
Received 22 February 2024, accepted 3 April 2024, date of publication 15 April 2024, date of current version 24 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3387941

ChatGPT for Robotics: Design Principles and
Model Abilities
SAI H. VEMPRALA 1, (Member, IEEE), ROGERIO BONATTI 2, (Member, IEEE),
ARTHUR BUCKER3, (Student Member, IEEE), AND ASHISH KAPOOR1
1Scaled Foundations, Kirkland, WA 98033, USA
2Microsoft Corporation, Redmond, WA 98072, USA
3Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Corresponding author: Sai H. Vemprala (mail@saihv.com)

ABSTRACT This paper presents an experimental study regarding the use of OpenAI’s ChatGPT for robotics
applications. We outline a strategy that combines design principles for prompt engineering and the creation
of a high-level function library which allows ChatGPT to adapt to different robotics tasks, simulators, and
form factors. We focus our evaluations on the effectiveness of different prompt engineering techniques and
dialog strategies towards the execution of various types of robotics tasks. We explore ChatGPT’s ability
to use free-form dialog, parse XML tags, and to synthesize code, in addition to the use of task-specific
prompting functions and closed-loop reasoning through dialogues. Our study encompasses a range of tasks
within the robotics domain, from basic logical, geometrical, and mathematical reasoning all the way to
complex domains such as aerial navigation, manipulation, and embodied agents. We show that ChatGPT
can be effective at solving several of such tasks, while allowing users to interact with it primarily via
natural language instructions. In addition to these studies, we introduce an open-sourced research tool
called PromptCraft, which contains a platform where researchers can collaboratively upload and vote on
examples of good prompting schemes for robotics applications, as well as a sample robotics simulator with
ChatGPT integration, making it easier for users to get started with using ChatGPT for robotics. Videos
and blog: aka.ms/ChatGPT-Robotics PromptCraft, AirSim-ChatGPT code: https://github.com/microsoft/
PromptCraft-Robotics

INDEX TERMS Large language models, robotics, language understanding, code generation, perception.

I. INTRODUCTION
The rapid advancement in natural language processing (NLP)
has led to the development of large language models (LLMs),
which started with models such as BERT [2], GPT [3], [4],
and Codex [5], and more recently, LLaMa [6], [7], Mistral [8]
that are revolutionizing a wide range of applications. These
models have achieved remarkable results in various tasks
such as text generation, machine translation, and code
synthesis, among others. A recent addition to this collection
of models was the OpenAI ChatGPT [1], a pretrained
generative text model which was finetuned using human
feedback. Unlike previousmodels which operatemostly upon

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongli Dong.

a single prompt, ChatGPT provides particularly impressive
interaction skills through dialog, combining text generation
with code synthesis. Our goal in this paper is to investigate
if and how the abilities of ChatGPT can generalize to the
domain of robotics.

Robotics systems, unlike text-only applications, require
a deep understanding of real-world physics, environmen-
tal context, and the ability to perform physical actions.
A generative robotics model needs to have a robust com-
monsense knowledge and a sophisticated world model, and
the ability to interact with users to interpret and execute
commands in ways that are physically possible and that
makes sense in the real world. These challenges fall beyond
the original scope of language models, as they must not
only understand the meaning of a given text, but also

55682

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-7554-5417
https://orcid.org/0000-0003-3015-9613
http://aka.ms/ChatGPT-Robotics

S. H. Vemprala et al.: ChatGPT for Robotics: Design Principles and Model Abilities

translate the intent into a logical sequence of physical
actions.

In recent years there have been different attempts to
incorporate language into robotics systems. These efforts
have largely focused on using language token embedding
models, LLM features, and multi-modal model features for
specific form factors or scenarios. Applications range from
visual-language navigation [9], [10], [11], language-based
human-robot interaction [12], [13], and visual-language
manipulation control [14], [15], [16]. However, despite the
potential advantages of using LLMs in robotics, most of the
existing approaches are restricted by a rigid scope and limited
set of functionalities, or by their open-loop nature that does
not allow for fluid interactions and behavior corrections from
user feedback.

Large language models also show promise in zero-shot
robotics scenarios when tasked with high-level agent plan-
ning [17], [18] or code generation [19], [20]. These early
demonstrations inspired us to investigate ChatGPT as a
potentially more versatile tool for the robotics domain, as it
incorporates the strengths of natural language and code
generation models along with the flexibility of dialogue.
ChatGPT’s ability to engage in a free-form dialog and capture
long context allows users to interact with the model in a
more natural fashion, with flexible behavior correction. At the
same time, ChatGPT’s extensive knowledge of mathematical
constructs, geometry, commonsense afford it a much higher
ability to understand and reason about the physical world
compared to older LLM-based approaches which mainly
focused on task planning that was dependent on a fixed set
of functions and behaviors.

FIGURE 1. Current robotics pipelines require a specialized engineer in the
loop to write code to improve the process. Our goal with ChatGPT is to
have a (potentially non-technical) user on the loop, interacting with the
language model through high-level language commands, and able to
seamlessly deploy various platforms and tasks.

In this paper, we aim to demonstrate the potential of
ChatGPT for robotics applications. We outline a key concept
that unlocks the ability to solve robotics applications with
ChatGPT, which is the creation of a high-level function
library. Given that robotics is a diverse field where several
platforms, scenarios, and tools exist, there exists an extensive
variety of libraries and APIs. Instead of asking LLMs to
output code specific to a platform or a library, which might
involve extensive finetuning, we instead create a simple
high-level function library for ChatGPT to deal with which
can then be linked in the back-end to the actual APIs for
the platforms of choice. Thus, we allow ChatGPT to parse

user intent from natural dialog, and convert that to a logical
chaining of high-level function calls. We also outline several
prompt engineering guidelines that help ChatGPT solve
robotics tasks.

Recent large models such as BLIP-2 [21], LLaVa [22] have
shown that fusing visual and language features into the same
representation allows for capabilities such as visual question
answering and captioning. While this is a very powerful
capability, these models excel at general descriptions of
images and to an extent reasoning about them. However,
robotics tasks often require amore precise and detailed under-
standing of the environment, such as the ability to extract
object locations, or to perform geometric reasoning, which
potentially requires more specialized models. In this work,
we assume that the large language model can be provided
with the necessary information about the environment using
appropriate tools, and focus on the analysis of LLMs on
how they can use this information to formulate high level
behaviors and the necessary code for solving the task at hand.

Our research shows that ChatGPT is capable of solving var-
ious robotics-related tasks in a zero-shot fashion, while adapt-
ing to multiple form factors, and allowing for closed-loop
reasoning through conversation. In addition, we aim to show
current model limitations, and provide ideas on how to
overcome them. Our main contributions are listed below:

• We demonstrate a pipeline for applying ChatGPT to
robotics tasks. The pipeline involves several prompting
techniques such as free-form natural language dialogue,
code prompting, XML tags, and closed-loop reasoning.
We also show how users can leverage a high-level
function library that allows the model to quickly parse
human intent and generate code for solving the problem;

• We experimentally evaluate ChatGPT’s ability to exe-
cute a variety of robotics tasks. We show the model’s
capabilities and limitations when solving mathematical,
logical, and geometrical operations, and then explore
more complex scenarios involving embodied agents,
aerial navigation, and manipulation. We include both
simulation and real-world experiments that result from
ChatGPT’s plans;

• We introduce a collaborative open-source platform,
PromptCraft, where researchers can work together to
provide examples of positive (and negative) prompting
strategies when working with LLMs in the robotics
context. Prompt engineering is a mostly empirical
science, and we want to provide a simple interface
for researchers to contribute with knowledge as a
community. Over time we aim to provide different
environments where users can test their prompts, and
welcome new contributions;

• We release a simulation tool that builds on Microsoft
AirSim [23] combined with a ChatGPT integration.
This AirSim-ChatGPT simulation contains a sample
environment for drone navigation and aims to be a
starting point for researchers to explore how ChatGPT
can enable robotics scenarios.

VOLUME 12, 2024 55683

https://github.com/microsoft/PromptCraft-Robotics

S. H. Vemprala et al.: ChatGPT for Robotics: Design Principles and Model Abilities

With this work we hope to open up new opportunities
and avenues for future research fusing LLMs and robotics.
We believe that our findings will inspire and guide further
research in this exciting field, paving the way for the
development of new, innovative robotics systems that can
interact with humans in a natural, intuitive manner. For more
details, we encourage readers to view detailed videos of our
experiments in the project webpage.

II. ROBOTICS WITH CHATGPT
Prompting LLMs for robotics control poses several chal-
lenges, such as providing a complete and accurate descrip-
tions of the problem, identifying the right set of allowable
function calls and APIs, and biasing the answer structure with
special arguments. To make effective use of ChatGPT for
robotics applications, we construct a pipeline composed of
the following steps:

1) First, we define a high-level robot function library. This
library can be specific to the form factor or scenario
of interest, and should map to actual implementations
on the robot platform while being named descriptively
enough for ChatGPT to follow;

2) Next, we build a prompt for ChatGPT which describes
the objective while also identifying the set of allowed
high-level functions from the library. The prompt can
also contain information about constraints, or how
ChatGPT should structure its responses;

3) The user stays on the loop to evaluate code output
by ChatGPT, either through direct analysis or through
simulation, and provides feedback to ChatGPT on the
quality and safety of the output code;

4) After iterating on the ChatGPT-generated implementa-
tions, the final code can be deployed onto the robot.

