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ABSTRACT Health-related data has a decisive role in disease diagnosis. Collecting relevant information
from health-related data in medical records has been facilitated by evaluating the features of the data.
Relevant research has shown that outcomes are significantly impacted by the use of feature selection
(FS) in different medical domain data. FS provides an analysis of the most significant features to
improve classification accuracy. The FS technique aims at minimizing the number of input variables and
computational overload to maximize classification performance results. However, identifying the optimal
features poses issues due to the high dimensionality of large features and the small sample size of health-
related data. Themetaheuristics optimization algorithm (MOA) plays an important role in generating the best
subset features with exploration and exploitation phases. This study experiments withwell-knownMOAs and
supervised learning from the UC Irvine Machine Learning Repository, PhysioNet, Kent Ridge Bio-Medical
Dataset, and MIMIC-III v1.4 Repository with varying feature dimensions. To increase the quality of health-
related data, this study proposes missing data imputation based on a deep learning approach, an autoencoder
(AE). With AE imputation, the performance results obtain 0.0167 mean squared error (MSE) and 0.129 root
mean squared error (RMSE). As a result, MOA shows its excellence in achieving minimal features, but still
outstanding performance in low- and high-dimensional data. MOA is successfully applied to varying diverse
health-related datasets with low- and high-dimensional data.

INDEX TERMS Autoencoder, classification, data imputation, feature selection, health-related dataset,
metaheuristic algorithms.

I. INTRODUCTION
Accurate assessment of information in health-related data
will become an increasingly important challenge for research
and access to large amounts of data. In addition, health-
related data in databases related to clinics is growing at
a much faster rate [1]. Therefore, it is crucial to retrieve
health-related data from a huge amount of data so that the
information that is retrieved might aid in the diagnosis and
treatment of a variety of patient conditions. Collecting rele-
vant information from health-related data has been facilitated
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by evaluating the features of data. The relevant features
of health-related data are crucial to diagnose diseases [2].
The relevant attribute in the health-related data is extensive
and heavily weighted. The redundant features affect the
performance of the algorithm and add to the computational
costs [3]. Relevant literature has shown that using feature
selection (FS) to analyze data from different medical domains
has a significant impact on the results [2], [3], [4]. Since
most health-related data have a huge number of features,
it is important and difficult to effectively extract possible risk
factors utilizing FS approaches [2].

FS is the process of selecting the optimum subset of
features, in which the relevant features are selected and
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irrelevant features are removed [4], [5]. FS aims to maximize
the classification accuracy and minimize the number of
selected features [6]. FS plays a decisive role as an important
preprocessing step for several machine learning tasks. The
selection of essential features can also reduce the computa-
tional cost and improve the understanding of the problem.
However, FS poses a challenge with health-related data with a
massive number of features close to or larger than the number
samples size (high-dimensional data), such as microarray
and biomolecules data (i.e., deoxyribonucleic acid (DNA),
ribonucleic acid (RNA), proteins, and metabolites) [7], [8].
Small sample size sets make machine learning algorithms not
have enough space to learn the training samples, so it has a
high risk of overfitting [9].
To overcome such a problem, this study proposes the

FS method to obtain the optimum subset of features from
varying dimensional. A wrapper approach as the FS method
draws attention to its excellence in improving classification
performance. Jovic et al. [10] have categorized the wrapper
method based on search strategy, i.e., exponential, sequential,
and randomized selection strategy. Unfortunately, the expo-
nential strategy is not practically possible due to the number
of evaluated features increasing exponentially with the size
of the features. It is hard to handle high-dimensional data
problems. In addition, sequential search tends to lead to local
optima, because it includes or removes the features sequen-
tially [6]. Hence, addressing the generation of subset features
(feature search) through randomized selection strategies such
as metaheuristic optimization algorithms (MOA) has been
proposed in one decade of research [6], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20]. MOA is a derivative-
free technique and can avoid local optima and prevent the
algorithms from premature convergence [21]. MOA has two
main components for the generation of subset features, i.e.,
exploration and exploitation [22]. In the exploration process,
MOA explores the entire search space to find a promising
search space, then exploits the essential information found
in the local search space of promising areas that are found in
the exploration process.

