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ABSTRACT Smart Cities refer to urban areas which exploits recent technologies for improving the
performance, sustainability, and livability of their infrastructure and services. Crowd Density Analysis
(CDA), a vital component of Smart Cities, involves the use of sensors, cameras, and data analytics to monitor
and analyze the density and movement of people in public spaces. CDA utilizing DL harnesses the control
of neural networks to mechanically and exactly evaluate the density of crowds in numerous settings, mainly
in smart cities. DL techniques like Recurrent Neural Network (RNN) and Convolutional Neural Network
(CNN), are trained on vast datasets of crowd videos or images to learn complex designs and features. These
models can forecast crowd density levels, recognize crowd anomalies, and offer real-time visions into crowd
behavior. This study designs an Artificial Intelligence Driven Crowd Density Analysis for Sustainable Smart
Cities (AICDA-SSC) technique. The aim of the AICDA-SSC method is to analyze the crowd density and
classify it into multiple classes by the use of hyperparameter-tuned DL models. To accomplish this, the
AICDA-SSC technique applies contrast enhancement using the CLAHE approach. Besides, the complex and
intrinsic features can be derived by the use of the Inception v3 model and its hyperparameters can be chosen
by the use of the marine predator’s algorithm (MPA). For crowd density detection and classification, the
AICDA-SSC technique applies a gated recurrent unit (GRU) model. Finally, a chaotic sooty tern optimizer
algorithm (CSTOA) based hyperparameter selection procedure takes place to increase the effectiveness of
the GRU system. The experimental evaluation of the AICDA-SSC technique takes place on a crowd-density
image dataset. The experimentation values showcase the superior performance of the AICDA-SSC method
to the recently developed DL models.

INDEX TERMS Crowd density, artificial intelligence, sustainable, chaotic sooty tern optimization, smart
cities.

I. INTRODUCTION
A smart city is a full entity that combines tangible and
non-tangible sources for use by its people [1]. The compati-
bility of ICT-based infrastructures with fixed infrastructures
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is essential to become a system efficient in providing pre-
dictable services to people, without disturbing or negotiating
the excellence of life [2]. It is also considered an advanced
design to provide sustainable development and service by
satisfying the 6 sizes of sustainability namely environment,
people, economy, mobility, governance, and living. As a cru-
cial part and one of the 6 sizes for developing smart cities,
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mobility must be given special and significant attention [3].
The concept of supportable transport methods as an essen-
tial part of emerging smart cities is being beaten. Because
the conventional methods of transport assumed in traditional
cities are joined with in-built tasks like congestion issues,
accident occurrence, pollution, and much more, these are
dangers to the method and delay the socio-economic actions
of smart cities [4]. Urban surveillance has changed from
grainy CCTV footage to high-definition streams managed by
neural networks. These networks are trained on huge datasets
that can differentiate among the movement of vehicles and
people, deduce crowd creations, and even recognize unusual
designs that might direct possible dangers [5].
Over the past years, crowd analysis (CA) has revealed

steady development owing to the arrival of new tech-
niques [6]. Deep learning (DL) methods have been increas-
ingly utilized for numerous uses owing to discriminatory
control and effectual functional removal. Many models
employed in traditional CA were improper for modern
surveillance due to definite restrictions. Normally, modern
surveillance methods are categorized by intense worries and
dynamicity in crowd motion styles and the functioning situ-
ations of surveillance tools [7]. This dissimilar feature can
confuse the usage of present models in the analysis and
monitoring of the dense crowd. CA researchers must improve
new models to reply to the worry in the novel atmosphere
where computer vision (CV) is gradually required to observe
and analyze numerous people from video footage of the
surveillance cameras in real-time [8]. This involves evaluat-
ing the assortment of the crowd and the density distribution
across the complete collection area. Recognizing regions
above security can aid in delivering prior alarms and could
stop crowd crushes [9]. The estimation of the number of
crowds also aids in measuring the significance, logistics, and
substructure of the event. With the improvement of hardware
technology and the DL model, the performance of numerous
CV tasks has been significantly enhanced, and CNN has
played a significant part in many tasks namely image classi-
fication, target recognition, and semantic segmentation [10].
So, CNN was commonly employed in calculating tasks, and
the related performance has been enhanced.

