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ABSTRACT The development of smart sensors and appliances can provide a lot of services. Nevertheless,
the act of aggregating data containing sensitive information related to privacy in a single location poses
significant issues. Such information can be misused by a malicious attacker. Also, some previous studies
attempted to apply privacy mechanisms, but they decreased data utility. In this paper, we propose privacy
protection mechanisms to preserve privacy-sensitive sensor data generated in a smart home. We leverage
Rényi differential privacy (RDP) to preserve privacy. However, the preliminary result showed that using
only RDP still significantly decreases the utility of data. Thus, a novel scheme called feature merging
anonymization (FMA) is proposed to preserve privacy while maintaining data utility by merging feature
dataframes of the same activities from other homes. Also, the expected trade-off is defined so that data
utility should be greater than the privacy preserved. To evaluate the proposed techniques, we define privacy
preservation and data utility as inverse accuracy of person identification (PI) and accuracy of activity
recognition (AR), respectively. We trained the AR and PI models for two cases with and without FMA, using
2 smart-home open datasets i.e. the HIS and Toyota dataset. As a result, we could lower the accuracy of PI in
the HIS and Toyota dataset to 73.85% and 41.18% with FMA respectively compared to 100% without FMA,
while maintaining the accuracy of AR at 94.62% and 87.3% with FMA compared to 98.58% and 89.28%
without FMA in the HIS and Toyota dataset, respectively. Another experiment was conducted to explore the
feasibility of implementing FMA in a local server by partially merging frames of the original activity with
frames of other activities at different merging ratios. The results show that the local server can still satisfy
the expected trade-off at some ratios.

INDEX TERMS Differential privacy, machine learning, privacy, smart home.

I. INTRODUCTION
Thanks to developments of smart appliances/sensors in smart
homes, smart services that can support dwellers such as
lifelogging [1], [2], elderly monitoring [3], [4], appliances
control [5], [6], anomaly detection [7], [8], etc. are proposed.
To realize such services, a service provider (SP) needs to
collect data from smart appliances/sensors where smart-home
clients transfer the data to a cloud server(s), and the cloud
server processes and analyzes the data by machine learning
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(ML) techniques. Since some data contain privacy-sensitive
contents of dwellers [9], it is risky for them if an attacker
could access the cloud server and use the data for malicious
purposes. For instance, an attacker may use some techniques,
e.g., ML, to re-identify a user for tracking activities of daily
living (ADLs). Hence, it is essential to preserve user privacy
in smart homes.

However, there are a lot of possible scenarios that could
occur for privacy attacks and re-identification. For example,
if we consider scenarios of privacy threats between an
adversary and non-adversary, an adversary may eavesdrop
on wireless communication of smart devices even if it
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is encrypted traffic [10] and impersonate a target user to
monitor and control, including aggregating some privacy-
sensitive information [11]. Leitao’s study [12] showed that
malicious use of smart technologies as the context of
intimate partner abuse could cause some users’ high stress
and anxiety. Therefore, solutions for solving the leakage
of privacy-sensitive information are necessary to increase
trustworthiness between users and smart sensors/appliances
provided by the SP.

The aforementioned studies are mostly based on user
perspectives. Some privacy attacks occur at a cloud server(s),
which is one of the SP’s parts, and most users may not
realize it. However, the SP cannot provide good service
quality if they apply privacy preservation methods because
most of them can decrease data utility. This motivates us to
find solutions to preserve privacy-sensitive data generated
in a smart home while maintaining utility. However, there
are some challenges to resolve, such as defining a trade-off
between privacy preservation and data utility, applying
differential privacy to smart home data, and achieving an
expected trade-off between privacy preservation and utility.

In addition, the privacy preservation technique is the most
challenging part. Since several sensors/appliances exist in
a smart home, it is important to select proper techniques
which can decrease the chance of privacy leakage from
adversaries. According to existing studies, encryption cannot
preserve data as it can be eavesdropped through network
traffic. Therefore, other privacy preservation techniques have
been proposed to preserve privacy in data, namely privacy
preservation data mining (PPDM) [13], e.g., anonymiza-
tion, perturbation, etc. Differential privacy (DP) [14] is a
widespread PPDM technique to preserve data, especially in
ML, because it has a low computational time and can decrease
the likelihood that ML can predict by using random sampling
distribution to generate synthetic (noise) data. However,
DP has limitations, i.e., lack of standardization and agreement
as it depends on data, algorithms, and techniques. Moreover,
the synthetic data reduces the utility. Thus, the key challenge
in DP is how to maintain the utility of data, such as the
accuracy of recognition.

