to the daunting MSD task is to use a
multi-objective optimization approach, which produces a
set of optimal solutions known as Pareto-optimal solutions
by simultaneously considering multiple objectives. This
approach is particularly useful for tackling intricate problems
that involve conflicting objectives, as it can offer a range of
trade-offs between them [6]. A multi-objective approach can
aid in identifying the optimal balance among various objec-
tives, resulting in a collection of Pareto-optimal solutions that
offer distinct trade-offs.

The multi-objective approach, however, may cause issues
such as generation of a vast amount of semantically meaning-
less MSD solutions and selection of a solution from a large
amount of Pareto-optimal solutions. A simple method for
generating a new solution for MSD is to choose one program
function randomly and move it to another microservice [7],
which may generate a large amount of solutions that have
less semantic meaning for IT architects. Generating solutions
on the basis of semantic factors that IT architects consider
suitable is required to support such architects in executing
MSD [6], [8]. IT architects also struggle to determine the
most appropriate solution for their project due to the large
amount of Pareto-optimal solutions generated. To tackle this
issue, Zhang et al. [9] focused on a specific objective and
ordered the solutions on the basis of their performance on
this objective. Mkaouer et al. [7] selected the solution located
at the Knee Point [10] (i.e., the tip point of a convex part)
from the set of Pareto-optimal solutions. However, such
an approach may not be sufficient, as the priority of each
objective varies depending on the project requirements.

To address the issue of the multi-objective approach,
we propose a multi-objective MSD method for generating
MSD candidates (MSDCs) on the basis of MSD policy
and selecting MSDCs using reference line. We handled
the issues of generating meaningful MSDCs by predefining
a set of MSD policies and corresponding violations and
fix operations. These policies and operations are designed
to ensure that the generated MSDCs are semantically
meaningful and compliant with the design principles and
best practices of an MSA. We also address the issues of
selecting MSDCs on the basis of a reference line which is a
mathematical concept used with multi-objective optimization
method NSGA-III [11]. NSGA-III uses a reference line to
determine the direction of the solutions on the basis of their
proximity to the reference line. The perpendicular distance
is used to calculate the distance between a solution and
reference line, and solutions closer to the reference line are

likely to remain. Our method aligns the reference-line vector
evenly in the objective space, and selects the Pareto-optimal
MSDCs that are closer to the reference line.

We have formulated the following research questions:
RQ1: What is the impact of defining anMSD policy on the

generation of Pareto-optimal MSDCs?
RQ2: How does the use of reference lines in the generation

of MSDCs contribute to our proposed method and what role
do the component values of the reference-line vector play?

RQ3: How does our method provide support for IT
architects compared with previous methods?

Our contributions to the field can be summarized as
follows:

• The generation of new MSDCs on the basis of MSD
policy decrease the number of MSDCs with lower
semantic meaning, limiting the quantity of Pareto-
optimal MSDCs. However, the generation time of new
MSDC are likely to increase depending on the number of
program and data structures that violate MSD policies.

• The use of reference lines accelerates the generation
of MSDCs by providing a framework for efficient
choice and refinement of MSDC. The component
values of the reference-line vector serve as indicators
of the distinctive features of the selected MSDCs.
This enables a comparative analysis of the advantages
and disadvantages of each MSD solution, facilitating
fine-tuning and decision-making processes.

• Ourmethod aids IT architects in navigating uncertainties
related to the hyperparameter that determines the
number of partitions within a monolithic system, which
is essential for its transformation into microservices—
a requirement highlighted in prior studies to generate
MSDCs automatically.

In Section II, we discuss previous research in the field.
In Section III, we explain our method and how it handles
challenges from previous studies. Section IV discusses
the data we collected from applying our method to three
software applications and present the findings. In Section V,
we explore how our method generates various solutions,
selects those with different features, and aids IT architects in
decision-making, on the basis of our findings. In Section VI,
we outline our method’s validity. Finally, we present our
conclusions in Section VII.

II. RELATED WORKS
There are two main approaches to MSD: manual and
automatic. In the manual approach, the IT architect carries
out the task either by hand or with tool assistance. The
automatic approach, on the other hand, involves minimal to
no intervention from the IT architect. This approach can be
further divided into two approaches: clustering and search-
based. Both of these approaches address a graph partitioning
problem, which is known to be NP-hard, by seeking a
near-optimal solution within a reasonable amount of time.

55698 VOLUME 12, 2024

T. Kinoshita, H. Kanuka: Enhancing Automated Microservice Decomposition via Multi-Objective Optimization

A. MANUAL APPROACH
Several studies executed MSD manually in various applica-
tions such as banking applications and mobile applications
[12], [13]. To enhance the efficiency of manual MSD,
microservice design patterns, such as decompose by busi-
ness capability and decompose by subdomain [14], and
semi-automatic methods have been proposed [15], [16].
Ntendos et al. [15] presented a method for automatically
identifying microservices that violate the MSA pattern as a
violation and presenting options for violation correction to
the IT architect.

B. CLUSTERING APPROACH
In this approach, an objective such as the semantic similarity
of each function is used to generate an MSD solution [17].
Even if multiple objectives are used, the MSD solution is
generated by combining them into a single objective by
using weighted sum methods and clustering methods such
as K-means ([18], [19], [20], [21], [22], [23], [24], etc.).
Gysel et al. [18] used a weighted sum method to calculate
each objective and decides whether to group elements such
as methods and data into the same microservice unit. Other
studies [20], [21], [23] grouped elements into microservices
on the basis of a predefined number of microservices
determined by the IT architect.

In this approach, weighting each objective or determining
the number of clusters cannot be done automatically, which
remains an open issue [25]. Since this approach does
not create alternative solutions for comparison, the IT
architect must verify the appropriateness of the weighting
or number of clusters by generating solutions and adjusting
them through trial and error until the desired solution is
achieved [26].

C. SEARCH-BASED APPROACH
Search-based approach for MSD can be divided into
two types of methods: single-objective optimization and
multi-objective optimization.