This study designs an Artificial Intelligence Driven Crowd
Density Analysis for Sustainable Smart Cities (AICDA-SSC)
technique. To achieve this, the AICDA-SSC model uses con-
trast enhancement using the CLAHE approach. Besides, the
complex and intrinsic features can be derived by the use of the
Inception v3 model and its hyperparameters can be chosen by
the use of the marine predators’ algorithm (MPA). For crowd
density detection and classification, the AICDA-SSC tech-
nique applies a gated recurrent unit (GRU) model. Finally,
a chaotic sooty tern optimizer algorithm (CSTOA) based
hyperparameter selection procedure takes place to improve
the efficacy of the GRU system. The experimental evalu-
ation of the AICDA-SSC technique takes place on crowd
crowd-density image dataset. In short, the key contributions
of the paper are listed as follows.

• An automated AICDA-SSC technique comprising
Inception v3 feature extractor, MPA-based hyperpa-
rameter tuning, GRU classification, and CSTOA based
parameter selection has been developed for crowd den-
sity detection. In order to the best of our knowledge, the
AICDA-SSC technique never existed in the literature.

• Combines the Inception v3 structure as feature extrac-
tion, improving the model’s capability to take and
examine difficult patterns within crowd density data,
thus refining the accuracy of crowd analysis in smart
cities.

• Uses the MPA to modify hyperparameters, enhancing
the performance of the crowd density study method.
MPA’s bio-inspired optimizer technique donates to the
efficacy and flexibility of the model.

• Includes GRU as portion of the AICDA-SSC method,
allowing the technique to efficiently take and study
time-based dependences in crowd density information,
improving the accuracy of forecasts over time.

• Executes the CSTOA for hyperparameter range, donat-
ing to the sturdiness and flexibility of the technique
by dynamically fine-tuning parameters dependent upon
chaotic optimizer principles.

• The incorporation of MPA and CSTOA reproduces
a hybrid optimization approach, merging bio-inspired
models and chaotic optimizer principles to improve the
model’s flexibility and performance.

II. RELATED WORKS
Zhu et al. [11] develop a comprehensive AI-based CA model
structure for rail transport stations, by examining and pic-
turing CA information from video frames of highest density
crowds. Then a general AI helped organizational structure
(AI Crowd) was developed. Deep SORT and YOLO have
been combined into the model structure. Camera calibration
is employed to convert identified paths into a real-life orga-
nized method. Bai et al. [12] reflect on crowd mindset and
other aspects and begin a fixed basic technique of crowd
assembly designs. To fuse actual multi-granularity surveil-
lance videos with dissimilar viewpoints, multi-column CNNs
(M-CNNs) have been employed to remove the local compact-
ness features of the crowd in a lower-altitude viewpoint.

In [13], theKSA in crowd organization utilizingAI through
the Hajj was tested to generate a technique for the same sit-
uations. This research used the descriptive systematic model.
The Arc Gis Pro 2.9.2 is utilized to generate maps. A strategic
study was also directed to the KSA in crowd organization uti-
lizing a SWOT study. Rezaee et al. [14] inspect UAV excess
and irregular population action designs. Furthermore, the aim
is to examine accepted video frames fromUAVs. Yu et al. [15]
developed a result of actual 3D visualization of outside acts
permitted by Visual IoT (V-IoT) and AI. Primary, LiDAR,
infrared cameras, gas sensors, airborne and fixed cameras,
etc. are used to gather multi-modal information and forward
it to the clouds. AI techniques have been implemented in
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the cloud. Lastly, the clouds guide the AI model outcomes
to the visual method in station devices.

Solmaz et al. [6] developed a novel adaptive machine
learning (ML) method, termed CountMeIn, to find the crowd
estimate issue by employing neural networks and polynomial
regression. CountMeIn adjusts Wi-Fi utilizing the proficient
method and preserves the highest accuracy after training for
an extended period without cameras. Ahmed et al. [16] pro-
posed an IoT-based crowd surveillance method that utilizes a
DL model. Dual virtual lines are definite to total how many
people are going or arriving at the part. Prezioso et al. [17]
project a new framework that integrates the general YOLO
object recognition system with innovative CA methods. The
developed structure influences YOLO’s actual object recog-
nition abilities to discover numerous things within video
frames and concentrate on finding people.

