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ABSTRACT Few-shot image classification remains a persistent challenge due to the intrinsic difficulty
faced by visual recognition models in achieving generalization with limited training data. Existing methods
primarily focus on exploiting marginal distributions and overlook the disparity between the product of
marginals and the joint characteristic functions. This can lead to less robust feature representations. In this
paper, we introduce DBDC-SSL, a method that aims to improve few-shot visual recognition models by
learning a feature extractor that produces image representations that are more robust. To improve the
robustness of the model, we integrate DeepBDC (DBDC) during the training process to learn better
feature embeddings by effectively computing the disparity between product of the marginals and joint
characteristic functions of the features. To reduce overfitting and improve the generalization of the model,
we utilize an auxiliary rotation loss for self-supervised learning (SSL) in the training of the feature
extractor. The auxiliary rotation loss is derived from a pretext task, where input images undergo rotation
by predefined angles, and the model classifies the rotation angle based on the features it generates.
Experimental results demonstrate that DBDC-SSL is able to outperform current state-of-the-art methods on
4 common few-shot image classification benchmark, which are miniImageNet, tieredImageNet, CUB and
CIFAR-FS. For 5-way 1-shot and 5-way 5-shot tasks respectively, the proposed DBDC-SSL achieved the
accuracy of 68.64±0.43 and 86.02±0.28 onminiImageNet, 73.88±0.48 and 89.03±0.29 on tieredImageNet,
84.67±0.39 and 94.76±0.16 on CUB, and 75.60±0.44 and 88.49±0.31 on CIFAR-FS.

INDEX TERMS Few-shot learning, Brownian distance covariance, metric learning, self-supervised learning,
regularization.

I. INTRODUCTION
In recent years, notable progress has been achieved in deep
learning within the realm of standard computer vision tasks,
particularly in the domain of object recognition. Despite these
advancements, a persistent challenge lies in maintaining high
accuracy under conditions of limited training data. This has
motivated researchers to delve into the domain of few-shot
learning. The primary objective of few-shot learning is to
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identify novel objects using only a small number of training
examples per class. This objective closely mirrors real-world
scenarios where acquiring labeled data could to be difficult
and costly. Similar to human intelligence which exhibits the
ability to learn from very few examples, the development
of deep learning models capable of learning efficiently from
a limited set of training samples across different classes is
important in advancing artificial intelligence on a broader
scale.

Common approaches for addressing the few-shot learning
challenge involve employing the ‘‘learning to learn’’
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mechanism, commonly known as meta-learning.
In meta-learning, the model undergoes training on a series
of distinct few-shot classification tasks and is subsequently
assessed on test data to acquire parameters that facilitate
generalization to new tasks [1], [2], [3]. Recently, metric-
based methods have garnered increased attention from
researchers due to their better performance compared to other
few-shot learning techniques. Typically, many metric-based
methods utilize a pre-trained feature extractor on base
classes for feature extraction. Subsequently, a classifier is
trained based on a chosen metric to compute differences
between feature embeddings of test data for classification.
Notable examples of metric-based methods include matching
networks [4], which employ cosine distance for comparing
query features with support features and incorporate a
memory mechanism; prototypical networks [5], which
employ Euclidean distance to compare query features with
the embedding prototype of support features from each class;
and relation networks [6], which examine query features with
the embedding prototype of support features from each class
using a relation module whose parameters are fine-tuned.

Despite many advancements in few-shot learning,
researchers continue to explore ways to improve the
effectiveness of few-shot learning methods. In situations
where the available training data is limited, the training
and fine-tuning process of the model becomes unstable and
inefficient, primarily due to overfitting. Existing few-shot
learning models primarily focus on exploiting marginal
distributions of features. However, the disparity between the
product of marginals and the joint characteristic functions
is often overlooked. This oversight can lead to less
robust feature representations because it ignores the deeper
statistical relationships between features that arise from
their joint distribution. In view of this, we introduce a new
few-shot learning framework DBDC-SSL that incorporates
deep Brownian Distance Covariance (DBDC) with a
self-supervised learning (SSL) loss. Given the support and
query images, DBDC effectively measures the discrepancy
between the joint distribution of the features based on the
images and product of the marginals. This in turn helps
the model to learn robust image representations which
subsequently improves the performance of the model. On the
other hand, we employ a self-supervised learning loss based
on an pretext task to classify the degree of rotation of the
image when given the embedded features. The aim of this
self-supervised learning loss is to reduce overfitting and
improve the generalization of the model.