Single-objective optimization methods are used to find
an optimal solution on the basis of a single objective by
modifying certain parts of the existing solutions. Single-
objective optimization methods, such as those using genetic
algorithms and hill-climbing algorithms, include those by
Doval et al. [27] and Mitchell and Mancoridis [28]. The
method by Mitchell and Mancoridis [28] generates new
solutions, for example, by moving one program function
to another microservice in the existing solution. However,
finding the optimal solution for a project remains a challenge
with single-objective optimization methods, as there are
multiple metrics to consider and combining them into a
single objective may result in the generation of suboptimal
solutions [29].
Multi-objective optimization methods are used to iden-

tify a set of solutions that are Pareto-optimal on the basis of a
multiple objective by modifying certain parts of the existing

FIGURE 1. Metamodel of MSDC.

solutions. Multi-objective optimization methods are said to
produce better solutions than clustering approaches which
optimize single-objective [29]. Various studies (e.g., [7], [9],
[30], [31], [32], [33], [34], [35], [36]) used multi-objective
optimization methods such as MOEA-D [37], NSGA-II
[38], and NSGA-III [11]. Mkaouer et al. [7] generated new
solutions by applying refactoring operations such as moving
classes between groups and merging groups to the existing
solutions. A predetermined number of unwanted solutions
were then eliminated using non-dominated sorting [39] and
reference-line vectors [40].

III. PROPOSED METHOD
We propose an MSD method by enhancing multi-objective
optimization.

A. BASIC DEFINITION
1) METAMODEL OF MSDC
In this section, we present a metamodel of the MSDC shown
in Figure 1. This MSDC consists of twelve fundamental
elements, APIGroup, APIGateway, API, microservice, class,
method, DB, table, column, API call, method call, and data
access (Create, Read, Update, andDelete (CRUD)). EachAPI
Group is associated with one or more API Groups, and each
API Gateway is associated with one or more API. Likewise,
each DB is associated with one or more tables, and each
table is associated with one or more columns. Similarly,
each microservice is associated with one or more classes,
and each class is associated with one or more methods.
The API call is executed between an API and method,
while the method call is executed between methods. Data
access (CRUD) is carried out between a method and column.
We define a transaction as a collection of methods, columns,
and data-access operations (CRUD) that are executed in a
sequence of events during an API call.

2) MSD POLICIES
With our method, we have formulated four MSD poli-
cies (P1–P4) to identify Pareto-optimal MDSCs. These
policies are defined on the basis of previous studies on
microservices’ application maintainability [14], [41].

VOLUME 12, 2024 55699

T. Kinoshita, H. Kanuka: Enhancing Automated Microservice Decomposition via Multi-Objective Optimization

a: P1. ONE BUSINESS CAPABILITY PER MICROSERVICE
This policy assesses whether each microservice comprises
only one pre-defined business functions as specified by the
IT architect. The IT architect defines business functions by
identifying the business function unit and associating the API
Gateway, class and the DB table of the monolithic application
to each business function unit. The concept of a business
function is subjective and cannot be determined solely by
analyzing the source-code structure, such as cohesion and
coupling [8].

b: P2. PRESPECIFIED METHOD CALL ONLY
This policy evaluates whether there are any method calls
between microservices that are not pre-specified by the
IT architect. The method calls between microservices can
be converted to API calls. However, not all method calls
between microservices are appropriate, as method calls
between microservices that are not expected by the IT
architect may lead to unexpected errors when modifying
microservices.

c: P3. WRITE ACCESS FROM ONE MICROSERVICE PER DB
TABLE
This policy measures whether each DB table can be mapped
to one microservice. This policy is related to the decompose
by subdomain pattern. Each DB table represents a domain
model of an application, and each microservice owns a
domain model. Write access (Create, Update, Delete (CUD))
of the microservice to the DB table can be determined as the
ownership of the DB table, hence the domain model for the
microservice.

d: P4. NON-DISTRIBUTED TRANSACTIONS
This policy is related to code readability in anMSA. AsMSD
may break up some of the current transactions, patterns such
as Try-Commit-Cancel (TCC) and Saga must be incorporated
into the code, which increases the code unrelated to business
logic and reduces code readability.

B. MSD OPTIMIZATION MODEL
To modelize MSD optimization using MSD policies, our
method introduces the concepts of violations and evaluation
functions for each policy. The violations and evaluation
functions for each policy are listed in Table 1. Violations
V1–V4 are formulated to detect program and data structure
components that violate MSD policies P1–P4.

The goal with thisMSD optimization problem is to find the
set of Pareto-optimal MSDCs that minimize each evaluation
function value. The problem is formulated as finding the
MSDC x that minimizes the evaluation function EFn(x)
for n = 1, 2, . . . ,N , where N represents the number of
evaluation functions. The number of evaluation function
depends on the number of MSD policies.

arg min
x∈MSDCs

EFn(x), n = 1, 2, . . . ,N

C. PROPOSED METHOD
An overview of our method is illustrated in Figure 2.

Our method relies on using an initial MSDC and
violation-state exception list, both assumed to be created by
the IT architect. The initial MSDC is formulated through the
partitioning of the monolithic application into microservices
on the basis of business functions. This initial MSDC
is stored and used to create a new MSDC, subsequently
establishing MSD policy P1. The violation-state exception
list is created by pre-specifying acceptable method calls
between microservices and is used to prevent undesired
refactoring.

After the input of initial MSDC and violation-state
exception list, the processes A-1, A-2, and A-3 are iterated
for a predetermined number (Step A in Figure 2). In process
A-1, MSDCs are extracted from the data storage. For each
MSDC, program structures that violate the MSD policies are
detected as violations. In process A-2, each detected violation
is treated with the relevant fix operation to generate new
MSDCs. In process A-3, Pareto-optimal MSDCs are retained
from the generated set of MSDCs, while the remaining ones
are discarded. We note that the number of iterations should
exceed that of violations in the initial MSDC to ensure
comprehensive coverage in addressing all violations.