Al Duhayyim et al. [18] provide Aquila Optimizer with TL
based Crowd Density Analysis for Sustainable Smart Cities
(AOTL-CDA3S) method. This model aims to recognize dis-
similar types of crowd densities in the smart cities. In [19],
a new system design is defined for real-time crowd detection.
Also, a privacy-aware platform that assists the application of
AI devices using identified Wi-Fi traces is also suggested.
Guastella et al. [20] offer the HybridIoT model over an esti-
mate model that assimilates heterogeneous data attained from
a few dissimilar sensors. Yang et al. [21] presents a novel
technique. Initially, a crowd density estimate model depen-
dent upon Tencent user density (TUD) data is constructed for
dissimilar times in open public spaces.

Padmaja et al. [22] presented work to make a method
that can categorize normal and abnormal crowd Behaviour
utilizing an actual time video surveillance method to iden-
tify abnormalities and observe crowded metropolitan zones.
Zhou et al. [23] proposes MJPNet-S∗, a multistyle joint-
perception network for RGB-T/D crowd density estimation
on drones. This model incorporated a novel trimodal module
and a two-step hybrid model, together with a lightweight
student network assisted by neighboring collaborative dis-
tillation. In [24], the E2C model, together with systematic
evaluation and intellectual computingmodels is proposed, for
carbon emissions in visual computing.

III. THE PROPOSED MODEL
In this work, an AICDA-SSC method is presented. The pur-
pose of the AICDA-SSC method is to analyze the crowd
density and classify it into multiple classes by the use of
hyperparameter-tuned DL models. To accomplish this, the
AICDA-SSC technique aims to identify different kinds of
processes such as preprocessing, feature extractor, classifica-
tion, and parameter tuning process. Fig. 1 shows the complete
procedure of the AICDA-SSC system.

A. PREPROCESSING
At the primary level, the AICDA-SSC technique applies con-
trast enhancement using the CLAHE approach. Resizing and

FIGURE 1. Overall procedure of the AICDA-SSC technique.

contrast enhancement processes are performed during the
preprocessing stage [25]. The initial stage is to resize the
input images and the CLAHE approach is used to improve
the difference. The CLAHE technique improves image clar-
ity with the lowest contrast. It has shown to be a robust
mechanism for optimizing and organizing digital images.
CLAHE includes dual vital advantages beyond the histogram
equalization technique. Initially, the CLAHE model is pre-
dictable to improve the intensity of individual pixels more
evenly. By using the classical histogram equalization tech-
nique, the array of the histogram is extended, which results
in a more even distribution of grey values throughout the
image.

CLAHE improves the difference in every zone, resulting in
an enhanced contrast throughout the whole image.

DB =
255
8× 8

DA∑
i=0

H (i) (1)

Next, CLAHE can reduce the problem of noise enhance-
ment by restricting contrast enhancement. The histogram
height is enlarged to L to improve the visual symbol while
retaining the similar histogram as follows:

H (i) =

{
H (i)+ L, H (i) < Hmax
HH (i)maxmax

(2)
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B. INCEPTION V3 MODEL
For the feature extraction process, the Inception v3 can be
employed. The CNN could remove data features layers by
layers over the slip function of the convolutional kernel and
has been widely used in various fields [26]. The main way
to increase the performance of a system is by enlarging the
network depth and width, but it results in difficult network
training and overfitting.

The Inception model is a powerful tool to resolve the prob-
lem, which exploits convolutional kernel of dissimilar sizes
for similar layer feature maps, then passed over kernel size
1×1 convolution for the reduction of channel dimensionality,
lastly, the channel splicing is summarized for the extraction
of feature data. While expanding the network width, the
amount of parameters remains equal. InceptionV3 is a deep
CNN architecture that has made important contributions to
the area of CV and image recognition. Presented by Google
researchers, it signifies a prominent development in DL tech-
niques. InceptionV3 uses an exclusive and new inception unit,
integrating equivalent convolutions of dissimilar dimensions
within the similar layer, permitting the system to capture
multi-scale features competently. This architecture enables
the removal of complex hierarchical designs from images,
making it mainly effectual for tasks such as object detection
and image classification. InceptionV3 is well-known for its
extraordinary accuracy on large-scale image databases, like
ImageNet, and its capability to simplify well to varied visual
detection tasks. Its victory lies in arresting a balance between
model difficulty and computational efficacy, making it a gen-
eral choice for numerous CV applications in either industry
or research.