To increase health-related data quality, this study also
proposes an algorithm for handling missing data in medical
records. Due to the high diversity and volume of medical
data, the resulting medical records are highly susceptible
to quality issues, such as missing information and errors
in data entry [23], [24], [25]. For example, the issues of
data acquired from high-throughput omics, such as low
sensitivity in protein and peptide detection can affect the
biological sample analysis [8]. Incomplete evaluations of
a patient’s status might result from missing information,
which can have a negative impact on clinical decision-making
and patient outcomes. Thus, accurate imputation of missing
data is necessary to diagnose patient’s conditions [23].
Statistical methods have been applied to data imputation,
which replaces themissing observations with themost similar
ones among the training data (mean ormode imputation) [26].
However, such a method does not preserve the relationship

among variables, in addition, in high-dimensional data, mean
imputation cannot account for dependence structure among
features [27]. Conventional data imputation methods are
prone to adding biases [8]. Deep learning (DL) has received
attention for solving data imputation. Autoencoder (AE),
as the DL approach has the capability of learning from
corrupted data, which is a natural extension to the field of
missing data [28]. It attempts to replicate a representation of
the data at the output layer after learning it from the input
layer. The model allows the algorithm to provide precise
values for imputation while learning from incomplete input.

Therefore, this study proposes a data imputation algorithm
using AE to handle missing information and MOA for FS
to find an optimal subset of features in health-related data.
To the best of our knowledge, there is limited research
addressing two key preprocessing methods of end-to-end
methodology: (i) missing data imputation with DL, and
(ii) FS to obtain relevant and optimal features in health-
related datasets. Well-known MOAs with machine learning
classifiers have been experimented with. For experimental
analysis of various dimensions of data, this study is highly
concerned with experimenting the health-related data with
low- (small features) and high-dimensional (large features).
The main contributions of this paper are as follows:

• Developing an end-to-end methodology, which
includes data imputation, FS, and classification,
customized for health-related data of diverse sizes and
dimensions for producing high accuracy;

• Identifying significant features in health-related data
through an exploration and exploitation approach based
on MOA;

• Proposing a missing data imputation approach to
improve classification performance using machine
learning methods, and

• Evaluating the proposed methodology across seven
datasets to ensure the robustness of the model.

II. LITERATURE REVIEW
The use of wrapper-MOA to solve the FS problems in
medical datasets has shown promising results. In a promising
study, Singh and Singh [2] explored a hybrid ensemble-
filter wrapper FS approach for medical datasets. They
proposed ensemble-filter-based hybrid FS (EFHFS), with
fifteen experimented filter and wrapper methods by using
four classifiers. For datasets with low dimensions, the
EFHFS method typically picks between 9 and 13 features.
In medium-dimensional datasets, it selects between 23 and
28 features. For high-dimensional datasets, the range extends
from 28 to 36 features chosen by EFHFS. Canayaz [29]
have experimented with the Binary Bat Algorithm (BBA),
Equilibrium Optimizer (EO), Gravity Search Algorithm
(GSA), and Gray Wolf Optimizer (GWO) with support
vector machine (SVM), and random forest (RF) for diabetic
retinopathy classification. They achieved a high accuracy
with a minimum of 250 features. Bashir et al. [30] proposed
a Genetic Algorithm (GA) and SVM for microarray and the
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Cleveland Heart Disease datasets. An accuracy of 94.45%
and 91% is attained on each respective dataset.