The main contributions of this paper are summarized as
follows:

1) To improve the robustness of the model, we incorporate
deep Brownian Distance Covariance (DBDC) that
effectively measures the discrepancy between the joint
distribution of the feature representations and product
of the marginals.

2) In addition, to reduce overfitting and improve gener-
alization, a self-supervised learning (SSL) loss based

on predicting the rotation of given images is utilized.
We then train a new logistic regression classifier to
make predictions for the few-shot tasks.

3) Through extensive experiments, we show that the
proposed DBDC-SSL is able to achieve higher average
accuracy on few-shot recognition datasets.

II. RELATED WORK
Traditionally, few-shot learning predominantly follows an
inductive approach. This involves initially training the
model using a designated set of training data and sub-
sequently assessing its performance on distinct test data,
all without resorting to additional unlabeled data for
refinement. We can broadly classify the prevailing methods
in few-shot learning into three categories: gradient-based
methods, hallucination-based methods, and metric-based
methods.

A. GRADIENT-BASED FEW-SHOT CLASSIFICATION
Gradient-based approaches seek to refine the model using
a limited set of data samples to address challenges in
few-shot learning [1], [2], [3], [7], [8], [9], [10], [11],
[12], [13]. These methods fall into two main categories:
initialization-based methods [2], [3], [7], [9], [10] and
optimization-based methods [1], [8], [11], [12], [13].
Initialization-based techniques aim to acquire an effective
starting point for the model’s parameters across diverse tasks,
enabling proficient performance in new tasks with minimal
data samples and parameter updates. For instance, Model-
Agnostic Meta-Learning (MAML) [2] strives to optimally
initialize parameters based on the loss from a set of tasks
in order to improve the fine-tuning process for novel
tasks.

Conversely, optimization-based methods aim to acquire an
efficient optimizer, facilitating the model’s fast adaptation
to new tasks with limited data samples and parameter
adjustments. These methods often replace the conventional
optimizer with an alternative, such as a Long Short-Term
Memory-based meta-learner [1] or a mechanism utilizing
external memory for parameter updates [8]. Notably, the
GCLR-SVM framework [11] was introduced as an end-
to-end solution to embed representations into a latent
space, augmenting representations through latent code recon-
struction with variational information. Furthermore, the
A-MET paradigm proposed in [13] adaptively eliminates
undesired and incomplete features acquired during pre-
training, addressing the objective misalignment between
transfer learning and meta-learning. The authors also intro-
duced a GSCM metric, representing samples by jointly
re-embedding sample features to yield more consistent pre-
diction results. Additionally, Adaptive Learning Knowledge
Networks (ALKN) [14] presented an adaptive learning
knowledge module storing learned knowledge memories,
coupled with a decoder utilizing query representations and
data from the adaptive learning knowledge module for
classification.

VOLUME 12, 2024 58587



W. H. Liu et al.: DBDC-SSL for Few-Shot Image Classification

B. HALLUCINATION-BASED FEW-SHOT CLASSIFICATION
In the realm of few-shot learning, a notable challenge lies
in the scarcity of data. Recent efforts to tackle this issue
involve the introduction of hallucination-based techniques.
These methodologies, detailed in various studies such as
[15], [16], [17], and [18], aim to mitigate data limitations by
generating additional training samples. Broadly categorized,
these techniques fall into two types: the first type transfers
appearance variations from the original data categories,
as exemplified in [15] and [17], while the second type
leverages generative adversarial networks (GANs) to transfer
stylistic features, as demonstrated in [16]. In a unique
approach, [18] suggests transforming base classes into
Gaussian form using power transformation for Maximum
A Posteriori (MAP) estimation. Subsequently, the Gaussian
mean of novel classes is estimated under the Gaussian
prior based on a limited set of samples. This results in
each novel class being represented by a distinct Gaussian
distribution, from which ample trainable features can be
sampled, ultimately enhancing predictive capabilities. It is
noteworthy that these techniques are frequently employed in
conjunction with other few-shot learning methods, leading to
more complexity.