Batch normalization is commonly applied between the
activation function and the convolutional layer, which stan-
dardizes the data in the channel size, which could efficiently
improve training speed, resolve the gradient disappearing
problem, and decrease the over-fitting phenomenon. The
mathematical expression is:

µB =
1
m

m∑
i=1

xi (3)

σ 2
B =

1
m

m∑
i=1

(xi − µB)2 (4)

x̂i =
xi − µB√
σ 2
B − ε

(5)

yi = ̂γ xi + β (6)

where the average of the training batch is represented as µB,
the training batch variance is σ 2

B , the data in a single network
is m, and the ith data on the feature maps before and after
normalize, pan and zoom are xi, x̂i, and yi, correspondingly.
β and γ denote the translation and spatial scaling of control
factors, correspondingly; the constant ε is evaluated when the
variance is 0.

Next, the hyperparameters can be chosen by the use of
MPA. The MPA replicas the foraging behavior strategy of
marine predators [27]. The Levy fly in a lower prey attention
atmosphere and Brownian effort in sufficient regions. The
metaheuristic presents an equilibrium among Brownian as
well as Levy tactics for dissimilar movement features of
solution candidates. This optimizer procedure is separated
into 3 stages, approaching the relative speeds among predator
and prey, and exhibiting the Fish Aggregation Device (FAD)
effect reliable for the hunter’s behavioral variations. Besides,
since predators regularly arrive in previously visited and
foraging regions, the procedure remembers them.

In an initialized phase of this population-based
system, all individual solutions have been evenly spread as
follows:

X0 = Xmin + r(md (Xmax − Xmin) , (7)

where Xmax and Xmindenote the upper and lower limits and
rand is an even random vector in [0 and 1]. The proce-
dure rules the performance of dual kinds of individuals
signified by Elite and Prey in Eqs. (8) and (9) matrixes,
respectively.

Elite =


X I1,1 X I1,2 · · · X I1,d
X I
2,1 X I

2,2 · · · X I
2,d

· · · · · · · · · · · ·

X In,1 X In,2 · · · X In,d

 (8)

From the abovementioned equation, d represents the size
of the problem, X l signifies the best predator vector and n
refers to the amount of individual’s solution.

Prey =


X1,1 X1,2 · · · X1,d
X2,1 X2,2 · · · X2,d
· · · · · · · · · · · ·

Xn,1 Xn,2 · · · Xn,d

 . (9)

In the equation of Prey, the jth dimension of the ith prey is
represented by Xi,j.

The stages in the MPA are dependent upon the develop-
ment of the optimizer procedure. For the 1st one-third of
iteration, the procedure arrives at Stage 1, where the highest
velocity ratio is imitated, i.e., the hunter moves quicker than
the target. Therefore, the ith prey, i= 1, 2, . . . ,n is defined in
Eq. (10).

Preyi = Preyi + P ∗ R⊗ (RB ⊗ (Elitei − RB⊗Preyi)) ,

(10)

where P refers to the constant number (P= 0.5),RB denotes
the vector of generally dispersed normal numbers, R signifies
the vector of evenly spread random numbers in [0 and 1], and
‘⊗’ represents the elementwise multiplication. In Stage 1, the
stage of exploration plays the main part, while, in the next
one-third of iterations, exploitation and exploration stages
have been similarly arranged. Here, the algorithm arrives
at Stage 2, pretending the unit velocity ratio. At this stage,
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the ith prey has been upgraded using its location in the
population.

Preyi

=

{
Preyi+P ∗ R⊗(RL ⊗ (Elitei − RL⊗Preyi)) , if i≤n/2
Elitei+P ∗ CF⊗(RB ⊗ (RB⊗EliteiPreyi)) , otherwise,

(11)

where RL denotes the random vector numbers and CF =(
1− iter

itermax

) 2∗iter
irermax . The CF is employed to handle the stage

size of the hunter’s effort. In Stage 3, which survives to
the finale of the optimizer procedure, the lowest velocity
percentage is reflected. Where the ith prey is measured as
exposed in Eq. (12).

