
Received 22 February 2024, accepted 1 April 2024, date of publication 16 April 2024, date of current version 24 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3389986

Indoor Positioning Based on Bluetooth RSSI
Mean Estimator for the Evacuation
Supervision System Application
DARIUSZ JANCZAK 1, (Member, IEEE), WOJCIECH WALENDZIUK 1, MACIEJ SADOWSKI 1,
ANDRZEJ ZANKIEWICZ 1, (Member, IEEE), KRZYSZTOF KONOPKO 1,
MACIEJ SLOWIK 2, AND MALGORZATA GULEWICZ 2
1Faculty of Electrical Engineering, Bialystok University of Technology, 15-351 Białystok, Poland
2Moose spolka z ograniczona odpowiedzialnoscia, 15-540 Białystok, Poland

Corresponding authors: Dariusz Janczak (d.janczak@pb.edu.pl) and Wojciech Walendziuk (w.walendziuk@pb.edu.pl)

This work was supported by the National Centre for Research and Development in Poland, which provided partial support for the
development of localization algorithms in this project. The support was granted under ‘‘Things are for People (Rzeczy są dla
ludzi)/0014/2020; ESWSE—Electronic Effective Evacuation Assistance System’’ realized by Bialystok University of Technology and
Moose sp. z O. O., while the part related to the research on the development of auxiliary devices used for the construction of system
components were covered by a Bialystok University of Technology internal Grant WZ/WE-IA/2/2023, and Grant WZ/WE-IA/7/2023.

ABSTRACT The novel approach to the Low Energy Bluetooth RSSI (Received Signal Strength Indicator)
examination for a personal location during the evacuation process is presented in this paper. The presented
system is based on stationary locating localization nodes installed inside the facility and portable wristbands
worn by people. A method based on the propagation model and preliminary determination of its characteris-
tics is used to calculate the wristband-locator distance. The accuracy of the distance estimations is increased
by assumingGaussianmodel of RSSImeasurements and using the estimator of RSSImean value. Amodified
multilateration approach is used to estimate the person’s position in the 2D Cartesian coordinate system. The
paper also includes the outcomes of experiments conducted on the proposed approach as it was applied to
the prototype evacuation supervision system. The paper presents a comparison of the position estimation
error for the proposed method based on the mean RSSI value estimator with the results obtained when raw
RSSI values were used. Analysis and discussion of wristband position estimation error are also included.

INDEX TERMS Indoor navigation, indoor positioning systems, localization, smart buildings, Bluetooth
Low Energy, received signal strength indicator, RSSI, safety devices.

I. INTRODUCTION
The necessity of determining the location of a given object
employing electronic sources in real-time (RTLS – Real Time
Location System) is one of the most frequently occurring
problems in engineering projects. However, it may be solved
if the following factors are considered: the conditions of
the environment in which the object is located, the required
accuracy of determining the location, or other requirements
of the end user of the created solution [1], [2]. Nevertheless,
in all cases of determining the location, the environmental
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conditions are significantly important [3]. They are connected
with physical phenomena which differ in the case of the
analysis of open space compared with the conditions inside
buildings [4], [5].
In the case of the location of an object in the open

space, GNSS (Global Navigation Satellite Systems) work-
ing within 1200 MHz and 1500 MHz frequency ranges is
the most commonly used solution [1], [6]. The visibility of
the proper number of satellites is the essential factor in the
accurate estimation of the object location [7], [8]. In the case
of closed spaces, e.g., residential or public buildings, this
requirement is practically impossible to be met. Additionally,
estimating the location in the vertical position, for example,
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determining the floor in a building, is another important
issue. The accuracy of determining the location in the vertical
position, in the case of satellite navigation systems, is rel-
atively low, which has been described in publications [9],
[10]. It is also worth mentioning that, however, the GNSSs
have been especially designed for estimating the location in
open spaces, in the case of a building, devices working in
WLAN/WSN (Wireless Local Area Network/Wireless Sen-
sor Network) standards working in open bands (ISM) of
the frequency of 2400 MHz, e.g., Wi-Fi or Bluetooth, are
usually applied [11], [12]. Applying those standards for the
purposes of location is possible but requires creating special
algorithms providing this functionality, which are often based
on advanced techniques of deep learning or fingerprint [13],
[14], [15], [16], [17]. It is also possible to use systems work-
ing within other frequency ranges, e.g., 1400 MHz. However,
these applications are only used for specific purposes, for
example, remote vehicle controlling [18] or remote patient
monitoring [19]. Moreover, radio frequency identification
(RFID) systems, working within various frequency ranges,
may also be used for the purpose of estimating location [20],
[21], [22].

Applying the concept of the closest sensor [23], [24] is one
of the simplest ways of estimating the location inside a build-
ing. It allows bounding a location to a certain sensor (receiver)
on the basis of the value of the received signal. In this solution,
the location of the object is identical to the location of the
device which has received the highest level of the signal. The
main advantage of this technique is the fact that it is easily
implemented. However, it must be said that the receivers have
to be placed quite densely in order to obtain the required
accuracy, which significantly raises the cost of the system.
Additionally, depending on the configuration of the corridors
in the building, the location of the infrastructural elements
and the users, it may happen that the higher level of the signal
will be received by a quite distant device. This may be caused,
for example, by the fact that closer stations were temporarily
shaded. The 1-D type location system is an expansion of the
concept of the closest sensor. In this solution, we assume
the movement of the object only along one axis, and the
position is estimated based on a proper algorithm. However,
the location of the 2-D type (position on the plane) is a
better and more accurate method, especially in the case of
vast buildings. The 3-D type location (the location estimated
according to three spatial coordinates) is rarely implemented,
typical rather for open space estimations.

