
Received 10 March 2024, accepted 2 April 2024, date of publication 16 April 2024, date of current version 2 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3390053

Innovative Homomorphic Sorting of
Environmental Data in Area
Monitoring Wireless
Sensor Networks
NEETA B. MALVI AND N. SHYLASHREE , (Senior Member, IEEE)
Department of Electronics and Communication Engineering, RV College of Engineering (affiliated to Visvesvaraya Technological University, Belagavi),
Bengaluru, Karnataka 560059, India

Corresponding author: Neeta B. Malvi (neetabm@rvce.edu.in)

ABSTRACT In many special cases, the data collected from wireless sensor networks are stored in encrypted
form to provide the required privacy. Sorting is an essential operation on any stored data for orderly
presentation and fast searching. In the case of cloud-stored data, sorting of the data can be delegated to
the cloud server, employing suitable homomorphic encryption that supports sorting. This paper presents a
new homomorphic sorting algorithm based on the Hardy-Littlewood-Polya rearrangement inequality. The
associated homomorphic encryption scheme is accomplished using integer matrix keys generated based on
Hermite Normal Form transformation. This work uses the homomorphic sort support encryption algorithm to
securely sort the wireless sensor data stored in the cloud. Subsequently, the computation of the corresponding
descriptive statistical values is securely outsourced to the Cloud Server. Our scheme saves the homomorphic
sort execution time by about 30% compared to its nearest competing method.

INDEX TERMS Homomorphic encryption, homomorphic decryption, homomorphic sorting, parallel
processing, privacy, wireless sensor network.

I. INTRODUCTION
Modern public cloud service platforms provide low-cost,
high-volume data storage, authorized dissemination, and
high-speed computational capabilities for their clients. How-
ever, information security is a genuine concern as data storage
and processing are carried out in the public domain. There-
fore, in general, sensitive data are stored in the cloud in
encrypted form. Then, to utilize the computational capabil-
ities of the cloud server, Homomorphic Encryption (HE)
is adopted [1], [2], [3], which enables computations in the
cipher domain that reflects the same results as and when
carried out in the plain data domain. Thus, at present,
many of the routine and heavy computations, like matrix
operations [4], including machine learning, are securely out-
sourced to cloud servers [5], [6]. Sorting is an important

The associate editor coordinating the review of this manuscript and

approving it for publication was Hosam El-Ocla .

operation on stored data for orderly presentation, for finding
minimum/maximum, to reply to range queries, and as a pre-
requisite for the fast binary search. Homomorphic Sorting
(HS) enables the sorting of encrypted data without the need
for decryption. Thus HS provides a privacy-preserving and
secure approach for sorting operations in scenarios where
data confidentiality is required. Traditional sorting algo-
rithms require direct access to the plaintext data to compare
and rearrange the elements. However, in HS, the data remains
encrypted throughout the sorting process. Thus the cloud
client can delegate the sorting operations to the cloud without
breaching security and privacy.

Homomorphic sorting algorithms typically utilize tech-
niques such as Order Preserving Encryption (OPE) and
homomorphic comparison (HC) networks [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23]. In OPE, if x < y, then enc(x) < enc(y) for all
x and y values in the data domain. Thus OPE facilitates

59260

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-5477-5878
https://orcid.org/0000-0003-4185-6190
https://orcid.org/0000-0002-8202-7762

N. B. Malvi, N. Shylashree: Innovative HS of Environmental Data

HC. Subsequently, it can be used to implement homomorphic
sorting. HE techniques ensure that the sorting process does
not leak any information about the data being sorted to the
cloud Server. In this paper, an entirely new technique based
on Hardy-Littlewood-Polya (HLP) rearrangement inequality
is used to determine the sort order in the cipher domain. The
overall scheme is designated as ‘Homomorphic Sort Sup-
port Encryption for Wireless Sensor Network’ abbreviated
as HSSE-WSN. The novelty of HSSE-WSN is its ability
to encrypt floating-point plaintext data and then sort the
encrypted floating-point data homomorphically in the cloud
server. The paper is organized as follows. Section II gives the
Review of the related work, and section III contains the work-
ing of HSSE-WSN. Section IV discusses the applications of
HSSE-WSN. Comparative performance analysis is presented
in section V, and sectionVI holds the conclusion.

II. RELATED WORK
Substantial work has been carried out onOPE that leads toHC
and, subsequently, to HE. One of the early works to realize
OPE is byAgrawal et al. [7], where the ciphertext is generated
based on the piece-wise linear spline interpolation. Here, the
data values are portioned into buckets of varying widths to
match the corresponding data values. The main drawback of
this method is the use of a complex data structure that acts
as the encryption/decryption key. Additionally, the ciphertext
data range is relatively large compared to that of the plaintext
data. In [8], the authors have used the properties of Hyper
Geometric Distribution (HGD) to achieve OPE. Here, the
plaintext data is mapped into its equivalent ciphertext data
based on the monotonically increasing function derived from
HGD. The proposed HGD-based method provides a high
level of security, but it is computationally expensive due to
the use of recursive calls in its implementation. In [9], the
encrypted value y is derived from the plaintext value x using
the logarithmic expression y= a∗log(x+b) with a and b as the
secret key parameters. However, this elementary OPE scheme
is vulnerable to the chosen plaintext and ciphertext attack
unless the parameters are randomized frequently. In [10],
the authors have used ‘weighted random interval division’
(WRID) to realize OPE for wearable systems. Here, the
final weighted binary tree is constructed recursively by merg-
ing different temporary trees, constructed based on the data
and the selected weights. The construction of multiple trees
results in higher computational costs. In [11], HC (homo-
morphic comparison) is carried out by checking the sign
of the result of subtraction in 2’s complement form where
MSB = 1 indicates that the sign is negative and MSB =

0 means the sign of the result is positive. The entire operation
is implemented using the bit-level homomorphic logic gates.
Additionally, the authors have shown that, in their scheme,
sorting methods based on comparison (like selection sort,
bubble sort, etc.) and based on the divide and conquer rule
(like quick sort, merge sort, etc.) have almost the same level
of performance.

In [12], the authors have used ‘Logistic Maps’ for HC.
Here, AES (or DES) is used for data privacy, and the logistic
map is adopted to generate the matching codes for HC. Thus,
it is a two-stage iterative process, so the run-time is relatively
high. In [13], k-way sorting networks are adopted, instead
of the conventional 2-way networks, to reduce the depth of
comparison. These sorting networks are implemented using
SIMD (Single Instruction Multiple Data) to speed up the
operations. Since this method is based on CKKS homomor-
phic encryption scheme, round-off errors may occur due to
floating point overflow. In [14], the authors have imple-
mented a scalable homomorphic sorting scheme based on
the ‘polynomial rank sort algorithm.’ Here, with batch mode
operation, the time complexity is reduced from O(n2) to O(n)
for small values of n, where n is the number of elements to
be sorted. However, this method requires a relatively large
number of homomorphic multiplications, which reduces its
efficiency for large values of n. In [15], bivariate polynomials
are used for OPE, and then comparison circuits are built based
on the encrypted polynomials representing the plaintext data.
All operations are carried out in the finite field Fpd. Here,
the evaluation of multiple bivariate polynomials increases
the computational cost for large-sized plaintext data. In [16],
the authors have presented the HC of floating point numbers
using the continued fraction format where the precision of the
floating point numbers can be accurately controlled. Here, the
HC is built on top of the basic conventional HC of integers.
However, the use of the continued fraction format requires
iterative processing that results in higher computational cost.

In [17], the modified shell sort method and Fully Homo-
morphic Encryption (FHE) are combined to achieve homo-
morphic sorting. Here, the probability of sorting failure is
made very small by increasing the runtime. Additionally, the
main algorithm uses the bit level FHE in nested iterations,
increasing the overall time complexity to a large extent.
In [18], the authors have used ‘Torus-based FHE (Fully
Homomorphic Encryption)’ to reduce the cost of bootstrap-
ping as in conventional FHE schemes. Here, the bitwise
comparison is achieved using the binary gates. Also, a mod-
ified bubble sort algorithm denoted by ‘Addition-Sort’ is
implemented that can support homomorphic sorting of large
arrays. However, the native TFHE scheme has no support
for homomorphic multiplication, which has to be achieved
indirectly using regular modular algebra over a finite field.
This, incurs additional computational overhead.