After the iterations, a number of MSDCs is selected
from the generated MSDCs (Step B in Figure 2), with
the number of selection assumed to be predetermined by
the IT architect. An MSDC explanation document is also
generated as an output to illustrate the characteristics of
each MSDC. The selection of MSDCs and the generation
of the MSDC explanation document are achieved using
reference-line vectors [40].

We now describe the details of Steps A and B.

1) STEP A: GENERATION OF PARETO-OPTIMAL MSDCS
a: A-1. VIOLATION DETECTION FOR EACH MSDC
First, all the MSDCs are extracted from the designated
data storage. Subsequently, for each MSDC extracted, all
violations (V1–V4 in Table 1) are identified by examining
the program and data structure.

The MSDC positioned on the left in Figure 3 illustrates an
example of an MSDC with V3. Method b11 of microservice
B has data write access to DB table AA1 of microservice
A, which matches the condition of V3. The violation is
automatically detected by analyzing the program and data
structure of each MSDC.

b: A-2. FIX OPERATION APPLICATION FOR EACH MSDC
Each detected violation is addressed by applying the relevant
fix operation (V1F1–V4F2 in Table 2) to generate new
MSDCs. V1F1–V4F2 are intended to modify V1–V4 so that
they conform to P1–P4. For instance, using V2F1, V2F2, and
V2F3 will generate three new MSDCs for resolving V2.

The MSDCs positioned on the right in Figure 3 illustrates
an example of MSDCs to which a fix operation is applied.

55700 VOLUME 12, 2024

T. Kinoshita, H. Kanuka: Enhancing Automated Microservice Decomposition via Multi-Objective Optimization

TABLE 1. MSD policies, violations, and evaluation functions.

FIGURE 2. Overview of proposed MSD method.

TABLE 2. Fix operations of each violation.

New MSDCs are generated by merging microservices A
and B (V3F1), splitting DB table AA1 into microservices
A and B (V3F2) and creating new microservice AA1 which
includes DB table AA1 and method a12, b11. By applying
the applicable fix operations to the violation, several MSDCs
that resolve those violations are automatically generated.

c: A-3. EXTRACTION OF MSDCS BY NON-DOMINATED
SORTING
Pareto-optimal MSDCs are retrieved and stored in the desig-
nated data-storage area. A non-dominated sorting algorithm
is used to obtain Pareto-optimal MSDCs from the generated
MSDCs. Generated MSDCs are mapped to a vector space
with EF1(x)-axis, EF2(x)-axis, EF3(x)-axis and EF4(x)-axis.
The non-dominated sorting algorithm arranges MSDCs that
are not dominated by other MSDCs as Rank 1 and those that
are dominated by MSDCs of Rank N (N=1, 2, 3 . . .) as Rank

N+1. MSDC X dominates MSDC Y if X yields better results
than Y for all the evaluation functions.

Algorithm 1 illustrates the non-dominated sorting
algorithm for selecting Pareto-optimal MSDCs from all the
generated MSDCs. MSDCs denotes the set of generated
MSDCs.

2) STEP B: SELECTION OF MSDCS BY REFERENCE LINES
To further refine the set ofMSDCs, we use a five-step process
for selecting representative MSDCs while preserving their
variability.

1) Extract all Pareto-optimal MSDCs from the data
storage.

2) Map the extracted MSDCs to a vector space with
EF1(x)-axis, EF2(x)-axis, EF3(x)-axis, and EF4(x)-
axis.

VOLUME 12, 2024 55701

T. Kinoshita, H. Kanuka: Enhancing Automated Microservice Decomposition via Multi-Objective Optimization

FIGURE 3. Example of applying fix operation to V3.

3) Align reference-line vectors to the vector space.
4) Extract MSDCs that are closest to each reference-line

vector.
5) Label each selected MSDC to distinguish them from

other MSDCs.

Our method uses reference lines to efficiently select the
predetermined number of MSDCs from the set of Pareto-
optimal MSDCs. The reference line is a mathematical
concept used with multi-objective optimization methods such
as NSGA-III [11] to determine the direction of the solutions
on the basis of their proximity to the reference line. Our
method aligns the reference line evenly in the vector space
and selects the Pareto-optimal MSDCs that are closer to the
reference line.

To align the reference lines, we use the algorithm proposed
by Das and Dennis [40], as outlined in Algorithm 2. The
dimension of the reference-line vector is represented as d ,
set to 4 with our method. The division number, denoted as p,
is determined on the basis of the number of MSDCs to select
that is predefined by IT architects. The algorithm yields an
array of reference-line vectors, with elements arranged in the
sequence of EF1(x), EF2(x), EF3(x), and EF4(x).
For a clearer understanding of the process involved in

selecting MSDCs using reference lines, we illustrate this
concept using the example shown in Figure 4. This figure
illustrates a vector space with EF1(x)-axis and EF2(x)-axis.
Pareto-optimal MSDCs are mapped while reference lines are

Algorithm 1 Selecting Pareto Optimal MSDCs
1: procedure ParetoOptimal(MSDCs,N = 4)
2: rank1_MSDCs = {}

3: for each msdca ∈ MSDCs do
4: pareto_optimal = true
5: for each msdcb ∈ MSDCs− msdca do
6: dominated = true
7: for n = 1..N do
8: if EFn(msdca) < EFn(msdcb) then
9: dominated = false
10: break
11: end if
12: end for
13: if dominated then
14: pareto_optimal = false
15: break
16: end if
17: end for
18: if pareto_optimal then
19: rank1_MSDCs∪ = msdca
20: end if
21: end for
22: return rank1_MSDCs
23: end procedure

FIGURE 4. Reference line on vector space (EF1(x), EF2(x)) when p = 4.

aligned in the vector space. In this example, the division
number is set to 4 (p = 4), resulting in the alignment of
−→
RL1 −

−→
RL5. Each reference line is expressed as a vector

in component form relative to EF1(x) and EF2(x). When
selecting MSDCs using reference lines, MSDC B, which is
closest to

−→
RL2 = (0.25, 0.75) in distance, will be selected by

−→
RL2.