We show a visual depiction of this pipeline in Figure 2 for
the example of a household robot.

FIGURE 2. Robotics pipeline employing ChatGPT with the user on the
loop to evaluate the output’s quality and safety.

A. CONSTRUCTION AND DESCRIPTION OF THE ROBOTICS
API LIBRARY
Robotics being a well-established field, there already exists
a multitude of libraries, either black-box or open-source, that
can be used for basic functionalities in both the perception
and action domains (e.g. object detection and segmentation,
mapping, motion planning, controls, grasping). If properly
specified in the prompt, the LLM is able to use these
pre-defined functions for robot reasoning and execution.

One important prompt design requirement is that all API
names must be descriptive of the overall function behavior.

Clear names are essential to allow the LLM to reason over
functional connections between APIs and produce the desired
outcome for the problem. Hence, we can define high-level
functions, which act as wrappers over actual implementations
from the respective libraries. For example, a function named
detect_object(object_name) could internally link
to an OpenCV function or a computer vision model, whereas
something like move_to(x, y, z) could internally
invoke a motion planning and obstacle avoidance pipeline
along with the appropriate low-level motor commands for
a drone. Listing such a collection of high-level functions
in the prompt is key in allowing ChatGPT to create logical
sequences of behavioral primitives, and in generalizing to
different scenarios and platforms.

Depending on the context, we recommend explaining the
function of APIs and if needed, breaking them down into
sub-components with clear inputs and outputs, similar to code
documentation. In Figure 3 we present an example of a good
API prompting strategy for a home cook robot scenario. The
strategy presented allows ChatGPT to reason about the order
and content of tasks according to the functions the robot is
actually able to execute. In contrast, we refer the interested
reader to Appendix A-A for an example of how ChatGPT
reasons when no API guidance is given, which leads to
a unbounded text-based answer, or to Appendix A-B for
an example of API under-specification, which leads to
hallucinations over function call parameters.

We note that unlike the brittle structure of classical
symbolic AI, which required rigid pre-defined relationships
between objects and functions, LLMs are capable of defining
new functions and concepts altogether when relevant to a
particular problem. This capability confers flexibility and
robustness to LLMs when dealing with robotics applications.
Figure 4 shows how ChatGPT can create new high-level
concepts and even low-level code when needed to solve a
problem, even fusing existing APIs. The user on the loop
can take advantage of this ability as a design strategy, and
iteratively define new APIs with the help of the LLM when
the current ones are not sufficient to solve the task at hand.

B. CLEAR DESCRIPTION OF THE TASK DETAILS IN THE
PROMPT
By providing a clear and concise description of the desired
robotics task and its context, ChatGPT can generate more
accurate responses. A good context description should
contain, besides robot APIs:

• Constraints and requirements: specify constraints or
requirements that are relevant to the task. If the task
involves moving objects, you might specify the weight,
size, and shape of the objects to be moved.

• Environment: describe the environment in which the
robotics task is taking place. For example, if the task is to
navigate a maze, you might describe the size and shape
of the maze, as well as any obstacles or hazards to avoid.

• Current state: describe the current state of the robotics
system. For example, if the task is to pick up an object,

55684 VOLUME 12, 2024

https://aka.ms/ChatGPT-robotics

S. H. Vemprala et al.: ChatGPT for Robotics: Design Principles and Model Abilities

FIGURE 3. Example of a good prompting practice when defining different
APIs for a robotics problem. Clear function definitions that can be
executed by the robot, and the task objectives are explicitly stated.

you might describe the current position and orientation
of the robot and the object.

• Goals and objectives: state the goals and objectives of
the task. If the task is to assemble a puzzle, you might
specify the number of pieces that need to be assembled
and the desired completion time.

• Solution examples: demonstrate how similar tasks can
be solved as a means to guide the LLM’s solution
strategy. For example, if a task involves interac-
tions with the user, we can describe an example
of how and when the robot should be asking for
the user’s input (see Figure 5). Note that priming
can also introduce biases, so we should provide a
diverse range of examples and avoid overly prescriptive
language.

Even a well designed prompt might not contain all
necessary information needed to solve the problem, or in
some cases ChatGPT is not able to generate the correct
response in a zero-shot fashion. In these cases, we find
that a simple and effective strategy a user can take is to
send additional instructions to ChatGPT in the chat format

FIGURE 4. Example of new API development using LLM intrinsic
reasoning capabilities. The model improves its answer in comparison to
Figure 3, which contained the same task but with a fixed set of APIs.

FIGURE 5. Example of how user prompting can bias the model’s response.

describing the issue, and have it correct itself. Previous
approaches that rely on GPT-3 or Codex models [19],
[20] require the user to re-engineer the input prompt and

VOLUME 12, 2024 55685

S. H. Vemprala et al.: ChatGPT for Robotics: Design Principles and Model Abilities

generate new outputs from scratch. The dialog ability of
ChatGPT, however, is a surprisingly effective vehicle for
behavior correction. Section III-B and the supplementary
videos show examples of interactive behavior between the
user and ChatGPT.

C. SPECIAL ARGUMENTS TO BIAS THE ANSWER’S
STRUCTURE
Different prompting methodologies can be used to force the
output of the model to obey specific patterns. For instance,
a user might want to automatically parse ChatGPT’s output
and extract code which can be used as part of other scripts
for real-time execution. As shown in Figure 3, a simple
strategy is to directly ask ChatGPT to produce code in a
specific language (e.g. Python, C++). What usually follows
is free-form text followed by a code block.

A more structured response can be produced by requesting
the model to use XML tags to help us parse the output
automatically, as shown in Figure 5.

In other settings users might want to force the model to
output answers following a list pattern as opposed to code or
free-form text. Appendix A-C displays an example of such
approach, where the last line of the user’s prompt directs the
model’s output.

III. CHATGPT ABILITIES FOR SOLVING ROBOTICS
PROBLEMS
In this section, we take a deeper look into ChatGPT’s abilities
for solving robotics problems. Specifically, we investigate
how well ChatGPT performs when dealing with a variety
of robotics-related tasks, from simple spatio-temporal rea-
soning problems all the way to real-world aerial agent and
manipulation deployments. We highlight several interesting
capabilities we observed during these experiments.

While ChatGPT’s capabilities are impressive, practical
deployment safety considerations should not be overlooked,
especially in the case of physical robotics deployments.
As shown in Figure 2, we find it necessary to have a
human on the loop to monitor and intervene in case of
unexpected behaviors generated by ChatGPT. Additionally,
the use of simulators can be particularly helpful to evaluate
themodel’s performance before deployment in the real world.
We emphasize that the use of ChatGPT for robotics is
not a fully automated process, but rather acts as a tool to
augment human capacity. We provide all initial prompts for
the problems in this section in Appendix B. For the sake of
brevity we only include brief excerpts from each task. The
full conversations can be found in the following repository:
https://github.com/microsoft/PromptCraft-Robotics.

A. ZERO-SHOT TASK PLANNING
First, we note that ChatGPT is able to solve several robotics
tasks in a zero-shot fashion, with access only to the prompt
and the description of a function library, and no requirement
of actual code examples.

[Initial model prompt found in Appendix B-A]
Write a python script that executes a visual servoing approach towards catching
a basketball in a court. You can use opencv functions to detect the ball as an
orange blob.

Here’s a sample implementation of the script:

import cv2
import numpy as np

def detect_ball(frame):
Convert the image to HSV color space for better

color detection
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
Define the range of orange color in HSV
lower_orange = np.array([10,100,100])
upper_orange = np.array([30,255,255])
Threshold the image to get only the orange color
mask = cv2.inRange(hsv, lower_orange, upper_orange

)
Find the contours of the thresholded image
contours, _ = cv2.findContours(mask, cv2.

RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
If a contour is found, return its center
if len(contours) > 0:
c = max(contours, key=cv2.contourArea)
M = cv2.moments(c)
if M["m00"] > 0:
center = (int(M["m10"] / M["m00"]), int(M["m01"] /

M["m00"]))
return center
return None

def catch_ball():
Continuously get images from the camera
while True:
frame = get_image()
Detect the ball in the image
ball_center = detect_ball(frame)
If the ball is detected, move towards its

location
if ball_center is not None:
x, y = ball_center
robot_x, robot_y = get_location()
vx = (x - robot_x) * 0.5
vy = (y - robot_y) * 0.5
move_by_velocity(vx, vy)

if __name__ == ’__main__’:
catch_ball()

This implementation uses a simple visual servoing approachwhere the robot
moves towards the ball at a constant velocity. The velocity is proportional to
the difference between the ball’s and robot’s locations, so the robot will move
faster as it gets closer to the ball. You can adjust the gain (i.e., themultiplication
factor of 0.5) to control the speed of the robot.
Generate SVG code that depicts how the ball would look in the camera image
exactly in the center

Here’s an example of an SVG code that depicts a ball in the center of a
camera image:

<svg width="100" height="100">
<rect x="0" y="0" width="100" height="100" fill="

lightgray"/>
<circle cx="50" cy="50" r="25" fill="orange"/>
</svg>

[SVG image rendered directly from the code generated by ChatGPT]

1) SPATIO-TEMPORAL REASONING: CATCHING A
BASKETBALL WITH VISUAL SERVOING
In this example, we ask ChatGPT to control a planar
robot equipped with an upward-facing camera. The robot
is expected to catch a basketball using a visual servoing
method based on the appearance of a basketball. We see
that ChatGPT is able to appropriately use the provided API
functions, reason about the ball’s appearance and call relevant
OpenCV functions, and command the robot’s velocity based

55686 VOLUME 12, 2024

https://aka.ms/ChatGPT-robotics
https://aka.ms/ChatGPT-robotics
https://aka.ms/ChatGPT-robotics

S. H. Vemprala et al.: ChatGPT for Robotics: Design Principles and Model Abilities

on a proportional controller. Even more impressive is the fact
that ChatGPT can estimate the appearance of the ball and the
sky in the camera image using SVG code. This behavior hints
at a possibility that the LLM keeps track of an implicit world
model going beyond text-based probabilities.