Because the signal from the located object usually does
not contain information concerning its location, it is vital
to determine the values that can be monitored and give a
basis to estimate the location of the object. Here are the
most frequently applied methods [25], [26], [27] in which this
property is used:

• monitoring the level of the RSSI (Received Signal
Strength Indicator), which shows the power level of the
received radio signal. Based on the signal propagation

loss, it is possible to determine the distance from the
transmitter [28], [29], [30];

• the analysis of the transmitter-receiver signal time flow
(Time of Arrival, ToA). This method requires applying
time measurements of high accuracy [31], [32];

• analysis of time differences of signal arrivals from
a transmitter to many receivers (Time Difference of
Arrival, TDoA). When the location of at least two
receivers and the time difference of the signal arrival are
known, the object location can be estimated [33], [34];

• analysis of the angle of the signal arrival (Angle of
Arrival, AoA). It is used in the case of UWB (Ultra
Wideband) location systems [35], [36], [37], and it is
based on locating the signal source with the use of
the amplitude method and the amplitude-phase method.
The necessity of using extended systems of antennas is
undoubtedly a disadvantage of this solution;

• using the Doppler’s method, i.e., the analysis of the
transmitted and the received signal frequency, also
called FDoA (Frequency Difference of Arrival). This
method is mostly used in open spaces and moving
objects [38], [39];

• hybrid methods which combine the above solutions, for
example Doppler shift and AoA [40], Doppler shift and
RSSI [41], TDoA, and AoA [42], ToA and RSSI [43] or
AoA and RSSI [44];

• other ways of object locating, especially using data
fusion [45], [46].

Among the above mentioned solutions, the RSSI method
combined with the Bluetooth technology called BLE
(Bluetooth Low Energy) is the cheapest and easiest to
apply [47].
BLE technology is one of the most universal techniques

using the transmission of information over short distances.
Due to the high availability of electronic modules supporting
this standard, low energy consumption and the possibility of
using a smartphone (most have built-in BLE transceivers) to
collect and process data, it has very high application potential.
It can be used, for example, to monitor energy consumption in
an intelligent building [48], monitor the presence of employ-
ees in an office [49], and in remote healthcare systems [50].
Applications in public safety management support systems
(emergency management) are also possible [51]. Systems
using the BLE standard also enable easy integration with
artificial intelligence and machine learning methods [52].
The use of devices operating in the BLE standard requires

prior calibration tests due to the possibility of signal dropouts
in a real, non-uniform propagation environment. It requires
prior calibrationmeasurements due to the possibility of signal
loss caused by the non-homogeneous environment [24]. This
factor is often calibrated up to a certain power level, which is
taken as 100% of the signal power. Its absolute value depends
on the manufacturer of the device. Recently, numerous papers
concerning estimating the location with the use of the RSSI
factor have appeared [53], [54], [55]. Their authors usually
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begin with a trial of analytical determining the signal level,
and then try to measure the RSSI factor and estimate the
location of a real object. In such cases, the multilateration
technique is applied for this reason. It is based on the mea-
surement of the RSSI signal value, the absolute time of the
signal arrival from the transmitter to the remote ToA receiver,
or the estimation of the differences in the signal arrival times
at remotely located transmitting-receiving devices [16], [37].

One of the fields where information concerning object
location inside a building is applied is the surveillance of
technical buildings or surveillance of people within a certain
area. It may also be the case of monitoring exhibits in muse-
ums [56], controlling children on buses [53], or evacuation
supporting systems in public buildings [57].
This article contains an analysis of an electronic system

supporting evacuation dedicated to residential homes. As they
are inhabited by elderly people with various illnesses and
disabilities, the certainty that all tenants have been evacuated
in a dangerous situation is vital for their lives. It was assumed
that the system would provide the monitoring of people’s
presence and would estimate their approximate location. If it
appears that a person has not left the building, they may be
helped, as their location is known. Such a system covers the
area of a building and its closest environment. For systems
of this type. i.e., installed inside a building, the following
requirements may be assumed:

• a certain accuracy of location, depending on the end
user’s needs, e.g., a fire brigade requires not only infor-
mation concerning the number of people in the building,
but also looks for general information concerning the
location of a person to be evacuated;

• scalability of the system by enabling adjusting subse-
quent elements such as locators and reference stations
in other parts of the building;

• using cheap and easily accessible electronic compo-
nents, transmitting-receiving devices and open-source
telecommunication standards in order to provide the
supply chain during the system commercialization
phase;

• the low-energy factor of the system components, e.g.,
lowering the power level consumed by the transmitting-
receiving modules, or switching them temporarily to the
standby mode.

Those requirements are met by the presented location system.
This paper also contains methods enabling the decrease of the
numerical resources needed for estimating the location of an
evacuated person. Due to this factor, quicker estimation of
the position on the server with a minimized amount of the
transferred data is possible.

A. OBJECTIVE AND CONTRIBUTIONS OF THE PAPER
The main purpose of the article was to develop methods of
position estimation based on the RSSI level of the wristband
Bluetooth signal received by stationary reference stations.

Moreover, the basic assumptions of the developed system
were taken into account:

• cost minimization;
• the ability to handle a large number of supervised
wristbands, which requires the development of posi-
tion estimation algorithms with low computational
requirements;

• ease and short installation time on a wide range of build-
ings, which excludes long-term tests at the installation
site of a commercial system;

• reasonable requirements for the accuracy of location
estimation.

In the designed evacuation surveillance system, a method
using a propagation model and preliminary identification of
its parameters was chosen for distance estimation. Another
goal was to develop an algorithm for position estimation,
which was designed based on a modified multilateration
method.

The contribution of this paper to the research area includes:

• improving the accuracy of position estimation by using
estimator of RSSI mean value and appropriate identifi-
cation of the propagation model parameters;

• modification of multilateration algorithm for estimating
the position of objects on a 2D plane, which take into
account z coordinates of the locator nodes and the aver-
age wearing height of the wristband;

• confirmation of the performance efficiency of the
worked-out methods through experimental tests, which
were carried out in a prototype system for supervising
the evacuation of people from a building.

Moreover, the paper presents the analysis of the average
error in determining the x, y coordinates and discussion on
estimator parameters and the locator nodes placement.

II. ESTIMATION OF 2D POSITION COORDINATES USING
MULTILATERATION
The development of 2D location methods was the next stage
of research carried out by authors on increasing the accuracy
of location in the evacuation supervision system presented
in [24]. This problem comes down to the determination of
the Cartesian coordinates (x1, y1) of the location of the P1
wristband (BLE transmitter) based on the knowledge of the
coordinates (xLi, yLi) of the locator nodes (BLE receivers)
and the distance di between the locators and the wristband.
The idea of the issue is illustrated in Figure 1. In the case
of 2D coordinates, an unambiguous solution can be obtained
by processing distance measurements to at least three locator
nodes. This is due to the fact that the case of using distances
to two locator nodes leads to a solution that is satisfying for
two points in the plane.