Preyi = Elitei + P ∗ CF⊗ (RL ⊗ (RL⊗Elitei − Preyi))

(12)

The marine predator’s memory is pretended by the fitness
contrast of the present candidates from the preceding itera-
tions, declining worst candidates.

To simulate the effect of FADs, the algorithm adjusts the
Prey, i.e.

Preyi

=

{
Preyi+CF [Xmin+R⊗(Xmax − Xmin)]⊗ U , if r≤FADs
Preyi+[FADs (1− r)+ r] (Preyr1Prey), otherwise,

(13)

whereas FADs are the effect probability of (0.2), U is the
dual vector generated by a threshold vector in the range of
[0 and 1]. The binarization adapts the values higher than 0.2 to
1 and sets the residual to 0. The r1 and r2 have been chosen
preys at random, r1,r2 ∈ {1, 2, . . . ,n} .

C. CROWD DENSITY CLASSIFICATION USING GRU
The AICDA-SSC technique uses the GRU technique for
crowd density recognition and classification. This part
describes the common procedure of GRU. It is an innovative
form of Standard RNN [28]. The LSTM contains 3 gates
which will not preserve the interior cell layer but are com-
bined into the hidden layer (HL) of the RNN. This data has
been moved to the next GRU. Numerous gates of GRU are
definite below.

1) UPDATE GATE
It describes several prior knowledge sent to the prospect.
It defines the equivalent output gate in the LSTM recurrent
unit. It has been expressed utilizing

y = σ
(
W (y)Zt + V (y)Ht−1

)
(14)

where Zt denotes the unit of the network that is multiplied
by the value of the weight W (y). That is forwarded to the
HL Ht−1, which contains the data of the prior layers and is
increased by its weight values V (y). These dual grades have

been included to offer the last outcome in the update gate
among 0 and 1. This can be signified many past data needs
to be sent to the prospect. It can be employed to remove the
danger of gradient issues.

2) RESET GATE
It signifies how much earlier information can be neglected.
It matches an input gate and ignores it in an LSTM recurrent
unit.

R = σ
(
W (y)Zt + V (y)Ht−1

)
(15)

The dual outcomes are included and then increased by their
values of weight, and the task of sigmoid value is functional
to the output solutions.

3) CURRENT MEMORY GATE
This type of gate is combined into the reset gate. It delivers
the non-linearity input and offers 0 mean input. It is employed
in order to decrease the result that prior data of the existing
data is sent to the prospect gate. The current memory gate
calculation is executed utilizing

H = tanh (Wzt + R⊙VHt−1) (16)

The input zt and HL are increased by their value of weight.
Then, calculate the product of Hadamard among the reset
gates R⊙VHt−1. Next, enlarge the initial output and second
procedure values. The tanh nonlinear activation function has
been used to analyze the present memory content. Lastly,
compute the HL values that contains the existing values
and direct it to the system, executed by the update gate.
It defines the present memory content and is expressed by
utilizing

Ht = yt ⊙ Ht−1 + (1− yt)⊙Ht (17)

Implement elementwise multiplication to the update gate
and compute to (1−yt )⊙Ht . Lastly, add these dual outcomes
for computing the present memory content of the GRU.
It improves the RNN memory capability and resolves the
vanishing gradient issues.
The main improvement of GRUs will be the usage of

gating devices to handle the flow of data inside and outside
of the cell. The gating device contains 2 gates such as reset
and update. The projected bi-directional RNN contains dual
layers of RNN which can procedure simultaneously Y is
input and Yk signifies the dissimilar inputs with diverse time
stamps. The processing has been executed simultaneously,
and the layers are organized consecutively. The HL of RNN
contains dual HLs defined for each timestep. The HLs are
joined into one layer by including dual inputs utilizing an easy
addition function. Bi-directional RNN performs every neuron
of the system. The feature match procedure reflects the output
and input features to process the timestep. RNN contains Soft
GRU which has a low complexity, and procedures the input
x̃k,n utilizing past hk−1,n. This procedure has low difficulty
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owing to the soft plus and activation function. The developed
Soft GRU is definite as.

hk,n = (1− zt)⊙hk−1,n + zt⊙x̃k,n (18)

x̃k,n = π
(
Wxxk,n + bx

)
(19)

zt = σ
(
Wxxk,n + Uzxk−1,n + bz

)
(20)

whereas π (x) signifies the soft plus function that is calcu-
lated as (1+ex) and σ signifies the function of the sigmoid
and bX , bz denotes the biased values, and WX ,Wz, and Uz
epitomizes the weight values. GRU can work for the natural
language process, which uses both historical and present
information about traffic, social media, weather, and roads
that are accessible in the edge servers.