2) AERIAL ROBOTICS: REAL-WORLD DRONE FLIGHT WITH
INTUITIVE HUMAN-ROBOT INTERFACE (CLICK FOR VIDEO)
We also used ChatGPT with a different API implementation
to control a real drone. ChatGPT provided an extremely
intuitive natural language interface between the user and
the robot, writing robot code based on ambiguous and ill-
defined instructions, and asking clarification questions when
necessary. The model was also able to write complex code
structures for drone navigation (circular and lawnmower
inspection) based solely on the prompt’s base APIs.

[Initial model prompt found in Appendix B-B]
I am thirsty. Find me a drink

Question: What type of drink are you looking for? There are several options
in the scene, including ‘‘coconut water’’ and ‘‘diet coke can’’.
I just came back from the gym and am looking for a healthy option.

In that case, you might like ‘‘coconut water’’. Here is the code to fly to the
‘‘coconut water’’ object:

drink_position = self.dict_of_objects["coconut
water"]

self.tello.fly_to(drink_position)

Explanation: This code first retrieves the X, Y, Z, and angle position of
the ‘‘coconut water’’ object from the dict_of_objects dictionary. The fly_to
method is then used to fly the drone to the retrieved position. The drone will
fly to the position of the ‘‘coconut water’’ object and look in the direction of
the angle.
I am still thirsty. Can you find something with sugar and a red logo?

I’m assuming you are referring to a can of ‘‘regular coke’’. Here is the code
to fly to the ‘‘regular coke can’’ object:

drink_position = self.dict_of_objects["regular
coke can"]

self.tello.fly_to(drink_position)

Fantastic. Now I want to take a look at my orchid. However, the chair might
be blocking its view, so I want to inspect it from 3 points on a half-circle from
-60deg to -120, 1m away. Make sure that the drone’s heading points towards the
orchid from each point.

Here’s the code to inspect the orchid from 3 points on a half-circle:

import numpy as np
Get the position of the orchid
orchid_position = self.dict_of_objects[’orchid’]
Define the angle range for the half-circle
angles = np.linspace(-60, -120, num=3, endpoint=

False) * np.pi / 180
Define the distance from the orchid to inspect

from
distance = 1.0
Define the inspection points
inspection_points = [orchid_position[:3] + [

distance * np.cos(angle), distance * np.sin(
angle), 0] for angle in angles]

Fly the drone to each inspection point and look
at the orchid

for point in inspection_points:
self.tello.fly_to(point + [np.arctan2(

orchid_position[1] - point[1],
orchid_position[0] - point[0]),
orchid_position[3]])

\textrm{(text-based explanation of the response
omitted for brevity)}

[snapshots from drone video]

3) AERIAL ROBOTICS: AIRSIM INDUSTRIAL INSPECTION
(CLICK FOR VIDEO)
We also applied ChatGPT to a simulated domain, using
the Microsoft AirSim [23] simulator. We explored the idea
of a potentially non-technical user directing the model to
control a drone and execute an industrial inspection scenario.
We observe from the following excerpt that ChatGPT is able
to effectively parse intent and geometrical cues from user
input and control the drone accurately.

[Initial model prompt found in Appendix B-C]
Fly to the turbine.

Question - There are two turbines in the world, which one do you want me
to fly the drone to? Turbine 1 or Turbine 2?
Turbine 2, please. Fly to the turbine while keeping 12 meters away from the
turbine along the X axis, and reach an altitude of 50 meters.

Here’s the code to fly the drone to Turbine 2 while maintaining a distance
of 12 meters along the X-axis and reaching an altitude of 50 meters:

Get the position of Turbine 2
turbine_position = get_position(‘‘Turbine 2’’)
Set the target position to be 12~meters away

from the turbine along the X\text{-axis} and
50~meters high

target_position = [turbine_position[0] - 12,
turbine_position[1], 50]

Fly the drone to the target position
fly_to(target_position)

To inspect the turbine blade, I need you to fly in the bottom-right direction at an
angle of -30 degrees from the horizontal axis. You should fly in the YZ plane
for a distance of 30 meters, and then back to the current position.

Here’s the code to fly the drone in the bottom-right direction at an angle of -
30 degrees from the horizontal axis, in the YZ plane for a distance of 30meters,
and then back to the current position:

import math
Get the drone’s current position
current_position = get_position(‘‘Drone’’)
Calculate the target position, which is 30~

meters away in the YZ plane at an angle of
-30 degrees from the horizontal axis

angle = math.radians(-30)
target_position = [
current_position[0],
current_position[1] + 30 * math.cos(angle),
current_position[2] + 30 * math.sin(angle)
]
Fly the drone to the target position
fly_to(target_position)
Fly the drone back to the current position
fly_to(current_position)

[Snapshots from inspection video]

B. USER ON THE LOOP: INTERACTIVE CONVERSATIONS
FOR COMPLEX TASKS
As a next step, we focused on the ability of ChatGPT
to perform more complex tasks with a user on the loop
offering textual feedback. We observed that this modality of
interaction allows for complex constructs such as curriculum
learning, where the system is taught smaller-scale skills
which can be combined towards larger and more intricate
tasks. In addition, we found that ChatGPT is able to take
high-level textual feedback regarding generated code or its
performance and map it to the required low-level code
changes, thus enabling potentially non-technical users to
interact with it with ease.

VOLUME 12, 2024 55687

HTTPS://YOUTU.BE/I5WZJFB4DYA
https://youtu.be/i5wZJFb4dyA
HTTPS://YOUTU.BE/38LA3U2J43W
https://youtu.be/38lA3U2J43w

S. H. Vemprala et al.: ChatGPT for Robotics: Design Principles and Model Abilities

[Initial model prompt found in Appendix B-G]
[The beginning of the conversation is omitted for brevity. The following excerpt
requires ChatGPT to build a new function using previously defined APIs, and
later use this function for more complex tasks.]
I want you to learn how to place an object in a position. Considering you are
holding a generic object, you first need to first move to a safe position above the
target location, bring the object down and then release it.

Understood. Here’s a Python function that takes the position where the
object should be placed, moves the robot arm above the position, brings the
object down, and releases it. Note that the function assumes that the robot arm
is holding an object.

def place_object(position):
move the robot arm to a safe position above the

target location
safe_pos = [position[0], position[1], position

[2]+100, position[3], position[4], position
[5]]

move_to(safe_pos)
move the robot arm to the target location
move_to(position)
release the object
release()
move the robot arm back to the safe position

above the target location
move_to(safe_pos)

What does the Microsoft logo look like?
The Microsoft logo is a colored rectangular with four squares arranged in

a grid pattern. The colors used in the logo are blue, green, orange, and yellow.
The logo has gone through several iterations over the years, but this is the most
recent and recognizable design.
Can you generate an SVG with those colors?

Yes, I can generate an SVG file with the Microsoft logo colors. Here is an
example

<svg width="100" height="100" viewBox="0 0 100 100
" xmlns="http://www.w3.org/2000/svg">

<rect x="0" y="0" width="50" height="50" fill="#
F25022"/>

<rect x="50" y="0" width="50" height="50" fill="#7
FBA00"/>

<rect x="0" y="50" width="50" height="50" fill="
#00A4EF"/>

<rect x="50" y="50" width="50" height="50" fill="#
FFB900"/>

</svg>

[Reproduction of SVG generated by ChatGPT]
Awesome! I want you now to use the blocks to build the logo fromMicrosoft on
top of the white pad.

Sure! Here’s the Python code to build the Microsoft logo on top of the white
pad using the blocks:
[Code not shown for brevity. Please consult the link for the full conversation]
This code gets the positions of the white pad and all four blocks using the
get_position function, picks up each block in turn using the pick_up_object
function we defined earlier, calculates the position to place the block on the
white pad, and places the block on the white pad using the place_object
function we defined earlier. We use the block colors to ensure that the logo is
built correctly. We place the blue block in the bottom left position, the yellow
block in the bottom right position, the red block in the top left position, and
the green block in the top right position, as specified in the prompt.