In recent years, Talpur et al. [31] have also presented
SCSO-KNN to find optimum features from ten benchmark
medical datasets. They resulted in an average classification
accuracy of 93.96% by selecting 14.2 features. Vommi
and Battula [32] proposed ReliefF and Fuzzy Entropy -
Binary Enhanced Equilibrium Optimizer (RFE – BEE)
for medical dataset classification. The suggested RFE-BEE
method employs a minimal number of features, averaging
665.29 across four datasets, particularly suitable for very
high-dimensional datasets. Compared to other existing meth-
ods, it selects fewer features for three out of the four datasets.
Qtaish et al., [46] proposed Binary Memory-based SCSO
(BMSCSO) and K-nearest neighbors (KNN) with twenty-
one benchmark disease datasets as an experimental study.
BMSCSO has incorporated a memory-oriented approach into
the updating mechanism of the Sand Cat Swarm Optimizer
(SCSO) to utilize and safeguard the optimal solutions more
effectively. They obtained an average classification accuracy
of 88.62%.

The main contribution of this research lies in the
development of a wrapper-MOA approach to achieve opti-
mal FS for various health-related datasets across different
dimensionalities. The results presented in previous studies
are commendable. However, to the best of our knowledge,
there is limited research addressing two key preprocessing
methods: (i) missing data imputation with DL, and (ii) FS to
obtain relevant and optimal features in health-related datasets.
In more detail, the primary contribution of this study is to
propose an end-to-end methodology, which includes data
imputation, FS, and classification, customized for health-
related data of diverse sizes and dimensions for producing
high accuracy.

III. MATERIAL AND METHOD
The research methodology of the study is required to describe
in detail the experimental procedures. The workflow of this
study can be presented in Figure 1, which consisted of: (i)
the varying features and samples of raw data (low- and high-
dimensional data) experimented, (ii) handling missing data
from the dataset, data imputation using AE is required to
reduce the significant degree of bias so that analyzing the
data more efficiency, (iii) the process of FS using MOA and
supervised learning, and (iv) analysis the performance results
of MOA and supervised learning.

A. DATA PREPARATION
In this study, the experimented health-related datasets are
composed of n as rows and f as columns (structured data).
There are two categorical experimented datasets:

1. Low- dimensional datasets: It refers to the number of
features (f ) are lower than the number of sample sizes
(n); f < n.

• With small features and small sample sizes to
obtain the best MOA with the machine learning

classifiers, three medical datasets are experi-
mented with and explored, i.e., Pima Indians
Diabetes, Breast Cancer Wisconsin (Diagnostic),
and Chronic Kidney Disease.

• With small features and a large sample size to
generate the missing data imputation model using
AE based on the best MOA and classifier, this
study explored PhysioNet: MIMIC-III v1.4 [33].

2. High-dimensional datasets: It refers to the number of
features that are close to or higher than the number of
samples; f ≥ n. To validate the proposed framework
from missing data imputation and FS, we explored
the high-dimensional data, such as microarray dataset,
i.e., Breast Cancer, Ovarian Cancer and Central Ner-
vous System from Kent Ridge Bio-Medical Dataset
Repository. The experimented high-dimensional data
has thousands of features with small sample sizes. The
detailed seven medical datasets can be seen in Table 1.

B. DATA IMPUTATION
Missing data in health-related data leading missing obser-
vations in disease diagnosis. It is a problem often found in
health-related datasets and it can degrade the performance
of classification tasks. To handle the missing data problems,
plausible values are generated to replace the missing values
based on two methods, i.e., statistical-based and machine
learning-based. For the statistical-based method, the missing
observations can be replaced by the most similar values
among training data (mean or mode imputation). For machine
learning-based methods, this study proposes a DL approach
formissing data imputation. Among theDL approach, AE has
received much attention for data imputation. AE has the
capability of learning from corrupted data, which is a natural
extension to the field of missing data [28].
AE is composed of the input, hidden, and output layers

which can be divided into encoder (from the input layer to
the hidden layer) and decoder (from the hidden layer to the
output layer) [34]. The encoder part maps an input vector x to
hidden representation y, through a nonlinear transformation
fθ (x) = s

(
xW T

+ b
)
where θ represents the weight matrix

W and bias vector b. For the resulting of y representation, it is
the mapped back to vector z which has the same shape of x,
where z is equal to g′

θ (y) = s
(
W ′y+ b′

)
[26]. There are two

main steps in how AE is used for missing data imputation.
It can be described as follows [35]:
AE was trained on a dataset that contains missing data;

for each variable, the average of the known values is used
to fill in the missing values. All components of the input
vector xn that contain missing values are masked out when
forming the error. Trained AE reconstructs an incomplete
input; imputingmissing values for an input vector is relatively
straightforward. When entered into the encoder, all missing
values are replaced with mean values, similar to those in the
training process. The imputed values are then shown in the
decoder’s relevant output.
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FIGURE 1. The research methodology of FS.

