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ABSTRACT Automated urine sediment analyzers play a crucial role in diagnosing urinary tract infections,
offering real-time data analysis and expediting patient diagnosis. This paper introduces a novel hybrid
approach combining data-centric and model-centric techniques for automated urine sediment analysis. The
proposed methodology addresses challenges such as morphological similarities among particle classes,
uneven particle distribution, and intra/inter-class variations. A modified version of convolutional neural
network (CNN), specifically the Visual Geometry Group (VGG-19) model, incorporating transfer learning,
along with data augmentation is proposed for automated urine sediment classification with 98% accuracy
and impressive inference time of 61ms per image. The proposed approach outperforms existing methods,
especially in handling diverse sediment categories, demonstrating its potential for practical applications in
medical diagnostics. We proposed the integration of a data-centric approach for improved labeling reliability
and a model-centric approach for fine-tuning of the deep learning model, showcasing promising results in
recognizing 12 distinct urine sediment classes. This study also emphasizes the importance of collaboration
with medical professionals in refining the model’s performance and handling challenges related to data
acquisition and class imbalance. The proposed approach provides a significant advancement in automating
and enhancing urine sediment analysis processes.

INDEX TERMS Data-centric, microscopic images, urine sediment, model-centric, vitro examination,
automated urine sediment analyzer.

I. INTRODUCTION
The microscopic scrutiny of urinary sediments stands as a
widely employed and indispensable diagnostic laboratory
screening test, providing valuable insights into a myriad
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of metabolic, nephrogenic, and urological conditions. This
examination entails the analysis of urinary cell morphology,
both cellular and noncellular casts, the enumeration of white
blood cells (WBCs) and red blood cells (RBCs), and the
identification of endogenous crystals. These parameters hold
paramount importance in the assessment of various acute
or chronic medical conditions [1], [2], [3], [4]. Moreover,
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the identification and measurement of protein or sugar
in urine serve as crucial indicators in diagnosing several
kidney-related ailments, particularly kidney failure [5].
Regrettably, conventional microscopic examination-based
methods for urine sediment analysis suffer from inefficiency
and subjectivity, rendering them error-prone and time-
consuming [6], [7]. The main urine sediments and their sub-
classes are shown in Figure 1. The introduction of automatic
urine analyzers in certain hospitals has significantly improved
clinical practices by reducing analysis time and enhancing
the efficiency of medical professionals. These analyzers
contribute to smart healthcare systems by enabling real-time
data transmission and analysis, thereby minimizing the risk
of human error and ensuring more reliable diagnoses. As a
result, these machines have become an integral component
of modern healthcare, streamlining urine analysis processes.
In contrast to general object recognition, urine sediments pose
a challenge due to their relatively fewer distinctive features
that are not easily discernible by humans. Additionally,
specific categories of urine sediments exhibit noticeable sim-
ilarities. Consequently, research efforts have been directed
towards automating urine sediment analysis to enhance diag-
nostic capabilities and overcome the limitations associated
with manual examination [8], [9]. Automated urine analysis
relies on digital images of urinary sediments captured through
a microscopic lens. The process involves three main steps:
segmentation, feature extraction, and classification [10],
[11]. Object segmentation is crucial for identifying and
distinguishing individual cell types and sediments [12], [13].
The effectiveness of these methods depends on precise target
segmentation and the efficient selection and combination
of relevant features, as emphasized in previous studies
[3], [5]. Deep learning models, particularly convolutional
neural networks (CNNs) [14], [15], [16], [17], have emerged
as pivotal tools in image recognition. Unlike conventional
feature extraction methods, CNNs offer the advantage of
automatically extracting a comprehensive set of features
and optimizing their combination [18], [19]. To explore the
unique characteristics of urine sediment images, this study
proposes an innovative approach that harnesses the power
of four distinct CNN models, enabling rapid and precise
recognition of urine sediments [20], [21]. This method
effectively addresses the challenge of distinguishing particles
with similar morphological structures that had previously
caused confusion.

A. MOTIVATION
Table. 1 details the summary of the recent models of
automated urine sediment analysis. Our motivation to novel
hybrid approach that combines data-centric and model-
centric techniques to optimally tune the deep learning
model parameters and apply error analysis-driven iterations
to address class imbalance issues in urine sediment data,
is based on thesemodels. Eachmodel, individually, motivated
our novel model:

1) DATA-CENTRIC APPROACH
Motivation: Leveraging the success of recent models like [3]
and [4] through data augmentation, our hybrid approach
prioritizes a data-centric strategy to improve the data.
By carefully curating a comprehensive dataset and applying
advanced augmentation techniques, we aim to enhance the
model’s ability to generalize and accurately classify diverse
urine sediment components.

2) MODEL-CENTRIC TECHNIQUES
Motivation: Inspired by the diverse model architectures used
by [5], [18], and [22], our hybrid approach integrates model-
centric techniques to refine the architecture and parameters.
This ensures that the deep learning model is well-suited
to capture intricate patterns in urine sediment images,
fostering improved recognition of classes and overall model
performance.