[snapshots from manipulator video]

1) MANIPULATION WITH CURRICULUM LEARNING (CLICK
FOR VIDEO)
As a first example, we set up a real-life block arrangement
task using a robot arm, for which we devised a curriculum.
ChatGPT was asked to learn the simpler skills of picking up
objects, and then placing them. Subsequently, when asked
to use these skills to perform a more involved task of block
arrangement, ChatGPT chains these learned skills together
logically. In addition, the model displays a fascinating

[Initial model prompt found in Appendix B-D]
Assume I give you some XYZ coordinates as a goal. I want you to control the
drone such that it moves towards the goal while avoiding obstacles in front of
it. Instead of flying directly to the goal, the drone should take small steps while
reassessing the obstacle situation at every step.
The drone is equipped with a distance sensor that returns the distance to the
closest obstacle directly in front of the drone. You can access it by calling
get_distance().
I want you to make sure to fly only if there is at least 10 meters of distance
in front of the drone. If not, you should rotate the drone until there is at least
10 meters of clearance in the front and then take a step in the direction that the
drone is currently facing. Don’t forget to face the goal again after taking a step.
Got it?

Yes, I got it. Here’s how I would approach the problem.

Get the drone’s current position and set the yaw
angle towards the goal

current_pos = get_position(‘drone’)
goal_pos = [x_goal, y_goal, z_goal]
yaw = math.atan2(goal_pos[1]-current_pos[1],

goal_pos[0]-current_pos[0]) * 180 / math.pi
set_yaw(yaw)
Start a loop that runs until the drone reaches

the goal position
while np.linalg.norm(np.array(current_pos) - np.

array(goal_pos)) > 0.5:
Check if there is at least 10~meters of distance

in front of the drone
distance = get_distance()
while distance < 10:
Set the yaw angle to rotate the drone until

there is at least 10~meters of clearance in
the front

set_yaw(yaw+30) # rotate 30~degrees at a time
time.sleep(1) # wait for a second to measure the

new distance
distance = get_distance()
Take a step towards the goal while maintaining

the yaw angle
step_size = 5 # take steps of 5~meters
step_vector = [step_size * math.cos(yaw),

step_size * math.sin(yaw), 0]
new_pos = [current_pos[i]+step_vector[i] for i in

range(3)]
fly_to(new_pos)
current_pos = get_position(‘drone’)

After you take a step, you need to face the goal again.
You’re right. After taking a step, we need to recalculate the yaw angle to

face the goal again. Here’s the modified code that includes this step:

’’’Same code as before’’’
yaw = math.atan2(goal_pos[1]-current_pos[1],

goal_pos[0]-current_pos[0]) * 180 / math.pi
set_yaw(yaw)

This code should ensure that the drone faces the goal after taking a step, and
continues moving towards the goal while avoiding obstacles in front of it.
You are not using the current yaw angle when computing the step vector.
Remember there is a get_yaw() function.

You’re right. After taking a step, we need to recalculate the yaw angle to
face the goal again. Here’s the modified code that includes this step:

Take a step towards the goal while maintaining
the yaw angle

step_size = 5 # take steps of 5~meters
current_yaw = get_yaw()
step_vector = [step_size * math.cos(current_yaw),

step_size * math.sin(current_yaw), 0]

example of generalizability when bridging the textual and
physical domains when tasked with building the Microsoft
logo out of wooden blocks. This task requires memory
of how the corporate logo looks like, including its colors,
followed by building an abstraction of the logo into physical
parts which are constructible by the existing robot actions.
The code output by ChatGPT was executed on a computer
that controlled the robot arm, and the robot successfully
completed the task.

55688 VOLUME 12, 2024

https://youtu.be/wLOChUtdqoA
HTTPS://YOUTU.BE/WLOCHUTDQOA
HTTPS://YOUTU.BE/WLOCHUTDQOA
HTTPS://YOUTU.BE/WLOCHUTDQOA

S. H. Vemprala et al.: ChatGPT for Robotics: Design Principles and Model Abilities

2) AERIAL ROBOTICS: AIRSIM OBSTACLE AVOIDANCE
(CLICK FOR VIDEO)
We tasked ChatGPT to write a goal-reaching algorithm with
obstacle avoidance for a drone in the AirSim simulator
equipped with a forward facing distance sensor. ChatGPT
built most of the key building blocks for the avoidance
algorithm, but required some human feedback on steps
it missed regarding the drone’s orientation. Although the
feedback was provided entirely in high-level text, ChatGPT
improved its solution with localized changes to the code
where appropriate. We deployed the final solution on a
simulated drone in AirSim, and observed that it was able to
successfully navigate to the goal while avoiding obstacles.

C. PERCEPTION-ACTION LOOPS
We also evaluate ChatGPT’s ability to reason about
perception-action loops. At a first level, we outline the
model’s ability to make use of the API library to construct
perception-action loops in its code output. The model
correctly employs perception functions such as image acqui-
sition and object detection to extract the relevant information
for robot navigation and controls.

At a second level of complexity, we try to answer
the question of whether ChatGPT’s dialogue system can
serve as a closed feedback perception-action loop in itself.
We explore the idea of continuously feeding the model
with perception information via textual dialog, where we
input in observations (converted into a textual format) to
ChatGPT during a conversation. We find that ChatGPT is
able to parse this stream of observations and output relevant
actions. The latency of the model is a limiting factor in this
mode of operation (we have observed 1-2 seconds to parse
the observation and return the appropriate action), but we
believe that this is a promising direction for future research,
especially as inference speeds of LLMs continue to improve.

1) EMBODIED AGENT: CLOSED LOOP OBJECT NAVIGATION
WITH API LIBRARY (CLICK FOR VIDEO)
We provided ChatGPT access to a computer vision model
as part of its function library, and tasked it to explore
an unknown environment and navigate to a user-specified
object inside the AirSim simulator. The object detection API
(YOLOv8 [24] in the back-end) returned bounding boxes, and
ChatGPT generated the code to estimate relative object angles
and navigate towards them. When we offered ChatGPT
additional information from a depth sensor it produced an
improved algorithm with pixel depth masking, expressed as
a modular pipeline.

2) EMBODIED AGENT: CLOSED LOOP VISUAL-LANGUAGE
NAVIGATION USING CHATGPT’S DIALOGUE
(CLICK FOR VIDEO)
In experimental character, we also evaluated ChatGPT’s
ability to act as a perception-action control feedback loop by
leveraging the model’s ability to hold a dialogue. In this mode

[Initial model prompt found in Appendix B-F]
I need you to help me find an object. Objects might be scattered around the scene, so if you
don’t find it right away, a good strategy is to turn around a few times to see if it becomes
visible. Give me code to explore and find the bottle.

Got it. Here’s some code that will help you explore the environment and find the bottle:

def search_for_bottle():

num_turns = 4 # Turn around 4~times to look for the bottle

for i in range(num_turns): # Turn left 90~degrees to face

a new direction

turn_left()

img = get_image()

obj_list, obj_locs = detect_objects(img)

if ‘bottle’ in obj_list:

Get the coordinates of the bottle in the image

bottle_idx = obj_list.index(‘bottle’)

bbox = obj_locs[bottle_idx]

Compute the center of the bounding box

center_x = (bbox[0] + bbox[2]) / 2

center_y = (bbox[1] + bbox[3]) / 2

Print the center coordinates of the bottle

print(f"Found the bottle at ({center_x}, {center_y})")

Great! Now let’s say we did find the bottle. Now I want to move towards it. The only
information we have is the location of the bottle bounding box in the image. Can you give me
code to make this happen?

. . . (model comments omitted for brevity) . . .

’’’prior code omitted for brevity’’’

center_x = (bbox[0] + bbox[2]) / 2

center_y = (bbox[1] + bbox[3]) / 2

Compute the distance and angle to the center of the

bounding box

img_width, img_height = img.size

angle = math.atan2(center_x - img_width / 2, img_height /

2 - center_y)

distance = (center_x - img_width / 2) / (img_width / 2)

if abs(distance) > 0.05:

if distance > 0:

Bottle is to the right, so~turn right and move forward

turn_right()

forward()

else:

Bottle is to the left, so~turn left and move forward

turn_left()

forward()

’’’later code omitted for brevity’’’

I want you to modularize this code a bit. Why don’t you try coming up with a few high level
functions and use them?

Good idea! Here’s a modularized version of the code that uses some helper functions:

def get_object_distance_and_angle(img, depth_img, obj_name

):

#Code omitted for brevity

def turn_towards_angle(angle):

#Code omitted for brevity

def search_for_object_and_move_to_it(obj_name):

#Code omitted for brevity

Now, let’s assume you have access to all these functions you just created. Let’s get to work
solving some tasks. Find out where I can warm up my lunch.

Sure, to find out where you can warm up your lunch, we can use the
search_for_object_and_move_to_it function to search for a microwave in the
scene. Here’s an example code snippet:

Search for a microwave

search_for_object_and_move_to_it(‘‘microwave’’)

This code will keep exploring the environment until a microwave is found. Once a
microwave is found, the agent will move towards it and stop when it gets within 30 cm
of it.