TABLE 1. The experimented seven medical datasets.

To generate the missing data imputation model using
AE, we conducted the PhysioNet: MIMIC-III Clinical
Database v1.4. MIMIC-III v1.4 is a health-related database
associated with critical care unit patients, which consists
of information such as patient demographics, vital sign
measurements, laboratory results, and medications. From
such information, we are concerned patient’s vital sign
measurements for cardiac arrest (CA) classification. MIMIC-
III v1.4 has 26 tables, to require the information on patient
vital signs, the CHARTEVENTS and ITEMID tables are
connected. There are nine features of a patient vital signs,
i.e., heart rate, sysbp, diasbp, meanbp, resprate, tempc,
spO2, glucose, and label. Due to the MIMIC-III v1.4 having
no label for the classification task, we added the label
feature for the MIMIC-III v1.4 dataset for CA interpretation
based on medical rules. The medical rules of CA and non-
CA can be represented in Table 2. From Table 2, the
medical rules for each feature are validated to interpret CA
and non-CA.

The proposed AE architecture for generating a missing
data imputation model can be presented in Table 3. Table 3
lists the used hyperparameters of the proposed AE architec-
ture. We constructed the encoder to decoder parts with 72 –
36 – 18 – 18 – 36 – 72 nodes. The used hyperparameters
to generate the AE model for missing data imputation are
50 epochs, 32 batch size, 10−3 learning rate, mean squared
error (MSE) as loss function, and stochastic gradient descent
(SGD) as optimizer.

C. FEATURE SELECTION
The reduction of original features to find an optimal subset of
features by preserving correlated information and removing
the uncorrelated ones is one of the most challenging tasks in
machine learning [36]. Hence, various methods have been
proposed to overcome FS problems. Generally, based on
the dependencies of any learning method, the methods are
classified into two categories; filter and wrapper methods [6],
[37]. The filter method is independent of any learning
method, so it is suitable for the low computational task [4],
[38]. The wrapper method is classifier-dependent as it
requires a learning method or a classifier for its processes,
which in turn makes it more computationally expensive
than the filter approach [2], [39], [40], [41]. However,
a wrapper outperformed the filter method to present better
results in classification performance [6], [7]. Additionally,
the main disadvantage of the filter method is that it
ignores feature dependencies, potentially causing features
that convey similar information to be selected, resulting in
redundancy [7].

The wrapper approach as the FS method draws attention to
its excellence in improving classification performance. The
wrapper method focused on generated and evaluated subset
features. Unfortunately, the generation of subset features
is challenging. The exhaustive search is not practically
possible due to the number of evaluated features increasing
exponentially with the size of the features. It is hard to handle
high-dimensional data problems. In addition, sequential
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TABLE 2. Medical rules of CA and non-CA interpretation [32].

TABLE 3. The hyperparameters of proposed AE architecture.

search tends to lead to local optima, because it includes or
removes the features sequentially [6]. Hence, addressing the
generation of subset features (feature search) through MOA
has been proposed in one decade of research [6], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20].
MOA is becoming a modern optimization for the FS

domain. Several MOAs have been developed over the past
three decades to address various optimization issues [6].
MOA is classified into the following two main categories
based on the search process; single and population (multiple)
solutions [6]. A single solution is used from the start
of the optimization process, and it is updated during the
iterations. It could result in trapping into local optima
and also only partially exploring the search space. On the
other hand, a population solution produces a population of
solutions and begins the optimization process. The number of
generations or iterations updates the population of solutions
and finally, the onewith good fitness is selected as the optimal
solution. The algorithms perform adequately at avoiding local
optima [6], [42], [43].