C. METRIC-BASED FEW-SHOT CLASSIFICATION
Recently, metric-based approaches have garnered increasing
attention in the literature as highly effective techniques
for few-shot learning. These methods excel in discern-
ing between objects with limited examples by exploiting
information about the similarity within the available data.
Typically, a Convolutional Neural Network (CNN)-based
feature extractor is initially trained on a larger dataset. This
extractor is then utilized to capture features from the limited
data of novel classes. Subsequently, a metric-based classifier
is trained to recognize objects based on these features. The
employed metric can take various forms, including cosine
similarity [4], Euclidean distance [5], a custom convolutional
neural network-based distance module [6], [19], [20], or a
graph neural network [21], [22], [23].
For instance, the Matching Network [4] employed an end-

to-end nearest neighbor classifier with weights and with
an attention mechanism based on cosine similarity between
two feature embeddings. The Prototypical Network [5]
computed the mean of extracted features from support data
and compared the Euclidean distance between the class mean
and query data for classification. The Relation Network [6]
concatenated feature maps of the training set and passed them
through a relation module, optimized through mean square
error (MSE) to regress the score value to the true label.
Task Dependent Adaptive Metric (TADAM) [19] introduced
a dynamic task-conditioning module to enhance the feature
extractor, incorporating metric scaling and auxiliary task
co-training to improve few-shot learning. DeepEMD [20]
recently adopted Earth Mover’s Distance (EMD) to deter-
mine the minimum matching cost between feature vectors

of support and query images for few-shot classification.
Wang et al. [24] proposed a multi-scale decision network
(MSDN) utilizing feature fusion and weighting to enhance
the fitting ability of the Relation Network during feature
concatenation. Reference [25] proposed to use Brownian
Distance Covariance that measures the discrepancy between
the joint distribution of the embedded features of the query
and support images and the product of the marginals. As a
modular layer that can be used in many networks, it can
effectively capture the dependency between the two sets of
features, which is often neglected by existing methods that
only exploit marginal distributions.

On a different note, [21] formulated a Graph Neural
Network (GNN) framework for few-shot learning, where
extracted features serve as input to a GNNwith various layers
of nodes and graph convolutional layers. Reference [22]
enhanced [21] by introducing the Edge Graph Neural
Network (EGNN), predicting edge labels on the graph
based on similarity within clusters and dissimilarity between
different clusters. Additionally, Distribution Propagation
Graph Network (DPGN) [23] introduced a dual complete
network comprising a point graph and a distribution graph,
with label information propagated from labeled to unlabeled
data through multiple updates.

D. TRANSDUCTIVE FEW-SHOT CLASSIFICATION
Transductive few-shot learning, a subset within the metric-
based few-shot learning paradigm, has demonstrated
improvements compared to other methods like inductive
metric-based approaches, gradient-based techniques, and
hallucination-based methods, as indicated in recent inves-
tigations [26], [27], [28], [29], [30], [31], [32], [33],
[34]. In inductive few-shot learning scenarios, models are
initially trained on observed and labeled training data
and subsequently utilized for predictions on unobserved
and unlabeled test data. Conversely, transductive few-shot
learning models are trained using both observed and labeled
training data and observed but unlabeled test data, and are
then employed for classifying the test data.

Transductive Propagation Network (TPN) [28] explicitly
addressed transductive inference in few-shot learning settings
for the first time. TPN introduced a framework for learning
to propagate labels between data instances for unseen classes
through episodic meta-learning. In another approach [29],
a straightforward method was proposed that minimizes the
entropy of model predictions on unlabeled query samples,
surprisingly achieving competitive performance compared to
more intricate meta-learning methods. A different study [30]
suggested using pseudo-labeling and feature shifting in a
prototypical network based on cosine similarity. PT-MAP
[31] applied Power Transform (PT) to the data to better
align it with typical distribution assumptions and utilized
Maximum A Posteriori (MAP) for computing class centers
during classification. Another investigation [33] derived a
regularized manifold by leveraging unlabeled query data and
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FIGURE 1. The proposed few-shot recognition method DBDC-SSL. Given a set of images, a backbone is used for extracting the feature
representations. The feature representations are then passed to BDC module to produce BDC matrix based on the dependency between the
features of a query image and the features of support images. The weight matrices are subsequently produced and are used as class prototypes
for prediction. The parameters of the model are then updated based on the classification loss LC and self-supervised learning loss based on
rotation LR .

employed non-parametric embedding propagation to smooth
decision boundaries by generating a set of feature interpo-
lations based on a similarity graph. In a subsequent work,
[32] proposed minimizing a quadratic binary-assignment
function, which achieved competitive performance. This
function includes a unary term assigning query samples to
the nearest class prototype and a pairwise Laplacian term,
encouraging consistent label assignments among nearby
query samples. Additionally, [27] introduced a method
maximizing mutual information between query features and
predictions of a few-shot task while adhering to supervision
constraints from the support set. In another study [34],
a transductive clustering procedure based on a conditional
neural-adaptive feature extractor was developed to yield
improved class means for few-shot classification.