In [15], a privacy-aware data management method that
controls data type and upload frequency for smart homes
is proposed. However, the system has the limitation of
potentially reducing the amount of uploaded data (to preserve
privacy)which, in turn,may decrease the service performance
that smart-home users could receive.

In this paper, we propose a privacy mechanism using
DP to ensure all uploaded data in a smart home can be
protected. To clarify, DP can be an alternative technique
that we deploy to make the upload of data more secure.
Although, as described before, DP can ensure data is
preserved using sampling distributed noise, the accuracy
of service, i.e., activity recognition, can decrease based on
the privacy budget (ϵ) used. Hence, the proposed method
leverages Rényi differential privacy (RDP) [16], which is
approximate differential privacy, to provide lower privacy

budgets for high-dimensional data. To know the effectiveness
of RDP, we conducted a preliminary analysis of data on
surveillance cameras from 2 smart home open datasets,
namely the Health Smart Home (HIS) dataset [17] and
Toyota Smart Home dataset [18], [19], which contains 15
homes. Unfortunately, the results of applying RDP to data
and training with SVM showed that the recognition accuracy
(utility) decreased much and home (user) identification
accuracy did not decrease very much compared with the case
without applying RDP. To overcome the problem, we define
an expected trade-off so that data utility should be greater than
the privacy preserved and propose a novel technique to secure
video data, called feature merging anonymization (FMA).
FMA applies the fundamental knowledge of k-anonymity by
mapping video frames of the same activities performed by
others prepared in advance.

We conducted an experiment where we trained the accu-
racy of activity recognition (AR) and person identification
(PI) models for two cases with and without FMA, using the
HIS dataset [17] and Toyota dataset [18], [19]. We defined
privacy preservation and data utility as inverse accuracy of PI
and accuracy of AR, respectively

The results of the simulation show that we could lower the
accuracy of PI in the HIS and Toyota dataset to 73.85% and
41.18% with FMA respectively compared to 100% without
FMA, while maintaining the accuracy of AR at 94.62% and
87.3% with FMA compared to 98.58% and 89.28% without
FMA in the HIS and Toyota dataset, respectively. Another
experiment is conducted to prove if the proposed method is
feasible in a practical environment by applying FMA with
mixed activities, the same activity and other activities at a
certain ratio: from 1:0 to 0.5:0.5. The results show that the
expected trade-off can still be achieved at some ratios.

Our contributions are the following:

• We proposed a threat model which an adversary can
illegally access an untrusted cloud of a service provider
and identify smart home users bymapping eavesdropped
data to identified homes.

• We proposed a novel privacy preservation technique
called feature merging anonymization (FMA), which
merges the data of the same activity by other homes, and
showed that FMA can achieve the expected trade-off.

II. RELATED WORK
A. PRIVACY PRESERVATION TECHNIQUE
Since a lot of privacy preservation techniques [18], [19], [20],
[21] have been proposed for the smart home system such
as using heuristic-based techniques to modify the selected
values to minimize the effectiveness loss, encryption tech-
niques [22], [23], [24] to preserve privacy for computation,
and reconstruction-based techniques to reassembled data
randomly. However, these techniques cannot protect data
leakage if an attacker uses ML. Because the original data
which contains privacy-sensitive data is not modified. There-
fore, the privacy preservation technique in this subsection
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focuses on reconstruction-based techniques also known as
privacy preservation data mining (PPDM) and it can be
categorized into 4 techniques, i.e., anonymization [25], per-
turbation [26], randomized response [27], condensation [28].
However, anonymization is the most known technique due
to its capability of preserving the sensitive attributes of
data records by making them indistinguishable. The most
prevalent mechanism is k-anonymity [29], [30] which can
guarantee that the data is indistinguishable from at least 1-k
records. Many smart home systems applied the k-anonymity
for big data queries generated from appliances/sensors [31],
[32], [33], [34]. Other anonymization mechanisms are also
leveraged to secure a smart home, e.g. l-diversity [35],
publishing the trajectories [36], normalization [37], etc.
In recent years, differential privacy (DP) [38] has become
widespread. Since it can preserve high-dimensional sensitive
data, it is leveraged to protect privacy-sensitive data used in
ML, especially in neural networks (NN) [39], [40], [41].