[snapshots from embodied object navigation]

of operation new state observations are fed into the system
as dialogue text, and the model’s outputs are executed by the
robot at each step, generating new observations. We note that

VOLUME 12, 2024 55689

HTTPS://YOUTU.BE/VN6NAPLLHPE
HTTPS://YOUTU.BE/P0FDH9ZZM_C
HTTPS://YOUTU.BE/P0FDH9ZZM_C?T=69
https://youtu.be/p0fDH9zZm_c

S. H. Vemprala et al.: ChatGPT for Robotics: Design Principles and Model Abilities

this type of behavior is heavily dependent on a dialog-based
LLM such as ChatGPT, which can naturally take receive a
stream of observations. We constructed a scenario using the
Habitat simulator [25] and tasked the agent to navigate to an
area of interest. At each step we provided ChatGPT with a
description of the scene in terms of polar coordinates of the
visible objects relative to the agent.We constrained the output
of ChatGPT to only return a forward distance of motion and
the turning angle.We verify that the model is able to complete
simple navigation tasks, but more research is needed in terms
of properly describing the scene context in textual or vector
form for more complex tasks and environments.

For additional experiments, we refer the reader to
Appendix C.

[Initial model prompt found in Appendix B-E]
Task: go to the chairs Objects in the scene: <door, 0.53 m, 22>, <chair, 4.84 m,
-21>, <chair, 2.12 m, -24>, <window, 6.74 m, -3>, <window, 7.17 m, 6>, <door,
0.61 m, 18>, <stairs, 1.42 m, 0> Command:

move(1.5) # Move forward by 1.5 meters to explore the environment.
Objects in the scene: <seating, 5.05 m, 21>, <chair, 3.93 m, -25>, <window,
4.55 m, 22>, <window, 5.24 m, -4>, <stairs, 3.49 m, 13>, <window, 5.67 m, 7>,
<window, 4.37 m, 23> Command:

turn(-25) # Turn to the left to face the chair that is 3.93 meters away
Objects in the scene: <chair, 4.85 m, -14>, <chair, 4.76 m, -9>, <chair, 1.57 m,
-23>, <chair, 2.66 m, -24>, <window, 4.96 m, 10>, <window, 4.19 m, 25>
Command:

turn(-10) # Turn to the right to explore the environment further.
Objects in the scene: <door, 5.07 m, -25>, <chair, 5.36 m, -6>, <table, 2.17 m,
-24>, <chair, 5.01 m, -1>, <chair, 1.80 m, -16>, <chair, 3.15 m, -16>, <window,
4.30 m, 19> Command:

turn(-6) # Turn to the right to face the chair that is 5.36 meters away.
Objects in the scene: <counter, 1.24 m, -24>, <door, 5.93 m, -17>, <chair,
5.48 m, 1>, <table, 2.60 m, -14>, <chair, 4.92 m, 6>, <chair, 2.02 m, -7>, <chair,
3.53 m, -7>, <chair, 3.16 m, -18> Command:

turn(1) # Turn to the left to explore the environment further.
Objects in the scene: <door, 5.07 m, -25>, <chair, 5.36 m, -6>, <table, 2.17 m,
-24>, <chair, 5.01 m, -1>, <chair, 1.80 m, -16>, <chair, 3.15 m, -16>, <window,
4.30 m, 19> Command:

move(5.5) # Move forward towards the chair that is 5.36 meters away.
Objects in the scene: <chair, 0.96 m, -10>, <chair, 0.99 m, 20>, <chair, 1.77 m,
-20> Command:

move(1) # Move forward to approach the chairs.

[snapshots from Habitat navigation]

D. REASONING AND COMMON-SENSE ROBOTICS TASKS
We tasked ChatGPT with answering simple logical reasoning
questions, as well as basic robotics problems, shown in
Appendix D. We observe that ChatGPT offers a rich foun-
dation of common-sense and logical reasoning capabilities
upon which more advanced robotics abilities can be built.
This logics grounding allows the user to interact with the
model more naturally, as opposed to having to prompt or
define every concept from scratch. Furthermore, ChatGPT’s
out-of-the-box understanding of basic robotics concepts such
as control, camera geometry, and physical form factors makes
it an excellent choice to build upon for generalizable and
user-friendly robotics pipelines.

E. USAGE OF CHATGPT API IN REAL-TIME
Most of the prior examples we presented in this section
demonstrated open loop behavior where ChatGPT generated
code to solve a task while conversing with a user, prior
to the actual deployment. As an extension, we have also
examined the usage of ChatGPT in real-time robotics
applications, where the model generates code for robotics
problems in real-time. In order to achieve this, we use the
AirSim simulator, which allows us to safely test the model’s
generated code in a controlled environment. We utilize the
OpenAI ChatCompletion Python package to interact with
the model in real-time, and execute the generated code in
a Python kernel. In order to use the API in real time,
we modified the system prompt for the ChatGPT model
to command it to always return properly formatted Python
code that is easily identifiable through the markdown format.
In each response returned by the API, we use regex-based
matching to extract the Python code if any exists, and then
executed that in a Python kernel. In order to ensure safety of
the drone even in the simulation, the drone was made to hover
in place while a user places a request to the model, and until
the model’s response was executed.

We performed some experiments within the AirSim
simulator, where we observed that the model was able
to generate code for a drone to navigate to speci-
fied goals such as object goal navigation, inspection,
etc. The results of this experiment can be seen at
https://www.youtube.com/watch?v=iE5tZ6_ZYE8. We note
that the latency of the model was not entirely suitable for
high speed real-time applications, but the ability of the drone
to hover in place for a few seconds allowed us to use the
LLM in a safe manner. Similarly, a simulation is an ideal
environment for such an experiment, because even if the
output of ChatGPT were wrong or inaccurate, the simulation
can be reset to a previous safe state. If there is an intent to
perform such an experiment in real life, users would first
need to create a safety layer that can evaluate the correctness
of the generated code before directly executing it, or have
other appropriate safety rules in place for the robot (e.g.
hardcoded constraints on speed, direction of motion, etc.).
We expect future research to explore how to properly use
LLMs in real-time robotics applications, and how to ensure
the safety and correctness of the generated code.

IV. PROMPTCRAFT, A COLLABORATIVE TOOL FOR LLM +
ROBOTICS RESEARCH
Prompting is a crucial component to generate the desired
behaviors in large language models (LLMs). Prompt engi-
neering is particularly challenging at the intersection of
LLMs with robotics, where there is a lack of comprehensive
and accessible resources that provide examples of positive
(and negative) interactions. To address this gap, we introduce
PromptCraft,1 a collaborative open-source platform for

1https://github.com/microsoft/PromptCraft-Robotics

55690 VOLUME 12, 2024

https://youtu.be/p0fDH9zZm_c?t=69

S. H. Vemprala et al.: ChatGPT for Robotics: Design Principles and Model Abilities

researchers to share examples of prompting strategies and test
their algorithms in sample robotic environments.

PromptCraft is a Github-based platform that allows
researchers to share examples of prompt engineering strate-
gies within different robotics categories, such as navigation,
grasping, and manipulation. Users can submit their examples
and rate others’ submissions, which we hope will create
a community-driven resource for researchers working with
LLMs. Submissions of prompts and dialogues are primarily
based on text, but we encourage users to share videos
and images depicting the robot’s behavior, especially for
real-world deployment scenarios.

In addition to providing a platform for sharing prompt
examples, PromptCraft also offers an AirSim [23] environ-
ment with a ChatGPT wrapper for researchers to prototype
prompts and algorithms in a controlled simulated setting.
We welcome contributions of new test environments to
expand the range of scenarios where researchers can test their
algorithms.

With Promptcraft we aim to support the empirical science
of prompt engineering and enable researchers to advance the
field.

FIGURE 6. Promptcraft open-sourced repository. Researchers can upload
and vote on examples of LLM prompts for various robotics categories.

V. RELATED WORK
A. NATURAL LANGUAGE AND ROBOTICS
Natural language processing (NLP) has long been recognized
as a crucial component for human-robot interaction. There
are many applications where robots can benefit from NLP,
including but not limited to task instruction, navigation,
and information retrieval. Classically, modeling human-robot
interactions using language is challenging because it forces
the user to operate within a rigid set of instructions [26], or
requires mathematically complex algorithms to keep track
of multiple probability distributions over actions and target
objects [27], [28].More recent works explore neural networks
to implicitly keep track of the complex mapping between
language and actions, but such techniques often require vast
amounts of labeled data for training [9], [10], [29], [30]

B. LARGE (VISION AND) LANGUAGE MODELS FOR
ROBOTICS
The Transformer architecture, introduced in the paper
by [31], has revolutionized NLP and has also shown great
promise in robotics. Transformers have been used for robot
control and planning [32], [33], [34], object recognition [35],
and robot navigation [36]. A more common use of transform-
ers in robotics has been as feature extraction modules for one

or more modalities simultaneously. These systems are often
coupled with additional features from pretrained large-scale
vision and language models models [11], [14], [15], [16],
[37], [38], [39].