III. METHODOLOGY
In this section, the common few-shot setting is first intro-
duced. After that, the details of DBDC-SSL are described.
A summary of DBDC-SSL is shown in Figure 1.

A. FEW-SHOT SETTING
We examine few-shot learning within the framework of a
labeled training set denoted as Dbase = {zj, yj}

Nbase
j=1 , where

each sample is represented by its raw images zj and its
corresponding one-hot encoded label yj. The set of classes
for this base dataset is represented by Ybase. In few-shot
scenarios, there is a distinct test dataset Xtest = {zj, yj}

Ntest
j=1

with a set of classes Ytest , ensuring Ybase ∩ Ytest = ∅.
In the context of few-shot classification tasks, the labeled data
samples are randomly sampled from the test dataset. Each
task involves N distinct classes, with Ksup labeled samples
from each class, resulting in an N -way Ksup-shot task. The
set of these labeled samples is denoted as the support set sup,
with the size |s| = Ksup · N . In addition, each task has an
unlabeled query set que comprising Kque examples from each
of the N classes, resulting in a query set size |que| = Kque ·N ,
typically consisting of unseen examples.

After training the models on the base classes, few-shot
learning methods employ the labeled support sets to adapt
to new tasks, conducting evaluations on the unlabeled query
sets. In the mean time, the raw images from the support
set sup and query set que are denoted as Zsup and Zque
respectively, with their actual labels Ysup and Yque. The
predicted labels of the support set are represented as ˆYsup,
while the predicted labels of the query set are denoted as ˆYque.

B. DEEP BROWNIAN DISTANCE COVARIANCE
In this work, Brownian Distance Covariance (BDC) is used
to measure the dependency between the features of a query
image and the features of support images, which is often
neglected by existing methods that only exploit marginal
distributions [25]. The foundation of the Brownian Distance
Covariance (BDC) theory is initially laid out in [35] and
[36]. Given two random vectors, it is a method that measures
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the dependency between them By considering their joint
characteristic function.

Consider random vectors X and Y with dimensions p and q
in Rp and Rq, respectively. Let fXY (x, y) represent their joint
probability density function. The following equation defines
the joint characteristic function of X and Y :

φXY (t, s) =

∫
Rp

∫
Rq

exp(i(tT x + sT y))fXY (x, y)dxdy (1)

where i is the imaginary unit, and t and s act as the parameter
vector for the characteristic function associated with X and Y
respectively.

Assuming finite first moments for random vectors X and
Y , the BDC metric is expressed as follows:

ρ(X ,Y ) =

∫
Rp

∫
Rq

|φXY (t, s) − φX (t)φY (s)|2

cpcq∥t∥1+p∥s∥1+q
dtds (2)

where ∥·∥ represents Euclidean norm, cp = π (1+p)/2/0((1+

p)/2) and 0 denote the complete gamma function.
For a set of m independent and identically distributed

(i.i.d.) observations (z1, y1), . . . , (zm, ym), one intuitive
method is to establish the BDC metric by utilizing the
observed characteristic functions:

φXY (t, s) =
1
m

m∑
k=1

exp(i(tT xk + sT yk )) (3)

Let Â = (̂akl) ∈ Rm×m denote the matrix of Euclidean
distances calculated between pairs of observations in the set
X , with âkl = |xk−xl |. Similarly, we establish thematrix B̂ =

(̂bkl) ∈ Rm×m representing Euclidean distances, with b̂kl =

|yk − yl |. Following this, the BDC metric can be expressed
as:

ρ(X ,Y ) = tr
(
ATB

)
(4)

Note that tr(·) represents the trace of a matrix, T represents
matrix transpose, and A = (akl) as the BDC matrix. In this
context, akl is defined as âkl −

1
m

∑m
l=1 âkl −

1
m

∑m
k=1 âkl −

1
m2

∑m
k=1

∑m
l=1 âkl , where

1
m

∑m
l=1 âkl represents the means

of the k-th row, 1
m

∑m
k=1 âkl represents the means of the l-th

column, and 1
m2

∑m
k=1

∑m
l=1 âkl represents the means of all

entries of the matrix Â. The computation of the matrix B
mirrors that of B̂. Because of the symmetry inherent in a BDC
matrix, ρ(X ,Y ) can also be formulated as the inner product
of two BDC vectors, designated as a and b:

ρ(X ,Y ) =
〈
a,b

〉
= aTb (5)

In this context, a (and similarly, b) is obtained by extracting
the upper triangular portion of A (and B, respectively) and
subsequently undergoing vectorization.