3) ERROR ANALYSIS-DRIVEN ITERATIONS
Motivation: Building on the experiences of recent models
such as [19] and [23], our approach incorporates an
error analysis-driven iteration process. By systematically
analyzing model errors, we aim to identify and address class
imbalance issues within urine sediment data. This iterative
refinement process is designed to specifically target areas
where the model may struggle, leading to enhanced accuracy
and reliability in automated urine sediment analysis.

4) HYBRID OPTIMIZATION FOR CLASS IMBALANCE
Motivation: Recognizing the challenges posed by class
imbalance, evident in models like [5] our hybrid approach
is strategically designed to tackle these issues head-on.
Through a combination of data-centric technique and model-
centric adjustments, we strive to balance class representation,
ensuring that the model is equally proficient in distinguishing
both prevalent and less frequent components in urine
sediment samples.

5) PERFORMANCE IMPROVEMENT FOCUS
Motivation: In light of the success achieved by recent models
in various aspects, our hybrid approach is motivated by a
strong focus on performance improvement. By synergizing
data-centric and model-centric strategies and addressing
class imbalance through error analysis-driven iterations,
we anticipate a substantial enhancement in the overall effi-
ciency and accuracy of automated urine sediment analysis,
contributing to advancements in diagnostic capabilities. The
key contributions of this study can be succinctly summarized
as follows:

B. CONTRIBUTIONS/NOVELTIES
• Optimal Approach to Urine Sediment Classifica-
tion: This work addresses urine sediment classification
through a combination of data-centric and model-
centric approaches. The data-centric approach involves
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TABLE 1. Summary of the recent models of automated urine sediment analysis.

sanity checks on data without altering the model,
while the model-centric approach enhances the model’s
architecture while preserving its foundational blueprint.

• Modification of VGG19 Architecture: The VGG19
vanilla architecture was tailored to the specific problem
at hand, leading to a significant reduction in model
complexity. To combat overfitting and enhance gener-
alization capability, a Euclidean norm was incorporated
as a regularizer.

• Creation of a Comprehensive Training Dataset: A
large collection of microscopic urine sediment images
was meticulously labeled with professional assistance,
forming a valuable training dataset. To address class
imbalances in certain categories, transfer learning and
data augmentation techniques were employed.

• Two-Stage Cascaded Classification Model: To
address confusion among morphologically similar
particles, a two-stage cascaded classification model was
proposed. This cascadedmodel contributes to improving
the discriminating accuracy of challenging sediment
categories.

• Impressive Performance: The proposed network
achieves an impressive 98% accuracy and operates with
remarkable efficiency, taking only 61 ms to recognize
each segmented image.

The subsequent sections of the paper are organized as
follows: Section II provides a review of related literature, and
Section III outlines the proposed methodology, elucidating
the cascaded CNN models. In Section IV, we detail the
experimental setup, and evaluate the performance of the
proposedmethod, and SectionV offers an in-depth discussion
of the results and their implications. Finally, Section VI
concludes the paper by summarizing the key findings and
contributions to the field.

II. RELATED WORK
Deep learning, particularly Convolutional Neural Networks
(CNNs), has made significant strides in various domains,
primarily focusing on image recognition inspired by natural
vision mechanisms. These techniques are broadly cate-
gorized into classifications and detection methods [23].
Formal methods classify the content of an image into
predefined object classes, while the latter methods combine
classification with object localization. In 2023, Erten et
al. [3] integrated an Arnold Cat Map (ACM)-based mixer
algorithm with transfer learning using DenseNet201 [24],
[25]. Their model comprises four layers: (1) ACM-based
mixer for generating mixed images, (2) DenseNet201 for
feature extraction, (3) iterative neighborhood component
analysis for feature selection, and (4) shallow kNN-based
classification with ten-fold cross-validation. They achieved
an impressive 98.52% accuracy for a seven-class problem.
Ji et al. [4] proposed an integrated deep learning model,
combining AlexNet and an Area Feature algorithm (AFA)
module, significantly enhancing discrimination accuracy
between challenging sediment categories. The combined
network achieved an impressive 96.75% accuracy and
required only 6.8 milliseconds to recognize a segmented
image. In 2023, Yildirim et al. [5] proposed a hybrid
image classification model that integrated textural analysis
with CNN techniques. Combining features from textural
analysis-based methods and CNN-based architectures using
mRMR [26], [27], they achieved 96% accuracy for an
eight-class problem. Research works [28], [29], and [30]
employed feature extraction involving ResNet50, local binary
pattern, and machine learning classifiers for classification.
In 2022, Ji et al. [18] presented a semi-supervised learning
method using US-RepNet for complex feature extraction
from low-resolution urine sediment images. They integrated
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a dual attention module to enhance fine-grained feature
extraction and optimized the cross-entropy loss function
for training an unbiased classifier, achieving a 94% accu-
racy for 16 classes. Nagai et al. [31] conducted a study
focusing on the examination of urinary sediment crystals in
medical screenings, improving efficiency by enhancing the
image dataset and utilizing CNN for analysis. Their best
model achieved 91.8% accuracy through diverse training
techniques, showcasing the potential of deep learning-based
crystal image classification in clinical applications, even
with limited imaging data. Atıcı et al. [19] employed the
Yolov7 deep learning algorithm to process microscopic
images of urine sediments. They conducted seven clinically
relevant cell segmentation and classification studies. The
Yolov7 algorithm successfully segmented urine cell images,
achieving a mean classification accuracy of 0.822 for all
classes Akhtar et al. [23] recently utilized YoloV8 [32] to
accurately detect and categorize urine particles, introducing a
data-centric strategy to enhance dataset quality by addressing
issues such as missing data, incorrect labeling, and class
imbalance. Experimental results demonstrated that YOLOv8
outperforms existing techniques, achieving a mean average
precision of 91% for eleven categories of urine sediments,
with an average detection time of 0.6 ms. Li et al. [33]
employed a combination of Faster RCNN [34] to detect
urine erythrocytes were the focus of Li et al.’s study, where
their model, trained on a dataset comprising 3969 images,
achieved an impressive recall rate of up to 99.8% for
five types of urine erythrocytes. Despite these promising
outcomes, many models proposed in the literature encounter
difficulties in distinguishing between structurally similar
urine cell classes, such as squamous and non-squamous
epithelial cells. Additionally, these models face challenges
arising from inherent attributes of microscopic urine images,
including reduced contrast, plain backgrounds, and densely
packed particles. Consequently, accurately distinguishing
diverse particle types proves highly challenging, especially
in the context of various patient samples and intricate particle
categories.