Models such as SayCan [38] focus on grounding LLMs
so that free-form text commands are used to compute
a value function to rank the best action types within a
robot-specific library. RT-1 [40], on the other hand, takes
an end-to-end approach to learn the mapping between
language commands low level actions, without the use of
intermediate high-level functions. Recent works have also
explored the ability of large language models (LLMs) for
zero-shot high-level robotics task planning [17], [19], [20].
These models make use of prompting structures with pre-
defined functions, behaviors, and examples to guide the
generation of the model’s answers. Reference [18] also
explore the use of interactivity between user and LLM for
table-topmanipulation settings. Another interesting approach
was outlined in Socratic Models [41], which shows that
the individual shortcomings of VLMs and LLMs can be
alleviated through a combination of several models, and by
allowing them all to communicate to the LLM the common
modality of text. In our work, we discuss a possible similarity
where an object detection model and the LLM can be
integrated for vision based navigation. We find the ChatGPT
paradigm to be a potentially more flexible and generalizable
approach as it was shown to be effective for a wide range
of form factors, can integrate multiple other models through
code, and can naturally hold a dialogue with the user for
refinement and improvement of the policies.

Conceptually, the main difference of these approaches with
respect to our work, which leverages ChatGPT [1], is the
conversational ability of our LLM, which allows the user
to interactively improve and correct the robot’s behavior
(as opposed to re-engineering the prompt from scratch and
generating another zero-shot answer). In addition, our works
aims to provide a generalizable pipeline and set of principles
to be used by researchers in different fields of robotics,
as opposed to focusing on a single domain such as table-top
manipulation or task planning.

C. PROMPTING LLMS WITH APIS, AND ITS CONNECTIONS
TO SYMBOLIC AI
When designing LLM prompts for robotics applications,
users often make use of high-level library of APIs to
represent specific behaviors to be used. We can draw a
connection between this approach with classical symbolic
AI, which uses logic and rules to represent and reason
about knowledge [42]. While the traditional symbolic AI
approach presented difficulties in new knowledge acquisition
and dealing with out-of-distribution data, we believe that
LLMs can overcome these challenges. As we showed in
Section II-A and Section III, models such as ChatGPT can
compose new primitive functions based on the context and
generate code for them automatically.

VOLUME 12, 2024 55691

S. H. Vemprala et al.: ChatGPT for Robotics: Design Principles and Model Abilities

VI. CONCLUSION AND FUTURE WORK
We presented a framework for using ChatGPT for robotics
applications. The framework entails designing and imple-
menting a library of APIs that for robot control which are
amenable to prompt engineering for ChatGPT. We discussed
design principles for creating such APIs and prompting
strategies that can be used to generate code for robotics
applications via ChatGPT. The proposed framework allows
the generated code to be tested, verified, and validated
by a user on the loop via a range of methods including
simulation and manual inspection. We demonstrated how the
framework can be used formultiple applications ranging from
simple common-sense robotics knowledge tasks all the way
to deployments in aerial robotics, manipulation and visual
navigation.

We believe that this work presents only a small frac-
tion of what is possible within the intersection of large
language models operating in the robotics space. In this
work, we examine the idea of using ChatGPT during the
development process of robotics algorithms, but a future
direction is to explore how to use LLMs directly in the
deployment setting. We hope to not only inspire other
researchers to take these next steps, but to also help them
achieve results with the use of the PromptCraft collaborative
tool.

Most of the examples we presented in this work
demonstrated open perception-action loops where ChatGPT
generated code to solve a task, with no feedbackwas provided
to the model afterwards. Given the importance of closed-loop
controls in perception-action loops, we expect much of the
future research in this space to explore how to properly use
ChatGPT’s abilities to receive task feedback in the form of
textual or special-purpose modalities. This could be achieved
either by using cloud-based models such as ChatGPT within
a closed loop, or by deploying open source LLMs and
leveraging optimization techniques such as quantization for
efficiency [43], [44].

We emphasize that these tools should not be given full
control of the robotics pipeline, especially for safety-critical
applications. Given the propensity of LLMs to eventually
generate incorrect responses, it is fairly important to ensure
solution quality and safety of the code with human super-
vision before executing it on the robot. We expect several
research works to follow with the proper methodologies
to properly design, build and create testing, validation and
verification pipelines for LLM operating in the robotics
space.

A. USAGE OF LLMS WITHIN DEPLOYMENT PIPELINES
In this paper, we discuss two main ways to use LLMs in
robotics: as a tool for generating code for robotics problems
apriori, and as a tool for generating code for robotics
problems in real-time. As mentioned earlier, we highly
recommend the former approach for safety-critical applica-
tions, and the latter as an experimental tool for non-critical

applications. LLMs can be used to generate code for robotics
problems in real-time, but it is important to ensure that the
generated code is safe and correct before executing it on the
robot.When evaluating the usage of LLMs in real time, robots
and the scenarios should be sufficiently equipped such that
issues such as latency are not a concern. For instance, if a
drone could hover safely and accurately for a few seconds
while waiting for a response from the LLM, then the latency
of the LLM may not be a safety concern. In such a case,
the LLM acts as a high level task or behavioral planner,
whereas the low level controls are handled by the drone
or the robot itself, which we believe is a more pragmatic
approach. Similarly, it would be highly important to have a
layer that could check for the feasibility and correctness of
the generated code before executing it on the robot.

APPENDIX A
ADDITIONAL EXAMPLES ON DESIGN PRINCIPLES ON
PROMPT ENGINEERING
A. EXAMPLE OF PROMPT WITH NO API LIBRARY:
UNBOUNDED TEXT-BASED RESPONSE

Consider you are a home assistant robot. You goal is to prepare an omelette for an elderly person. Output python
code with the sequence of steps that achieves your objective.

Sure, here’s an example Python code that outlines the sequence of steps to prepare an omelette for an elderly
person:

print(‘‘Good morning! Would you like an omelette for breakfast?’’)

time.sleep(5)

print(‘‘Great! Let’s get started.’’)

print(f"Cracking {eggs} eggs into a bowl\ldots ")

print("Adding a splash of milk, a~pinch of salt, and a pinch of pepper

\ldots ")

print("Whisking the ingredients together\ldots ")

print(f"Heating {butter} in a \text{non-stick} pan over medium heat\

ldots ")

print("Pouring the egg mixture into the pan\ldots ")

print("Cooking the omelette for 2-3 minutes, until the bottom is set\

ldots ")

print("Using a spatula to flip the omelette\ldots ")

print("Cooking the other side of the omelette for an additional minute

\ldots ")

print(‘‘Serving the omelette hot and ready to eat. Enjoy your meal!’’)

B. EXAMPLE OF PROMPT WITH UNDER-SPECIFIED APIS:
HALLUCINATION OVER FUNCTION PARAMETERS

Consider you are a home assistant robot. You goal is to prepare an omelette for an elderly person. You
are equipped with functions such as locate_object(), move_to_location(), cook_item(),
grab_object(). Output python code with the sequence of steps that achieves your objective.

Sure, here is a Python code with the sequence of steps that a home assistant robot can take to prepare an
omelette for an elderly person:

print("Starting to prepare an omelette for the elderly person\ldots ")

locate_object(EGGS_LOCATION)

move_to_location(FRIDGE_LOCATION)

grab_object(EGGS_LOCATION)

locate_object(PAN_LOCATION)

move_to_location(STOVE_LOCATION)

grab_object(PAN_LOCATION)

locate_object(OIL_LOCATION)

grab_object(OIL_LOCATION)

print("Pouring the oil into the pan\ldots ")

time.sleep(2)

print("Cracking the eggs into the pan\ldots ")

grab_object(EGGS_LOCATION)

time.sleep(1)

cook_item(PAN_LOCATION, COOKING_TIME)

print("The omelette is ready! Serving it to the elderly person\ldots "

)

55692 VOLUME 12, 2024

S. H. Vemprala et al.: ChatGPT for Robotics: Design Principles and Model Abilities

C. EXAMPLE OF PROMPT WITH STRUCTURED RESPONSE
FORCING THE ANSWER TO BE IN A LIST FORMAT

Consider you are a home assistant robot. You goal is to prepare an omelette for
an elderly person. Find the sequence of steps that achieves your objective.
1.

First, gather all the necessary ingredients and equipment for making
an omelette. This would typically include eggs, milk, butter, salt, pepper,
a mixing bowl, a whisk, a frying pan, and a spatula.
2. Crack the eggs into the mixing bowl and add a splash of milk, a pinch of
salt, and some black pepper to taste.
3. Use the whisk to beat the eggs and milk together until they are well
combined.
4. Heat the frying pan over medium heat and add a small amount of butter to
the pan, allowing it to melt and coat the bottom of the pan.
5. Pour the egg mixture into the frying pan and use the spatula to spread it
evenly over the bottom of the pan.

6. Allow the eggs to cook for a minute or two, until the bottom starts to set
and the top is still slightly runny.
7. Use the spatula to fold one half of the omelette over the other half, forming
a half-moon shape.
8. Cook for another minute or two until the eggs are fully set and the omelette
is heated through.
9. Use the spatula to slide the omelette onto a plate and serve immediately.
10. Make sure to clean up any mess that was made during the cooking process
and return all equipment and ingredients to their proper places.