In the case of the evacuation monitoring system, the
coordinates of the locators (xLi, yLi) are known from the
measurements made at the installation stage. The distances
di are estimated on the basis of RSSI measurements, which
in the case of the implemented system is made based on a
model of propagation losses, which describes the dependence
of signal power on distance. Analyzing Figure 1, it can be
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FIGURE 1. An example of system elements arrangement that allows to
determine the 2D coordinates of an object based on RSSI.

FIGURE 2. Determination of 2D coordinates of point P1 using circular
multilateration.

observed that the accuracy of the estimation of the distance di
(wristband - locator node distance) is themain factor affecting
the accuracy of determining the (x1, y1) coordinates of point
P1. The solution to the given task can be obtained by using
the multilateration methods [20], [58], [59].

Multilateration is one of the triangulation-based position-
ing methods. This method uses measurements of distances
between the object and base stations with known locations.
In the case of circular multilateration, the lines of the potential
object location take the form of circles. The centers of the
circles are located at the base stations, while the radius lengths
of circles are obtained through the estimation of distances
between the base stations and the object. This method is
illustrated in Figure 2. As it can be seen in the figure, each
two circles intersect at two points, and only the use of three
circles unambiguously determines the location of object P1
on the plane.

Using equations describing circles with centers at (xLi, yLi)
and radii di for the system shown in Figure 2, the following
system of equations can be formulated as follows:

(x − xL1)2 + (y− yL1)2 = d21
(x − xL2)2 + (y− yL2)2 = d22
(x − xL3)2 + (y− yL3)2 = d23 (1)

Solving the system of equations (1) leads to an unambigu-
ous solution (xP1, yP1). Unfortunately, instead of the actual
distances di, we have their estimates d̂i (k) which are subject

FIGURE 3. Estimation of the 2D coordinates of point P1 using distance
estimates d̂i .

to error.

d̂i (k) = di + v (k) (2)

where d̂i (k) is an estimate of the distance, v (k) is the esti-
mation error modeled as a normally distributed variable with
zero mean and variance σ 2.
Therefore, circles usually do not intersect at a single point.

For this reason, it impossible to obtain an analytical solution.
It is illustrated in Figure 3. In this situation, to determine
the coordinates

(
xP1 , yP1

)
, a method to obtain an approxi-

mate solution [58], [60], such as the non-linear least squares
method, the maximum likelihood estimator, or the estimation
based on the centroid of the confidence area or the area
formed by intersections of circles, should be used.

Additionally, it should be noted that in the case of an
evacuation system, the located object is placed on the floor
plane, which may allow the development of a simplified
positioning algorithm.

These two issues discussed above were considered when
developing the algorithm presented in the following sections.

III. ESTIMATION OF 2D POSITION COORDINATES USING
MODIFIED 3D MULTILATERATION
It is assumed that in the designed evacuation supervision
system, in the case of large rooms, the wristband should be
seen by at least three locator nodes. Hence, the system of
equations (1) should be formulated for N ≥ 3 locator nodes
obtaining RSSI measurements. In addition, it should be taken
into account that the estimation of di distances based on the
RSSI measurements and using the propagation loss model
actually determine distances in the three-dimensional (3D)
space. The height of the wristband placement (z coordinate)
will usually be different from the installation height of the
locator node. Not taking these facts into consideration when
creating the mathematical description will lead to an increase
in the error of the distance di estimation. Therefore, although
the 2D coordinates of the wristband location are finally
required, the system of equations (1) should be extended by
the vertical z coordinate. Therefore, in order to determine the
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coordinates of the 2D location of point P1 on the floor plane,
a system of equations should be formulated forN ≥ 3 spheres
centered at points (xLi, yLi, zLi) and radii di. Taking into
account also the variability of the measurement process over
time, the system of equations (1) takes the following form:

(x (k) − xL1)2 + (y (k) − yL1)2 + (z (k) − zL1)2 = d21 (k)

(x (k) − xL2)2 + (y (k) − yL2)2 + (z (k) − zL2)2 = d22 (k)
...

(x (k) − xLN )2 + (y (k) − yLN )2 + (z (k) − zLN )2 = d2N (k)

(3)

where x (k), y(k), z(k) are the Cartesian coordinates of the
wristband location (marked in Figure 2 as point P1), xLi, yLi,
zLi are the Cartesian coordinates of the location of the locator
nodes Loci, di (k) are the distances between the wristband and
the i-th locator node, k is the time index, N is the number of
locator nodes in the system.

To reduce the order of the system of equations and simplify
the calculations, the following approach is proposed. Taking
into account the fact that the coordinates of the locator nodes
installation are known and assuming the average height of
wearing the wristband as z (k) = zo, the dimension of space
can be reduced. Therefore the system of equations (3) can be
written in the form:

(x (k) − xL1)2 + (y (k) − yL1)2 = d21 (k) − (zo − zL1)2

(x (k) − xL2)2 + (y (k) − yL2)2 = d22 (k) − (zo − zL2)2

...

(x (k) − xLN )2 + (y (k) − yLN )2 = d2N (k) − (zo − zLN )2

(4)

Expanding the above equations and subtracting the first
equation from the others, the following system of equations
can be obtained:

− 2xL2x (k) + 2xL1x (k) + x2L2 − x2L1 − 2yL2y (k)

+ 2yL1y (k) + y2L2 − y2L1
= d22 (k) − d21 (k) + (zL1 − zo)2 − (zL2 − zo)2

...

− 2xLN x (k) + 2xL1x (k) + x2LN − x2L1 − 2yLN y (k)

+ 2yL1y (k) + y2LN − y2L1
= d2N (k) − d21 (k) + (zL1 − zo)2 − (zLN − zo)2 (5)

The system (5) can be written in matrix form as follows:

U
[
x (k)
y (k)

]
=

1
2
V (k) (6)

where

U =

 (xL2 − xL1) (yL2 − yL1)
...

...

(xLN − xL1) (yLN − yL1)

 , (7)

V (k) =



x2L2 − x2L1 + y2L2 − y2L1 + (zL1 − zo)2

− (zL2 − zo)2 + d21 (k) − d22 (k)
...

x2LN − x2L1 + y2LN − y2L1 + (zL1 − zo)2

− (zLN − zo)2 + d21 (k) − d2N (k)

 (8)

The solution of (6) can be determined as follows [58], [59]:[
x̂ (k)
ŷ (k)

]
=

1
2

(
UTU

)−1
UTV (k) , (9)

where x̂ (k), ŷ (k) are estimated values of the wristband
coordinates.