III. PROPOSED METHODOLOGY
The microscopic images of urine sediments are influenced
by both physiological features of the urinary system and the
physical properties of microscopic equipment. This gives rise
to several research challenges:

• Morphological Similarities: Certain particle classes
exhibit morphological similarities, such as the resem-
blance between RBCs and WBCs, making accurate
identification challenging due to their small size and low
image quality.

• Uneven Distribution: The uneven distribution of urine
sediment particles in microscopic images across differ-
ent urine samples introduces variability.

• Intra and Inter-Class Variations: Morphologi-
cal variations within and between particle classes

(e.g., squamous and non-squamous epithelial cells,
subcategories of yeast, casts, crystals, epithelial cells,
and bacteria) pose challenges for network generalization
capabilities.

To address these challenges, this research employs the
following strategies:

1. Data-Centric Approach: To address morphological
similarities, a data-centric approach is adopted. Professional
verification is utilized to resolve labeling errors within
classes, enhancing the accuracy of identification.

2. Pre-processing Step: A pre-processing step is
employed to segment micro-images of urine sediment parti-
cles into smaller, uniquely labeled images. This segmentation
significantly reduces the time required for particle traversal,
convolution, and classification [35].
3. Feature Extraction using VGG19: To handle intra and

inter-class variations, the VGG19 architecture, known for
its depth, is employed for feature extraction. Regularization
techniques and dropout are incorporated to improve general-
ization by reducing model complexity.

4. Comprehensive Classification Method: A urine sed-
iment image recognition method is developed with four
components:

• Primary Network Module: A modified VGG19 identi-
fies images across nine categories.

• RBC-WBC Classifier: A specialized classifier for dis-
tinguishing between red and white blood cells.

• Squa-Non Squa Classifier: A classifier for discrimi-
nating between squamous and non-squamous epithelial
cells.

• HC-UC Binary Recognition Module: A module for
binary recognition of high-contrast and low-contrast
images.

Results from these modules are combined to provide a com-
prehensive classification outcome. The proposed methodol-
ogy effectively addresses morphological similarities, uneven
distribution, and intra/inter-class variations, contributing to
improved urine sediment analysis and solve the problem
of miss-classification. The proposed approach involves two
important steps: the Data-Centric approach and the Model-
Centric approach, represented in Figure. 2 and described in
subsections B & C. The comprehensive workflow of the
proposed model is delineated in subsection A.

A. SYSTEM MODEL
The entire work of the proposedmethodology is comprised of
the following five major steps. The flowchart of the workflow
and pseudocode for the proposed methodology are provided
by Figure. 3 and Tabel 2.

1) WORKFLOW STAGES
Step1:Input images

Step 2:Data labeling&data augmentation for 12 classes
Step 3: Data-Centric Approach
• Error Analysis
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1) Identify incorrect labels
2) Identify the missing data points

• Improved the data

1) If errors are found in the previous step, then
proceed to the following steps:

a) Correct labels with the assistance of medical
professionals

b) Label the missing data points
c) Some classes exhibit a lower count in compar-

ison to others; for instance, RBC and WBC are
more abundant, whereas sperm and unknown
casts are infrequent. In this case, acquire more
data to increase the number of infrequent
classes

• Validate data

1) Verify the data for errors to ensure its accuracy and
correctness.

• Repeat step 2 until urine sediment data is cleaned and
verified

Step 4: Model Centric Approach
• Input: Cleaned & Verified urine data
• Training with initial parameters
• Evaluation

1) During the testing phase, if the particles are
correctly classified, stop the processes; otherwise,
engage in different hyperparameter tuning to
achieve the desired results.