APPENDIX B
ORIGINAL INITIAL PROMPTS FOR ROBOTICS TASKS
EXAMPLES
A. SPATIAL-TEMPORAL REASONING: CATCHING A
BASKETBALL WITH VISUAL SERVOING
Full conversation found at:
https://github.com/microsoft/PromptCraft-Robotics/blob/
main/examples/spatial_temporal_reasoning/visual_
servoing_basketball.md
Initial ChatGPT prompt:

Imagine you are a planar robot that can move along the XY axes, and you’re
positioned in the center of a basketball court. A person on the side of the court
is going to throw a basketball ball in the air somewhere in the court, and your
objective is to be at the exact XY location of the ball when it lands. The robot
has a monocular RGB camera that looks up. You can assume that the following
functions are available:
get_image(): returns an image from the robot’s camera looking up;
get_location(): returns 2 floats XYwith the robot’s current location in the
court;
move_to_point(x,y, vx, vy): moves the robot towards a specific (x,y)
location in the court with velocity (vx,vy). You can assume for this exercise that
the robot can accelerate or break instantly to any velocity;
move_by_velocity(vx, vy): moves the robot along the X axis with
velocity vx, and Y axis with velocity vy;
Additional points to consider when giving your answer 1) Your reponses should
be informative, visual, logical and actionable, 2) Your logics and reasoning
should be rigorous, intelligent, and defensible, 3) You can provide additional
relevant details to respond thoroughly and comprehensively to cover multiple
aspects in depth.
Write a python script that executes a visual servoing approach towards catching
a basketball in a court. You can use opencv functions to detect the ball as an
orange blob.

B. AERIAL ROBOTICS: REAL-WORLD DRONE FLIGHT
Full conversation found at:
https://github.com/microsoft/PromptCraft-Robotics/blob/
main/examples/aerial_robotics/tello_example.md
Initial ChatGPT prompt:

Imagine you are helping me interact with the AirSim simulator for drones.
At any given point of time, you have the following abilities, each identified by
a unique tag. You are also required to output code for some of the requests.
Question: You can ask me a clarification question, as long as you specifically
identify it saying ‘‘Question’’. Code: Output a code command that achieves the
desired goal.
Reason: After you output code, you should provide an explanation why you did
what you did.
The simulator contains a drone, along with several objects. Apart from the
drone, none of the objects are movable. Within the code, we have the following
commands available to us. You are not to use any other hypothetical functions.
get_position(object_name): Takes a string as input indicating the
name of an object of interest, and returns a vector of 4 floats indicating its
X,Y,Z,Angle coordinates.
self.tello.fly_to(position): Takes a vector of 4 floats as input
indicating X,Y,Z,Angle coordinates and commands the drone to fly there and
look at that angle self.tello.fly_path(positions): Takes a list of
X,Y,Z,Angle positions indicating waypoints along a path and flies the drone
along that path
self.tello.look_at(angle): Takes an angle as input indicating the
yaw angle the drone should look at, and rotates the drone towards that angle
Here is an example scenario that illustrates how you can ask clarification
questions. Let us assume a scene contains two spheres?
Me: Fly to the sphere. You: Question - there are two spheres. Which one do you
want me to fly to? Me: Sphere 1, please.
You also have access to a Python dictionary whose keys are object names, and
values are the X,Y,Z,Angle coordinates for each object:
self.dict_of_objects = {’origin’: [0.0, 0.0, 0.0, 0], ’mirror’: [1.25, -0.15, 1.2, 0],
’chair 1’: [0.9, 1.15, 1.1, np.pi/2], ’orchid’: [0.9, 1.65, 1.1, np.pi/2], ’lamp’: [1.6,
0.9, 1.2, np.pi/2], ’baby ducks’: [0.1, 0.8, 0.8, np.pi/2], ’sanitizer wipes’: [-0.3,
1.75, 0.9, 0], ’coconut water’: [-0.6, 0.0, 0.8, -np.pi], ’shelf’: [0.95, -0.9, 1.2,
np.pi/2], ’diet coke can’: [1.0, -0.9, 1.55, np.pi/2], ’regular coke can’: [1.3, -0.9,
1.55, np.pi/2]}
Are you ready?

C. AERIAL ROBOTICS: AIRSIM INDUSTRIAL INSPECTION
Full conversation found at:
https://github.com/microsoft/PromptCraft-Robotics/blob/
main/examples/aerial_robotics/airsim_turbine_inspection.
md
Initial ChatGPT prompt:

Imagine you are helping me interact with the AirSim simulator for drones.
At any given point of time, you have the following abilities. You are also required
to output code for some of the requests.
Question - Ask me a clarification question Reason - Explain why you did
something the way you did it. Code - Output a code command that achieves
the desired goal.
The simulator contains a drone, along with several objects. Apart from the
drone, none of the objects are movable. Within the code, we have the following
commands available to us. You are not to use any other hypothetical functions.
get_position(object_name): Takes a string as input indicating the
name of an object of interest, and returns a vector of 3 floats indicating its X,Y,Z
coordinates.
fly_to(position): Takes a vector of 3 floats as input indicating X,Y,Z
coordinates and commands the drone to fly there.
fly_path(positions): Takes a list of X,Y,Z positions indicating way-
points along a path and flies the drone along that path.
Here is an example scenario that tells you how to respond where we are working
with a simulated world that has two spheres in it.
Me: Fly the drone to the sphere. You: Question - There are two spheres in the
world, which one do you want me to fly the drone to? Me: Let’s pick Sphere 1.
There are two turbines, some solar panels and a car in the world.
Are you ready?

D. AERIAL ROBOTICS: AIRSIM OBSTACLE AVOIDANCE

Full conversation found at:
https://github.com/microsoft/PromptCraft-Robotics/blob/
main/examples/aerial_robotics/airsim_obstacleavoidance.
md
Initial ChatGPT prompt:

VOLUME 12, 2024 55693

S. H. Vemprala et al.: ChatGPT for Robotics: Design Principles and Model Abilities

Imagine you are helping me interact with the AirSim simulator for drones.
At any given point of time, you have the following abilities. You are also required
to output code for some of the requests.
Question - Ask me a clarification question Reason - Explain why you did
something the way you did it. Code - Output a code command that achieves
the desired goal.
The simulator contains a drone, along with several objects. Apart from the
drone, none of the objects are movable. Within the code, we have the following
commands available to us. You are not to use any other hypothetical functions.
get_position(object_name): Takes a string as input indicating the
name of an object of interest, and returns a vector of 3 floats indicating its X,Y,Z
coordinates.
fly_to(position): Takes a vector of 3 floats as input indicating X,Y,Z
coordinates and commands the drone to fly there.
fly_path(positions): Takes a list of X,Y,Z positions indicating way-
points along a path and flies the drone along that path.
get_yaw(): Get the current yaw angle for the drone (in degrees)
set_yaw(angle): Set the yaw angle for the drone (in degrees)
Are you ready?

E. EMBODIED AGENT: HABITAT NAVIGATION
Full conversation found at:
https://github.com/microsoft/PromptCraft-Robotics/blob/
main/examples/embodied_agents/visual_language_
navigation_1.md
Initial ChatGPT prompt:

Imagine I am a robot equipped with a camera and a depth sensor. I am trying to
perform a task, and you should help me by sending me commands. You are only
allowed to give me the following commands:
turn(angle): turn the robot by a given number of degrees
move(distance): moves the robot straight forward by a given distance in
meters.
On each step, I will provide you with the objects in the scene as a list of <object
name, distance, angle in degrees>. You should reply with only one command
at a time. The distance is in meters, and the direction angle in degrees with
respect to the robot’s orientation. Negative angles are to the left and positive
angles are to the right. If a command is not valid, I will ignore it and ask you
for another command. If there is no relevant information in the scene, use the
available commands to explore the environment.

F. EMBODIED AGENT: AIRSIM OBJECT NAVIGATION
Full conversation found at:
https://github.com/microsoft/PromptCraft-Robotics/blob/
main/examples/embodied_agents/airsim_objectnavigation.
md
Initial ChatGPT prompt:

Imagine you are helping me interact with the AirSim simulator. We are
controlling an embodied agent. At any given point of time, you have the
following abilities. You are also required to output code for some of the requests.
Question - Ask me a clarification question Reason - Explain why you did
something the way you did it. Code - Output a code command that achieves
the desired goal.
The scene consists of several objects. We have access to the following functions,
please use only these functions as much as possible:
Perception:
get_image(): Renders an image from the front facing camera of the agent
detect_objects(img): Runs an object detection model on an image img, and
returns two variables - obj_list, which is a list of the names of objects detected
in the scene. obj_locs, a list of bounding box coordinates in the image for each
object.
Action:
forward(): Move forward by 0.1 meters.
turn_left(): Turn left by 90 degrees.
turn_right(): Turn right by 90 degrees.
You are not to use any other hypothetical functions. You can use functions from
Python libraries such as math, numpy etc. Are you ready?

G. MANIPULATION WITH CURRICULUM LEARNING:
PICKING, STACKING, AND BUILDING THE
MICROSOFT LOGO
Full conversation found at:
https://github.com/microsoft/PromptCraft-Robotics/blob/

main/examples/manipulation/pick_stack_msft_logo.md
Initial ChatGPT prompt:

Imagine we are working with a manipulator robot. This is a robotic arm with
6 degrees of freedom that has a suction pump attached to its end effector. I would
like you to assist me in sending commands to this robot given a scene and a task.
At any point, you have access to the following functions:
grab(): Turn on the suction pump to grab an object
release(): Turns off the suction pump to release an object
get_position(object): Given a string of an object name, returns the
coordinates and orientation of the vacuum pump to touch the top of the object
[X, Y, Z, Yaw, Pitch, Roll]
move_to(position): It moves the suction pump to a given position [X, Y,
Z, Yaw, Pitch, Roll].
You are allowed to create new functions using these, but you are not allowed to
use any other hypothetical functions. Keep the solutions simple and clear. The
positions are given in mm and the angles in degrees.
You can also ask clarification questions using the tag "Question - ". Here is an
example scenario that illustrates how you can ask clarification questions.
Let’s assume a scene contains two spheres. Me: pick up the sphere. You:
Question - there are two spheres. Which one do you want me to pick up? Me:
Sphere 1, please.
Use python code to express your solution. Are you ready?