B. RELATED PRIVACY MECHANISM: DIFFERENTIAL
PRIVACY
Definition 1: Differential privacy (DP). A randomized

algorithm F : D → D′ provides ϵ-differential privacy (ϵ-
DP) if for every pair of neighboring inputs d, d ′

∈ D, and
for every (measurable) set φ ⊆ D′, the probabilities of events
F(d) ∈ φ and F(d ′) ∈ φ are closer than a factor of exp(ϵ):

Pr[F(d) ∈ φ] ≤ exp(ϵ)Pr[F(d ′) ∈ φ] (1)

where ϵ denotes the privacy budget to make F(d) satisfy
ϵ-differential privacy. Also, the randomized function F the
Laplace mechanism defined as follows:

F(d) = f (d) + Lap(
s
ϵ
) (2)

where s is the L1-sensitivity of function f and Lap( s
ϵ
) is

the sampling function from Laplace distribution. In addition,
the local sensitivity s can be calculated from the maximum
distance between F(d) and F(d ′) as follows:

s = max
dist(d,d ′)≤1

|F(d) − F(d ′)| (3)

where dist(d, d ′) denotes the distance between 2 neigh-
boring data. Instead of using Laplace distribution, another
mechanism uses Gaussian distribution. This mechanism can
satisfy (ϵ, δ)-differential privacy, which is the approximate
differential privacy. Let δ denote a failure probability, and the
sensitivity s used in the Gaussian mechanism to be the L2-
sensitivity. Then, from eq.1, (ϵ, δ)-differential privacy can be
derived as:

Pr[F(d) ∈ φ] ≤ exp(ϵ)Pr[F(d ′) ∈ φ] + δ (4)

Let σ =
2slog(1.25/δ)

ϵ2
. Then, the Gaussian mechanism is

defined as follows:

F(d) = f (d) +N (σ 2) (5)

In addition, DP can be defined as the term of max
divergence, where divergence is a statistical method to

measure distance based on two probability distributions. The
Kullback-Leibler divergence [42] is defined as:

DKL(P||Q) =

∑
d∈D

P(d ∈ D)
[
log P(d∈D)

Q(d∈D)

]
(6)

Hence, the max divergence between two probability
distributions can be defined as:

D∞(P||Q) = max
d∈D

[
log P(d∈D)

Q(d∈D)

]
(7)

From eq. 1 and 7, F satisfies ϵ-differential privacy if:

D∞(F(d)||F ′(d)) ≤ ϵ (8)

Rényi differential privacy (RDP) [16] is a relaxation of
(ϵ, δ)-differential privacy that applies the Gaussian mecha-
nism and the characteristics of max divergence. The Gaussian
mechanism in RDP is the same as eq. 5 but σ 2

=
1f 22α
2ϵ ,

where α is the order of the Rényi divergence. Let ϵ =

ϵ −
log(1/δ)

α−1 , then the function F satisfies (α, ϵ)-differential
privacy as follows:

D∞(F(d)||F ′(d)) ≤ ϵ (9)

According to the definition of ϵ, F in RDP also satisfies
(ϵ, δ)-differential privacy if δ > 0 and α can be scaled
from 2 to 100. The advantage of using RDP is that it
can decrease the privacy budget ϵ for high-dimensional
data compared to the original ϵ-differential privacy. This
is because it provides a tighter composition property,
which results in a lower privacy budget when applying the
mechanism sequentially.

In our research, the simulation experiment deploys data
from multiple cameras in 2 public smart home datasets
that contains more than 30,000 frames. Thus, RDP can
decrease the privacy budget ϵ used in this dataset by applying
noise function N (σ 2) based on RDP to each smart home
dataframes.

C. PRIVACY AND UTILITY TRADE-OFF
As mentioned in the introduction, preserving private data can
decrease the usability of data to generate services from SP to
promote smart living in a home. Thus, there have been a lot of
efforts to solve the privacy and utility trade-off. For example,
Chang et al. [43] performed the multi-objective optimization
problem for the trade-off between energy cost and privacy.
They defined privacy leakage from the energy consumption
pattern while the ideal privacy preservation occurs when
the power consumption is time-invariant. Hence, privacy
can be minimized. Bi et al. [44] present a privacy isolation
zone to provide privacy on gait information generated from
accelerometers using high-pass and low pass filter before
uploading to a cloud end and process a security module by
the CNN. To preserve visual privacy-sensitive data, Wang
et al. [41] used a lower image sensor resolution technique
and constructed a model for calculating the trade-off between
visual privacy-preserving and activity recognition. The result
of optimization shows that a resolution between 20 × 20 and
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30× 30 can indicate a proper resolution for balancing privacy
preservation and activity recognition. However, lower image
sensor resolution might decrease utility data such as activity
recognition accuracy for some micro activities. Erdemir et
al. [45] proposed a method to let users actively choose from
among a finite number of data release mechanisms (DRMs)
i.e., conditional probability distributions at each time to reveal
their data and get utility in return. Although the evaluation
of the results could satisfy privacy and utility trade-off,
the decision-making method seems impractical due to
real-time decisions by users. Malekzadeh et al. [46] presented
privacy preservation techniques, namely the replacement
auto encoder (RAE) to protect sensitive inferences and
an anonymizing auto encoder (AAE) to prevent user re-
identification. Even though these could preserve privacy data
on the user side, utility data might decrease if there’s a lot of
sensitive data generated.