Step 5:Cascaded Model
• In the first phase cleaned and verified dataset is
given to the modified VGG19( main module) for the
classification of nine categories

• In the second phase the RBC &WBC, squmouse & non
sequamous epithelial cells, and hyaline cast & unknow
cast are further classified by the submodules to solve the
confusion between the particles.

B. DATA-CENTRIC APPROACH
Key Objectives of the Data-Centric Approach:

1. Improve Labeling Reliability: The approach aims to
enhance the accuracy and reliability of labeling by addressing
issues related to mislabeling or errors in the training dataset.

2. Eliminate Noise: By actively identifying and rectifying
missing data and inaccuracies, the approach ensures the
removal of noise from the dataset, resulting in a cleaner and
more reliable training set.

3. Utilize High-Quality Data: The focus is on utilizing
high-quality, accurate data for training, which is pivotal for
the development of effective deep learning models. [23].

1) PROCESS OVERVIEW
1. Comprehensive Data Examination: The approach
involves a meticulous examination of the training data,
facilitated by the active participation of a team of medical

TABLE 2. Pseudocode for the proposed method.

professionals. This collaborative effort ensures a detailed
understanding of the dataset.

2. Collaboration with Medical Professionals: Building
upon existing research, collaboration with medical profes-
sionals is emphasized. This collaborative effort, as exempli-
fied by Goswami et al.’s work in 2021 on urine analysis [36],
[37] everages domain expertise to refine the dataset. Out-
come: The collaborative and comprehensive Data-Centric
approach enables the successful differentiation among twelve
distinct categories of urine sediments. Figure. 4. summarizes
the distinguishing features that result from this approach. The
enriched dataset, verified and refined through collaboration,
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FIGURE 1. Illustration of urine types and their subtypes.

FIGURE 2. Representation of the combined Data-Centric & Model-Centric Approach.

forms the foundation for robust model training and improved
outcomes in urine sediment analysis.

C. MODEL-CENTRIC APPROACH
The model-centric method is integral to the fine-tuning of
deep learning models. This approach focuses on iteratively
improving the model while maintaining a static dataset.
Through architectural improvements and hyperparameter
adjustments, the training workflow of the model is enhanced
to achieve better performance and accuracy. Components

of the Deep Learning Model Architecture are given
below:

1. Core Network-Modified VGG19: Responsible for
classifying nine categories, including bacteria, RBC-WBC,
yeast, sperm, epithelial cells, cast cells, WBC-clumps,
crystals, and mucus.

2. Sub-Modules:

• RBC-WBC Classifier: Specializes in distinguishing
between Red Blood Cell (RBC) and White Blood Cell
(WBC) particles.
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FIGURE 3. Workflow of the proposed methodology.

• Squa-Non Squa Classifier: Focuses on distinguishing
between Squamous and Non-Squamous cells.

• HC-UC Classifier: Deals with the classification of
Hyaline and Unknown casts.

1) WORKFLOW OVERVIEW
• Modified VGG19 Core Network: Classifies particles
into nine categories.

• Sub-Modules: Specialized modules handle specific
classifications based on particle types.

• Collaborative Classification: Outputs from sub-
modules are combined to provide a comprehensive
classification result.

• Graphical Representation: Figure. 5 illustrates a
graphical representation of the model-centric classifica-
tion architecture, showcasing the interplay between the
core network and specialized sub-modules. The Model-
Centric method, through its iterative improvements,
contributes to the overall accuracy and performance of
the deep learning model, making it well-suited for the
nuanced challenges in urine sediment analysis.

2) MODEL IMPLEMENTATION AND OPTIMIZATION
STRATEGIES
Modified VGG19 Architecture: This study adopts the
modified VGG19 architecture for its classification tasks,
leveraging its simplicity, ease of implementation, and robust
feature learning capabilities. The modified VGG19 is chosen
for its ability to capture both low-level details (e.g., edges
and textures) and high-level features (e.g., object shapes
and patterns), contributing significantly to overall perfor-
mance. Key advantages of the modified VGG19 include
impressive generalization capabilities, making it suitable for
real-world applications. Figure. 6 demonstrates the archi-
tecture of modified VGG19 for main-network and also for
sub-network.

TABLE 3. Main model configuration parameters.

a: TRANSFER LEARNING
Urine sediment recognition faces challenges due to imbal-
anced datasets and limited diversity. To overcome this, the
study employs transfer learning [22], [38], initializing the
model with VGG19 weights pre-trained on ImageNet [39],
[40]. This strategy leverages learned features, optimizes
computation, and enhances performance, especially in sce-
narios with limited data. Transfer learning involves freezing
most layers, leaving only the last three convolutional blocks
trainable, ensuring the model adapts to specific tasks.

b: DATA AUGMENTATION
Given the diverse distribution of sediment particles, data
augmentation is employed to balance the dataset. Six aug-
mentation techniques, including flipping, rotation, blurring,
cropping, zooming, and noise creation, are utilized to enhance
the representativeness of the dataset [41], as illustrated in
Figure 7. Augmentation aims to enhance recognition metrics,
particularly for rare occurrences like sperm and unknown
casts [42], [43], contributing to better model generalization.

c: HYPER PARAMETERS FINE-TUNING
The modified VGG19 architecture undergoes meticulous
fine-tuning to address potential overfitting and enhance
generalization. Regularization techniques, including L2 reg-
ularization, are incorporated. Complexity reduction involves
adjusting the number of neurons in the last two dense layers
from 512 to 128. Batch normalization layers ensure stability,
and a learning rate scheduler optimizes the training process.
Table. 3 provides additional insights into the architecture.