The reference-line vector is also used for generating the
MSDC explanation document and used as a criterion for
the IT architect to choose an MSDC. Figure 5 illustrates an

55702 VOLUME 12, 2024

T. Kinoshita, H. Kanuka: Enhancing Automated Microservice Decomposition via Multi-Objective Optimization

TABLE 3. Extraction of initial MSDC from subject application.

TABLE 4. State of initial MSDC.

FIGURE 5. Overview of MSDC explanation document.

example of an MSDC explanation document. This document
indicates that MSDC 1, MSDC 2, MSDC 3, and MSDC
N were selected using the reference-line vectors (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), and (0.5, 0.5, 0, 0), respectively.

D. USE OF PROPOSED METHOD BY IT ARCHITECT
Figure 6 illustrates a flowchart of MSD by an IT architect
using our method. The IT architect first splits the monolithic
application into microservices on the basis of business
functions as the initial MSDC. The architect also assigns
the method calls to avoid refactoring to a violation-state

exception list. The architect then sets p in Algorithm 2 on
the basis of the number of MSDCs to select and executes
our automated MSD method. Finally, the architect chooses
one MSDC from the selected MSDCs on the basis on MSDC
explanation document and refines it as the MSD result.

IV. EXPERIMENT AND RESULTS
In this section, we describe the experiment and the results
involving our MSD method.

A. SUBJECT APPLICATION
We conducted an experiment using three software appli-
cations: pet clinic (lines of code (LOC): approximately
1000), insurance contract management (LOC: approximately
20000), and internet banking (LOC: approximately 10000).
The pet clinic application is a Spring Boot application that
enables scheduling appointments with a veterinarian. The
insurance contract management application is a Spring MVC
application developed for a life insurance company, which
manages information about insurance products, customers,
contracts, and operations such as new contract registration,
contract maintenance, and billing. This application uses a
Postgres DB, and the program accesses the DB table using

VOLUME 12, 2024 55703

T. Kinoshita, H. Kanuka: Enhancing Automated Microservice Decomposition via Multi-Objective Optimization

FIGURE 6. Flowchart of MSD using our method.

Algorithm 2 Generating Sets of Reference Line Vector
1: procedure RLVectors(d = 4, p)
2: return GenRLVs(p, d, p)
3: end procedure
4:

5: function GenRLVs(n, d, p)
6: tmp_RLVs = {}

7: if d==1 then
8: ARRAY tmp_RLV [0]
9: tmp_RLV [0] =

n
p

10: tmp_RLVs∪ = tmp_RLV
11: else
12: for i = 0, . . . , n do
13: suf _RLVs = GenRLVs(n− i, d − 1, p)
14: for each suf _RLV ∈ suf _RLVs do
15: ARRAY tmp_RLV [0..d − 1]
16: tmp_RLV [0] =

i
p

17: for j = 1, . . . , d − 1 do
18: tmp_RLV [j] = suf _RLV [j− 1]
19: end for
20: tmp_RLVs∪ = tmp_RLV
21: end for
22: end for
23: end if
24: end function

the MyBatis Framework. The internet banking application
is a Struts and Spring Framework application developed for
a bank, which manages contractor account information and
allows money transfer operations. This application uses a
MySQL DB, and the program accesses the DB table using
the iBatis Framework.

Table 3 illustrates the approachwe used to extract the initial
MSDC from each application. In the pet clinic application,
API Gateway, class, and table were associated with the

TABLE 5. Interpretation of Pearson correlation coefficient.

microservice on the basis of the method call from the
@Controller class. For the internet banking and insurance
contract management applications, each API Gateway, class,
and table were associated with the microservice on the basis
of the naming convention of each business function.

Table 4 presents the state of the initial MSDC. We consid-
ered the internet banking application acceptable for making
method calls to Commonmicroservice as Commonmicroser-
vice manages master data. In a similar vein, we considered
the insurance contract management application acceptable
for making method calls to Product, Contract, and Customer
microservices as these are microservices that manage master
data. We found 3, 28, and 13 violations in the pet
clinic, internet banking, and insurance contract management
applications, respectively.

B. EXPERIMENT
Data on the basis of evaluation items were collected in
the applications. The number of iterations (Step A in
Figure 2) was set to 100, and the Pareto-optimal MSDCs
at each iteration were recorded. A PC with 32GB RAM
and Intel®Core™i7-10610U CPU was used. The evaluation
items are enumerated below.

EI1. Variance of the Pareto-optimalMSDCs at each iteration
EI2. Generation time of the Pareto-optimal MSDCs at each

iteration
EI3. Generation rate of the selected MSDCs in Step B

(Figure 2) at each iteration

55704 VOLUME 12, 2024

T. Kinoshita, H. Kanuka: Enhancing Automated Microservice Decomposition via Multi-Objective Optimization

FIGURE 7. Variance of MSDCs across iterations.

FIGURE 8. Time of generating MSDCs at each iterations.

EI4. Correlation between the reference-line vector and
MSDC

EI5. Use of the proposed method by our IT architects

EI1–EI2 and EI3–EI5 were conducted to address research
questions RQ1 and RQ2, respectively. EI3 and EI4 involved
using four different patterns with 4, 10, 20, and 35 reference-
line vectors, generated by setting p to 1, 2, 3, and 4 in
Algorithm 2. The Pearson correlation coefficient [42] was
used for EI4 to assess the linear association between two
components. The coefficient is between 0 and 1, where
a higher absolute value indicates a stronger correlation
between the variables. Accepted guidelines for interpreting
the correlation coefficient are provided in Table 5 as
referenced from a previous study [43]. Thirty-five reference-
line vectors were used with p = 4 in Algorithm 2 for EI5.
The selection and fine-tuning of the MSD solution were
conducted by experienced IT architects with over 10 years’
experience in application design within the financial domain.