It becomes evident that the BDC metric is disentangled
based on Eq. (4) and Eq. (5). When provided with a set of
input images, the matrix of BDC for each set of features
can be independently calculated. Utilizing the given set of
features involves employing a two-layer module designed
for dimension reduction and BDC matrix computation.

To achieve this, a convolutional layer with a 1 × 1 filter for
reducing dimensions is incorporated directly following the
final convolutional layer of the backbone.

For feature extraction, a network parameterized by θ

is used to extract features from a color image z. The
feature embedding from the network based on the image is
represented as a tensor of dimensions h×w× d . Here, h and
w correspond to spatial height and width, respectively, while
d denotes the number of channels. This tensor is reshaped
into a matrix X ∈ Rhw×d , and each column χk ∈ Rhw or
each row (upon transposition) xj ∈ Rd can be considered as
an observation of the random vector X .
Next, we consecutively calculate the matrix of squared

Euclidean distances denoted as Ã = (ãkl), with ãkl signifying
the squared Euclidean distance of X’s k-th column and l-
th column. Following this, we derive the Euclidean distance
matrix Â = (

√
ãkl). Finally, we subtract the mean of row, the

mean of column, as well as the mean of the elements based
on Â obtain the BDC matrix A:

Ã = 2
(
1(XTX ◦ I)

)
sym − 2XTX

Â =
(√

ãkl
)

A = Â −
2
d

(
1Â

)
sym +

1
d2

1Â1 (6)

In this context, 1 ∈ Rd×d represents a matrix where
each element is assigned a value of 1, I denotes the identity
matrix, and the symbol ◦ signifies the Hadamard product.
The notation (U)sym =

1
2 (U + UT ) is employed to indicate

the symmetric component of the matrix U. Consequently,
it is evident that DeepBDC serves as a parameter-free spatial
pooling layer. Its high modularity renders it adaptable to
various network architectures in the context of few-shot
classification. It is important to note that we use the notation
Aθ(z) to express that the we derive the BDC matrix based on
the parameterized network fθ and takes an input image z.

C. SELF-SUPERVISED LEARNING WITH ROTATION LOSS
In this work, we utilize one pretext task for self-supervised
learning. The chosen pretext task is classifying the rotation
angle. First, the input image is rotated based on a set of angles.
The auxiliary objective of the model involves categorizing
the rotational degree undergone by the image. We employ
a 4-way linear classifier, denoted as cWr , applied to the
feature representation Aθ(zr ), where zr represents the image
z rotated by r degrees, and r ∈ CR = {0◦, 90◦, 180◦, 270◦

}.
The goal of this linear classifier is to predict 1 class among
the 4 classes within CR. The self-supervision loss is defined
as the following:

LR =
1

|CR|
∗

∑
z∈Dbase

∑
r∈CR

L(cWr (Aθ(z)), r) (7)

where |CR| denotes the cardinality of CR and L represents the
cross-entropy loss.

With this self-supervised learning protocol based on
rotation loss, the training improves the learned backbone
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TABLE 1. Average accuracy on miniImageNet and tieredImageNet. † denotes our implementation using their publicly released code.

FIGURE 2. UMAP 2-dimensional visualisation [62] of the features of 75 query images based on a randomly sampled 5-way 1-shot few-shot
classification task from miniImageNet without DBDC-SSL and with DBDC-SSL.

model such that given a set of input images, the backbone
model can generate feature vectors with better decision
boundaries between the set of classes. This extends the
efficiency of the model to classify new unseen novel classes
based on limited novel data.

D. DEEP BROWNIAN DISTANCE COVARIANCE WITH
SELF-SUPERVISED LEARNING
We conduct training for a standard image classification
task based on the entire meta-training dataset Dbase. During
this training, a learner is built from scratch using both
the cross-entropy loss LCE , which measures the disparity
between predictions and actual labels, and the auxiliary
rotation loss LR.