3) SUB-MODULES (RBC-WBC, SQUA-NON SQUA, HC-UC
CLASSIFIER
These specialized classifiers, integrated into the overall
architecture, address confusion within specific particle
classes. Adjustments in neurons, dropout rates, regulariza-
tion techniques, and learning rate schedules enhance their
effectiveness in resolving classification challenges. The Sub-
Modules contribute to the collaborative classification results.
Conclusion: The model-centric approach, involving both

the core network and specialized sub-modules, reflects a
comprehensive strategy for refining and optimizing deep
learningmodels in the context of urine sediment analysis. The
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FIGURE 4. Distinguishing characteristics of urine sediment on the bases of their morphological structure.

FIGURE 5. The complete process of the model for identifying structures in urine sediment images.

fine-tuning of architectures and hyperparameters contributes
to the adaptability and effectiveness of the model in handling
intricate classification scenarios.

IV. EXPERIMENTAL ANALYSIS
A. DATASET
In this section, we present a series of experimental results
aimed at assessing the effectiveness of the proposed

methodology. All experiments were executed on a computer
system operating the Windows 10 OS (64-bit) with a 930GB
hard disk, 8GB RAM, Intel(R) Core(TM) i7-6700 CPU
(Processor), and Nvidia Tesla T4 GPU. The accuracy of a
neural network is significantly contingent on the quality and
quantity of the dataset employed for training. Hence, it is
imperative to implement a robust data collection and labeling
process.
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FIGURE 6. A detailed diagram of the improved VGG19 structure, highlighting both the main network and its sub-network.

FIGURE 7. Original image and six augmented variations for the sperm particle.

1) DATA COLLECTION PROCESS
To ensure the quality of the dataset, a substantial number
of patient urine samples were collected from Bezmialem
Vakif University Hospital in Turkey, employing a Dirui
urine analyzer. This dataset was gathered between 2021 and
2022, with the comprehensive collection process spanning
a duration of two months. The magnification factor for the
Dirui urine analyzer was set at 20x, accurately reflecting the
size relationship between particles in the images and their
actual size in practice.

2) DATA LABELLING PROCESS
Following the data collection phase, medical professionals
were engaged to meticulously label and verify the data,
ensuring accuracy. High-resolution images were obtained
from each sample and then segmented, with each segment
containing a single particle. The labeling and verification
process extended over a period of five months, resulting in
a comprehensive dataset comprising 12 categories of urine
sediment. These categories include Bacteria, RBC-WBC

(subdivided into RBC andWBC), Sperms, Casts (further cat-
egorized into Hyaline Cast and Unknown Casts), Epithelial
cells (divided into Squamous epithelial cells and Non-
Squamous epithelial cells), Mucus, WBC-Clumps, Crystals,
and Yeast. Each category was meticulously identified and
labeled, enabling detailed analysis and recognition of differ-
ent types of urine sediment. The dataset was divided into
three subsets using a standard data partitioning technique.
Specifically, 90% of the data were allocated for training
the network, 5% for validation purposes, and the remaining
5% for testing the network’s performance. This approach
ensures a proper evaluation and optimization of the neural
network model. Figure. 8 illustrates a set of labeled sample
images, while Table. 4 provides the initial count of urine
particles for each class. The table also outlines the count
of augmented images generated to address class imbalance
concerns.

B. RESULTS OF MODIFIED VGG19
The model was trained for 100 epochs, with a learning rate of
0.00001. To minimize the fluctuations in model accuracy and
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FIGURE 8. The dataset consists of urine sediment samples, with each category labeled and presented in the left column.

TABLE 4. Data-set details including original and augmented images count.

loss, hyperparameter tuning and architectural modifications
were systematically executed.

Figure. 9 illustrates the impact of the changes through a
comparison of the accuracy and loss curves. By adjusting
hyperparameters and making architectural improvements, the
model’s performance became more stable and reliable, lead-
ing to smoother andmore consistent accuracy and loss curves.
The confusion matrix is represented in Figure. 10. While
receiving operating curve and precision confidence curve are
shown in Figure. 11. The curve illustrates the model’s ability
to correctly classify every instance belonging to each class,
demonstrating a high level of precision and effectiveness.
Additionally, the ROC curve displays 100%micro and macro
averaging accuracy, which indicates the model’s performance
in making accurate predictions across all classes. This figure
underscores the model’s reliability and robustness, making it
highly desirable for multi-class classification tasks. Macro-
averaging and weighted-averaging are very useful measures
to evaluate the performance of multi-category recognition

models. Macro-averaging involves calculating individual
index values for each category and then computing their
arithmetic average across all categories. In a recognition task
with n categories, the macro-average is estimated as:

MacroF =
2 × MacroP × MacroR
MacroP + MacroR

(1)

where

MacroP =
1
n

n∑
i=1

Pi (2)

MacroR =
1
n

n∑
i=1

Ri (3)

where P is the precision and it is defined as

P =
TP

TP+ FP
(4)

andR is the recall rate, which is often referred to as sensitivity.
It is an important metric for assessing the effectiveness of
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FIGURE 9. Comparison of accuracy and loss curves before and after implementing architectural changes in the modified VGG19 model.
Top row depict the curves before architectural changes, while the bottom row illustrate accuracy and loss curves after implementing
architectural changes.

recognition tasks, defined as follows:

Sensitivity =
TP

TP + FN
(5)

Here, ‘‘TP’’ denotes true positives, which refers to the number
of correctly identified positive instances, ‘‘FP’’ represents
false positives, which is the number of incorrectly identified
positive instances and ‘‘FN’’ denotes false negatives, which
represents the number of incorrectly identified negative
instances. In table 3, the performance evaluation metrics
are presented for the nine-class classification. The weighted
average is calculated for each metric by summing the index
value multiplied by a specific weighted term assigned to each
class.

Weighted Average =

n∑
i=1

wi × Index value for category i

(6)

In Figure. 12, the predictive performance of the model
is presented, when it is tested on a dataset containing
nine distinct categories. The model demonstrates impressive
performance, both in terms of accuracy and computational
time. As for computational performance, it achieves an
inference time of only 61 ms per image. The overall average

FIGURE 10. Confusion Matrix for test set using modified VGG19 for nine
classes.

precision across these categories is 35%. The RBC-WBC
category stands out with the highest average precision of
49%, making it the top-performing category in terms of
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FIGURE 11. ROC curves and precision-confidence curves for the modified VGG19 model across nine categories.

FIGURE 12. Prediction results of the modified VGG19 for 9 classes.

precision. Similarly, theMucus category achieved the second-
highest precision among all the categories. The proposed
method exhibits clear advantages compared to state-of-
the-art, as illustrated in Table 5. It can be seen that the
proposed method’s accuracy is a little lower [3]; however,
it exceeds [4], [5], [18], [45], and [44]. It is worth noting that
the methodologies proposed in [3] can successfully handle
only 7 out of the 12 categories in the given recognition
challenge. In contrast, the method proposed in this work

covers most of the categories, and can robustly solve more
complex and challenging recognition tasks as compared
to previous methods. Consequently, It can be more useful
in clinical settings. On a different note, even though the
accuracy of the method described in [18] is lower, however,
it encompasses a broader range of urine sediments. The focus
of the current research is on the diversity of urine sediments,
even though the proposed method in [18] also take sub-types
of yeast and crystals into account. All of those subtypes
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TABLE 5. Comparison of accuracy and average time consumption among methods from different papers.

belonged to either crystal or yeast particles. The performance
improvement in the proposed method can be attributed to
following factors.

• The proposed method employs a data-centric approach,
collaborating with experts to tackle class imbalance,
missing data, and labeling inaccuracies. This ensures the
availability of accurate and high-quality data, leading to
reliable model decisions and improved predictions.

• we used a cascaded approach consisting of fourmodified
versions of CNNs based on VGG19 architecture, which
make use of transfer learning and augmentation tech-
niques to enhance overall performance. The introduction
of sub-modules has played a critical role in resolving
confusion between categories which, otherwise, looked
similar, thereby resulting in improved recognition capa-
bilities.

• The uneven distribution of urine sediment particles
led to variations in identified particles among different
samples. To address this issue and optimize computing
resources, a pre-processing step is used to segment
micro-images into smaller images, each with a unique
label. This has resulted in faster particle traversal,
convolution, and classification.

The main classifier shows an average recognition time of
61 milliseconds, which is consistent with the findings of the
study by [4]. Furthermore, the proposed approach has proved
to be more efficient in handling a broader range of sediment
classes compared to alternative methods such as [3], [4], [5],
and [44].

1) RESULTS OF OTHER SUB-MODULES
Due to morphological similarities, it is hard to distinguish
between RBCs, WBCs, Squamous Epithelial Cells, Non-
Squamous Epithelial Cells, hyaline casts, and unknown
Casts. To tackle this challenge, dedicated sub-modules have
been incorporated for sub-class recognition. These sub-
modules consist of the RBC-WBC classifier, Squa Non-Squa
classifier, and HC-UC classifier. Their primary function is

TABLE 6. Test Classification Report for the test set using modified VGG19.

to efficiently differentiate between these particles, addressing
the problem of misclassification.

The incorporation of additional training iterations elevated
the comprehensive process of categorizing urine sediment in
its analysis, resulting in increased precision and reliability in
identification of diverse particles. The classification results
for the individual sub-classifiers are presented in Table. 7
Table. 8 and Table. 9, demonstrating substantial weighted
average accuracies of 98%, 96%, and 97%, respectively.
Furthermore, the system’s inference time per image was
observed to be a swift 61 milliseconds. Figure. 13, Figure. 15,
and Figure. 17 illustrate the curves, displaying accuracy
during training and validation, along with the loss, for all sub-
modules. These graphical representations provide insights
into the shifts in accuracy and loss as the model undergoes
training and validation. This provides a comprehensive under-
standing of the model’s performance and its generalization
capability to the dataset.