In [19], the integers to be encrypted are converted into
the ‘Vector Field Elements’ and these elements are then
encrypted using the conventional FHE. Here, bivariate poly-
nomial are used for order comparison. However, the length
of the polynomials grows exponentially with respect to the
data size, and to overcome this, the authors have used the
block-wise approach, which increases the computational cost
of each comparison. In [20], the authors have used word-wise
encryption, unlike the bitwise conventional FHE. Here, iter-
ative algorithms are introduced for comparison and min/max
operations whereby top-k elements and the count of elements

VOLUME 12, 2024 59261

N. B. Malvi, N. Shylashree: Innovative HS of Environmental Data

above a given threshold can be determined in the cipher
domain. But the use of multiple iterations in the evaluation
of polynomials increases the run time cost when the coef-
ficients of the polynomials are large. In [21], a ring-based
FHE scheme is used for HC of two numbers, namely, a
and b, where a single ciphertext is generated that is used
to get the comparison result in the cipher domain. The
main disadvantage of this method is the individual plaintext
elements are not encrypted for storage at the cloud server
for possible access by authorized decrypters. In [22], the
authors have presented an optimized ‘compare-and-swap’
algorithm based on FHE. Here, plaintext data is converted
into a vector of plaintext slots using the Chinese Remainder
Theorem, and the HC and swap operations are carried out in
these slots. However, for the large-sized plaintext data, the
corresponding plaintext slots and computations within these
slots are also large and thus result in a multifold increase
in the overall computational cost. In [23], HC for real num-
bers (both fixed point and floating point) is realized using
the BGV (Brakerski-Gentry-Vaikuntanathan) scheme in the
binary message space. The multiple binary circuits needed
for comparison are executed according to SIMD to reduce
the circuit depths and to increase the computational speed.
However, the bit-level processing increases the computational
cost when the operands are real numbers. In [24], word-level
HC is achieved based on the bit-level FHE. Thus, a new
technique called XCMP has been adopted to compare two
integers in the cipher domain for equality as well as order
comparison. Additionally, SIMD processing is implemented
for faster computations. The authors have used polynomial
representation for private comparison, which incurs a sub-
stantial increase in the computational cost. Overall, the main
algorithm is highly iterative with increased time complexity.

Compared to the existing schemes, HSSE-WSN works
at the word level (instead of bit-level), can handle float-
ing point as well as integer data, uses the well-established
library functions sort(. . .), find(. . .) and max(. . .) to speed
up the operations. The novelty of HSSE-WSN is the use of
Hardy-Littlewood-Polya (HLP) rearrangement inequality for
homomorphic sorting.

III. PRELIMINARIES AND WORKING OF HSSE-WSN
A. ORGANIZATION OF WSN
The basic layout of the WSN is shown in Figure 1. The
whole geographical area is divided into several zones, namely
Zone 1, Zone 2, and so on, as shown in Figure 1(a). The Id of
Zone u is taken as u itself for u = 1, 2, and so on. Each zone
is divided into n equal square-shaped sub-zones denoted by
Area 1, Area 2,. . . , Area n, as shown in Figure 1(b). These
areas are denoted by the indexed sequence of symbols, A(1),
A(2),. . . , A(j),. . . , A(n) for easy representation. In HSSE-
WSN, the range of n can be 4 to 10. In Figure 1(b), n = 9.
In every sub-zone (Area j for j = 1 to n), a suitable sensor
node is placed that senses the specific environmental data (as
per the design) of that area, as shown in Figure 1(b).

A Cluster Head (CH) is placed, as usual, at the center of
each zone, that is, in Area 5, as shown in Figure 1(a) and (b).
The total number of zones depends on the total area and the
range of the individual sensor nodes. In Figure 1(b), for each
zone, we assume that node j fully covers Area j for j = 1 to n.

B. REPRESENTATION OF SENSOR DATA
The sensed data, from a zone, at a given time slot is repre-
sented by the data vector D as,

D = [d (1) , d (2) , . . . , d (j) , . . . , d(n)] (1)

Here, d(j) is the sensed data corresponding to A(j) for j =

1 to n. Thus data of area A(j) is represented by d(j). These
d(j)′s are collected, using TDMA, by the corresponding CH
and arranged in the vector form as in (1). The CH, in turn,
implements Homomorphic Sort Support Encryption (HSSE)
of the plaintext data vector D. The elements of D can be
integers or floating point numbers. The encrypted data vector,
denoted by E, is transmitted from the CH to the designated
CS for storage and further processing, as shown in Figure 2.
In (1), d(j) can be of any data type, like bytes, integers,
doubles, etc.

C. SORT INDEX AND HOMOMORPHIC SORTING
When an array is sorted, its sort index gives the locations of
the sorted elements from the unsorted array. In HSSE-WSN,
Let srt(D) be the sorted (in ascending order) version of the
data vector D as,

srt(D) = [s (1) , s (2) , . . . , s (j) , . . . , s(n)] (2)

In HSSE-WSN, srt(D) is obtained by the built-in sort(. . .)
[25] function, which also gives the sort index vector of D, as,

[srt(D), siD] = sort(D) (3)

The default direction of sort(. . .) is ‘ascend’. In (3), siD is
the sort index vector of D of length n, represented as,

siD = [sid (1) , sid (2) , . . . , sid (j) , . . . , sid(n)] (4)

siD is a permutation vector of integers in the range 1 to n.
In (4), sid (j) represents the jth element of siD. The sort index
vector siD is formed such that, for j = 1 to n,

s(j) = d (sid (j)) (5)

In (5), s(j) is the jth element of srt(D), and d (sid (j)) is
the (sid (j))th element of vector D. In the vectorized index
form [33], the above relation is written as,

srt (D) = D(siD) (6)

From (2) and (5), the minimum and the maximum data values
are,

min (D) = s (1) = d (sid (1)) (7)

max (D) = s (n) = d (sid (n)) (8)

In Homomorphic Sorting (HS), the sorting operation is car-
ried out in the cipher domain without the knowledge of

59262 VOLUME 12, 2024

N. B. Malvi, N. Shylashree: Innovative HS of Environmental Data

FIGURE 1. Organization of the WSN, zones and sub-zones.

FIGURE 2. Working arrangement of OPE-WSN.

the original data or the decryption key. In HSSE-WSN,
the Homomorphic Sorting Unit (HSU), housed in the CS,
is designed to calculate the Sort Index vector siD of the
original data vector D. Once, siD is known to the user, who
has access toD, can determine srt (D) , based on (6). The HS
operation is carried out for each zone of theWSN and the user
can get the corresponding siD by quering CS with the Zone
Id of that zone as shown in Figure 2.

D. HOMOMORPHIC SORT SUPPORT ENCRYPTION AND
DECRYPTION KEYS
In HSSE-WSN, the Homomorphic Sort Support Encryption
(HSSE) and decryption are carried out using integer matrices

as keys. Integer matrix keys have smaller elements than scalar
keys, and the computational overhead is relatively low. The
cryptographic keys are generated by the Key Generation
Center (KGC) at the CH.

1) GENERATION OF UNIMODULAR MATRIX
Initially, a unimodular matrix U of size m × m is gener-
ated using the Hermite Normal Form generation function
hermiteForm(. . .) [26] as,

[U,HNF] = hermiteForm(RIM) (9)

In (9), RIM is a Random Integer Matrix of size m×k. Matrix
RIM is the secret seed chosen by the Key Generation Center,

VOLUME 12, 2024 59263

N. B. Malvi, N. Shylashree: Innovative HS of Environmental Data

matrix HNF is the Hermite Normal Form of RIM, and U is
the unimodular matrix (det(U)= ±1) of sizem×m. In HSSE-
WSN, the decryption matrix is designed to possess the Left
Null Space (LNS) [27]. (The need for LNS will be explained
in the next sub-section). Therefore, the parameterm is chosen
greater than n (the length of the data vector D) as,

m = n+ L (10)

In (10), L is normally set to 2 so that (m–n) = 2. For higher
security, a higher value of L can be selected at the cost of
an increased ciphertext expansion ratio. In choosing RIM, its
column size parameter k is selected to be less than the row
size parameter m so that the maximum element of abs(U) is
within a certain reasonable limit.