Recently, there have been a lot of attempts to achieve
privacy and utility trade-off using DP. For instance, Cao et
al. [47] deployed DP to generate noise into feature data and
its evaluation result could achieve privacy preservation better
than applying DP to raw data. Zhang et al. [48] presented a
differential privacy model namely, attack-proof personalized
differential privacy (APDP). The model uses fog computing
for DP integrated with the Markov process to resist collusion
attacks. They compared APDP with 2 privacy models and
evaluated the privacy trade-off with root-mean-square error.
The results showed that APDP used a lower privacy budget
(ϵ) and reflected higher utility data than the others. The
limitation of the model is that it can increase utility data
when it has multiple clouds. Qashlan et al. [49] presented
DP schemes with blockchain. Their experiment applied RDP
to 3 datasets and found the optimal privacy budget ϵ =

10−1 for the best trade-off. However, it cannot represent the
optimal privacy budget for other datasets due to the inherent
correlation between data points. Hassan et al. [50] leveraged
Gaussian Noise Differential Privacy (GNDP) with peak value
protection to smart meter data and provided a trade-off with
the error rate. Results from an experiment demonstrated
the best privacy preservation at a peak value of 1200 Wh.
having only a 1.5% error. A similar study was conducted
by Wang et al. [51]. They proposed a privacy framework,
namely PrivStream by applying encoder-decoder filter and
DP to accelerometer, attitude, and gyroscope data. However,
it is difficult to apply such a method in high-dimensional
data. Hence, Wang et al. [39] proposed a privacy preservation
technique using DP to RGB pixels of video data and showed a
good result in terms of re-identificaction accuracy. Since the
experiment was conducted with 3 small datasets, which their
frames are not over 1200 frames, computational time and
memory consumption would increase in bigger datasets. Mao
et al. [52] focused on privacy leakage through split learning
of deep neural networks (SplitNN). Thus, they presented
a privacy-preserving method for image classification with
a new activation function, namely R3eLU. Nevertheless,

the solution still remains some privacy issues such as label
leakage.

Previous studies have shown that it is challenging to
find a good trade-off between the privacy and utility of
applications for smart home or time series data. In addition,
most smart home data used in ML are generated from smart
appliances/sensors due to privacy concerns. However, in real-
world situations, most smart-home users attach surveillance
cameras to secure their homes or to monitor elderly people
or babies. Since video data contain highly privacy-sensitive
data, to the best of our knowledge, few studies provide
solutions to maintain an optimal privacy and utility trade-off.
This motivates and challenges us to conduct the research in
order to achieve the balance while considering a lot of factors
e.g. servers, data, resources, and so on to form a smart home
having trustworthiness between smart home residents and SP.

III. RESEARCH PROBLEMS
We define two research questions that should be addressed.

RQ1: HOW TO QUANTIFY THE TRADE-OFF BETWEEN
PRIVACY PRESERVATION AND UTILITY?
In this study, we regard the trade-off between privacy
preservation and data utility as the trade-off between the
inverse accuracy of person identification (PI) and accuracy
of activity recognition (AR). To answer RQ1, we utilize the
video data from surveillance cameras from a smart home
dataset for analysis and simulation experiments. Moreover,
the smart home data is distributed to each timeslot based on
timestamps recorded in the annotation file. The reason for
using timeslot-based data is that an adversary is assumed to
eavesdrop on smart home data during some time slots.

RQ2: HOW TO INCREASE DATA UTILITY WHEN APPLYING
PRIVACY TECHNIQUES?
When DP is applied to high-dimensional data, it will be
done in a sequential manner, leading to increased ϵ values.
Since the video data contains multiple arrays of sequential
frames, we use Rényi differential privacy (RDP) to address
this problem. Because it is derived fromGaussian distribution
and max-divergence mechanisms, which is explained in
section IV, it can decrease the ϵ used for the dimen-
sional data and provide the α value to vary the accuracy
of PI.