Furthermore, Figure. 14, Figure. 16, and Figure. 18
present precision-confidence curves and ROC curves, high-
lighting average precisions of 84% across all sub-modules.
Specifically, examining the ROC curve for the RBC-WBC
classifier reveals an outstanding accuracy of 99% for every
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FIGURE 13. Graphs illustrating the training and validation accuracy as well as the loss of the RBC-WBC Classifier.

FIGURE 14. The precision-confidence curve and ROC curve for the RBC-WBC classifier.

TABLE 7. Test classification report for the test set of RBC-WBC classifier.

particle, with equally impressive micro and macro averaging
accuracies of 99% and 100%, respectively. This performance
underscores its accuracy in correctly classifying red and

white blood cells. Similarly, the Squa Non-Squa classifier
demonstrates consistency with both micro and macro aver-
aging accuracies, affirming its reliability in distinguishing
between ‘‘Squa’’ and ‘‘Non-Squa’’ categories. The HC-UC
classifier demonstrates 98% accuracy for each particle, along
with 99% mark for macro and micro-averaging accuracies,
demonstrating its capability to differentiate between ‘‘HC’’
and ‘‘UC’’ categories. In summary, all binary classifiers
demonstrate robust performance, characterized by elevated
precision and reliability in their distinct classifications.

Figure. 20 displays the confusion matrix for the sub-
modules. The confusion matrix summarizes the number of
correct and incorrect predictions made by each sub-module,
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FIGURE 15. Curves depicting the training and validation accuracy and loss of the Squa-Non Squa classifier.

FIGURE 16. The precision-confidence curve and ROC curve for the Squa-Non Squa classifier.

TABLE 8. Test classification report for the test set of Squa-Non Squa
classifier.

offering valuable insights into the model’s performance in
distinguishing between different particle categories. On the
other hand, Figure. 19 showcases the prediction results
obtained from all three sub-modules.

TABLE 9. Test classification report for the test set of HC-UC classifier.

V. DISCUSSION
The proposed innovative approach for automated urine
sediment analysis represents a significant advancement in
the realm of medical image processing. By synergizing
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FIGURE 17. Curves illustrating the accuracy and loss during training and validation of the HC-UC classifierr.

FIGURE 18. The precision-confidence curve and ROC curve for the HC-UC classifier.

data-centric and model-centric methods, it effectively
addresses several critical challenges that have impeded the
development of accurate and efficient automated analyzers.
A key strength of the proposed method lies in its adept
handling of missing data and effective resolution of class
imbalance. In contrast, previous research [5], [44] has
underscored that grappling with missing data and class
imbalance could introduce biases and potentially result in
low recognition performance. The proficient management
of missing data is a notable achievement facilitated through
the utilization of the proposed data-centric approach. The
incorporation of the modified VGG19 model played a
pivotal role in enhancing the recognition performance,
particularly for categories prone to confusion in urine
sediment images. Conventional image processing methods

encountered difficulties in recognizing large-scale categories
in urine sediment images, leading to confusion. However, the
strategic implementation of the VGG19 model enabled us to
achieve high levels of computational efficiency and accuracy.
This success allowed for the successful identification of
12 distinct categories of urine sediment images, effectively
overcoming and resolving the category confusion issue
highlighted in prior research [3], [5], [18], [44]. The extensive
training dataset, comprising 11,000 urine sediment images,
empowered the proposed model to attain an impressive test
accuracy of 98%. This outcome demonstrates the model’s
robust ability to generalize to unseen data, rendering it highly
reliable and suitable for real-world applications in medical
diagnostics. Furthermore, the inference time of 61ms per
image showcases the practicality and time-saving nature of
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FIGURE 19. Prediction results of all three sub classifiers.

FIGURE 20. Conusion matrix for all three sub classifiers.

the proposed approach. This rapid inference time makes it
feasible to analyze a large number of urine sediment samples
within a short period, thereby enhancing the efficiency of
medical laboratories and reducing the burden on healthcare
professionals. Last but not least, the use of Convolutional
Neural Networks (CNN) as the underlying architecture opens
up avenues for further research. This adaptability renders

the proposed approach responsive to evolving medical
requirements and advancements, paving the way for further
innovations in the field.

A. ABLATION STUDY
A comprehensive set of ablations was conducted to highlight
the classification performance achieved by the proposed
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modified-VGG19 model. In the first phase, the performance
of the proposed model was compared with seven distinct
CNN architectures for a thorough analysis. Subsequently,
the outcomes were compared amongst VGG19 models, both
before and after applying modifications, under different
conditions. These specific scenarios are detailed below.

• Comparison of Seven CNN Architectures: Seven dis-
tinct CNN architectures, includingAlexNet, ResNet101,
VGG16, InceptionV3, MobileNet, ResNet50, and
VGG19, were evaluated. Among these, VGG19 demon-
strated the highest accuracywith good prediction results.