Now, the inverse of U, denoted by V, is calculated as V =

inv(U). SinceU is unimodular, the elements ofV are integers,
and we have,

UV = Im×m (11)

Here, Im×m is the identity matrix of size m× m.

2) GENERATION OF THE ENCRYPTION AND DECRYPTION
KEYS
The encryption and decryption keys are obtained by partition-
ing matrices U and V as,

U =

 Gn×m
−−

W (m−n)×m

 ,V =
[
Hm×n|V2m×(m−n)

]
(12)

In (12), Hm×n is the decryption key and Gn×m is the basic
encryption key.

The partitioned matrices will be substituted in (11).
To match the partition as given by (12), the RHS of (11) is
also partitioned as,

Im×m =

 In×n | 0n×(m−n)
−− | −−

0(m−n)×n | I(m−n)×(m−n

 (13)

On substituting (13) and (12) in (11), we get, Gn×m
−−

W (m−n)×m

 [
Hm×n|V2m×(m−n)

]

=

 In×n | 0n×(m−n)
−− | −−

0(m−n)×n | I(m−n)×(m−n

 (14)

From (14), we get,

Gn×mHm×n = In×n (15)

In (15), Gn×m is the generalized inverse [28] of Hm×n.

W (m−n)×mHm×n = 0(m−n)×n (16)

The property (16) means,W (m−n)×m is the left-null space of
Hm×n.

3) RANDOMIZED CLONES OF G
In HSSE-WSN, G is the basic encryption key. However,
to prevent Chosen Plaintext Attack (CPA) [29], the encryption
key is randomized over successive encryption. To achieve
randomization, both sides of Equation (16) are pre-multiplied
by an arbitrary random integer matrix R{1}n×(m−n) to get,

R{1}n×(m−n)W (m−n)×mHm×n = R{1}n×(m−n)0(m−n)×n

= 0n×n (17)

After deleting the dimension subscripts, we get,

(R{1}W)H = 0 (18)

The size of (R{1}W) is n× (m× n) × (m× n)×m = n×m.
Now, Let matrix G{1} be formed as,

G{1} = G+ R{1}W (19)

Post multiplication of both sides of (19) by H gives,

G{1}H = GH + R{1}WH (20)

From (15), (18), and (20),

G {1}H = In×n (21)

In (21), the size of G{1} is (n× m), which is equal to that of
G. In (19), G{1} is obtained by perturbing G by the random
coefficient matrixR{1}. Hence,G{1} is the randomized clone
of G. In our scheme HSSE-WSN, matrix G{1} is the first
randomized encryption key.

In (19), R{1} is an arbitrary random matrix, and hence, the
KGC can choose random matrices R{2}, R{3},. . . , R{i},. . . ,
etc., which are dissimilar to R{1}. Correspondingly, G +

R {i}W can have dissimilar values as, G {2} = G + R{2}W ,
G {3} = G+ R{3}H, . . . and so on as,

G {i} = G+ R{i}W (22)

Similar to G{1} as in (21), it can be verified for i= 1, 2,. . . ,
etc., that,

G {i}H = In×n (23)

Here, the index value i, that identifies the randomized encryp-
tion key, is denoted as the randomization index. Equation (23)
represents the fundamental relation between the crypto-
graphic keys.
Example 1: Here is a simple numerical example that

demonstrates the generation of matrix keys. The size param-
eters are n= 4,m= 6 and k= 3. The RIM used in (9) and the
unimodular matrix U, obtained from (9) as well as its inverse
V are shown below.

RIM =


3 3 2
3 1 2
2 2 2
3 1 1
2 1 2
1 2 2

 U =


0 0 1 0 0 −1
0 0 1 0 −1 0
0 0 1 −1 1 −1
1 0 2 −2 1 −3
0 1 −1 0 −1 1
0 0 5 −2 0 −4


59264 VOLUME 12, 2024

N. B. Malvi, N. Shylashree: Innovative HS of Environmental Data

V =


3 3 2 1 0 −2
3 1 2 0 1 −1
2 2 2 0 0 −1
3 1 1 0 0 −1
2 1 2 0 0 −1
1 2 2 0 0 −1


It can be verified that UV = VU = I6×6.Now, matrices U
and V are partitioned to get G,W, and H as specified by (12)
as,

G =


0 0 1 0 0 −1
0 0 1 0 −1 0
0 0 1 −1 1 −1
1 0 2 −2 1 −3

 W =

[
0 1 −1 0 −1 1
0 0 5 −2 0 −4

]

H =


3 3 2 1
3 1 2 0
2 2 2 0
3 1 1 0
2 1 2 0
1 2 2 0


Now, it can be verified that GH = I4×4.To get randomized
encryption keys G{1} and G{2}, we generate two random
integermatrices R{1} andR{2}, eachwith size 4×2, and then
use Equation (22). Matrices R{1}, R{2}, G{1}, and G{2} are
shown below.

R{1} =


4 5
2 4
4 4
3 2

 R{2} =


3 5
6 4
6 6
5 3



G{1} =


0 4 22 −10 −4 −17
0 2 19 −8 −3 −14
0 4 17 −9 −3 −13
1 3 9 −6 −2 −8



G{2} =


0 3 23 −10 −3 −18
0 6 15 −8 −7 −10
0 6 25 −13 −5 −19
1 5 12 −8 −4 −10


Here, it can be verified that G{1}H = G{2}H= I4×4.

E. HOMOMORPHIC ENCRYPTION
The homomorphic encryption of the data vector D is carried
out by post-multiplying it by G{i} to get the cipher vector E
as,

E = DG{i} (24)

In (24), the size of E is (1×n)×(n×m) = 1×m. The encryp-
tion process is similar to the Hill-Cipher, but the CPA attack
inherent in the Hill-Cipher is eliminated by choosing different
i’s (randomization indices) for successive encryptions. The
encrypted vector E is transmitted and stored in the cloud
server for further processing. Since the encryption process
is carried out at each CH, with (n × m) multiplications per
encryption, the CHs should have higher energy resources.

1) CIPHERTEXT EXPANSION RATIO
Ciphertext expansion ratio (CER) is the ratio of the ciphertext
size to plaintext size. Higher the CER, higher would be the
associated communication and computational cost. In HSSE-
WSN, the size of plaintext matrix D is (1×n), and that of
the ciphertext matrix E is (1×m). Taking m = n + L, the
CER is (m/n) = (n+L)/n is very nearly equal to one as n is
relatively large compared to L. The CER that is nearly one
reduces the communication overhead while transmitting the
ciphertext from the CH to the CS.

2) SECURITY OF HOMOMORPHIC ENCRYPTION
Brute Force Attack: The sizes of Sender’s keys G{i}’s and
Receiver’s key H are n × m and m × n, respectively. Hence,
there arem×n elements in a key. Assuming the average size of
an element in a key as two digits (decimal), the probability of
guessing a single element is 10-2. Therefore, the probability
of correctly guessing all the elements (PCGall) is PCGall =

10-2(m×n), which is very low for single digit m and n values.
For example, with m = 6 and n = 4, PCGall = 10-48. Thus,
the brute force attack is almost eliminated.

In HSSE-WSN, for the given data length n, the value of m
can be increased by choosing a higher L as given by (10).
Since PCGall = 10-2(m×n), it an increase in m decreases
PCGall exponentially. Then the resistance to the brute force
attack increases at the cost of increased CER, which is given
by (m/n). Then the computational overhead also increases

3) RESISTANCE TO THE CHOSEN CIPHERTEXT ATTACK (CCA)
From the encryption process (24), by knowing the ciphertext
E and the plaintext D,it is not possible to find G{i} as (24)
is an under-determined equation in terms of E and D. Even
when G{i} is obtained somehow, it is not used in the next
encryption. Thus even the adaptive CCA fails.