Since the characteristics of DP, including RDP, can
preserve the privacy of smart home data based on the
sampling distribution of noise, this can imply that the
accuracy of AR can still be lower than that of PI. Thus,
we set the expected trade-off between privacy preservation
and data utility so that the accuracy of AR should be
higher than PI. To satisfy the expected trade-off, we propose
feature merging anonymization (FMA) in Sect. IV, which can
decrease the possibility of being identified by the ML model
while maintaining the utility of recognizing data.
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FIGURE 1. Threat model shows the adversary can eavesdrop smart home
data and illegally acquire data from a third party.

IV. PROPOSED PRIVACY PRESERVATION TECHNIQUE
In this section, after we provide the assumed threat model,
we describe the DP-based privacy preservation method for
smart home data. Then, we propose a novel privacy preserva-
tion method called feature merging anonymity (FMA).

A. THREAT MODEL
Due to our assumptions on an untrusted cloud server,
a malicious attacker has the ability to access the cloud
server to acquire data, as shown in Fig.1. Moreover, the
attacker has the potential to illegally access some homes or
all homes to monitor the event set of some smart homes by
eavesdropping. However, they can eavesdrop on the set for
some time in a day. Also, we assume that the attacker can
receive information about the number of identified homes
based on membership inference attacks [53]. The attacker
queries the target model with a data record and obtains
the model’s prediction on that record, which is a vector of
probabilities, one per class, that the record belongs to a certain
class. The attacker tries to distinguish each home from the
others bymapping eavesdropped data and the identified home
to know which smart home data corresponds to the identified
home. Therefore, our goal is to apply DP to make homes
indistinguishable at local servers and data of homes in each
timeslot is prepared in advance and shared among homes.

B. FEATURE MERGING ANONYMIZATION FOR SECURE
VIDEO DATA
We newly propose a privacy mechanism called Feature
Merging Anonymization (FMA), which has a similar idea to
k-anonymity, but the anonymization will be done in terms of
features generated from frames. Since the video data contains
a lot of sequential frames that can easily be identified, using
only DP to achieve privacy data preservation can significantly
decrease the utility [54]. Hence, this method is used to
maintain the utility of feature data and decrease the possibility
of identifying users.
Definition 2: Feature Merging Anonymity (FMA). Let X

and Y denote two-dimensional binary arrays corresponding to
video feature frames, respectively. Let n be an integer num-
ber. Feature Merging Anonymization (FMA) is a function
FMA(X ,Y , n), which merges each frame of X with n frames

randomly selected from Y , allowing for duplicates. Here, the
merging operation of two frames is a bitwise OR operation.

Let Xh,a be a set of binary encoding frames of a user
performing an activity a in a home h ∈ H and Yh′,a be a set of
frames of other homes h′

∈ H ′ performing the same activity
a. We apply FMA to X ′

h,a and obtain a new set of frames X ′
h,a

as following:

X ′
h,a = FMA(Xh,a,Yh′,a, n), ∀x ∈ X , ∃y ∈ Y (10)

To apply such a method to smart home data of multiple
homes, each room in the home area is assumed to have
the same environment and layout, e.g., an apartment. The
video surveillance cameras of each home are managed by the
service provider with the same angle.

The preliminary analysis result in the section V shows
the effect of FMA on video data recorded in smart homes.
We assume that for each activity, the video data for the
activity performed by other people with the same layout is
prepared by the service provider and provided to each home.
We also assume that the video data corresponding to the
current activity can be retrieved with 100% of accuracy. This
assumption will be loosened later.

C. THE EXPECTED TRADE-OFF
Let AR(XH ,T ) and PI (XH ,T ) be the average accuracy of
activity recognition (AR) and person identification (PI) for
all homes H and all time slots T , respectively. Hence, we set
the expected trade-off between AR and PI as follows:

AR(XH ,T ) − PI (XH ,T ) > 0 (11)

This trade-off means that AR must be greater than
PI. A similar assumption can be found in [41], which
is the trade-off between activity recognition and privacy
preservation using pixelation.