D. CSTOA-BASED PARAMETER TUNING
Finally, the CSTOA-based hyperparameter selection process
takes place to improve the efficiency of the GRU model.
STOA is a novel search optimizer technique dependent upon
the feeding behaviors of sooty terns that comprises two
stages: a global search stage which pretends terns migrate
and a local search stage where the tern circles and attacks the
target [29]. Like other population techniques, every sooty tern
signifies a search agent, and each search agent-organized con-
structs the matrix X . During initialization stage, the method
begins by creating an early matrix within the search range.

X =



X1
...

Xi
...

XN

 =


x11 . . . x1j . . . x1m
...

. . .
...

. . .
...

xi1 . . . xij . . . xim
...

. . .
...

. . .
...

xN1 . . . xNj . . . xNm


N×m

(21)

In Eq. (4), the population matrix is X ; the value of the
search agent at a size is xij; the vector of the search agent,
representing an initial random solution at the initial phase is
Xi and updated at the iterative computation, the index of the
search agent is i; the size index is j; the size of search space
is m; and the number of populations is N .

1) MIGRATION BEHAVIOR (GLOBAL SEARCH)
Sooty terns (ST) are involved in the behavior of migrants
in the hunt for plentiful food resources. The main reason
for this stage is to rapidly recognize the optimum region by
searching for the overall search stage at random [30]. This
stage contains 3 parts namely conflict avoidance, update of
position, and aggregation.

2) CONFLICT AVOID
To evade crashes among individuals throughout the move-
ment, extra mass SA has been developed in the iterative
computation to upgrade single locations.

C = SA × X (t) (22)

whereas C refers to the location in the instance of no col-
lisions with other individuals, X (t) denotes the search agent
position, t signifies the present iteration index, SA denotes an
extra variable employed to evade collisions that are intended
as:

SA = cf ×
(
1−

t
T

)
(23)

where cf denotes the constant utilized to alter SA, which
is normally fixed to 2, T refers to the highest amount of
iterations. So, SA will consecutively reduce from two to zero.

3) AGGREGATION
After evading collisions among adjacent agents, the search
agents will travel near the finest location amid the adjacent
agents, that is, near the location of the optimum result which
is stated below:

M = CB × (Xbesi (t)− X (t)) (24)

Here,M signifies the procedure of traveling X at dissimilar
positions near theXest place of the optimum solutions, andCB
states the random number utilized for making the searchmore
complete. The expression is as below:

CB= 0.5×Rand (25)

where Rand denotes the random value among (0 and 1).

4) UPDATE OF POSITION
The search agent upgrades its location dependent upon the
finest location, which is expressed as:

D = C +M (26)

Here, D is the space among the present individuals and the
global optimum positions.

5) BEHAVIOR OF MIGRATION (LOCAL SEARCH)
If ST wants to affect their target at the time of migration,
suddenly they will fly in a curved form in the sky. The
equation has been stated below:

x ′ = R× sin(i)
y′ = R× cos(i)
z′ = R× i
R = u× ekv

(27)

where u and v denote the constants that define the form of the
spirals and have a value of 1. i denotes the random variable
that exists amid the range of (0 and 2π ). R represents the
radius of every spiral. The position update of search agent
formulation is as:

X (t) = (D× (x ′ + y′ + z×Xbesi (t) (28)

The spatial distribution of the initialized solution set in
the metaheuristic algorithm is a crucial factor influencing the
optimization result of the algorithm and global search speed.
Based on the random number strategy, the early solution
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set produced in the STOA is hard to evenly issue within
the search range which leads to a reduction in the search
efficacy. Chaotic mapping has the features of regularity, ran-
domness, and traversal are applied for initializing the position
of STOA individuals employing chaotic sequence to prevent
falling into local extreme. For the initial population, Circle
chaotic mapping is applied. Circle mapping generates chaotic
sequence expression, as follows:

numi+1 = mod
(
numi+0.2−

0.5
2π
× sin (2π × numi) , 1

)
(29)