C. RESULTS
The results of EI1 are presented in Figure 7, where the
horizontal axis represents the number of iterations and
vertical axis shows the variance value. The graph displays
the change in variance of the Pareto-optimal MSDCs as a
black line. Across all three applications (pet clinic, internet
banking, and insurance contract management), the variance
increased steadily until a certain iteration then stabilized at a

constant value. The number of MSDCs generated at the point
of convergence was 4, 220, and 243 for the pet clinic, internet
banking, and insurance contract management applications,
respectively.

The results of EI2 are presented in Figure 8, where
the horizontal axis represents the number of iterations and
vertical axis shows the generation time in seconds. The graph
shows the time evolution of the Pareto-optimal MSDCs as a
black line. Across all three applications, the time increased
steadily until a certain iteration. The generation time for
the first iterations of the pet clinic, internet banking, and
insurance contract management applications were 0.48, 2.20,
and 1.32 s, respectively, while the maximum generation
times at a specific iteration were 0.48, 692.50, and 273.18 s,
respectively.

The results of EI3 are presented in Figure 9, illustrating the
generation rate of the selected MSDCs across iterations.
The graph showcases the impact of different reference-line
vectors on the selection process, represented with the blue,
green, red, yellow, and black lines. The blue line corresponds
to MSDCs selected using 4 reference-line vectors, green
line represents 10 reference-line vectors, red line represents
20 reference-line vectors, yellow line represents 35 reference-
line vectors, and black line represents no reference-line vector
usage. The generation rate refers to the level of concordance
between the MSDCs selected by the reference line during
the 100th iteration and those selected by the reference line
in each iteration. For the pet clinic and insurance contract

VOLUME 12, 2024 55705

T. Kinoshita, H. Kanuka: Enhancing Automated Microservice Decomposition via Multi-Objective Optimization

FIGURE 9. Generation rate of selected MSDCs in Step B (Figure 2) across iterations.

FIGURE 10. Correlation between reference-line vector and MSDC (pet clinic).

FIGURE 11. Correlation between reference-line vector and MSDC (internet banking).

management applications, there was no significant difference
between the number of iterations required to achieve 100%
generation for MSDCs selected by the reference-line vector
and number of iterations needed for 100% generation without
using reference-line vectors. However, for the internet bank-
ing application, the number of iterations required to attain
100% generation using reference-line vectors was lower than
the number of iterations needed for 100% generation without
using reference-line vectors.

The results of EI3 are presented in Figures 10, 11,
and 12, where the horizontal axis represent the values
of the EF1(x)–EF4(x) components of the reference-line
vector that selected the MSDCs, and the vertical axis
show the values of the EF1(x)–EF4(x) components of the
MSDCs. To provide further clarification, we defined four
reference-line functions (RLEF1–RLEF4) that takes an MSDC
x as input and output the values of the EF1(x)–EF4(x)
components of the reference-line vector that selected the
MSDC x, as shown in Table 6.

TABLE 6. Reference line functions.

Each graph plots theMSDCs selected by the reference-line
vectors generated with p=1, 2, 3, and 4 in Algorithm 2.
Figures 10, 11 and 12 illustrate the MSDCs for the pet
clinic, internet banking, and insurance contract management
applications, respectively.

The internet banking and the insurance contract manage-
ment applications had correlation coefficients greater than
0.4 for all components, indicating a positive correlation

55706 VOLUME 12, 2024

T. Kinoshita, H. Kanuka: Enhancing Automated Microservice Decomposition via Multi-Objective Optimization

FIGURE 12. Correlation between reference-line vector and MSDC (insurance contract management).

TABLE 7. Chosen MSDC and final MSD result.

between the component values of the MSDC and those of
the reference-line vector. In the pet clinic application, all
values of the correlation coefficients were 0.3 or higher,
indicating at least a weak positive correlation between the
component values of the MSDC and those of the reference-
line vector. For the EF3(x) and EF4(x) components of
the pet clinic application, correlation coefficients were not
measured because the selected MSDC did not include V3
and V4.

The results of EI5 are presented in Table 7. The choice
and fine-tuning of an MSDC were conducted by IT archi-
tects through a comparison between MSDCs using MSDC
explanation document. The values of the reference-line vector
listed in the MSDC explanation document were used to
prioritize MSD policies.

In the pet clinic application, the selected MSDC took
into account the higher importance of P2 compared with
P1, as indicated with the reference-line vector (0.75, 0.25,
0, 0). Non-critical microservices, such as Welcome and
Crash, were removed. Similarly, in the internet banking
application, the selected MSDC reflected the highest priority
given to P1, followed by P2 and P3, as indicated with
the reference-line vector (0, 0.25, 0.25, 0.50). The Com-
mon microservice was subdivided into Balance and Fund
Move microservices, while the Contractorα microservice
was divided into Contractorβ and Customer microservices
on the basis of a comparison with the adjacent MSDCs
selected by the reference line (e.g. MSDC selected by the
reference-line vector (0.25,0.25,0.25,0.25)). Finally, in the
insurance contract management application, the selected
MSDC reflected the highest priority given to P1, followed
by P2 and P3, as indicated with the selected by the reference
line reference-line vector (0, 0.25, 0.25, 0.50).

V. DISCUSSION
To evaluate the effectiveness of our MSD method,
we addressed the three research questions mentioned earlier
in the paper.

A. RQ1: WHAT IS THE IMPACT OF DEFINING AN MSD
POLICY ON THE GENERATION OF PARETO-OPTIMAL
MSDCS?
The generation of new MSDCs on the basis of the MSD
policy decrease the number of MSDCs with lower semantic
meaning, limiting the quantity of Pareto-optimal MSDCs.
However, the generation time of new MSDCs are likely
to increase depending on the number of program and data
structures which violate MSD policies.

The results of EI1 indicate that the variance of
Pareto-optimal MSDCs consistently increases up to a certain
generation in all three applications. This suggests that by
patternizing the modification methods and constraining their
application scope, it becomes feasible to restrict the quantity
of Pareto-optimal MSD solutions on the basis of MSD
policies.