F. HOMOMORPHIC DECRYPTION
The homomorphic decryption of E is accomplished by post-
multiplying it by H to get the plaintext data vector B as,

B = EH (25)

In (25), the size of B is (1×m)×(m×n)= 1×n. The resulting
B is exactly same as D. the Correctness of the decryption can
be verified by substituting for E in (25) from (24) and then
applying the fundamental relation (23) as follows.

B = EH = DG {i}H = DIn×n = D

Thus, the decryption is carried out as,

D = EH (26)

The end user who has the decryption keyH in his possession
can decrypt E to get the original plaintext data D in the case
of simple decryption.

VOLUME 12, 2024 59265

N. B. Malvi, N. Shylashree: Innovative HS of Environmental Data

G. HSSE-WSN WORKING
1) BASIC PRINCIPLE
The working of HSSE-WSN is based on the Hardy-
Littlewood-Polya (HLP) rearrangement inequality [30]. Con-
sider the data vector D of length is n, as in (1), and a column
vector Y also of length n. Then of According to the HLP
inequality,

Sort (D, ‘ascend’) ∗ sort (Y,‘ascend’) ≥ DY

sort (D,‘ascend’) ∗ sort (Y,‘descend’) (27)

In (27), each product term is the scalar (inner) product of the
corresponding vectors. Thus, from the HLP inequality, the
maximum of DY over different possible rearrangements is,

max (DY) = Sort (D, ‘ascend’) ∗ sort
(
Y,‘ascend’′

)
On dropping the ‘ascend’ qualifier, we have,

max (DY) = srt (D) ∗ srt (Y) (28)

In (28), srt (D) andsrt (Y) are the sorted versions of the row
vector D and the column vector Y.
For a given D, let Ymax be the specific rearrangement

(permutation) of Y that maximizes the scalar product DY.
Then,

DYmax = max (DY) (29)

From (29) and (28),

DYmax = srt (D) ∗ srt (Y) (30)

From (6), we have srt (D) equal to D(siD).Similarly, srt (Y)

is equal to Ymax(siYmax). Therefore, Equation (30) can be
rewritten as,

D ∗ Ymax = D(siD) ∗ Ymax(siYmax) (31)

The scalar product D∗Ymax is invariant when the same per-
mutation is applied to both D and Ymax. Therefore, when
the pair D and Ymax are permuted by the index vector by
siD which is the sort index of D, we have,

D∗Ymax = D(siD)∗Ymax(siD) (32)

From (31) and (32), we have,

D (siD) ∗ Ymax (siYmax) = D(siD)∗Ymax(siD) (33)

Comparison of the LHS and the RHS of (33) shows that when
the scalar product is maximum, the sort index of Ymax is
equal to the sort index of D. In (33), the sort index siD is
a row vector whereas siYmax is a column vector. However,
the individual elements and their order are same for both
siD and siYmax. Therefore, while equating the sort indices
of D and Ymax, the column vector siYmax is transposed to
make its dimension compatible with siD. Thus the equality
of index vectors is expressed as,

siD = (siYmax)T (34)

In (34), the transpose operation is used to take care of the
row-column mismatch. Equation (34) means, for a given data

vectorD, its sort index vector siD can be determined inter alia
by finding the sort index vector of Ymax where Ymax is that
permutation of Y,which maximizes the scalar (dot) product
D ∗ Y .From (34) and (6),

srt (D) = D (siD) = D(siYmax) (35)

It should be noted that when siYmax is used as the sort index
vector, D (siYmax) = D

(
siYmaxT

)
.

a) USER INTERACTION
Once siD is known, srt (D) can be obtained by the End

user according to (6). The End user should have access to
D unles the user is the CH itself. The End user queries the
CS by sending the Zone Id of the WSN and gets back the
matching sID from the CS, from which the corresponding
srt(D) is obtained.
In general, the equality represented by (28) can be stated

as a corollary of HLP inequality as follows.
Corollary 1:

When the scalar product DY reaches its maximum over
all possible permutation iterations over Y, the sort vectors
siD and siYmax are equal in the sense srt (D) = D(siYmax).

2) HOMOMORPHIC SORT UNIT
The data vector D is encrypted as E (the cipher vector) and
then stored in the CS. The Homomorphic Sort Unit (HSU)
is housed within the CS. The HSU generates siD with vec-
tor E as the input. Another critical input used by the HSU
is the cipher matrix denoted by the symbol F, which is the
full collection of Encoded Permutation Vectors. Matrix F is
generated by the KGC and stored in the CS, as indicated in
Figure 2, and it is readily available to the HSU.

a: FORMATION OF MATRIX F
Initially, the KGC chooses a Random Seed Vector RSV of
distinct integer elements in the range specified by the Lower
Bound (LB) and the Upper Bound (UB). The size of RSV is
set to n×1. The ‘distinct elements’ property assures unique
sort index vector srt (RSV) for a given RSV. Then, all
possible permutations of RSV are generated in the column
format using the function perms(RSV) [31] as,

P = [perms(RSV)]T (36)

The size of the perms matrix P is n× (n!). Matrix P is
represented in terms of its columns as,

P = [p (1) , p(2), . . . , p(k), . . . , p(n!)] (37)

In (37), p(k)is the k th column of P for k = 1 to n!. The size of
p(k) is n×1, and it represents the k th permutation of the seed
vector RSV. Now, cipher matrix F is formulated as,

F = HP (38)

In (38), H is the decryption matrix of size (m × n), and the
size ofF is (m×n)×(n× n!)= (m× n!). The cipher matrixF,
generated by the KGC, is stored in the CS. This is a one-time
operation at the beginning of the HSSE-WSN session. In (38),

59266 VOLUME 12, 2024

N. B. Malvi, N. Shylashree: Innovative HS of Environmental Data

both H and P are private to the KGC. Therefore F, which
is the product of H and P, reveals no information about the
individual factors H and P. Thus the matrix F at CS does not
cause any security breach.

b: DETERMINATION OF siD AT HSU
The HSU in CS, with matrices E and F as inputs, generates
the product matrix Q as, in (39),

Q = EF (39)

In (39), matrix E is the encryption of the data matrix D, and
the size of E is (1×m). The size of F is (m× n!). Hence the
size of Q is (1× n!). Similar to as explained in the case of F,
the knowledge of Q does not leak any information about D,
G {i} orH. Now, substituting forE from (24) andF from (38),
we have,

Q = D ∗ G {i}HP (40)

Then, substituting for G {i}H from (23) in (40), we get,

Q = DIn×nP = DP (41)

On expanding P from (37), we have,

Q = D [p (1) , p(2), . . . , p(k), . . . , p(n!)]

= [Dp (1) ,Dp (2) , . . . ,Dp (k) , . . . ,Dp(n!)] (42)

In (42), Q is a row vector of size (1× n!). On expressing Q in
terms of its individual elements q(1), q(2), etc, Equation (42)
can be rewritten as,

Q = [q (1) , q(2), . . . , q(k), . . . , q(n!)] (43)

Thus, for k = 1 to n!, the k th element of Q is given by,

q(k) = Dp (k) (44)

In (44), the size of D is (1× n) and that of p (k) is (n×1).
Thus q (k) is the scalar product of D and p (k) . In (44), the
scalar product q (k) is obtained corresponding to all possible
permutations of p (k) when k varies over the range 1 to n!.
Let qk attain its maximumwhen the index k = kmax. Then,

kmax can be obtained using the max(. . .) [32] function as,

[qkmax , kmax] = max(Q) (45)

Once kmax is known, the corresponding P(kmax) is obtained
as the kmaxth column of matrix P. From the column vector
P(kmax), its sort index vector siPkmax is obtained using the
sort(. . .) function as,

[srt (P(kmax)) , siPkmax] = sort (P(kmax)) (46)

Then, from Corollary 1 of section III-A, we have,

siD = (siPkmax)T (47)

Once siD is generated by the HSU, the user receives it from
the CS, and he can get srt (D) as,

srt (D) = D (siD) = D(siPkmax) (48)

Here, we get siD from siPkmax which in turn is obtained after
determining kmax using (45) where the matrixQ = EF, is in
the cipher domain. Thus, homomorphic sorting is achieved in
HSU.