V. PRELIMINARY ANALYSIS
In this section, we describe the analysis of 2 public smart
home datasets, namely the Health Smart Home (HIS) dataset
[17] and Toyota Smart Home dataset [55], [56]. There are
15 homes with sensor/appliance data and video data from
surveillance cameras in the HIS dataset. While the Toyota
dataset has 18 homes with video data from surveillance
cameras. We apply privacy preservation techniques to the
video data because, recently, most smart homes use the
surveillance cameras to prevent physical security attacks,
e.g., thefts, unaccounted visitors, stalkers, and so on. As this
data contains privacy-sensitive data such as residents’ faces
and activities, it is essential to preserve privacy in such data.
Hence, this analysis aims to evaluate the trade-off between the
accuracy of AR and PI of the original dataset before applying
privacy mechanisms for an experiment.

A. DATA PRE-PROCESSING
1) HIS DATASET
Each home data in the HIS dataset contains the data of four
surveillance cameras compressed in MPEG 4 (Xvid codec)
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FIGURE 2. Samples of original frames and HOG frames from the HIS
dataset (upper row) and Toyota dataset (lower row).

in a frame. The four cameras are located in the kitchen on
the top left, between the kitchen, hall, and bathroom door
on the bottom left, the bedroom and living room on the
top right, and the living room only on the bottom right,
respectively, as shown in Fig. 2 (upper row left). There are
7 activities recorded, i.e., sleeping, resting (watching TV,
reading, listening to a radio, . . . ), dressing/undressing, eating,
using the toilet, performing hygiene, and communicating.
According to the threat model described in Sect. IV-A, the
attacker(s) is capable of eavesdropping smart home data for
some time slots. Thus, we sampled 1-second frames from
15-fps video data of each home using the OpenCV library
for binary encoding as grey scales (0–255). The frame’s
resolution is set to 64 × 128 before applying the histogram
of oriented gradients (HOG) feature. The number of frames
of each home data is presented in Table 1. The data was
divided into 24 timeslots (1 hour per slot) based on the video
timestamps from the annotation files. Since we found that
the data exist only in 8-th, 9-th, 10-th, 11-th, 12-th, 14-th,
15-th, 16-th and 17-th timeslots. Furthermore, there are not
more than five homes belonging to all timeslots. Due to
the imbalance of data distribution, it is difficult to evaluate
the proposed method with timeslot-based data for person
identification and activity recognition. Therefore, we split all
data in each home into 24 chunks and distributed them to
24 timeslots.

2) TOYOTA DATASET
The Toyota dataset has 536 video files from all participants.
Each video has a single camera in a frame. The number of
frames of each home data is presented in Table 2 . There
are 51 activities recorded, but we combined micro activities
to reduce the amount to 30 activities for classification.
Samples of video frames are shown in Fig. 2 (lower row
left). We divided the data into 25 timeslots based on video
labels and selected 21 timeslots due to the appearance of
multiple homes (N ≥ 2). The process of generating data
before applying the HOG feature was the same way in the

HIS dataset, but the data sampling was at every 600 frames
from 20-fps video data.

B. FEATURE EXTRACTION
Before implementing RDP, we generated a feature for the
video data using the histogram of oriented gradients (HOG)
feature [57]. This feature is well known for object detection
and human recognition. Since the HOG feature calculates
the magnitude and direction of the gradients at each pixel of
an input frame, we empirically set 9, 8 × 8, and 2 × 2 to
orientations, the number of pixels per cell, and cell size
per block of each frame for calculating the HOG feature.
Fig. 2 illustrates an input image frames (left) and HOG
feature frames (right) from both datasets. We can see that the
orientations of HOG depend on the environment in the image
i.e. the HOG orientations can represent the dark area or high
intensity area better than the lower one.

C. SENSITIVITY OF RAW DATA
Due to DP mechanisms, the sensitivity needs to be calculated
from the maximum distance of neighboring data as explained
in section IV. Hence, L2 distance is employed as the method
to calculate distance. To do so, we calculated the summation
of binary encoded pixels of all HOG frames of all homes
in all timeslots. Then, we selected the maximum summation
of the HOG frame for each home and calculated the L2
distance among homes. The results of the maximum distance
averaged from all time slots in HIS dataset and Toyota dataset
are 1913.07 and 1472.62, respectively, which represent the
sensitivity of HOG frame data.

D. APPLYING RÉNYI DIFFERENTIAL PRIVACY (RDP)
We trained the model using the original dataset extracted by
the HOG feature without implementing RDP as the baseline.
The data was split into two portions: 70% for training and
30% for testing. Since the video data contains pixel arrays that
can be linearly separable, we used linear SVM as a training
model for both activity recognition and person identification.
The model is evaluated by one-vs-the-rest (OvR) multiclass
classification.