The results of EI2 indicate that the process of generating
Pareto-optimal MSDCs during each iteration is contingent
upon the number of violations in the initial MSDC. Possible
factors contributing to the observed increase in generation
time include the amount ofmethods, the number of DB tables,
and the number of violations. However, when analyzing
the time taken for the initial iteration in EI2, the ratio of
generation time between the pet clinic and insurance contract
management applications was less than the corresponding
violation ratio between the same applications. Similarly, the
generation time ratio between the pet clinic and banking
applications was also less than the violation ratio associated

VOLUME 12, 2024 55707

T. Kinoshita, H. Kanuka: Enhancing Automated Microservice Decomposition via Multi-Objective Optimization

with these applications. These patterns suggest that the
amount of methods and DB tables might minimally affect the
lengthening of generation time, whereas violations likely play
a more substantial role in this temporal expansion.

In summary, the generation of new MSDCs on the basis
of violation detection and fix operation application limits the
quantity of Pareto-optimal MSDCs. However, the generation
time of new MSDCs are likely to increase depending on the
number of violations in the initial MSDC.

B. RQ2: HOW DOES THE USE OF REFERENCE LINES IN
THE GENERATION OF MSDCS CONTRIBUTE TO OUR
PROPOSED METHOD AND WHAT ROLE DO THE
COMPONENT VALUES OF THE REFERENCE-LINE VECTOR
PLAY?
The use of reference lines accelerates the creation of
MSD result by providing a framework for efficient choice
and refinement of MSDC. The component values of the
reference-line vector serve as indicators of the distinctive
features of the MSDCs.

The results of EI3 indicate that when using the
reference-line vector for choosing MSDCs, the generation
process requires fewer iterations compared to generating
Pareto-optimal MSDCs. This expedited generation is
particularly beneficial in cases where the application exhibits
numerous violations.

The results of EI4 highlight the correlation between the
component values of the selected MSDCs and those of
the reference-line vector. This correlation confirms that the
component values of the reference-line vector effectively
capture the distinctive features of the selected MSDC.

From the results of EI5, the prioritization of P1–P4 can be
discerned by examining the values of the EF1(x) to EF4(x)
components of the reference-line vector. This information
provides insights into the relative importance of each policy
and assists in determining the refinement for the chosen
MSDC.

In summary, the use of reference lines enables IT architects
to generate MSD solutions by providing a framework
for choosing and refining MSDC using the reference-line
vector. This approach enhances the decision-making process
and enables the exploration of different trade-offs and
considerations in the design of microservices.

C. RQ3: HOW DOES OUR METHOD PROVIDE SUPPORT
FOR IT ARCHITECTS COMPARED WITH PREVIOUS
METHODS?
Our method supports IT architects navigating the uncer-
tainties associated with hyperparameters, particularly the
determination of the number of partitions needed to transform
the existing system intomicroservices. As outlined in Table 8,
a comparison of hyperparameters between our method and
previous methods, as enumerated in a previous study [25],
highlights notable distinctions. Traditional methods often
necessitate a predefined number of clusters or partitions for
generating MSDCs. Yet, it is not common for IT architects to

TABLE 8. Comparison of hyperparameters with previous MSD methods.

grapple with the challenge of pinpointing the optimal number
of microservices tailored to a project’s specific needs. Our
method shifts the focus to mitigate this challenge: rather than
pre-defining a fixed number of partitions, we introduce the
concept of an initial MSDC as a hyperparameter. Based on
the initial MSDC, a set of MSDCs, each of which may have a
different number of partitions, are generated. This approach
supports IT architects having knowledge about the business
functions of the monolithic system, but having challenge
determining the optimal number of partitions on the basis of
both business functions and program structure.

VI. THREADS TO VALIDITY
Our method eliminates non-Pareto-optimal MSDCs at each
iteration, which may lead to locally optimal solutions.
However, even when using this method, the final MSD result
will be further refined by IT architects. These architects may
consider modification methods by comparing the selected
MSDC with other MSDCs, rather than solely relying on
the selected MSDC. By selecting MSDCs with diverse
characteristics using reference-line vectors, even for locally
optimal solutions, the objective of supporting MSD for IT
architects can be achieved.

Our method generates MSDCs on the basis of four
initial MSD policies, which stem from the analysis of
program and data dependencies. Yet, there is room for
new MSD policies that are not analyzable through such
dependencies or initialMSDCs. For instance, Gysel et al. [18]
defined 16 MSD policies, whereas our method encompasses
only 4. In such scenarios, IT architects are required to exercise
their judgment to manually select the MSDC that resonates
best with their perspective and adjust it accordingly.

VII. CONCLUSION
We introduced a multi-objective optimization method using
reference lines to guide the selection of MSDCs. By defining
MSD policies, detecting violations, and implementing fix

55708 VOLUME 12, 2024

T. Kinoshita, H. Kanuka: Enhancing Automated Microservice Decomposition via Multi-Objective Optimization

operations, we effectively reduced the number of MSDCs.
Through experimentation across three diverse applications—
pet clinic, insurance contract management, and internet
banking, we validated the efficacy of our proposed method in
both generating MSDCs and assisting IT architects in MSD.

Our experimental findings provided key insights. First, the
introduction of new MSDCs on the basis of defined policies
reduced the increase of solutions with semantic relevance,
limiting the number of Pareto-optimal MSDCs. However,
the generation time of these MSDCs could be affected
by the number of program and data structure violations
against the MSD policies. Second, the implementation of
reference lines notably accelerated the creation of the MSD
result. The metrics of the reference-line vector effectively
highlighted unique attributes of the selected MSDCs, stream-
lining choice and refinement of MSDC. This method proved
instrumental for IT architects, presenting multiple MSDCs
with distinct characteristics and enabling a comparison of
their advantages and drawbacks.

In a comprehensive manner, our method addresses a
significant challenge faced by IT architects: determining the
optimal number of microservice partition for an existing
monolithic system. By excluding the number of partition
from the hyperparameters, our method offers a practical
solution for IT architects facing difficulty predermining the
number of partition on the basis of both business function and
program structure.