MOA has two main components; exploration and exploita-
tion [22]. Exploration search or explore the entire search
space for new better diverse solutions, while exploitation pro-
cesses the information found in the local search region [22].
Based on the behavior, MOA can be divided into four
categories [6];

• Evolution-based algorithm: search method that imitates
the metaphor of biological evolution in the wild and/or
the social behavior of different species. The behavior
of such species is guided by learning, adaptation, and
evolution [19],

• Physics-based algorithm: search method inspired by the
rules of physics in the universe [18],

• Swarm intelligence-based algorithm: search method
mimics the social behavior of swarms, birds, insects, and
animal groups [44],

• Human behavior-related algorithm: search method
inspired by human behavior [45].

In this experiment study, ten well-known MOAs among four
categories, i.e., Artificial Bee Colony (ABC), Particle Swarm
Optimization (PSO), Genetic Algorithm (GA), Cuckoo
Search Algorithm (CSA), Harmony Search (HS), Simulated
Annealing (SA), Differential Evolution (DE), Teaching
Learning Based Optimization (TLO), Biogeography Based
Optimization (BBO), dan Firefly Algorithm (FFA) have
explored. A detailed description of ten MOAs popular can
be seen in Table 4.

D. CLASSIFIER
Supervised learning is a popular machine learning type that
involves training a predictive model that includes the target
outputs. One of the supervised methods is classification,
which means to group the output inside a class. In this study,
a wrapper approach (MOA) as a FS method is proposed.
The wrapper method interacts with any learning method
(classifier) to evaluate the candidate’s subset of features.
To evaluate MOAs with the learning algorithm, we have
experimented with four classifiers, i.e., decision tree (DT),
random forest (RF), KNN, and support vector machine
(SVM) with the default parameter of each classifier (refer
to Table 5). The process of FS for the classification task can
be presented in Figure 2. As shown in Figure 2, the training
stage of classification is mostly impacted by FS. Following
feature generation, FS for classification will first do FS to
select a subset of features, and then process the data with
the selected features to the learning algorithm (supervised
learning).
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TABLE 4. The detailed information of ten well-known MOAs.

TABLE 5. The detailed parameter of classifiers.

E. EVALUATION OF FITNESS FUNCTION
Fitness Function evaluates how close a given solution is to the
optimum solution of the desired problem. It determines how
fit a given solution is in solving the problem. Due to the FS
aims to maximize the classification accuracy and minimize
the number of selected features, this study calculates a fitness
function (Z ) in high-dimensional data analysis as follows [6];

maxZ = (ξ1Accuracy + ξ2Sensitivity

+ ξ3Specificity + ξ4Precision) + ξ5

Total number of features-Number of selected features
(Total number of features)-1

(1)

where ξ1 - ξ5 are each criteria coefficient, which
ξ1 - ξ4 = (1−ξ5)/ 4 and ξ5ϵ[0.01]. The value

of ξ1 is 0.99 [46], [47], so that ξ5ϵ[0.01], wherein
1 – 0.99 = 0.01.
Accuracy, sensitivity, specificity, and precision values are

generated from the evaluation of the confusion matrix (CM).
CM is used to measure the performance of a classification
model, which consists of four main components, i.e., True
Positives (TP), TrueNegatives (TN), False Positives (FP), and
False Negatives (FN).

Accuracy =
TP+TN

TP+TN+FP+FN
(2)

Sensitivity =
TP

TP+FN
(3)

Specificity =
TN

TN+FP
(4)

Precision =
TP

TP+FP
(5)

VOLUME 12, 2024 55347



A. Darmawahyuni et al.: Health-Related Data Analysis

FIGURE 2. FS process for classification task.

TABLE 6. The total number of selected features by ten well-known MOAs that conducted the classifiers.

where TP is the number of correct positive predictions, TN is
the number of correct negative predictions, FP is the number
of observations that belong to the negative class but are
predicted by the model as the positive class, and FN is the
number of observations that belong to the positive class but
are predicted by the model as the negative class.