3) ALGORITHM-HSU
The sequence of operations involved in determining ssiD is
given in Algorithm-HSU as follows.

Algorithm-HSU
Inputs: Cipher vector E of size (1×m) and the cipher
matrix F of size (m× n!).
Output: Sort index vector siPkmax of size (n×1), siD and
srt (D) .

1. Compute the product Q = EF.
2. Find kmax using the max(. . .) function as

[qkmax , kmax] = max(Q).
3. Get P(kmax), the kmaxth column of matrix P.
4. Get siPkmax using (46).
5. Get siD as siD = (siPkmax)T .
6. Get srt (D) as, srt (D) = D (siD) .

7. Over.

Example 2: This example calculates srt (D) using the
encryption/decryption keys of Example 1. Here, n = 4, m =

6, and the data vector D is taken as D = [23, 15, 25, 12]. The
permutation seed vector RSV is chosen as RSV = [2, 4, 1,
6]T. The perms matrix P, obtained using (30) is,

P =


6 6 6 6 6 6 1 1 1 1 1 1 4 4 4 4 4 4 2 2 2 2 2 2
1 1 4 4 2 2 6 6 4 4 2 2 6 6 1 1 2 2 6 6 1 1 4 4
4 2 1 2 1 4 4 2 6 2 6 4 1 2 6 2 6 1 1 4 6 4 6 1
2 4 2 1 4 1 2 4 2 6 4 6 2 1 2 6 1 6 4 1 4 6 1 6


The cipher matrix F, obtained as F = HP is found to be, as
shown in the equation at the bottom of the next page.

The encrypted vector E, calculated using E = DG1} is
found to be E = [12, 258, 1324, -647, -236, -1022].
Now, Q = EF is found to be,
Q= [277, 251, 247, 260, 241, 280, 237, 211, 257, 205, 251,

225, 231, 244, 281, 229, 284, 219, 209, 248, 259, 233,268,
203]

Now, [qkmax , kmax] = max(Q) calculation gives, [284,
17] = max(Q). That is, kmax = 17. Therefore, we have,
P(kmax) = P (17) = 17th column of P which is [4, 2, 6,

1]T.Now, from (46), siP(kmax) = [4, 2, 1, 3]T which means,
siD = [4, 2, 1, 3] and srt (D) = D ([4, 2, 1, 3]) = [12], [15],
[23], [25].

4) SELECTION OF THE PERMUTATION SEED VECTOR RSV
If the elements of RSV are large, then the elements of its
permutation vector P′

ks are also large, which in turn can result
in very large values of the elements ofH [see Eq. (32)]. This,
in turn, may cause integer overflow or computational slow-
down. This disadvantage is avoided by keeping the elements
of RSV within certain Lower and Upper Bounds (LB and

VOLUME 12, 2024 59267

N. B. Malvi, N. Shylashree: Innovative HS of Environmental Data

UB). Additionally, when n (the length ofRSV) is large, vector
RSV is chosen to have a mix of negative as well as positive
integers so that the scalar product terms qk ’s are not too big.

5) COMPUTATIONAL COMPLEXITY OF HSU
Computations of the cryptographic keys, G{i}, H, and F
are one-time operations, and hence their complexities are
excluded from the discussion. The main run time complexity
of HSU operations is due to the matrix product calculation
Q = EF and finding kmax via max(Q). The length of Q
is n!, and the time complexity is O(n!). The size of E is
(1xm), and that of F is (m × n!). Hence, the number of
integer multiplications is O(m × n!)≈ O(n × n!). Thus, for
substantially large values of n, the HSU operation requires
high-speed processors with GPU accelerators and parallel
processing. Additionally, when n is large, the 2D arrayFmay
not fit in the system RAM. Then, F can be stored on the hard
drive [34] and can be processed block-wise.

IV. APPLICATIONS OF HSSE-WSN
A. MAPPING OF MINIMUM AND MAXIMUM DATA AREAS
Once the sort index vector siD is known, the minimum of the
data vector D is obtained using (7) as,

min (D) = s (1) = d (sid (1))

Since the sensed data of area A (j) is represented by d(j), the
minimum data area is A (sid (1)) . Similarly, the maximum
data area is A (sid (n)). In the case of repeating entries in D,
the max(Q) will have multiple maximum values. However
Equation (6) holds true where siD is calculate using (46).
These calculations can be extended to all the zones of the
WSN to get themaximum andminimumvalues of every zone.

B. RANGE QUERY
In this case, the objective is to find the distribution of d(j)’s
(data values) between two pre-defined levels, namely the LL
(Lower Level) and the UL (Upper Level). To achieve this
objective, we introduce the augmented data sequence, C,
which is formed by appending LL and UL to the normal data
vector D as,

C = [D,LL,UL]

= [d (1) , d (2) , . . . , d (j) , . . . , d (n) ,LL,UL] (49)

Here, the size ofC is 1×(n+2). In (49),UL> LL. On expand-
ing C in terms of its elements c(1), c(2), etc., in (49),

we get,

C = [c (1) , c (2) , . . . , c (j) , . . . , c (n) , c(n+ 1), c(n+ 2)]

= [d (1) , d (2) , . . . , d (j) , . . . , d (n) ,LL,UL] (50)

In (50), c(n+2) > c(n+1). From (50), we see that,

c(j) =


d (j) for 1 ≤ j ≤ n
LL for j = n+ 1
UL for j = n+ 2

(51)

That is,

c (n+ 1) = LL
c (n+ 2) = UL

}
(52)

Now, the augmented cryptographic keys, AG{i} (augmented
G{i}) of size (n + 2)x(n + 4), AH (augmented H) of size
(n+ 4)x(n+ 2), and AF (augmented F) of size (n+ 2)x(n+

2)!, are regenerated to match the size of the augmented data
vector C instead of D. The augmented vector C is encrypted
as AE (augmented E) and stored in the CS. Now the HSU
operates on AE and gives out the sort index vector siC of
C. The end user who receives siC can determine the ranges
of the individual data elements and the corresponding Areas
covered by them as follows.

Let siC be represented as,

siC = [sic (1) , sic (2) , . . . , sic (j) , . . . , sic (n) ,

sic (n+ 1) , sic(n+ 2)] (53)

Vector siC is a permutation (shuffled version) of the natural
number sequence [1, 2, . . . , n, n + 1, n + 2]. Let the sorted
vector srt (C) be represented as,

srt (C) = [srtc (1) , srtc(2)] , . . . , srtc (j) ,

. . . ., srtc (n+ 1) , srtc(n+ 2)] (54)

The basic relation between srt (C) and siC is, srt (C) =

C (siC). On applying this relation to their individual elements
as given by (54) and (53), we have, for j = 1 to (n+ 2),

srtc (j) = c (sic (j)) (55)

The elements srtc (j)′ s are in the non-decreasing order. Now
consider a specific index JU in the range 1 to (n+2), then for
those indices less than JU, we have,

srtc (j) ≤ srtc (JU) for j < JU (56)

From (56) and (55),

c (sic (j)) ≤ c (sic (JU)) for j < JU (57)

F =


31 29 34 35 30 33 31 29 29 25 25 23 34 35 29 25 31 26 30 33 25 23 31 26
27 23 24 26 22 28 17 13 19 11 17 13 20 22 25 17 26 16 14 20 19 15 22 12
22 18 22 24 18 24 22 18 22 14 18 14 22 24 22 14 24 14 18 24 18 14 24 14
23 21 23 24 21 24 13 11 13 9 11 9 19 20 19 15 20 15 13 16 13 11 16 11
21 17 18 20 16 22 16 12 18 10 16 12 16 18 21 13 22 12 12 18 17 13 20 10
16 12 16 18 12 18 21 17 21 13 17 13 18 20 18 10 20 10 16 22 16 12 22 12


59268 VOLUME 12, 2024

N. B. Malvi, N. Shylashree: Innovative HS of Environmental Data

Now, find the index JU such that,

sic (JU) = (n+ 2) (58)

JU satisfying (58) is accomplished using the find(. . .) [35]
function as,

JU = find (siC == (n+ 2)) (59)

Substituting for sic (JU) in (57) from (58), we have,

c (sic (j)) ≤ c (n+ 2) for j < JU (60)

From (60) and (52),

c (sic (j)) ≤ UL for j < JU (61)

Similarly, it can be shown that,

c (sic (j)) ≥ UL for j > JU (62)

From (58), with j = JU , we have sic (j) = (n+ 2) .