Equation (9), together with (7) (8), allows obtaining esti-
mates of Cartesian 2D coordinates of the wristband location,
which take into account zLi coordinates of the locator nodes
and the average height of wearing the wristband. It should
be emphasized that a low computational load characterizes
the implementation of this algorithm. As it can be seen, the
elements of the matrix U (7) depend only on the location
coordinates of the locator nodes, so the matrix U is constant
and can be calculated once. Therefore, the right part of the (9)
can also be calculated once before the estimation process. The
same can be done with most of the components of vector
V (k) (8). Such an approach greatly simplifies the compu-
tational process by reducing the algorithm for calculating
estimates to the operation of multiplying a constant matrix
by a vector, which significantly reduces the computational
load. This is very important in a system working in real-
time. However, in the case of real measurements, it must
be considered that the wristband can be ‘‘seen’’ by different
sets of locator nodes, which requires pre-calculation of the
set of matrices U and elements of vectors V (k) taking into
account different combinations of locator nodes. However,
in practice, the number of these sets will not be large, due
to the limited wristband - locator node transmission range.
With this approach, although the software implementing the
estimator should be expanded with procedures for selecting
the matrix U and the vector V (k) from the pre-calculated set,
the resulting computational load will be much smaller than
in the case of calculating their values for each timemoment k .

As it can be seen in (8), in order to obtain position esti-
mate (9), it is necessary to determine the estimates of the
distances between the wristband and the locator nodes. This
issue is the subject of subsequent sections.

IV. RSSI-BASED DISTANCE ESTIMATION
As stated in Section II, the accuracy of determining the 2D
position significantly depends on the quality of measure-
ments of distances between the transmitter and locator nodes.
The following two types of methods were investigated:

• with the use of a reference station;
• with the use of the initial identification of the parameters
of the following model: RSSI = f(d).

The method of distance estimation based on RSSI using
a reference station is used in many studies presented in the
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literature. In this case, the transmitter-receiver distance d is
determined on the basis of the following model of function
RSSI = f(d) derived from the propagation relationship [55],
[61], [62].

RSSId = RSSId0 + 20 · log10

(
d
d0

)
, (10)

where d is the distance between the receiver and the transmit-
ter, d0 is the known distance to the reference station, while
RSSId and RSSId0 are the RSSI values of the signal received
from the transmitter being localized and the reference station.

After rearranging equation (10), the transmitter-receiver
distance d estimate can be determined according to the fol-
lowing formula:

d̂ = 10
RSSId−RSSId0

20 · d0. (11)

In the case of the second method, which uses the initial
identification of model parameters, the logarithmic model
of the relationship RSSI = f(d) is assumed in the following
form [24]:

RSSId = a · log10 (d) + b, (12)

where d is the distance between the receiver and the transmit-
ter, while a, b are parameters, the values of which depend on
the type of system components, its surroundings and operat-
ing conditions.

The estimate of the distance d between the receiver and
the transmitter, in this case, is determined according to the
formula:

d̂ = 10
RSSId−b

a . (13)

The above method requires initial identification of param-
eters a, b of the model (12), which is carried out on the basis
of a series of RSSI measurements of the signal received from
transmitters located at points of known location.

In order to select one of the abovemethods to be used in the
designed evacuation supervision system, an analysis of the
advantages and disadvantages of each of them should be car-
ried out. The analysis should take into account such features
of the system as its spatial extent, reliability of measurements,
immunity to interference and ease of installation. It can be
presented as follows:

• The approach with the use of the reference station has
the following advantages:

◦ no need to conduct preliminary tests to identify
system parameters;

◦ immunity to changing environmental conditions
when the entire system is subject to the same
changes as the reference station.

• Disadvantages of the approach based on the use of the
reference station:

◦ the accuracy of the entire system depends on the
stability of the RSSI measurements of the reference
station, so a significant variance of the RSSI signal

of the reference station [24] will reduce the accu-
racy of measurements in the whole system;

◦ local changes in the surroundings or conditions in
which the reference station works cause a decrease
in the accuracy of measurements in the entire
system;

◦ fragments of a large system operating in different
conditions must have additional reference stations,
which entails additional costs;

◦ outlier RSSI [24] occurring in the measurements of
reference station signal affects the obtained distance
estimates in the entire system, causing a decrease in
the accuracy of determining the position of objects
in the system;

◦ the use of transmitters from different manufacturers
(other than the reference station) may cause an
increase in distance estimation errors;

◦ failure of the reference station causes malfunction
of the entire system.

As it can be seen, in the case of a spatially extensive
system, the approach based on the use of a reference sta-
tion has numerous disadvantages. Therefore, in the designed
evacuation supervision system, the method of estimating the
distance between the location node and the wristband exploits
equation (13) with pre-identification of model parameters
in experimental research. The proposed approach does not
require additional reference station devices and is free from
disadvantages resulting from their use. It is expected that the
measurement accuracy of the entire system will be compara-
ble, but problems arising in the case of the reference station
malfunction or changes in its operating conditions will be
avoided.

Taking into account the above analysis, the RSSI-based
estimate of the distance dm,n between the wristband located
in the Pn position and the locator node Locm is determined
according to (13). The estimate at the k-th time moment is
calculated as follows:

d̂im,n (k) = 10
RSSIm,n(k)−b

a , (14)

where RSSIm,n (k) is the RSSI of the signal transmitted by the
wristband located in the Pn position and received by Locm
locator node, d̂im,n (k) is distance estimate, while a, b are
parameters of the model which should be predetermined for
each type of transmitter-receiver pair.

V. DISTANCE ESTIMATION WITH USING RSSI MEAN
ESTIMATOR
In the case of indoor positioning systems based on the RSSI
of the Bluetooth signal, a detailed analysis of error sources
and their modeling is a complex issue that is described
in the literature for idealized or simplified conditions. The
complexity of this issue forces the adoption of approximate
and generalized methods in systems implemented in practice.
The method proposed in the article falls within this area.
According to previous research carried out by the authors and
presented in [24], the RSSIm,n (k) signal is stochastic, which
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results from various types of disturbances and distortions
related to the architecture of the building, various obstacles
and interferences from other communication systems. Thus,
the mean value and standard deviation of this stochastic
process depend not only on the object location but also on
its surroundings. This research leads to the use of a Gaussian
RSSI model, which is a reasonably useful approximation.
In this case, the distance estimation (14) is made not on
the basis of current RSSI measurement (RSSIm,n (k)), but on
the basis of the estimated mean value of RSSI, hereinafter
referred to as RSSIMm,n (k). As an estimator of the mean RSSI
value, it is proposed to use an averaging filter. The value of
RSSIMm,n (k) is obtained as following:

RSSIMm,n (k) =
1
M

∑M−1

i=0
RSSIm,n (k − i) , (15)

where M is the width of the moving window, and k is the
index of the current time moment.