F. PLATFORM
The selected features by MOAs become the input features
for the classifiers. This study has split each experimented
medical dataset into 90% training and the rest for testing
set. The classification metrics calculate accuracy, sensitivity,
specificity, and precision to evaluate the performance. Ten
well-known MOAs experiment with seven health-related
datasets on a workstation with one Intel(R) Core(TM) I9-
9900K CPU@ 3.60 GHz (16 CPUs) ∼3.6GHz, 32GB RAM,
and one NVIDIA GeForce RTX 2080 Ti 27GB GPU (11
GB Dedicated, 16 GB Shared) is conducted. All experiments

were run on Windows 10 Pro 64 Bit. Python codes in
Spyder 4.1.5 with libraries, i.e., VS Code, TensorFlow,
NumPy, pandas, scikit-learn, SciPy, matplotlib, seaborn, and
mealpy [48] were used.

IV. RESULTS AND DISCUSSION
The performance results of MOA experiments to low- and
high-dimensional data can be discussed as follows;

A. LOW-DIMENSIONAL DATA
1) LD1, LD2, LD3 DATASETS
More datasets have a large number of observations than
features, e.g., Pima Indians Diabetes (LD1), Breast Cancer
Wisconsin (Diagnostic) (LD2), and Chronic Kidney Disease
(LD3) dataset. In our experiment for low-dimensional data,
ten well-known MOAs (refer to Table 6) conducted to DT,
RF, KNN, and SVM are compared. For LD1, LD2, and LD3
datasets, there is an initial number of features. The features
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FIGURE 3. Radar chart of ten well-known MOAs based on DT, RF, KNN, and SVM classifiers in low-dimensional
datasets.

TABLE 7. The feature significance of TLO+SVM in MIMIC-III v1.4 dataset.

TABLE 8. The performance results of MIMIC-III v1.4 with mean and AE imputation.

are selected, and the initial number of features is reduced.
The number of selected features by MOA that conducted the
classifiers can be listed in Table 6. Table 6 shows the results
of MOAs that successfully reduced the features with varying
ranges. For the LD1 dataset, MOAs on average selected
a maximum of seven features (GA-KNN) and a minimum
of three features (PSO-RF, DE-RF, TLO-RF, ABC-KNN,
PSO-KNN, and CSA-KNN). For the LD2 dataset, MOAs on
average selected a maximum of 20 features (SA-RF) and a
minimum of three features (FFA-KNN). For the LD3 dataset,
MOAs on average selected a maximum of 18 features (HS-
DT) and a minimum of three features (TLO-DT). Among all

the MOAs, TLO selected a relatively smaller subset of fea-
tures in the LD1, LD2, and LD3 datasets. This was because,
TLOwas designed to work on the philosophy of teaching and
learning (teacher and learned phases). The algorithm is based
on the effect of the teacher’s influence on the learner output
in a class. It is easily implemented, has high consistency, and
requires less computational memory due to there being no
specific parameters that should be needed in TLO.

For the comparison of accuracy for ten well-known MOAs
on low-dimensional datasets, the radar chart based on DT, RF,
KNN, and SVM classifiers is depicted in Figure 3. The radar
chart presents the multivariate observations with an arbitrary
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TABLE 9. The execution time and number of features selected by TLO in high-dimensional data based on DT, RF, KNN, and SVM classifiers.

FIGURE 4. The performance results of TLO based on DT, RF, KNN, and SVM classifiers in HD1, HD2, and HD3 datasets.

number of variables. Each classifier (DT, RF, KNN, and
SVM)makes a polygon shape that shows performance results
based on accuracy. The radar chart having a symmetrical
shape and larger area demonstrates a better performance.
Among the classifiers, SVMmostly has higher symmetry and
maximum area for accuracy in all low-dimensional datasets.

In this study, SVM outperformed other experimented clas-
sifiers in all low-dimensional datasets. It can be observed
that other experimented classifiers (DT, RF, and KNN) have
asymmetrical shapes since their performance on LD1 and
LD2 wasn’t satisfactory enough, but better performance
results in LD3.
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FIGURE 5. The heatmap CM of TLO+SVM in HD1, HD2, and HD3 datasets.