Therefore,

c (sic (j)) = c (n+ 2) for j = JU (63)

From (63) and (52),

c (sic (j)) = c (n+ 2) = UL for j = JU (64)

Equations (61), (62), and (64) can be jointly stated as,

c (sic (j)) ≤ UL for j < JU
c (sic (j)) = c (n+ 2) = UL for j = JU

c (sic (j)) ≥ UL for j > JU

 (65)

Now, let us find the index JL such that,

sic (JL) = (n+ 1) (66)

Similar to (59), JL is obtained as,

JL = find (siC == (n+ 1)) (67)

From (67) and (52),

c (sic (JL)) = c (n+ 1) = LL (68)

Then, similar to (65), it can be shown that,

c (sic (j)) ≤ LL for j < JL
c (sic (j)) = LL for j = JL
c (sic (j)) ≥ LL for j > JL

 (69)

Now, in (65) and (69), the elements of C can be replaced by
the elements ofD based on (51) and (52). From (64) and (68),
c (sic (j)) = c (n+ 2) = UL for j = JU , and c (sic (j)) =

c (n+ 1) = LL for j = JL. Here, j = JL and j = JU cover
the elements c (n+ 1) andc (n+ 2) of vector C. Therefore,
j̸=JL and j̸=JU should cover other elements ofC. From (51),
we know that the other elements of C are same as those of D
in the sequential order. Hence, in (65) and (69), c (sic (j)) can
be replaced by d (sic (j)) when j̸=JL and j̸=JU . Thus, (65)
and (69) can be rewritten in terms of the elements C as,

d (sic (j)) ≤ UL for j < JU
d (sic (j)) ≥ UL for j > JU

}
(70)

d (sic (j)) ≤ LL for j < JL
d (sic (j)) ≥ LL for j > JL

}
(71)

Equations (70) and (71) can be combined as,

d (sic (j)) ≤ LL for j < JL
LL ≤ d (sic (j)) ≤ UL for JL < j < JU

d (sic (j)) ≥ UL for j > JU

 (72)

The relations given by (72) are expressed picturesquely in
Figure 3. Here, the range of j is divided into three sections
as (j < JL) , (JL < j < JU) and (j > JU). The correspond-
ing d (sic (j)) ranges are shown in the respective sections.
Based on (72), the Areas covered by data vector D can be

classified into three groups as,

data values ≤ LLcorrespond to A (sic (j)) ′s for j < JL
LL ≤ data values ≤ UL correspond to A (sic (j))

′s for JL < j < JU
data values ≥ UL correspond to A (sic (j)) ′s for j > JU


(73)

Thus, by knowing the siC vector, the Areas covered by D can
be mapped according to the data ranges specified by LL and
UL.
The Two level range query explained in this section can be

summarized by the following algorithm.

Algorithm Range-Query
Inputs: Lower and Upper threshold levels LL and UL.
Sort index vector siC of size 1x(n+ 2) corresponding to the
augmented vector C as specified by (50).
Output: Partitioned data elements according to the three
ranges as given by (72).
Corresponding classification of Areas as given by (73).
1. Get index JL as, JL = find (siC == (n+ 1)) .

2. Get index JU as, JU = find (siC == (n+ 2)) .

3. Get the elements of D in the three ranges using (72).
4. Get the corresponding Areas in the three ranges

using (73).
5. Over.

1) COMPUTATIONAL COMPLEXITY OF RANGE QUERY
The size vector C is (n+2). Hence, similar to as explained
in III.G.5, computationa complexity of the Range Query is
(n+2)×(n+2)!
Example 3: Here, n = 9 and the data vector is taken as,

D = [42 54 58 16 56 49 34 4 28] (74)

The threshold levels LL and UL are set at LL = 17 and UL =

40. Hence the augmented vector C is,

C = [D,LL,UL] = [42 54 58 16 56 49 34 4 28 17 40]
(75)

The sort vector siC is found to be,

siC=[8 4 10 9 7 11 1 6 2 5 3] (76)

VOLUME 12, 2024 59269

N. B. Malvi, N. Shylashree: Innovative HS of Environmental Data

FIGURE 3. Division of the siC index space j into 3 non-overlapping sections.

TABLE 1. Execution time in milliseconds.

In this example, (n + 1) = 10 and (n + 2) = 11.
Hence, JL = find (siC == (n+ 1)) = 3 and JU =

find (siC == (n+ 2)) = 6. That is, the index positions of
10 and 11 in siC are 3 and 6. Thus, sic(3) = 10 and sic(6) =

11. Now the index space j (in the range 1 to 11) is split as,

j′s = [1, 2] corresponding to j < 3
j′s = [4, 5] corresponding to 3 < j < 6

j′s = [7, 8, 9, 10, 11] corresponding to j > 6

 (77)

From (76) and (77), the corresponding sic(j)’s are,

sic (j) ′s = [8, 4] corresponding to, j < 3
sic (j) ′s = [9, 7] corresponding to, 3 < j < 6
sic (j) ′s = [1, 6, 2, 5, 3] corresponding to j > 6

 (78)

Then, based on (72), with LL = 17 and UL = 45,

[d (8) , d(4)] ≤ 17
17 ≤ [d (9) , d (7)] ≤ 45

[d (1) , d (6) , d (2) , d (5) , d(3)] ≥ 45

 (79)

It can be verified that (79) is indeed true by comparing the
values of (77) with the actual values of D as in (74).

C. DIGITAL SIGNATURE
Let the liberally estimated minimum and maximum among
d(j)’s be denoted by dLmin and dLmax. In the Range query,
the parameters LL and UL represent the Lower and Upper
Levels selected by the CH (the client). Now, the digital sig-
nature scheme for HSSE-WSN is formulated by choosing LL
substantially less than dLmin and choosing UL substantially
greater than dLmax as,

LL = dLmin− −Loffset (80)

UL = dLmax + Uoffset (81)

In (80), Loffset is an appropriate positive numerical offset
on the lower side. Similarly, in (81), Uoffset is one on the
higher side. Then, vector C is formed by the CH as in (49)
and is sent to the CS. Let the End User (EU) be the CH

for minimum communication load. After the sorting process
in the CS, the sort index vector siC is received by the CH
(which is now the EU). From siC, srt(C) is obtained as
srt(C) = C(siC). Then, the signature verification is carried
out by checking that min(C)= LL and max(C)=UL. If these
two conditions are not satisfied, it means a security breach
involving confidentiality, integrity, or some other error. LL
and UL are chosen once per session and remain constant for
successive encryptions.

Additionally, by choosing LL and UL as non zeros, the
formation of C with two non-zero elements generates non-
zero ciphertext E, even when the data vector D is all zeros.
Otherwise, according to (24), E would be all zeros, thereby
exposing all zero D to the CS.

V. COMPARATIVE PERFORMANCE
Here, the homomorphic sort execution times of HSSE-
WSN, Huang’s method [24], Lee’s method [17],and Wang’s
method [18] are compared. The data type elements to be
sorted are taken as 64-bit floating point numbers. In the com-
parison experiment, the size n of the plaintext data vector is
varied from n= 4 to 10 with step size=1. The corresponding
execution times are determined, and the corresponding values
are shown in Table 1 and the plots are shown in Figure 4.
Execution times are machine-dependent, and the packages

used for calculations. Therefore, the numerical values shown
in Table 1 are relative. FromTable 1, it can be seen that HSSE-
WSN outperforms the other three methods for n less than
or equal to 8. For n > 8, the size of n! is relatively large,
and the execution time increases accordingly. The graphical
representation of the execution times is shown in Figure 4.