Looking ahead, a deeper investigation into the generation
time of MSDCs is necessary to further refine and optimize
our method, especially for expansive and complex software
projects. Tackling the temporal challenges in MSD will be
essential for broadening the applicability and relevance of our
method for large-scale software development.

REFERENCES
[1] N. Sam, Building Microservices, 2nd ed. Sebastopol, CA, USA: O’Reilly,

2021.
[2] J. Soldani, D. A. Tamburri, and W.-J. van den Heuvel, ‘‘The pains and

gains of microservices: A systematic grey literature review,’’ J. Syst. Softw.,
vol. 146, pp. 215–232, Dec. 2018.

[3] D. Taibi, V. Lenarduzzi, and C. Pahl, ‘‘Microservices anti-patterns:
A taxonomy,’’ inMicroservices: Science and Engineering. New York, NY,
USA: Springer, 2020, pp. 111–128.

[4] S. Newman, Monolith to Microservices: Evolutionary Patterns to Trans-
form Your Monolith. Sebastopol, CA, USA: O’Reilly, 2019.

[5] N. Ford and M. Richards, Fundamentals of Software Architecture:
An Engineering Approach, 1st ed. Sebastopol, CA, USA: O’Reilly, 2020.

[6] M. Li, T. Chen, and X. Yao, ‘‘How to evaluate solutions in Pareto-based
search-based software engineering: A critical review and methodological
guidance,’’ IEEE Trans. Softw. Eng., vol. 48, no. 5, pp. 1771–1799,
May 2022.

[7] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb,
and A. Ouni, ‘‘Many-objective software remodularization using NSGA-
III,’’ ACM Trans. Softw. Eng. Methodol., vol. 24, no. 3, pp. 1–45,
May 2015.

[8] I. Candela, G. Bavota, B. Russo, and R. Oliveto, ‘‘Using cohesion and
coupling for software remodularization: Is it enough?’’ ACM Trans. Softw.
Eng. Methodol., vol. 25, no. 3, pp. 1–28, Aug. 2016.

[9] Y. Zhang, B. Liu, L. Dai, K. Chen, and X. Cao, ‘‘Automated microservice
identification in legacy systems with functional and non-functional
metrics,’’ in Proc. IEEE Int. Conf. Softw. Archit. (ICSA), Mar. 2020,
pp. 135–145.

[10] J. Branke, K. Deb, H. Dierolf, and M. Osswald, ‘‘Finding knees in multi-
objective optimization,’’ in Parallel Problem Solving From Nature—PPSN
XVII. New York, NY, USA: Springer, 2004, pp. 722–731.

[11] K. Deb and H. Jain, ‘‘An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach—
Part I: Solving problems with box constraints,’’ IEEE Trans. Evol.
Comput., vol. 18, no. 4, pp. 577–601, Aug. 2014.

[12] A. Megargel, V. Shankararaman, and D. Walker, ‘‘Migrating from
monoliths to cloud-based microservices: A banking industry example,’’
in Software Engineering in the Era of Cloud Computing. New York, NY,
USA: Springer, 2020, pp. 85–108.

[13] C.-Y. Fan and S.-P. Ma, ‘‘Migrating monolithic mobile application to
microservice architecture: An experiment report,’’ in IEEE MTT-S Int.
Microw. Symp. Dig., Jun. 2017, pp. 109–112.

[14] C. Richardson, Microservices Patterns: With Examples in Java, 1st ed.
Shelter Island, NY, USA: Manning, 2018.

[15] E. Ntentos, U. Zdun, K. Plakidas, and S. Geiger, ‘‘Semi-automatic
feedback for improving architecture conformance to microservice patterns
and practices,’’ in Proc. IEEE 18th Int. Conf. Softw. Archit. (ICSA),
Mar. 2021, pp. 36–46.

[16] F. H. Vera-Rivera, E. Puerto, H. Astudillo, and C. M. Gaona, ‘‘Microser-
vices backlog—A genetic programming technique for identification and
evaluation of microservices from user stories,’’ IEEE Access, vol. 9,
pp. 117178–117203, 2021.

[17] L. Baresi, M. Garriga, and A. De Renzis, ‘‘Microservices identification
through interface analysis,’’ in Proc. Service-Oriented Cloud Comput.,
2017, pp. 19–33.

[18] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, ‘‘Service
cutter: A systematic approach to service decomposition,’’ in Proc. Service-
Oriented Cloud Comput., 2016, pp. 185–200.

[19] M. Kamimura, K. Yano, T. Hatano, and A.Matsuo, ‘‘Extracting candidates
of microservices from monolithic application code,’’ in Proc. 25th
Asia–Pacific Softw. Eng. Conf. (APSEC), Dec. 2018, pp. 571–580.

[20] A. A. C. De Alwis, A. Barros, C. Fidge, and A. Polyvyanyy, ‘‘Remodular-
ization analysis for microservice discovery using syntactic and semantic
clustering,’’ in Proc. CAISE, 2020, pp. 3–19.

[21] A. K. Kalia, J. Xiao, C. Lin, S. Sinha, J. Rofrano, M. Vukovic,
and D. Banerjee, ‘‘Mono2Micro: An AI-based toolchain for evolving
monolithic enterprise applications to a microservice architecture,’’ in Proc.
28th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.,
Nov. 2020, pp. 1606–1610.

[22] W. Jin, T. Liu, Q. Zheng, D. Cui, and Y. Cai, ‘‘Functionality-oriented
microservice extraction based on execution trace clustering,’’ in Proc.
IEEE Int. Conf. Web Services (ICWS), Jul. 2018, pp. 211–218.

[23] G. Mazlami, J. Cito, and P. Leitner, ‘‘Extraction of microservices from
monolithic software architectures,’’ in Proc. IEEE Int. Conf. Web Services
(ICWS), Jun. 2017, pp. 524–531.