In Eq. (29), numi indicates the value of ith chaotic sequence
and mod represents the residual operation.
Assume[Zmin,Zmax] as the search range of optimization

objective problem and the chaotic sequence value of the circle
map is numij, the solution vector X is formulated by Eq. (30):

xij = Zmin + (zmax − Zmin)×numij (30)

Algorithm 1 Pseudocode of STOA
Input: the population size N , and Population initialization X
randomly.
Output: Optimal searching agent, Xbest
1: begin STOA
2: Parameter initialization of SA and CB
3: Determine the fitness of every search agent
4: Xbest←optimal searching agent
5: While (t<T) do
6: for every searching agent do
7: Update the position of searching agent
8: end for
9: Update the variables SA and CB
10: Determine the fitness of every search agent
11: Update Xbest if there is a better solution than the

former optimum solution
12: t← t+1
13: end while
14: return Xbest
15: end

The CSTOA model originates a fitness function (FF) to
reach boosted classification effectiveness. It defines a positive
integer to represent the superior execution of the candidate
outcome. In this paper, the error rate of classifier reductions
is examined as FF, as displayed in Eq. (31).

fitness (xi) = ClassifierErrorRate (xi)

=
No.ofmisclassified instances

Total‘no.of instances
×100 (31)

IV. PERFORMANCE VALIDATION
This part examines the crowd density recognition results of
the AICDA-SSC technique on the dataset comprising four

TABLE 1. Details of the dataset.

FIGURE 2. a) Dense Crowd b) Medium Dense Crowd c) Sparse Crowd d)
No Crowd.

classes and 1000 samples as definite in Table 1. Fig. 2
determines the sample pictures.

Fig. 3 exhibits the confusion matrices created by the
AICDA-SSC model below numerous epochs. The outcomes
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FIGURE 3. Confusion matrices of AICDA-SSC technique (a-f) Epochs
500-3000.

FIGURE 4. Average of AICDA-SSC technique (a-f) Epochs 500-3000.

specify the effective recognition and classification of four
classes properly.

The crowd density recognition outcome of the AICDA-
SSC technique can be examined under varying epochs in
Table 2 and Fig. 4. These experimentation outcomes indi-
cate that the AICDA-SSC model accurately recognizes four
classes below all epochs. With 500 epochs, the AICDA-SSC
technique attains an average accuy of 96.75%, precn of
93.54%, recal of 93.50%, Fscore of 93.49%, and Gmeasure
of 93.51%. In addition, with 1000 epochs, the AICDA-SSC
model gains an average accuy of 96.55%, precn of 93.15%,
recal of 93.10%, Fscore of 93.09%, and Gmeasure of 93.11%.
Followed by, with 1500 epochs, the AICDA-SSC method

gains an average accuy of 97.45%, precn of 94.93%, recal

TABLE 2. Crowd density recognition outcome of AICDA-SSC technique
under several epochs.

of 94.90%, Fscore of 94.88%, and Gmeasure of 94.90%. More-
over, with 2500 epochs, the AICDA-SSC algorithm attains
an average accuy of 96.85%, precn of 93.77%, recal of
93.70%, Fscore of 93.68%, and Gmeasure of 93.71%. Lastly,
with 3000 epochs, the AICDA-SSC system gains an average
accuy of 96.80%, precn of 93.65%, recal of 93.60%, Fscore of
93.60%, and Gmeasure of 93.61%.
The accuy curves for training (TRA) and validation (VL)

exposed in Fig. 5 for the AICDA-SSC algorithm at epoch
1500 deliver valued visions into its performance. Mainly,
there is a steady development in both TRA and TES accuy
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FIGURE 5. Accuy curve of AICDA-SSC technique under epoch 1500.

FIGURE 6. Loss curve of AICDA-SSC technique under epoch 1500.

to increasing epochs, demonstrating the model’s capability
to absorb and recognize designs from both TRA and TES
data. The upward trend in TES accuy underlines the model’s
adaptability to the TRA dataset and its ability to generate
accurate estimates on hidden data, highlighting strong gen-
eralized capabilities.