The percentage saving in the execution times for n = 8 is
calculated as,

Percentage saving in the execution time Huang’s method=

100∗(29.5703-19.7135)/29.5703 = 33.33%.
Percentage saving in the execution time Lee’s method =

100∗(42.9984-19.7135)/42.9984 = 54.15%.

59270 VOLUME 12, 2024

N. B. Malvi, N. Shylashree: Innovative HS of Environmental Data

FIGURE 4. Execution times in homomorphic sorting.

Percentage saving in the execution time Wang’s method =

100∗(78.9973-19.7135)/ 78.9973= 75.05%.
The reasons for higher time complexities of the three

methods Huang’s [24], Lee’s [17], and Wang’s [18], at lower
values of n (n≤8) are because these methods use bit-level
FHE, whereas HSSE-WSN uses the matrix-based method for
FHE. Additionally, the algorithms of the other three meth-
ods use multiple iterations, which are responsible for their
increased computational overhead.

VI. CONCLUSION
An entirely new method of homomorphic sorting based on
the Hardy-Littlewood-Polya rearrangement inequality is pre-
sented. The sorting scheme can handle integer as well as
double data types efficiently. The percentage saving in the
homomorphic sort execution time is about 30% compared
to its nearest competitor. Here, the encryption process is
randomized to prevent the chosen ciphertext attack. In our
homomorphic encryption scheme, the ciphertext expansion
ratio is nearly equal to one, and it is independent of the
data size. Additionally, the innovative homomorphic range
detection scheme presented here is efficient and provides
a convenient means of range-based mapping of the corre-
sponding zones of the associated wireless sensor network.
Even though the time complexity of our method is exponen-
tial, the powerful processors at the cloud servers, where the
homomorphic sorting would be implemented, can handle the
computational load with reasonable latency. Our homomor-
phic sorting scheme is easily amenable to parallel processing,

and hence the sorting speed can be substantially improved
using GPU-assisted computations.

In future work, preprocessing operations to remove the
noise, sensitivity analysis, latency aspect, and parallel pro-
cessing will be taken care of. The proposed scheme will
demonstrate outstanding performance when these limitations
are eliminated.

REFERENCES
[1] T. V. T. Doan, M.-L. Messai, G. Gavin, and J. Darmont, ‘‘A survey on

implementations of homomorphic encryption schemes,’’ J. Supercomput.,
vol. 79, no. 13, pp. 15098–15139, Sep. 2023, doi: 10.1007/s11227-023-
05233-z.

[2] K. Munjal and R. Bhatia, ‘‘A systematic review of homomorphic encryp-
tion and its contributions in healthcare industry,’’ Complex Intell. Syst.,
vol. 9, no. 4, pp. 3759–3786, Aug. 2023, doi: 10.1007/s40747-022-00756-
z.

[3] C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. P. Fitzek, and
N. Aaraj, ‘‘Survey on fully homomorphic encryption, theory, and appli-
cations,’’ Proc. IEEE, vol. 110, no. 10, pp. 1572–1609, Oct. 2022, doi:
10.1109/JPROC.2022.3205665.

[4] S. Wang and H. Huang, ‘‘Secure outsourced computation of multiple
matrix multiplication based on fully homomorphic encryption,’’ KSII
Trans. Internet Inf. Syst., vol. 13, no. 11, pp. 5616–5630, 2019.

[5] M. Nocker, D. Drexel, M. Rader, A. Montuoro, and P. Schottle, ‘‘HE-
MAN–Homomorphically encryptedmachine learningwith oNnxmodels,’’
2023, arXiv:2302.08260.

[6] S. S. Gowri, S. Sadasivam, N. H. Priya, and T. A. D. Priyan, ‘‘Secured
machine learning using approximate homomorphic scheme for health-
care,’’ in Proc. Int. Conf. Intell. Syst. Commun., IoT Secur. (ICIS-
CoIS), Coimbatore, India, Feb. 2023, pp. 361–364, doi: 10.1109/ICIS-
CoIS56541.2023.10100547.

[7] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, ‘‘Order-preserving encryp-
tion for numeric data,’’ in Proc. SIGMODConf., G.Weikum, A. C. K’onig,
and S. Debloch, Eds. New York, NY, USA: ACM, 2004, pp. 563–574, doi:
10.1145/1007568.1007632.

VOLUME 12, 2024 59271

http://dx.doi.org/10.1007/s11227-023-05233-z
http://dx.doi.org/10.1007/s11227-023-05233-z
http://dx.doi.org/10.1007/s40747-022-00756-z
http://dx.doi.org/10.1007/s40747-022-00756-z
http://dx.doi.org/10.1109/JPROC.2022.3205665
http://dx.doi.org/10.1109/ICISCoIS56541.2023.10100547
http://dx.doi.org/10.1109/ICISCoIS56541.2023.10100547
http://dx.doi.org/10.1145/1007568.1007632

N. B. Malvi, N. Shylashree: Innovative HS of Environmental Data

[8] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, ‘‘Order-preserving
symmetric encryption,’’ in Advances in Cryptology—EUROCRYPT (Lec-
ture Notes in Computer Science), vol. 5479, A. Joux, Ed. Cologne,
Germany: Springer, Apr. 2009, pp. 224–241, doi: 10.1007/978-3-642-
01001-9_13.

[9] E. Khoury, M. Medlej, C. A. Jaoude, and C. Guyeux, ‘‘Novel order pre-
serving encryption scheme for wireless sensor networks,’’ in Proc. IEEE
Middle East North Afr. Commun. Conf. (MENACOMM), Jounieh, Lebanon,
Apr. 2018, pp. 1–6, doi: 10.1109/MENACOMM.2018.8371028.

[10] R. Gui, L. Yang, and G. Xiaolin, ‘‘An order-preserving encryption scheme
based on weighted random interval division for ciphertext comparison
in wearable systems,’’ Sensors, vol. 22, no. 20, p. 7950, 2022, doi:
10.3390/s22207950.

[11] A. Chatterjee and I. Sengupta, ‘‘Searching and sorting of fully homomor-
phic encrypted data on cloud,’’ IACR Cryptol. ePrint Arch., vol. 2015,
p. 981, Oct. 2015. [Online]. Available: https://eprint.iacr.org/2015/981

[12] H. Dai, H. Ren, Z. Chen, G. Yang, and X. Yi, ‘‘Privacy-preserving sorting
algorithms based on logistic map for clouds,’’ Secur. Commun. Netw.,
vol. 2018, pp. 1–10, Sep. 2018, doi: 10.1155/2018/2373545.

[13] S. Hong, S. Kim, J. Choi, Y. Lee, and J. H. Cheon, ‘‘Efficient sort-
ing of homomorphic encrypted data with k-way sorting network,’’
IEEE Trans. Inf. Forensics Security, vol. 16, pp. 4389–4404, 2021, doi:
10.1109/TIFS.2021.3106167.

[14] G. S. Çetin, E. Savas, and B. Sunar, ‘‘Homomorphic sorting with bet-
ter scalability,’’ IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 4,
pp. 760–771, Apr. 2021, doi: 10.1109/TPDS.2020.3030748.

[15] I. Iliashenko and V. Zucca, ‘‘Faster homomorphic comparison opera-
tions for BGV and BFV,’’ in Proc. Privacy Enhancing Technol., 2021,
pp. 246–264, doi: 10.2478/popets-2021-0046.

[16] H. Chung, M. Kim, A. A. Badawi, K. M. M. Aung, and B. Veeravalli,
‘‘Homomorphic comparison for point numbers with user-controllable pre-
cision and its applications,’’ Symmetry, vol. 12, no. 5, p. 788, May 2020,
doi: 10.3390/sym12050788.