2) MIMIC-III V1.4
The results of the feature significance of MIMIC-III v1.4 can
be listed in Table 7. In this study, the threshold value for
feature significance in all dimensional datasets is > 0.5.
As a result, we attempt the proposed TLO+SVM with two
cases; (i) mean imputation, and (ii) AE imputation. Table 8
presented the performance results of MIMIC-III v1.4 with
mean and AE imputation. With mean imputation and two
selected features (heartrate and sysbp), TLO+SVM obtained
99.5% accuracy, 73.6% sensitivity and specificity, and 78.9%
precision. In addition, with the AE imputation, the prediction
of missing values achieves 0.0167 MSE and 0.129 root
mean squared error (RMSE). The results show the average
squared difference between the target and predicted values
has minim error due to the value achieved below zero. Based
on the results of AE imputation, with six selected features
(heartrate, sysbp, diasbp, resprate, tempc, and glucose).
TLO+SVM has successfully achieved 99.8% accuracy,
80.4% sensitivity and specificity, and 99.9% precision.
AE imputation outperformed mean imputation in perfor-
mance results, though the minimum features were obtained

bymean imputation (only two features). TLO+SVMwithAE
imputation can learn from incomplete data and generate new
plausible values for imputation. The extremely imbalanced
MIMIC-III v1.4 dataset has affected the classification
performance. It brings challenges to feature correlation, class
separation, and evaluation. However, TLO+SVM is well-
performed; still has high performance in accuracy, sensitivity,
specificity, and precision with minimum features.

B. HIGH-DIMENSIONAL DATA
More datasets have larger features than observations, e.g.,
Breast Cancer (HD1), Ovarian Cancer (HD2), and Central
Nervous System (HD3) datasets. HD1, H2, and HD3 are
samples of microarray data. Microarray data mostly consists
of complex and high-dimensional features, and the number
of features is much larger than the number of sample sizes.
Moreover, most of these attributes are irrelevant to the
classification task. Microarray data hold the expression of
features extracted from tissues.

To analyze high-dimensional data, this study is also
concerned with conducting TLO on each classifier. High-
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FIGURE 6. The boxplot of TLO+SVM in HD1, HD2, and HD3 datasets with Stratified 5-cross-validation.

dimensional data analysis poses challenges; it is hard to
visualize and difficult to identify a single response variable,
making standard data exploration and analysis techniques
less useful. However, this study was not concerned with
the problems above. This study is extensively focused
on the number of selected features with a massive of
features. Table 9 lists the differences number of initial
features and selected features. The number of initial fea-
tures abruptly decreased, which is only around two, and
12 features selected. Numerous redundant and irrelevant
features frequently reduce the classification accuracy of high-
dimensional datasets. However, this study has successfully
obtained 100% accuracy, sensitivity, specificity, and preci-
sion in HD1 with only two selected features (RF, KNN, and
SVM) (refer to Figure 4). For HD2 and HD3, all performance
metrics had also achieved 100%, with only two selected
features in all experimented classifiers. TLO+SVM are still
showing outstanding performance in all experimented high-
dimensional datasets of this study. As evidence results, the
heatmap CM is presented in Figure 5. As presented in
Figure 5, TLO+SVM has made no mistakes in its predictions
(FP and FN are zero).

To assess the generalization ability of TLO+SVM and pro-
vide a more robust estimate of model performance, we have
experimented with Stratified K-cross validation (K=5) in

HD1, HD2, and HD3 datasets. The high-dimensional datasets
have been divided into 5 approximately equal-sized folds.
The results of TLO+SVM using K-cross validation can be
performed in Figure 6. Figure 6 shows a boxplot of 5-cross
validation of accuracy, sensitivity, specificity, and precision in
HD1, HD2, andHD3 datasets. Boxplot visualization provides
insights into the distribution, variability, and outliers within
HD1, HD2, and HD3 datasets. As represented in Figure 6,
there are varying results of accuracy, sensitivity, specificity,
and precision of HD1, HD2, and HD3 datasets in each fold
with Stratified 5-cross-validation. Fold 2, 3, and 4 yields
100% accuracy, sensitivity, specificity, and precision in HD1,
HD2, and HD3, respectively.