Finally, the distance estimation formula (14) will take the
following form:

d̂m,n (k) = 10
RSSIMm,n(k)−b

a . (16)

As mentioned above, parameters a, b should be predeter-
mined for the types of system components (wristband, locator
node) applied in the evacuation monitoring system. Iden-
tification of parameters a, b is carried out based on RSSI
measurements obtained from wristbands placed in a number
of known locations. Next, for all series of measurements
carried out by each locator node for all wristband positions
Pn the average of RSSI mean estimates values (denoted as
mRSSIm,n) should be calculated according to formula (17).

mRSSIm,n =
1
Nmn

∑Nmn

i=1
RSSIMm,n (i) , (17)

where RSSIMm,n (i) is the i-th estimate of the RSSI mean
obtained according to (15) for the signal transmitted by
the wristband located in the Pn position and received by
Locm locator node, Nnm is the number of RSSI measure-
ments acquired by Locm locator node for each Pn wristband
position.

Then, the parameters a, b of the model can be identified
using the non-linear method of least squares. The applied
logarithmic model (12) takes the following form:

mRSSIm,n = a · log10
(
dm,n

)
+ b, (18)

where dm,n is the real distance between the wristband located
in the Pn position and the locator node Locm.
As it was shown in [24], a high level of RSSI signal

variance is noticeable when the locator node operates under
difficult conditions (like small space, the presence of interfer-
ence sources). As a result, this phenomenon will significantly
increase the variance of the distance estimate (14) deter-
mined on the basis of the current RSSI value (RSSIm,n (k)).
Whereas, the use of the estimator (15) of themean RSSI value
will result in a

√
M fold reduction of the RSSI variance used

to determine the distance (16), which in turn will result in an
improvement in the quality of the estimates d̂m,n (k).

The width of the moving windowM is an important param-
eter that should be selected optimally. Its increase reduces the
variance of the filtered value, but at the same time, it may
have a negative influence on the dynamics of the position esti-
mates. Therefore, it should be selected carefully, taking into
account the surroundings of the locator nodes. The selection
of the parameterM can be carried out taking into account the
error of estimation of the distance or position, as well as the
frequency of refreshing RSSI information. It is recommended
to set this parameter considering the locator node operating in
the worst conditions in the entire system. However, the best
solution is to set individual values for each locator node.

The distance estimation algorithm presented in this section
and the algorithm for determining 2D coordinates presented
in Section III were used to develop the evacuation supervi-
sion system. The experimental installation of this system is
described in Section VI, and the results of the tests of the
system are presented in Section VII.

VI. EVACUATION SUPERVISION EXPERIMENTAL SYSTEM
The research presented in this paper was conducted using
an experimental installation of an evacuation supervision
system. The experimental installation made it possible to
check the operation of the designed system and to assess the
effectiveness of the proposed methods for determining the 2D
location. Below, the elements of the system will be described
and the location of the locator nodes and the evacuation path
will be illustrated.

A. LOCATOR NODE MODULES AND WRISTBANDS USED
IN THE SYSTEM
The two main hardware components in the developed system
are the locator nodes and the wristbands, which are pre-
sented in Figure 4. The locator node devices are based on
the modules with ESP32 chips which provide Bluetooth Low
Energy and WLAN (Wi-Fi) connectivity. Additionally, the
locator nodes are equipped with some peripheral elements
like microswitches, RGB LEDs, buzzers and Li-Ion battery
charge controllers. The locator nodes are running dedicated
firmware whose main function is to create a bridge between
the wristbands (with BLE interface) and the IP network
(through Wi-Fi connection). In addition, the firmware man-
ages input-output peripherals that signalize the locator node
charging and the wristband states. The main function of the
wristbands is to broadcast their unique IDs with information
about the detected heart pulse and movements of the person
wearing them. The wristbands are built on the basis of open
programmable modules based on a Nordic Semiconductor
nRF52832 system-on-Chip (SoC) with an Arm Cortex-M4
processor and a Bluetooth LowEnergy Transceiver. They also
contain a heart rate sensor, an MEMS accelerometer and an
OLED (Organic Light-Emitting Diode) display that is used
to provide watch functions and to present some system state
data.
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FIGURE 4. General view of a part of the location system and a prototype
wristband used in the research.

FIGURE 5. The functional structure of the evacuation supervision system.

B. EXPERIMENTAL SYSTEM
The functional structure of the evacuation supervision system
is shown in Figure 5.

Dataflow of the evacuation supervision system presented
in Figure 5 is organized in the following steps:

• The wristbands periodically broadcast BLE advertise-
ments with a unique wristband ID and information about
the detected pulse and movements of the wearer.

• The BLE advertisements (Figure 6) sent by the wrist-
bands are received by the locator nodes that are in the
range of the particular wristband. Then the locator node
decodes the data from the received BLE advertisement
and determines the signal level (RSSI).The locator node
prepares a data frame with information from the wrist-
band and sends it to the MQTT broker using a standard
Wi-Fi Internet connection.

• A dedicated application running on the system server
reads data from the MQTT broker and stores it in the
system database. The software estimator module reads
data from the database and uses it to perform the required
estimation calculations. The estimation results are used
by a dedicated web application to present them on the
webpage.

FIGURE 6. Information reported by the wristband presented on the
mobile application.

The developed structure of the system allows for any scal-
ability of the installation size of the evacuation supervision
system. Depending on the extent of the building, its shape and
room architecture, locator nodes can be added and arranged
in any way. The only condition that must be met is their suf-
ficiently dense distribution. Scalability is also of significant
practical importance for the system, which should function
in the event of a fire hazard. Scalability for this system also
means that the system can function properly in the event
of gradual degradation, which may occur when subsequent
locator nodes are damaged due to, for example, fire. In the
case of the developed architecture, the destruction of a certain
number of them does not affect the efficiency of the rest of the
system. However, in the ‘‘edge’’ case, i.e. the wristband is
detected by only one or two locator nodes and multilateration
is not possible, the system should switch to the proximity
location described in the authors’ article [24].