[24] L. Chen, M. Guang, J. Wang, and C. Yan, ‘‘Dynamic and static
feature-aware microservices decomposition via graph neural networks,’’
in Proc. KSEM, 2023, pp. 150–163.

[25] R. Yedida, R. Krishna, A. Kalia, T. Menzies, J. Xiao, and M. Vukovic,
‘‘Lessons learned from hyper-parameter tuning for microservice candidate
identification,’’ in Proc. 36th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Nov. 2021, pp. 1141–1145.

[26] A. M. Saeidi, J. Hage, R. Khadka, and S. Jansen, ‘‘A search-based
approach to multi-view clustering of software systems,’’ in Proc. IEEE
22nd Int. Conf. Softw. Anal., Evol., Reengineering (SANER), Mar. 2015,
pp. 429–438.

[27] D. Doval, S. Mancoridis, and B. S. Mitchell, ‘‘Automatic clustering of
software systems using a genetic algorithm,’’ in Proc. 9th Int. Workshop
Softw. Technol. Eng. Pract., Sep. 1999, pp. 73–81.

[28] B. S. Mitchell and S. Mancoridis, ‘‘On the automatic modularization of
software systems using the bunch tool,’’ IEEE Trans. Softw. Eng., vol. 32,
no. 3, pp. 193–208, Mar. 2006.

[29] K. Praditwong, M. Harman, and X. Yao, ‘‘Software module clustering as a
multi-objective search problem,’’ IEEE Trans. Softw. Eng., vol. 37, no. 2,
pp. 264–282, Mar. 2011.

[30] W. Jin, T. Liu, Y. Cai, R. Kazman, R.Mo, andQ. Zheng, ‘‘Service candidate
identification from monolithic systems based on execution traces,’’ IEEE
Trans. Softw. Eng., vol. 47, no. 5, pp. 987–1007, May 2021.

[31] J. Ivers, C. Seifried, and I. Ozkaya, ‘‘Untangling the knot: Enabling
architecture evolution with search-based refactoring,’’ in Proc. IEEE 19th
Int. Conf. Softw. Archit. (ICSA), Mar. 2022, pp. 101–111.

VOLUME 12, 2024 55709

T. Kinoshita, H. Kanuka: Enhancing Automated Microservice Decomposition via Multi-Objective Optimization

[32] S. Khoshnevis, ‘‘A search-based identification of variable microservices
for enterprise SaaS,’’ Frontiers Comput. Sci., vol. 17, no. 3, Jun. 2023,
Art. no. 173208.

[33] C. Schröder, A. van der Feltz, A. Panichella, and M. Aniche, ‘‘Search-
based software re-modularization: A case study at adyen,’’ in Proc.
IEEE/ACM 43rd Int. Conf. Softw. Eng., Softw. Eng. Pract. (ICSE-SEIP),
May 2021, pp. 81–90.

[34] L. Carvalho, A. Garcia, T. E. Colanzi, W. K. G. Assunção, M. J. Lima,
B. Fonseca, M. Ribeiro, and C. Lucena, ‘‘Search-based many-criteria
identification of microservices from legacy systems,’’ in Proc. Genetic
Evol. Comput. Conf. Companion, Jul. 2020, pp. 305–306.

[35] L. Carvalho, A. Garcia, T. E. Colanzi, W. K. G. Assunção, J. A. Pereira,
B. Fonseca, M. Ribeiro, M. J. de Lima, and C. Lucena, ‘‘On the
performance and adoption of search-basedmicroservice identificationwith
toMicroservices,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol.
(ICSME), Sep. 2020, pp. 569–580.

[36] I. Saidani, A. Ouni, M. W. Mkaouer, and A. Saied, ‘‘Towards automated
microservices extraction using muti-objective evolutionary search,’’ in
Proc. 17th Int. Conf. Service-Oriented Comput., 2019, pp. 58–63.

[37] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, ‘‘A survey of
multiobjective evolutionary algorithms based on decomposition,’’ IEEE
Trans. Evol. Comput., vol. 21, no. 3, pp. 440–462, Jun. 2017.

[38] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[39] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Boston, MA, USA: Addison-Wesley, 1989.

[40] I. Das and J. E. Dennis, ‘‘Normal-boundary intersection: A new method
for generating the Pareto surface in nonlinear multicriteria optimization
problems,’’ SIAM J. Optim., vol. 8, no. 3, pp. 631–657, Aug. 1998.

[41] J. Bogner, S. Wagner, and A. Zimmermann, ‘‘Automatically measuring the
maintainability of service- and microservice-based systems: A literature
review,’’ in Proc. 27th Int. Workshop Softw. Meas. 12th Int. Conf. Softw.
Process Product Meas., Oct. 2017, pp. 107–115.

[42] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd ed.
London, U.K.: Routledge, 1988.

[43] B. Ratner, ‘‘The correlation coefficient: Its values range between +1/−1,
or do they?’’ J. Targeting, Meas. Anal. Marketing, vol. 17, pp. 139–142,
May 2009.

[44] U. Desai, S. Bandyopadhyay, and S. Tamilselvam, ‘‘Graph neural network
to dilute outliers for refactoringmonolith application,’’ inProc. AAAI Conf.
Artif. Intell., 2021, pp. 72–80.

TAKAHIRO KINOSHITA received the M.E.
degree from Tokyo Institute of Technology, Japan,
in 2019. He is currently a Researcher with the
Research and Development Group, Hitachi Ltd.,
Kanagawa, Japan. His current research interest
includes software engineering for architecture and
design.

HIDEYUKI KANUKA received the B.E. degree
from Musashi Institute of Technology, Tokyo,
Japan, in 2001, and the M.E. degree from Tokyo
Institute of Technology, Japan, in 2003. Since
2003, he has been a Chief Researcher with the
Research and Development Group, Hitachi Ltd.,
Kanagawa, Japan. In 2012, he was a Visiting
Researcher with Stanford University, CA, USA.
His current research interest includes software
engineering for architecture and testing.

55710 VOLUME 12, 2024