• Experiments with VGG19: A series of experiments
were conducted with VGG19. Initially, VGG19 was
implemented using original images without data aug-
mentation. Subsequently, the experiments were repeated
with data augmentation, followed by incorporating
transfer learning. Finally, modifications were introduced
to the VGG19 architecture, and experiments were
conducted with augmentation and transfer learning,
achieving the highest accuracy in this configuration.

The results of this ablation study are illustrated in Figure. 21
and Figure. 22. As shown in Figure. 21,the proposedmodified
VGG19 model accomplished the highest accuracy of 98%
when applied to the dataset, confirming its compatibility
with the given data. All CNN architectures underwent
evaluation with augmentation and transfer learning on the
dataset. While MobileNet also achieved an accuracy of 97%
Figure. 22 reveals that the proposed modified-VGG19 model
achieved the highest accuracy. A number of experiments with
varying configurations have been conducted. Initially, the
baseline VGG19 was implemented on the original unbal-
anced dataset, where some of the classes lacked sufficient
images, as detailed in Table 4. The obtained accuracy was
88.6%, indicating generally accurate predictions, but with
a noticeable tendency towards overfitting. Subsequently,
different augmentation techniques were applied to address
the imbalance in the data, resulting in a 4.1% increase in
accuracy. The utilization of transfer learning significantly
impacted model accuracy; however, overfitting persisted.
In the final phase, VGG19 went through architectural
adjustments and fine-tuning, as outlined in Section III-C.
Despite a modest 1% increase in accuracy after modification,
this adjustment proved beneficial in terms of mitigating
prediction errors. Notably, the model successfully alleviated
fluctuations in training and validation curves, vouching for
improved stability.

B. LIMITATIONS
In urine sediment analysis, one of the common limitations
is the recognition of all possible sediment particle classes
and their sub-classes. Broadly, they can be categorized into
10main classes, with 27 sub-classes, as illustrated in Figure 1.
In this work, the proposed method successfully classifies
9 main categories and 6 subcategories, with a total of
12 classes. The number of classes is limited due to constraints
in the availability of required data. This limitation could

FIGURE 21. Comparing the accuracy scores of various CNN architectures.

FIGURE 22. Ablation study of 4 experiments.

be alleviated by incorporating more labeled data. Another
prevalent issue is the class imbalance in urine sediment data.
In most urine datasets, the count for some class particles
is significantly higher than others; for example, RBC and
WBC clumps are generally higher in numbers than other
particles. Tomitigate this issue, data augmentation techniques
have been applied. This data augmentation positively affects
the model’s accuracy and can further address the class
imbalance problem by increasing the data samples to achieve
a more balanced distribution of original images across all
classes. On the other hand, the resizing mechanism employed
by Convolutional Neural Networks (CNNs) can potentially
diminish or erase the distinctive size characteristics of
cells, leading to a loss of information related to cell sizes.
Furthermore, CNN models demand a substantial amount of
labeled data to attain a high classification rate. In the future,
alternative deep learning models, such as transformers, can
be employed to achieve high accuracy with a reduced need
for labeled data.

VI. CONCLUSION
Urine sediment tests are crucial for diagnosing abnormal
diseases related to the urinary tract by identifying key
cellular components in urine samples, such as red blood
cells and white blood cells. Manual urinalysis using human

VOLUME 12, 2024 59517



S. Akhtar et al.: Optimized Data and Model Centric Approach

eyes is subjective, time-consuming, and prone to errors,
necessitating the development of image processing methods
for automated analysis. Automated urine analyzers enhance
patient care and overall performance in smart healthcare
by enabling real-time data transmission and analysis. This
paper presented a significant advancement in automated
urine sediment analysis by proposing a combination of data-
centric and model-centric approaches. The incorporation of
a modified VGG19 deep learning model further improved
recognition performance, especially for challenging cate-
gories with similar features. To achieve the research goal,
urine data was collected and categorized with insights from
medical experts due to the limited availability of public
data with large categories. Through the utilization of an
11,000-image urine sediment training dataset, the model
demonstrated efficiency in precisely classifying 12 urine
sediment image categories. The achieved accuracy of 98% on
the test set, along with an inference time of 61ms per image,
underscores the effectiveness and practicality of the proposed
approach. The methodology not only addresses challenges
related to data acquisitions, labeling, missing data, and
class imbalance but also streamlines the recognition process
for large-scale categories. Furthermore, the CNN exhibits
robust capability for further enhancement, allowing for
the incorporation of additional sub-categories in real-world
applications.

VII. FUTURE WORK
Future work for this research involves broadening its scope
to include a broader range of subcategories within the
12 categories of urine particles. Additionally, exploring
new techniques to address the imbalanced distribution of
images across classes offers a promising avenue for further
research. Towards this end, additional classes can be labeled
for subcategory classification, specifically targeting those
particles that rarely appear in urine sediment images. Such
an approach can further address the class imbalance issue,
potentially contributing to the development of more robust
automated urine sediment analyzers in clinical settings.
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