The results of the accuracy of AR and PI without
implementing any privacy preservation techniques on the HIS
and Toyota dataset are shown in Table 3 . We can see that
the accuracy of the AR of the HIS dataset is higher than the
Toyota dataset, while the accuracy of the PI of both datasets
is equal to 100%.

To generate synthetic data from RDP, we set the privacy
budget ϵ at 1.1 (ln3), 3, 5 and α at 2, 20, 40 for analysis.
Fig. 3 presents synthetic images and HOG images of ϵ = 1.1
(ln3), 3, 5 at different α values in order. The smaller ϵ is, the
more privacy is preserved. On the other hand, the greater α

is, the more privacy is preserved.
Fig. 4 demonstrates the results after applying RDP with

different pairs of (ϵ, α) to both datasets We can see that the
accuracy of AR is still lower than PI for all pairs of (ϵ, α).
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TABLE 1. The amount of frames in each home in the HIS dataset.

FIGURE 3. Synthetic images and HOG images in the HIS dataset at different ϵ i.e. 5, 3, 1.1 (ln3) (from left to right) and α = 2, 20, 40 (from top to
bottom).

TABLE 2. The amount of frames in each home in the Toyota dataset.

This can confirm that using RDP, which is the approximate
DP, still greatly decreases the utility of activity recognition
when trying to decrease the person identification probability.

VI. SIMULATION EXPERIMENT
In this section, we describe how to apply FMA to make
a better trade-off between AR and PI. We conducted two
simulation experiments to apply FMA: (1) merging with
the same activity frames performed by other homes and (2)
merging with the same activity frames and other activity
frames performed by other homes in some different ratios.

A. SIMULATION EXPERIMENT I: MERGING WITH THE
SAME ACTIVITY FRAMES
The purpose is to confirm if FMA can satisfy the expected
trade-off. In this experiment, we assume that for each
home, video frames of all activities in each time slot

TABLE 3. The accuracy of activity recognition and person identification
from HIS dataset and Toyota dataset.

performed by other homes are prepared in advance and
shared with the home (ideally, activities performed by
third-party homes would be prepared and shared). FMA will
generate the frame data of each smart home as explained
in Sect. IV-B.

Sincemerging for video feature frames needs a proper ratio
to achieve the best trade-off, we conducted an experiment by
assigning different ratios of merging other home frames to the
original frames (i.e., original frames: other home frames) in
each timeslot from 0.5:0.5 to 0.05:0.95. For example, suppose
that a sleeping activity of user A was recorded from 23:00 to
7:00. In this case, the local server of user A will randomly
merge each video frame of the sleeping activity of user Awith
those of sleeping activity performed by other homes. Because
we set a certain ratio of merging, the outputs are video feature
frames of the sleeping activity from user A and other homes.
Also, we used the RDP at ϵ = 5 and α = 2, which is a low
noise sampling to observe the effect of FMA on the accuracy
of AR and PI.

The result of applying RDP and FMA at different ratios is
shown in Fig. 5. Since we implemented RDP at ϵ = 5, α = 2,
AR of the HIS and Toyota dataset remain at approximately
95%, 87% of the accuracy, respectively, while PI tends to
decrease at different ratios. The results of PI in the Toyota
dataset decrease significantly compared to the HIS dataset
due to the larger number of frames and various activities in
each timeslot. The ratio of merging frames at 0.05:0.95 can
achieve the best trade-off.

VOLUME 12, 2024 56577



S. Stirapongsasuti et al.: Preserving Data Utility in Differentially Private Smart Home Data

FIGURE 4. The accuracy of activity recognition and person identification of the HIS (upper row) and Toyota dataset (lower
row) at different ϵ i.e. 1.1 (ln3), 3, 5 with α = 2, 20, 40 from left to right.

After we found that the best ratio of merging frames is at
0.05:0.95, we set privacy budget ϵ at 1.1 (ln3), 3, 5 and α at 2,
20, 40 for training RDP with FMA which is the same values
as the method in section V for comparison. The results of the
experiment using RDP with FMA at different pairs of (ϵ, α)
are shown in Fig. 6. We can see that our proposed privacy
mechanisms provide a better trade-off compared to the results
in section V (Fig. 4). At α = 2, the accuracy of AR for all ϵ

values are higher than the accuracy of PI by 18% and 44% on
average in the HIS and Toyota dataset respectively. Between
AR and PI in the HIS dataset at α = 20, the expected trade-off
is satisfied only when ϵ = 3 and 5. At α = 40, only ϵ = 5 can
satisfy the expected trade-off. While the accuracy of AR in
the Toyota dataset is higher than PI for all pairs and increases
19.78% on average. In addition, when we compare the result
to the previous one (Fig. 4), which used only RDP, we can see
that the accuracy of PI in both datasets significantly decreases
at each pair (ϵ, α).