LCE (y, ŷ) = −
1
n

n∑
j=1

yj log(ŷj) (8)

Overall, the final loss is defined as:

L = α · LCE + β · LR (9)

where α and β are both set to 0.5 in all experiments.
Based on themeta-testing datasetDtest, we randomly select

a set of tasks (Csup, Cque). For every task, there are K amount
of classes. For the classification task, we construct and train
a linear classifier based on the instances from Csup, with
the pre-trained model serving as a feature extractor. In this
work, we employ the logistic regression model for the final
classification task.

E. SUMMARY
In summary, the proposed DBDC-SSL incorporates deep
Brownian Distance Covariance (DBDC) that effectively mea-
sures the discrepancy between the product of the marginals
and the joint distribution of the feature representations, which
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FIGURE 3. UMAP 2-dimensional visualisation [62] of the features of 75 query images based on a randomly sampled 5-way 1-shot
few-shot classification task from tieredImageNet without DBDC-SSL and with DBDC-SSL.

FIGURE 4. UMAP 2-dimensional visualisation [62] of the features of 75 query images based on a randomly sampled 5-way 1-shot few-shot
classification task from CUB without DBDC-SSL and with DBDC-SSL.

helps to improve the robustness of the model. In addition,
auxiliary loss for self-supervised learning based on predicting
the rotation of given images is utilized to reduce overfitting
and improve generalization of the model. As a result, due to
better feature representations, the classifier is able to make
predictions with a lower error rate, which in turn boosts the
performance of the model.

IV. EXPERIMENTS
In this section, the datasets, evaluation protocols, imple-
mentation details, and results obtained by the proposed
DBDC-SSL are described. Three common benchmarks are
used to evaluate the performance, which are miniImageNet,
tieredImageNet, CIFAR-FS and CUB.

A. DATASETS
1) miniImageNet
This dataset [1], [4] is widely used in few-shot image
classification. It is a subset of ILSVRC-12 [57] that contains

60,000 randomly selected images from 100 classes with the
size of 84 × 84 pixels. It consists of 64 training classes,
16 validation classes, and 20 test classes.

2) tieredImageNet
This dataset is a larger subset of ILSVRC-12 [57] that is
made of a total of 34 high categories (608 classes), which
are partitioned into 20 training categories (351 classes),
6 categories for validation (97 classes) and 8 categories
(160 classes) for testing [58]. Similar to miniImageNet,
600 random images with the size of 84 × 84 pixels are
sampled for each class.

3) CUB
This fine-grained classification dataset [59] is made of
200 classes and 6,033 images. Following the protocol of [37],
it is split into 100 training classes, 50 validation classes, and
50 test classes with the images resized to 84 × 84 pixels.
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FIGURE 5. UMAP 2-dimensional visualisation [62] of the features of 75 query images based on a randomly sampled 5-way 1-shot few-shot
classification task from CIFAR-FS without DBDC-SSL and with DBDC-SSL.

TABLE 2. Average accuracy on CUB. † denotes our implementation using
their publicly released code.

4) CIFAR-FS
This dataset is a randomly sampled subset of CIFAR-100
[60]. It is split into 64 base, 16 validation and 20 novel classes.
For every class, there are 600 random images with the size of
32 × 32 pixels.

B. EVALUATION PROTOCOLS
The experiments are evaluated based on the standard few-shot
classification settings, which are 5-way 1-shot and 5-way
5-shot tasks. The training data consist of 1 or 5 labelled data
from each of the 5 classes, while the test data consist of
15 instances randomly selected from the same classes. The
experimental results are obtained by averaging the accuracy
with 95% confidence interval scores across 2000 randomly
generated tasks.

C. TRAINING PROCEDURE AND HYPERPARAMETERS
During the pre-training phase of feature extractor, two
backbones, ResNet-12 [38], [45] and ResNet-18 [6], [52],
[53] are used for fair comparisons with previous methods.

TABLE 3. Average accuracy on CIFAR-FS. † denotes our implementation
using their publicly released code.

In the training phase for all the datasets, we utilize
conventional techniques for data augmentation following
[20], [37], and [47]. The data augmentation methods include
andom horizontal flip, color jittering, and random resized
crop. We use the SGD algorithm as the optimizer for our
method. The momentum and weight decay of the optimizer
used to train our proposed DBDC-SSL are set to 0.9 and
5e-4 respectively. For ResNet-12, we apply DropBlock
regularization [61] during training following [38], [40], and
[48].