Experimental installation of the evacuation supervision
system, working according to the presented scheme, was
set up on the third floor of a university building, as shown
in Figure 7. The system configuration, i.e. the location of
the locator nodes, was planned in such a way that the tests
were carried out on a potential evacuation path, and at
the same time, the locator nodes were located in various
interference conditions and different conditions of the mul-
tilateration geometry. Five locator nodes were placed on the
walls of the lobby at the distances between 6 and 12 meters
from each other. The coordinates of the locator nodes are
shown in Table 1. The wristband was placed sequentially at
13 locations along the evacuation path. The coordinates of the
wristband position nodes are shown in Table 2.

VII. RESULTS OF EXPERIMENTS
The developed algorithm for determining 2D coordinates
using multilateration described in Sections III and V was ver-
ified using simulation and real data from RSSI measurements
obtained in the experimental installation of the evacuation
supervision system. At the beginning, comparative studies
were carried out for the locator nodes and wristband locations
arranged in accordance with the diagram shown in Figure 8.
Then, the tests were carried out for the wristband placed along
the evacuation path and with the use of all locators, as shown
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FIGURE 7. Location of Locm locator nodes in the experimental
installation of the evacuation supervision system and locations Pn of
wristband along the evacuation path during the tests.

TABLE 1. Coordinates of the locator nodes in the experimental
installation of the evacuation supervision system.

in Figure 7. The coordinates of the locator nodes and the
wristband positions are presented in Tables 1 and 2.

A. SIMULATION RESEARCH OF THE ALGORITHM FOR
DETERMINING 2D COORDINATES
Simulation tests were carried out in conditions corresponding
to the measurement tests presented in the following sections,
which allows the verification of the algorithm and software

TABLE 2. Coordinates of wristband placed along the evacuation path
during the tests.

FIGURE 8. Location of locator nodes and location of the wristband during
simulation tests and a series of measurements.

and facilitates performance analysis and comparative tests.
In the case of simulation studies, the distance measurement
based on the RSSI was simulated in accordance with the
measurement model with the additive Gaussian error most
commonly found in the literature [61], [62]:

dmi (k) = d ri + v (k) , (19)

where d ri is the real distance (in 3D space), dmi (k) is a
simulated distance measurement based on the RSSI at time
moment k , while v (k) is themeasurement errormodeled as an
additive random process with normal distribution: N [0, σd ]
(with zero mean and standard deviation σd ).

Simulation tests for each of the wristband locations Pn
were carried out in a series of Ns = 500 measurement sim-
ulations according to (19). Table 3 presents the values of the
Mean Absolute Error (MAE) of the estimation of each of
the coordinates (x, y) for six selected values of the standard
deviation σd of the distance measurement error. The MAE
value of each of the coordinates was determined according
to the following formulas:

MAE
(
x̂ (k)

)
=

1
Ns

∑Ns

k=1

∣∣x̂ (k) − xPn
∣∣ ,

MAE
(
ŷ (k)

)
=

1
Ns

∑Ns

k=1

∣∣ŷ (k) − yPn
∣∣ , (20)

where x̂ (k), ŷ (k) are estimates of the Cartesian coordinates
of the wristband location, xPn , yPn are the actual Cartesian
coordinates of the wristband position (Pn points), Ns is the
number of RSSI measurements at a given wristband position.
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TABLE 3. MAE of the estimation of the coordinates (x, y) of the Pn points
for different values of the standard deviation of the distance
measurement error in the case of simulation research.

As it can be seen from the results of the simulations
presented in Table 3, the developed algorithm ((9) with (7),
(8)) is characterized by good efficiency for a wide range of
standard deviation values σd of the distance measurement
errors. It enables the estimation of the coordinates (x, y) of the
wristband position Pn with the MAE error at the level of the
standard deviation value σd (for σd < 5 m ). These values are
satisfactory from the point of view of the evacuation supervi-
sion system. Differences between the estimation errors of the
x coordinate and the y coordinate result from multilateration
geometry and the location of points Pn relative to the location
of locator nodes.

B. RESEARCH USING RSSI MEASUREMENTS IN THE
EXPERIMENTAL EVACUATION SUPERVISION SYSTEM
The efficiency of the developed 2D coordinate estimation
algorithm was checked for real RSSI measurements in the
experimental evacuation supervision system. The locator
nodes placement and the positions Pn of the wristband are
presented in Section IV. Approximately Np = 500 measure-
ments were acquired for each Pn location.
First, it was necessary to identify the parameters a, b of

the logarithmic model (12) of the relationship between the
estimated RSSI mean value (15) and the transmitter-receiver
distance d (RSSI = f(d)). The parameters a, b of the
model were identified according to (17) and (18) using
the non-linear method of least squares with the Levenberg-
Marquardt algorithm.

Figure 9 illustrates the identification process of a, b param-
eters for M = 10, parameter of estimator (15). The blue dots
on the graph, marked as mRSSIm,n, represent the average
values of the RSSI mean estimates obtained by the m-th
locator node (Locm) of the signal from the wristband located
in Pn position. The 3D distance between Locm and Pn is d
meters. In the legend of the figure, the values of parameters
a, b obtained in the identification process are given.

FIGURE 9. Identification of a, b parameters of the measurement model
RSSI = f (d ) (for M = 10).

The identification process illustrated in Figure 9 was car-
ried out for the Gaussian model of RSSI distribution. The
values of a = −17.822, b = −61.277 were obtained, which
minimized themean square error of the fit. These values allow
the estimation of the distance d̂m,n (k) between Locm and Pn
on the basis of the RSSI using (15) and (16).

Table 4 presents the standard deviations of distances esti-
mated in this way for a series of RSSI measurements carried
out in the experimental installation shown in Figure 7 by
each of the three locator nodes (Loc1, Loc2, Loc3) for the
signal received from the wristband placed at selected points
Pn (P01 - P05). In order to demonstrate the efficiency of the
proposed processing method (15), the table shows the results
obtained from the raw RSSI values (marked as M = 1)
and the results obtained with the application of the mean
estimator (15) with a window width ofM = 10.
As it can be seen in the results presented in Table 4, the

standard deviation sd of the estimated distances d̂m,n (k) ,

obtained based on RSSI using the proposed filter (15) with
M = 10, ranges from approximately 0.1 m to values below
5 m. The obtained values are much lower than in the case
of the estimated distances obtained with using raw RSSI
values. The level of improvement obtained is in line with the
theoretical predictions for this type of filter, which anticipates
a decrease in the standard deviation by a factor of

√
M .