In this study, we benchmark previous research that
provides the challenges of various dimensions of data (refer
to Tables 10 and 11). Table 10 listed the benchmarking
studies for missing data imputation method DL-based from
previous research. Yoon et al. [49] proposed a multi-
directional recurrent neural network (M-RNN) to deal with
missing data in the MIMIC-III database. They obtained
0.0312 RMSE for the imputation block in their proposed
architecture. Qian et al. [50] presented DEep Attention
Recurrent Imputation (DEARI) to estimate missing values
in heterogeneous multivariate time series. They extracted the
MIMIC-III dataset for 21,128 samples with 59 variables.
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TABLE 10. Benchmarking studies of missing data imputation DL-based in MIMIC III datasets.

TABLE 11. Benchmarking studies of the FS method in various dimensions of data (the case of health-related datasets).

They achieved 0.09165 MSE. As a result, our proposed AE
architecture for missing data imputation was well-performed,
and it presented good results when compared to other state-
of-the-art methods.

As listed in Table 11, there are two concerned parameters;
the number of selected features and performance results of the
FS with classification metrics. Singh and Singh [2] explored
a hybrid ensemble-filter wrapper FS approach for medical
datasets. They proposed ensemble-filter-based hybrid FS
(EFHFS), with 15 experimented filter and wrapper methods
by using Naïve Bayes (NB), SVM, RF, and KNN classifiers.
Gauthama Raman et al. [51] proposed Rough Set Theory and
Hypergraph (RSHGT)-based FS to identify the informative
feature subset in high-dimensional datasets (HD1, H2,
and HD3). RSHGT combines the benefit of rough set
theory and hypergraph properties to identify the informa-
tive feature subset in minimal time. Overall, a wrapper
method with TLO+SVM outperformed EFHFS+SVM and
RSHGT+RBF has proven its excellence in minimizing
a subset of features and maximizing the classification
performance. The performance results in this study have high
consistency with 100% accuracy, sensitivity, and specificity
in the experimented classifiers using TLO+SVM in low- and
high-dimensional data. Nevertheless, many open challenges
have also been identified that need future research.

The performance results in low- and high-dimensional data
look promising, however, there are limitations of this study:

• The experimented datasets are structured data, which
consist of rows and columns.

• The analysis is limited to features and sample size in
binary classification.

V. CONCLUSION
Feature subset selection is an important technique to find
optimal and informative features for machine learning tasks.
It poses a challenge due to the number of features and sample
size being extensively imbalanced. The problem of FS tends
to be related to a high-dimensionality problem, in which
the number of features is much larger than the number
of sample sizes. It can reduce the classification accuracy
due to the sample set of the training set being limited to
learning. For experimental analysis of various dimensions of
data, this study is highly concerned with experimenting the
health-related data due to the relevant attribute in it having
a lot of weight and significance for the classification task.
Additionally, the health-related data acquired from various
medical sources has extremely high feature dimensions.
The problem of health-related data is not limited to feature
dimensions, due to the high diversity and volume of medical
data, the resulting medical records are highly susceptible to
missing information in disease diagnosis.

To address those problems, this study explores the
FS technique using ten MOAs and four classifiers in
low-dimensional datasets and applies the best MOA and
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classifier in high-dimensional data from diverse binary
medical datasets. As a result, MOA shows its excellence in
achieving minimal features, but still outstanding performance
with above 90% in low- and high-dimensional data for
all performance metrics. TLO + SVM is the best fusion
that outperformed other experimented MOAs with DT,
RF, and KNN classifiers. A wrapper method with MOA
is successfully applied to varying diverse health-related
datasets with low- and high-dimensional data. To obtain
comprehensive results, this study also proposes a missing
data imputation method using AE. With the AE imputation,
the prediction of missing values achieves 0.0167 MSE and
0.129 RMSE. The results are well-performed to handle
missing values problems in large data.
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