Fig. 6 examines a comprehensive outline of the TRA
and TES loss values for the AICDA-SSC technique under
epoch 1500. The TRA loss gradually minimization as the
model improves its weights to diminish classification errors.
The loss curves exhibit the model’s location with the TRA
data, emphasizing its capability to arrest designs efficiently.
Notable is the incessant modification of parameters in the
AICDA-SSC method, projected to reduce variances amongst
forecasts and real TRA labels.

Regarding the precision-recall (PR) curve presented in
Fig. 7, the results approve that the AICDA-SSC technique
under epoch 1500 steadily attains upgraded PR values across
each class. These results highlight the model’s actual ability
to discriminate among dissimilar classes, highlighting its effi-
ciency in precisely diagnosing class labels.

Furthermore, in Fig. 8, we existing ROC curves formed
by the AICDA-SSC technique under epoch 1500, represent-
ing its ability to differentiate among classes. These curves

FIGURE 7. PR curve of AICDA-SSC technique under epoch 1500.

FIGURE 8. ROC curve of AICDA-SSC technique under epoch 1500.

provide valuable visions into how the trade-off between
TPR and FPR differs through diverse classification epochs
and thresholds. The outcomes emphasize the model’s pre-
cise classification efficiency under numerous class labels,
underlining its efficacy to overcome various classification
processes.

For guaranteeing the promising results of the AICDA-SSC
model, a wide-ranging comparison assessment is made in
Table 3 [31]. Fig. 9 examines a comparative precn and recal
study of the AICDA-SSC method. The results indicate that
the Gabor and BoW-SRP model has presented the lowest val-
ues of precn and recal . Next, the BoW-LBP and GLCM-SVM
techniques have obtained slightly boosted values of precn and
recal . Followed by, the GoogleNet and VGGNet models have
demonstrated moderately closer values of precn and recal .
Although the MDTL-ICDDC model reaches near-optimal
precn and recal of 92.90% and 92.90%, the AICDA-SSC
technique demonstrates maximum precn and recal values of
94.93% and 94.90%, respectively.

Fig. 10 surveys a comparative accuy and Fscore study of the
AICDA-SSC method. The results specify that the Gabor and
BoW-SRP techniques have demonstrated minimum values
of accuy and Fscore. Then, the BoW-LBP and GLCM-SVM
algorithms have attained moderately enhanced values of
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TABLE 3. Comparative outcome of AICDA-SSC technique with other
approaches.

FIGURE 9. Precn and recal the outcome of the AICDA-SSC technique with
other approaches.

FIGURE 10. Accuy and Fscore the outcome of the AICDA-SSC technique
with other approaches.

accuy and Fscore. Next, the GoogleNet and VGGNet systems
have verified moderately nearer values of accuy and Fscore.
Although the MDTL-ICDDC system attains near optimum
accuy and Fscore of 96.45% and 92.87%, the AICDA-SSC
methodology determines the largest accuy and Fscore values
of 97.45% and 94.88%, correspondingly.

These outcomes highlighted the greater performance of
the AICDA-SSC algorithm in the crowd density recognition
procedure.

V. CONCLUSION
In this manuscript, an AICDA-SSC method is developed.
The purpose of the AICDA-SSC technique is to analyze the
crowd density and classify it into multiple classes by the
use of hyperparameter-tuned DL models. To accomplish
this, the AICDA-SSC technique applies contrast enhance-
ment using the CLAHE technique. Besides, the complex and
intrinsic features can be derived by the use of the Inception
v3 model and its hyperparameters can be chosen by the
use of MPA. For crowd density detection and classification,
the AICDA-SSC technique applies the GRU model. Finally,
a CSTOA-based hyperparameter selection process take place
to increase the efficacy of the GRU model. The experimen-
tal evaluation of the AICDA-SSC approach takes place on
crowd crowd-density image dataset. The obtained values of
the AICDA-SSC approach showcase the greater accuracy
outcome of 97.45% over recently developed DL models. The
AICDA-SSC technique face restrictions in adaptability and
scalability to dynamic urban atmospheres. Future study may
concentrate on improving scalability and robustness, and also
to explore adaptive mechanisms for accommodating growing
urban dynamics and diverse crowd characteristics.
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