[17] J.-W. Lee, Y.-S. Kim, and J.-S. No, ‘‘Analysis of modified shell
sort for fully homomorphic encryption,’’ IEEE Access, vol. 9,
pp. 126198–126215, 2021, doi: 10.1109/ACCESS.2021.3110868.

[18] C. Wang, J. Chen, X. Zhang, and H. Cheng, ‘‘An efficient fully homomor-
phic encryption sorting algorithm using addition over TFHE,’’ in Proc.
IEEE 28th Int. Conf. Parallel Distrib. Syst. (ICPADS), Nanjing, China,
Jan. 2023, pp. 226–233, doi: 10.1109/ICPADS56603.2022.00037.

[19] B. H. M. Tan, H. T. Lee, H. Wang, S. Ren, and K. M. M. Aung,
‘‘Efficient private comparison queries over encrypted databases using
fully homomorphic encryption with finite fields,’’ IEEE Trans. Depend-
able Secure Comput., vol. 18, no. 6, pp. 2861–2874, Nov. 2021, doi:
10.1109/TDSC.2020.2967740.

[20] J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee, ‘‘Numerical
method for comparison on homomorphically encrypted numbers,’’ inProc.
ASIACRYPT, 2019, pp. 415–445, doi: 10.1007/978-3-030-34621-8_15.

[21] W.-J. Lu, J.-J. Zhou, and J. Sakuma, ‘‘Non-interactive and output
expressive private comparison from homomorphic encryption,’’ in Proc.
Asia Conf. Comput. Commun. Secur., May 2018, pp. 67–74, doi:
10.1145/3196494.3196503.

[22] C.-C. Huang, J.-N. Ji, and M.-D. Shieh, ‘‘On compare-and-swap
optimization for fully homomorphic encrypted data,’’ in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2021, pp. 1–4, doi:
10.1109/ISCAS51556.2021.9401078.

[23] J. Basilakis and B. Javadi, ‘‘Efficient parallel binary operations on homo-
morphic encrypted real numbers,’’ IEEE Trans. Emerg. Topics Comput.,
vol. 9, no. 1, pp. 507–519, Jan. 2021, doi: 10.1109/TETC.2019.2906047.

[24] H. Huang, Y. Wang, L. Wang, H. Ge, and Q. Gu, ‘‘Secure word-level
sorting based on fully homomorphic encryption,’’ J. Inf. Secur. Appl.,
vol. 71, Dec. 2022, Art. no. 103372, doi: 10.1016/j.jisa.2022.103372.

[25] Sort. Sort Array Elements. Accessed: Jun. 6, 2023. [Online]. Available:
https://in.mathworks.com/help/MATLAB/ref/sort.html

[26] Accessed: Jun. 6, 2023. [Online]. Available: https://in.mathworks.com/
help/symbolic/hermiteform.html

[27] Lecture 10: The Four Fundamental Subspaces. Accessed: Feb. 7, 2024.
[Online]. Available: https://ocw.mit.edu/courses/18-06sc-linear-algebra-
fall-2011/62a9db9eeab190694d40afe4734068ca_MIT18_06SCF11_
Ses1.10sum.pdf

[28] LEC 6G Inverse. Accessed: Feb. 7, 2024. [Online]. Available: https://
www.sjsu.edu/faculty/guangliang.chen/Math253S20/lec6ginverse.pdf

[29] J. Katz and Y. Lindell, Introduction to Modern Cryptography: Principles
and Protocols. Boca Raton, FL, USA: CRC Press, 2007.

[30] G. H. Hardy J. E. Littlewood, and G. PPólyalya, Inequalities (Cambridge
Mathematical Library), 2nd ed. Cambridge, U.K.: Cambridge Univ. Press,
1952, ch. 368, sec. 10.2.

[31] Perms. All Possible Permutations. Accessed: Jun. 6, 2023. [Online]. Avail-
able: https://in.mathworks.com/help/MATLAB/ref/perms.html

[32] Max. Maximum Elements of Array. Accessed: Jun. 6, 2023. [Online].
Available: https://in.mathworks.com/help/MATLAB/ref/max.html

[33] Matrix Indexing in MATLAB. By Steve Eddins and Loren Shure, Math-
Works. Accessed: Jun. 6, 2023. [Online]. Available: https://in.mathworks.
com/company/newsletters/articles/matrix-indexing-in-MATLAB.html

[34] Processing Large NumPy Arrays With Memory Mapping. Accessed:
Jun. 6, 2023. [Online]. Available: https://ipython-books.github.io/48-
processing-large-numpy-arrays-with-memory-mapping/

[35] Accessed: Jun. 6, 2023. [Online]. Available: https://in.mathworks.com/
help/matlab/ref/find.html

NEETA B. MALVI received the B.E. and M.Tech.
degrees in digital communication and networking
and telecommunication engineering from Visves-
varaya Technological University, Karnataka,
India.

She is currently a Research Scholar with Visves-
varaya Technological University, Belagav. Since
2014, she has been an Assistant Professor with
the Electronics and Communication Engineering
Department, RV College of Engineering, Ben-

galuru, Karnataka. Her research interests include network security, wireless
sensor networks, and machine learning.

N. SHYLASHREE (Senior Member, IEEE) is cur-
rently an Associate Professor with the Department
of Electronics and Communication Engineering,
RV College of Engineering, Bengaluru. She is
having 18 years of teaching experience. She has
research publications in 40 international journals
(out of which 12 journals are SCI journals), six
Springer book chapters, and ten international con-
ferences. She got the grant for two Indian patents
and one USA patent in the area of cryptography.

She has also got the grant for two Indian patents in the area of VLSI. She is
also the coauthor of the Network Theory, Engineering Statistics and Linear
Algebra, and Control Engineering. She has funded projects on chalcogenide
materials and many consultancy projects and has delivered many technical
talks on VLSI. She has delivered lectures as a Subject Matter Expert in VTU
e-Shikshana and EDUSAT Program. Her research interests include network
analysis, analysis and design of digital circuits, digital VLSI design, analog
and mixed mode VLSI design, low-power VLSI design, cryptography and
network security, statistics and linear algebra, and control engineering. She is
a Life Member of ISTE and IETE, a fellow of ISVE, and a Senior Member of
the IEEE CAS Secretary-Bengaluru Section. She was a recipient of the Best
Ph.D. Thesis Award for the year 2016–2017 in electronics and communica-
tion engineering from BITES. She received the Best IEEE Researcher Award
from the IEEE-AGM Meeting held in 2021 from Bengaluru IEEE Section.
She also received the Best Researcher Award from ISTE-RVCE Chapter,
in 2022. She has received the Best Paper Award from IEEE-ICERECT held in
2015 at Mandya. She received Best faculty advisor award from IEEE CASS
Bangalore section in the year 2023. She was a recipient of the International
Travel Grant under the SERB Young Research Scholar Category.

59272 VOLUME 12, 2024

http://dx.doi.org/10.1007/978-3-642-01001-9_13
http://dx.doi.org/10.1007/978-3-642-01001-9_13
http://dx.doi.org/10.1109/MENACOMM.2018.8371028
http://dx.doi.org/10.3390/s22207950
http://dx.doi.org/10.1155/2018/2373545
http://dx.doi.org/10.1109/TIFS.2021.3106167
http://dx.doi.org/10.1109/TPDS.2020.3030748
http://dx.doi.org/10.2478/popets-2021-0046
http://dx.doi.org/10.3390/sym12050788
http://dx.doi.org/10.1109/ACCESS.2021.3110868
http://dx.doi.org/10.1109/ICPADS56603.2022.00037
http://dx.doi.org/10.1109/TDSC.2020.2967740
http://dx.doi.org/10.1007/978-3-030-34621-8_15
http://dx.doi.org/10.1145/3196494.3196503
http://dx.doi.org/10.1109/ISCAS51556.2021.9401078
http://dx.doi.org/10.1109/TETC.2019.2906047
http://dx.doi.org/10.1016/j.jisa.2022.103372