The obtained reduction of the distance estimation error will
allow improving the accuracy of the 2D estimation in the
multilateration process and ultimately the improvement of
the accuracy of the determined position. The obtained sd
values are within the range chosen during the simulation
tests presented in Table 3, which enables the analysis of the
effectiveness of the 2D algorithm, which are presented below.

During the research, it turned out that selection of the
parameterM of the RSSI mean estimator (15) is an important
parameter affecting the estimation error. This is illustrated in
Figure 10, where the MAE of the distance estimates d̂m,n (k)
between Locm and Pn depending on the parameterM are pre-
sented. TheMAE value of distance estimates was determined
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TABLE 4. Standard deviations sd of distance estimates d̂m,n
(
k
)

obtained
from raw RSSI values (marked as M = 1) and using RSSI mean
estimator (15) (window width M = 10).

according to the following formula:

MAE
(
d̂m,n (k)

)
=

1
Ns

∑Ns

k=1

∣∣∣d̂m,n (k) − dm,n

∣∣∣ , (21)

where dm,n is the actual distance between Locm and Pn, while
Ns is the number of RSSI measurements at a given wristband
position.

As it can be seen in the graph presented in Figure 10,
the MAE of distance estimation decreases with the increase
of the window width M . These changes are significant for
M < 5, while for 5 ≤ M ≤ 10 are small. For M > 10 M ,
the changes are insignificant. Taking into account the above
results, it should be concluded that the value of M should
be set between 5 and 10. In addition, the analysis of the
graph presented in Figure 10 shows that for the recommended
value ofM , theMAE of distance estimation is approximately
30% lower when using the proposed RSSI mean estimator
compared to using the raw RSSI values.

The study of the estimation efficiency of the proposed algo-
rithms was carried out based on RSSI measurements obtained
in the evacuation monitoring experimental system presented
in Figure 7. For this purpose, the distance estimator (15), (16)
and the 2D coordinate estimator (9) with (7), (8) were used.
The average height of wearing the wristband was assumed as
zo ≈ 1.2 m. An example of the coordinate estimation process
is shown in Figure 11.

As shown in Figure 11, in the case of real data, the circles
representing distances (estimated on the basis of RSSI mean
estimates) from the locator nodes do not intersect at one point.
The proposed position estimation method assumes the center
of gravity of the common area as the point of the object
location.

Table 5 presents the MAE of the (x(k), y(k)) coordinate
estimates for wristbands located in the selected points Pn,
based on measurements from Loc1, Loc2, Loc3, for three
window widths: M ∈ {3, 5, 10} The table also includes the
average position estimation error bP̂n , which was determined
according to (22).

bP̂n =
1
NS

∑NS

k=1

√(
x̂ (k) − xPn

)2
+

(
ŷ (k) − yPn

)2
, (22)

where x̂ (k), ŷ (k) are estimates of the Cartesian coordinates
of the wristband location, xPn , yPn are the actual Cartesian

FIGURE 10. MAE of Locm - Pn distance estimation depending on the
width of the window M.

FIGURE 11. An example of the 2D coordinate estimation process in the
experimental system based on the RSSI with the use of the proposed
algorithms.

coordinates of the wristband position Pn, NS is the number of
RSSI measurements at a given wristband position.

From the data presented in Table 5, it can be concluded
that the estimation errors decrease with the increase of theM
value. As it can be seen, in the case of a change from M =

3 to M = 10, the decrease can be even twofold.
An example of a coordinate estimation process of

x̂ (k) , ŷ (k) for two sample points (P02, P04) is shown in
Figure 12 and Figure 13. In the figures, the blue line indicates
the estimates x̂ (k) , ŷ (k), while the green line represents the
actual value of the coordinate of the wristband location. The
presented results were obtained forM = 10.
As shown in Figure 12 and Figure 13, the proposed esti-

mator is characterized by a small error of the coordinates
estimation, which has a value at the level of single meters.
However, as it can be seen, a constant bias of some level may
appear. The bias appearing for individual Pn locations results
from the proposed method of identifying the model parame-
ters. Its idea relies on the generalization of model parameters
for the entire system. Therefore, the occurring bias can be
reduced by identifying parameters a, b for each of the locator
nodes separately or for a typical environment of a given group
of locator nodes. However, this would require additional
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TABLE 5. MAE of the x, y coordinate estimates and average position
estimation error bP̂n

of selected Pn points based on measurements from:
Loc1, Loc2, Loc3, for three M values.

scaling tests during the installation of the system on target
facilities. On the other hand, the bias level is acceptable from
the point of view of accuracy required in the evacuation
supervision system, which does not justify the additional
effort during system installation. In addition, as it can be seen
from the figures, there are single estimates x̂ (k) , ŷ (k) with
a higher error level than the average. Although their level is
also acceptable, their impact can be further mitigated by using
an additional tracking algorithm with non-uniform sampling
and outlier elimination [63], [64], [65], [66].

Table 6 presents the MAE of (x(k), y(k)) coordinate esti-
mates for individual wristband locations Pn obtained based
on RSSI mean estimates for measurements carried out in
the experimental installation of the evacuation supervision
system. The table also shows the average position estima-
tion error bP̂n , which was determined according to (22). The
presented results were obtained for M = 10. Moreover, the
average position estimation error bP̂o andMAE of coordinate
(x(k), y(k)) estimates calculated for all measurements (all
locations P01-P13) are presented in Table 7. For comparison,
Table 8 presents the bP̂o and MAE obtained when raw RSSI
values were used for distance estimates. Comparing these
data with the results from Table 7 will allow to assess the
effectiveness of the proposedmethod based on the RSSImean
value estimator.

The average position estimation error bP̂o is determined
according to (23), and the MAE of coordinate (x(k), y(k))
estimates are calculated similarly. The average position esti-
mation error bP̂o is determined as follows:

bP̂o

=
1

NPnNS

∑NPn

n=1

∑NS

k=1

√(
x̂n (k) − xn

)2
+

(
ŷn (k) − yn

)2
,

(23)

where x̂n (k), ŷn (k) are estimates of the Cartesian coordinates
of the wristband position, xn, yn are the actual Cartesian
coordinates of the wristband position Pn, NS is the number of
RSSI measurements at a given wristband position Pn, while
NPn is the number of wristband locations Pn.

As it can be seen in the results presented in Tables 6 and 7,
the developed algorithm ((9) with (7), (8) and (15), (16))

FIGURE 12. Estimation of the (x(k), y (k)) coordinates of the P02 point.