B. SIMULATION EXPERIMENT II: PARTIALLY MERGING
WITH OTHER ACTIVITIES
The purpose of this experiment is to show that even if the
local server cannot precisely predict the uploading activity,
and is therefore forced to merge with approximately the same
activity performed by other homes, the combination of FMA
and RDP can still provide the expected trade-off. Hence,
we applied the different merging ratio of the same activity
to other activities by other homes in each timeslot.

We set the ratio of merging the same activity with other
activities from 1:0 to 0.5:0.5. To clarify, we provide an
example of partially merging with other activities: a sleeping
activity of user A was recorded from 23:00 to 7:00. In this

FIGURE 5. The result of RDP at ϵ = 5, α = 2 with FMA at different ratios of
merging third-party frames to original frames.

case, the local server of the user A will randomly merge each
video frame of sleeping activity of user A with sleeping and
other activities performed by other homes (with a certain
ratio) for each one hour timeslot (from 23:00 to 7:00). The
merging outputs are video frames of the sleeping activity
from user A which partially contains the same activity and
other activities from other homes.

In Fig. 7, each graph demonstrates the accuracy of AR
and PI when merging ratios of the same activity to other
activities at different ratios of merging the original frames
to other homes’ frames in both datasets. The graph in the
top left corner is the ideal result because the merging ratio
= 1:0 means merging with the same activity for all homes.
Furthermore, we can see that PI decreases when the ratio
of merging with other activities increases, while AR is still
higher than PI in most cases. PI becomes the lowest when the
merging ratio of the original frame to another activity frame
is 0.5:0.5 and PI results in the Toyota dataset are lower than
ones in the HIS dataset for all ratios. Based on these results,
we can confirm that our privacy preservation method can still
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FIGURE 6. The accuracy of activity recognition and person identification of the HIS (upper row) and Toyota dataset (lower row) at
different ϵ i.e. 1.1 (ln3), 3, 5 with α = 2, 20, 40 and FMA at the ratio = 0.05:0.95 from left to right.

FIGURE 7. The accuracy of activity recognition and person identification at ϵ = 5, α = 2 at different ratios of merging the same activity and other
activities.

achieve the expected trade-off in most cases except merging
other homes’ frames 50% with other activity more than 20%.

VII. CONCLUSION
In this paper, we tried to preserve user’s privacy in smart
home video data while maintaining the data utility by
leveraging RDP which is an approximate DP. We regarded
the trade-off between privacy preservation and the utility
of data as the trade-off between the accuracy of person
identification (PI) and activity recognition (AR) to solve the

research problem RQ1. Besides, the expected trade-off is
proposed to be the solution of the research problem RQ2
which AR must be greater than PI. Through a preliminary
analysis, we confirmed that only RDP cannot achieve the
expected trade-off. Therefore, we devised a novel privacy
mechanism, namely FMA to satisfy the expected trade-off
between privacy preservation and data utility by merging the
video frames of the same activity performed by other homes.

Using 2 public smart home video datasets, we conducted
simulation experiments that trained dataframes using RDP
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and merging the same activity frames with FMA. The results
of the simulation showed that a good trade-off can be
achieved when using a 0.05:0.95 ratio of merging third-
party frames. This lowers the PI accuracy in the HIS and
Toyota dataset to 73.85% and 41.18% respectively compared
to 100% of the original video data, while keeping good AR
accuracy of 94.62% and 87.3% compared to 98.58% and
89.28% for the original video data in the HIS and Toyota
dataset respectively. Also, another simulation experiment was
conducted to show if the expected trade-off still satisfies
even though the local server cannot precisely predict the
ongoing activity by partially merging with other activities.
The experiment results showed that it can still satisfy the
expected trade-off at some ratios.

Since the proposed privacy mechanism still has some
limitations regarding data dependence such as size, dis-
tribution, and similarity of data, further data analysis to
standardize the threshold of privacy trade-off is necessary.
Also, the usability of our privacy preservation mechanism at
decentralized servers such as edge servers should be further
considered and analyzed if it can provide more secure smart
home systems.
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