D. COMPARISON WITH THE STATE-OF-THE-ART
METHODS
Experiments of standard 5-way 1-shot and 5-way 5-shot
classification tasks are carried out on three datasets: mini-
ImageNet, CUB and CIFAR-FS. For a fair comparison, only
the results based on the feature extractor backbone ResNet-12
and ResNet-18 are compared. As additional data is required
at test time, results from a transductive setting are excluded
in this work. We observed that the proposed DBDC-SSL has
consistent accuracy gains over the existing methods as shown
in Table 1, Table 2 and Table 3.

On miniImageNet, DBDC-SSL outperforms other meth-
ods with the highest accuracy of 68.64±0.43 on miniIma-
geNet 5-way 1-shot task and 86.02±0.28 on miniImageNet
5-way 5-shot task. Likewise, in comparison with other meth-
ods on tieredImageNet, DBDC-SSL obtains higher accuracy
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TABLE 4. Results of ablation studies on 5-way 1-shot and 5-way 5-shot
tasks on miniImageNet.

TABLE 5. Results of ablation studies on 5-way 1-shot and 5-way 5-shot
tasks on tieredImageNet.

TABLE 6. Results of ablation studies on 5-way 1-shot and 5-way 5-shot
tasks on CUB.

TABLE 7. Results of ablation studies on 5-way 1-shot and 5-way 5-shot
tasks on CIFAR-FS.

at 73.88±0.48 on 5-way 1-shot tasks and 89.03±0.29 on
5-way 5-shot tasks. For the fine-grained dataset CUB,
DBDC-SSL is able to outperform other methods with
84.67±0.39 on 5-way 1-shot tasks and 94.76±0.16 on 5-way
5-shot tasks. In addition, the proposed DBDC-SSL has the
highest accuracy among other methods on CIFAR-FS with
75.60±0.44 on 5-way 1-shot tasks and 88.49±0.31 on 5-way
5-shot tasks. These comparisons demonstrate that our models
have better robustness and generalization when intergrating
DBDC with SSL.

E. ABLATION STUDIES AND DISCUSSIONS
To investigate the effects of the major components of the
proposed DBDC-SSL, an ablation study is conducted on
mini-ImageNet to study the effects of DBDC and SSL. Based
on Table 4, Table 5, Table 6, and Table 7, it is consistently
shown that both DBDC and SSL are crucial to improve the
mean accuracy of the model. With either DBDC or SSL,
the model shows a substantial improvement in accuracy
compared to the setting where DBDC and SSL are not
utilized. This supports the hypothesis that DBDC and SSL
improves the robustness of the feature representations from
the model by effectively measuring the discrepancy between

the product of the marginals and the joint distribution of the
feature representations, as well as reducing overfitting. This
causes the model to generalize better and in turn have higher
accuracy.

In addition, we utilized 2-dimensional UMAP [62] for
feature visualization. The UMAP graph of the feature repre-
sentations from novel images based on a randomly sampled
5-way 1-shot task from miniImageNet, tieredImageNet,
CUB, and CIFAR-FS respectively is shown in Figure 2,
Figure 3, Figure 4, and Figure 5. The visualization shows
that without DBDC-SSL, the points of each cluster are
more sparse, showing higher variance. In contrast, when
DBDC-SSL is integrated, it can be observed that the
segregated clusters are with less variance. This indicates that
DBDC and SSL contribute to the generation of features with
shorter inter-class distances and higher intra-class distances,
which in turn improves the performance of the model.

V. CONCLUSION
In this paper, DBDC-SSL is proposed for few-shot learning.
The proposed DBDC-SSL utilizes deep Brownian Dis-
tance Covariance that effectively measures the discrepancy
between the product of themarginals and the joint distribution
of the feature representations. This in turn helps the model
to learn robust image representations which subsequently
improves the performance of the model. In addition, to reduce
overfitting and improve the generalization of the model,
we incorporate a self-supervised learning loss based on
an auxiliary task to classify the degree of rotation of the
image when given the embedded features. By doing so, the
learned representations become more robust, which allows
the few-shot recognition model to achieve good performance
in mean accuracy. Through extensive experiments, the
performance of the proposed DBDC-SSL is shown to
be able to outperform many state-of-the-art methods in
few-shot learning in both mean accuracy. Thus, the proposed
framework in this work is applicable to many practical
problems.
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