FIGURE 13. Estimation of the (x(k), y (k)) coordinates of the P04 point.

has a good efficiency. The accuracy analysis of the position
estimation should be carried out for two separate areas on the
evacuation path, i.e., points P01 - P07 and points P08 - P13.
Points P01 - P07 is in the close range (d < 12 m) of obser-
vations of the Loc2 locator node, which results in smaller
distance estimation errors. This ensures that the multilater-
ation geometry in the x-axis direction is well-conditioned.
Therefore, MAE

(
x̂ (k)

)
are at a low level, i.e., from about

1.5 m to about 4 m. On the other hand, points located further
away from Loc2 (P08 - P13) are not observed with a low
distance estimation error by the locator node spaced in the
x-axis direction. It deteriorates conditioning of the multilat-
eration geometry along the x-axis and causes an increase
of MAE

(
x̂ (k)

)
even up to 19.6 m. The differences in the

estimation accuracy of the y coordinate are much smaller,
i.e., MAE

(
ŷ (k)

)
are from about 1 m to about 4 m for points

P01 - P07 and from about 1 m to 9 m for points P08 - P13. This
is due to the fact that four locator nodes (Loc1, Loc3, Loc4,
Loc5) are placed every 6 m to 12 m along the y axis (along
the evacuation path), which ensures that the multilateration
geometry in the y-axis direction is well-conditioned. The
above analysis carried out for two ranges of points allows
to formulate practical rules for the placement of the locator
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TABLE 6. MAE of (x (k), y (k)) coordinate estimates and the average
position estimation error bP̂n

for individual wristband locations Pn.

TABLE 7. MAE of (x (k), y (k)) coordinate estimates and the average
position estimation error bP̂o

for the proposed method based on mean
rssi estimator.

TABLE 8. MAE of (x k), y k) coordinate estimates and the average
position estimation error bP̂o

obtained when raw rssi values were used.

nodes. In the case of large rooms, the locator nodes should
be placed every 6 m to 12 m alternately on opposite walls
of the hall. However, if the space where the wristband is
located is in the form of a long corridor, it is acceptable to
place the locator nodes along one wall. In this case, it is
recommended to control the resulting estimates taking into
account the location of the walls (the idea of the bounding
box). As shown in Table 7, in the case of placing the locator
nodes that enables good conditioning of the multilateration
geometry, the average error in determining the x, y coordi-
nates is about 2.5 m and the error bP̂o in determining the
location of the wristband is about 3.8 m. In the case of ill-
conditioned geometry, the average errors increase more than
two times.

Comparison of results presented in Table 7 and Table 8
shows the effectiveness of the proposed method based on the
RSSI mean value estimator. The use of this method resulted
in a greater than 30% reduction in the MAE of the coordi-
nate estimates and approximately a twofold reduction in the
average position estimation error bP̂o compared to results of
estimation when raw RSSI values were used.

In the test system, the estimator was implemented using
Python v. 3.9.2 and was executed on a 64-bit ARM-8

Cortex-A53 1.2 GHz processor. For this implementation, the
mean service time for one request (the time between receiving
a message from the locator node and sending a message with
the position estimate to the visualization module) equalled
9.64ms. This time included not only determining the estimate
but also parsing the received MQTT message and creating
and sending an MQTT message to the visualization module.
The resulting time enables the handling of over 100 messages
per second, which ensures full functionality of the test sys-
tem. Each wristband was uniquely identified in the system
by its MAC address, so the measured RSSI and estimated
distances from the locator were uniquely assigned to the
wristband. During trials involving a group of a large number
of people wearing wristbands, no problems were indicated.
In the case of system expansion, the mean service time should
be reduced, which can be achieved by using a larger number
of estimators servicing groups of locator nodes, using a com-
piled programming language, or using a hardware platform
with greater computing power.

VIII. CONCLUSION
The paper presents the developed methods for an indoor
positioning systemwhich is designed for an evacuation super-
vision system application. The designed system consists of
a network of irregularly placed location nodes that receive
signals from wristbands worn by people. To ensure low costs
of installation, the system uses the Bluetooth RSSI values
to locate the wristbands. In order to determine the position
of a person in a 2D Cartesian coordinate system, a modified
multilateration method was used. The proposed modification
allows to take into account, in a 2D system, the z coordinates
(height) of hanging the locators and the average height of
wearing the wristband. This allows increasing the accuracy
of the estimation while maintaining a low order of equations.
However, the main advantage of the approach proposed in
the paper is the increase in the accuracy of distance estimates
used by the multilateration. This is achieved by using the
mean RSSI value estimator instead of taking the raw RSSI
values. To ensure a low computational load, an estimator in
the form of an averaging filter was used. In the proposed
approach, the process of identifying the parameters of the
distance-RSSI exponential model is carried out on the basis of
the estimated mean RSSI values. The proposed approach was
verified during experiments carried out in a prototype evacu-
ation supervision system. On these bases, recommendations
concerning the choice of the M parameter of the RSSI mean
estimator were concluded as 5 ≤ M ≤ 10. Further research
concerning the accuracy of the estimation of the wristband
relocated along the evacuation path was conducted. On the
basis of the completed tests, it appeared that the average
estimation error value of the x, y coordinates was about 2.5 m,
and the estimation error value of the wristband location was
close to 3.8 m. The comparison of the position estimation
error for the proposed method based on the mean RSSI value
estimator with the results obtained when raw RSSI values
were used showed an approximately two-fold error reduction.
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The results show that the developed algorithm for deter-
mining 2D coordinates based on the RSSI mean estimator has
satisfactory accuracy from the point of view of the evacuation
surveillance system. Therefore, a target-tracking algorithm
is not required. However, if necessary, such methods can
be built on top of the proposed algorithm. In this case, for
example, a linear Kalman filter could be applied using a
dynamics model with a Newtonian transition matrix and a
linear observation equation, where the estimates obtained
using the method described in the article would be used as
measurements. As other further research directions, we can
mention the development of simplified methods for select-
ing the width M of the moving window depending on the
conditions surrounding each locator, a method for optimizing
the placement of locator nodes, and the use of data fusion
with measurements from the IMU (Inertial Measurement
Unit) module to improve the quality of position estimates of
evacuated people.

Summarizing, thanks to its low computational require-
ments, the proposed solution allows its implementation in
low-budget solutions based on Internet of Things technology.
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