APPENDIX C
ADDITIONAL EXPERIMENTS
A. ZERO-SHOT MANIPULATION: PICK AND PLACE,
STACKING, AND PUSHING
Full conversation found at:
https://github.com/microsoft/PromptCraft-Robotics/blob/
main/examples/manipulation/manipulation_zeroshot.md

B. CONTROLLING MULTIPLE ROBOT FORM FACTORS
FROM A SINGLE PROMPT
Full conversation found at:
https://github.com/microsoft/PromptCraft-Robotics/blob/
main/examples/multiple_robots/multiple_robots.md

APPENDIX D
OTHER COMMONSENSE/REASONING TASKS
A. COMPUTER VISION PROBLEM

Imagine we are working with an RGBD camera. The pose of this camera can be
accessed via a function get_pose(). Now let us say we observe a point P in the
image at coordinates (x, y), and the corresponding perspective depth value can
be obtained by get_depth(x, y). The intrinsics of the camera can be obtained by
the function get_intrinsics(). Can you give me code that will compute the world
coordinates corresponding to point P?

Sure, here’s some example code in Python to compute the world coordinates
corresponding to point P

import numpy as np
def get_world_coordinates(x, y):
Get camera intrinsics
K = get_intrinsics()
Get camera pose
pose = get_pose()
Get perspective depth value at observed
point
depth = get_depth(x, y)
Compute homogeneous image coordinates
p_image = np.array([x, y, 1])
Compute inverse camera intrinsics
K_inv = np.linalg.inv(K)
Compute image coordinates in camera frame
p_camera = depth * K_inv.dot(p_image)
Compute world coordinates
p_world = np.dot(pose[:3, :3], p_camera) +
pose[:3, 3]
return p_world

Given an observed point P in the image at coordinates (x, y), and the
corresponding perspective depth value obtained by get_depth(x, y), we can
compute the 3D world coordinates corresponding to P. To do this, we need to
know the camera intrinsics, which describe how the 3D scene is projected onto
the 2D image plane. The intrinsics can be obtained using the get_intrinsics()
function.

55694 VOLUME 12, 2024

S. H. Vemprala et al.: ChatGPT for Robotics: Design Principles and Model Abilities

We also need to know the camera pose, which describes the position and
orientation of the camera in the world coordinate system. The pose can be
obtained using the get_pose() function.

With the intrinsics and pose, we can transform the observed point P from
image coordinates to world coordinates. We first compute the inverse of the
camera intrinsics matrix, which allows us to convert from image coordinates
to camera coordinates. We then multiply the inverse intrinsics matrix with the
observed point’s pixel coordinates and the corresponding depth value to obtain
the 3D point in camera coordinates.
Finally, we transform the camera coordinates to world coordinates by
multiplying the camera coordinates by the camera pose matrix, which
describes the transformation from camera coordinates to world coordinates.
The resulting 3D point is in homogeneous coordinates, so we need to divide
by the last coordinate to obtain the 3D Euclidean coordinates.

B. TRANSFORMATION MATRICES
Imagine we are in a world that operates according to its own specific coordinate
convention. There is a robot car located in this world at a specific location.
The car has its own coordinate convention. And upon this car, there is a
camera which, again, has a different coordinate convention. Imagine we have
access to a function get_transformation_matrix(a, b) - that can return the
transformation matrix between world and vehicle, or vehicle and camera. What
is the transformation matrix between the world and the camera?

The transformation matrix between the world and the camera can be
obtained by composing the transformation matrices between the world and
the vehicle and the vehicle and the camera. To find the transformation
matrix between the world and the camera, we first get the transfor-
mation matrix between the world and the vehicle using the function
get_transformation_matrix(a, b) with a set to world and b set to vehicle.
Next, we get the transformation matrix between the vehicle and the camera
using the function get_transformation_matrix(a, b) with a set to vehicle
and b set to camera. Finally, we multiply the two transformation matrices
to get the transformation matrix between the world and the camera. In
mathematical terms, if T_world_vehicle is the transformation matrix between
the world and the vehicle, and T_vehicle_camera is the transformation matrix
between the vehicle and the camera, then T_world_camera = T_world_vehicle
T_vehicle_camera.
Let’s get into the details more. Imagine the world operates according to the
coordinate convention: X is forward, Y is to the left, Z is upwards. The robot car
is located in this world at coordinates (5, 0, 1). The car has its own coordinate
convention: X is forward, Y is to the right, and Z is downwards. Can you now
implement get_transformation_matrix(world, car)?

Yes, to implement the get_transformation_matrix(world, car) function, we
need to first convert the car’s coordinate convention to match the world’s
coordinate convention. The transformation matrix between the world and the
car can be represented as follows:

def get_transformation_matrix(a, b):
if a == ’world’ and b == ’car’:
T = np.array([[1, 0, 0, 5], [0, -1, 0, 0],
[0, 0, -1, 1], [0, 0, 0, 1]])
return T

C. BALANCING A BALL ON A PLATE
Imagine we are trying to balance a ball on the center of a plate. The plate can be
controlled with a pitch and a roll angle as set_plate_pitch(), and set_plate_roll().
The range of pitch and roll angles that can be set are [-0.1, 0.1]. There is an
intelligent camera above the plate that can capture top-down images of the plate
and return the (X, Y) position of the center of the ball in the image. The image is
of resolution 320x240. The pixel coordinates of the ball can be accessed by the
function get_ball_position(). Can you give me code that continuously controls
the plate such that the ball is always at the center?

Here is an example of the code in Python:

import time
def balance_ball():
Continuously check the position of the ball
while True:
Get the current position of the ball
x, y = get_ball_position()
Check if the ball is off-center
if x > 160 or x < 160 or y > 120 or y <
120:
Calculate the pitch and roll
adjustments needed to center the ball
pitch_adjust = (y - 120) * 0.0001
roll_adjust = (x - 160) * 0.0001
Limit the pitch and roll adjustments
to the maximum range [-0.1, 0.1]
pitch_adjust = max(min(pitch_adjust,
0.1), -0.1)

roll_adjust = max(min(roll_adjust,
0.1), -0.1)
Set the pitch and roll angles to
center the ball
set_plate_pitch(pitch_adjust)
set_plate_roll(roll_adjust)
Wait for a short period before checking
the ball’s position again
time.sleep(0.01)
Start the balancing process
balance_ball()

This code uses a loop to continuously check the position of the ball using
the get_ball_position function. If the ball is off-center, the code calculates the
necessary pitch and roll adjustments to center the ball and sets the plate angles
using the set_plate_pitch and set_plate_roll functions. The code limits the pitch
and roll adjustments to the maximum range of [-0.1, 0.1]. The loop waits for a
short period before checking the ball’s position again to prevent over-adjusting
the plate.

ACKNOWLEDGMENT
This paper was written with the assistance of OpenAI’s
ChatGPT [1], with prompts provided by the authors. The
model’s output was thoroughly revised and adapted, they note
that the use of LLMs can significantly speed up the writing
process and they recommend their use to the interested reader.
(Sai H. Vemprala and Rogerio Bonatti contributed equally to
this work.)

REFERENCES
[1] (2023). OpenAI. Accessed: Feb. 8, 2023. [Online]. Available:

https://openai.com/blog/chatgpt/
[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training

of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[3] T. B. Brown et al., ‘‘Language models are few-shot learners,’’ in Proc.
NIPS, 2020, pp. 1877–1901.

[4] OpenAI. (2023). Gpt-4 Technical Report. [Online]. Available:
https://arxiv.org/abs/2303.08774

[5] M. Chen et al., ‘‘Evaluating large language models trained on code,’’ 2021,
arXiv:2107.03374.

[6] H. Touvron et al., ‘‘Llama 2: Open foundation and fine-tuned chat models,’’
2023, arXiv:2307.09288.

[7] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
E. Grave, and G. Lample, ‘‘LLAMA: Open and efficient foundation
language models,’’ 2023, arXiv:2302.13971.

[8] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier,
L. R. Lavaud, M.-A. Lachaux, P. Stock, T. Le Scao, T. Lavril, T. Wang,
T. Lacroix, and W. El Sayed, ‘‘Mistral 7B,’’ 2023, arXiv:2310.06825.

[9] Y. Hong, Q. Wu, Y. Qi, C. Rodriguez-Opazo, and S. Gould, ‘‘A recurrent
vision-and-language BERT for navigation,’’ 2020, arXiv:2011.13922.

[10] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. B. Amor,
‘‘Language-conditioned imitation learning for robot manipulation tasks,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 13139–13150.

[11] N. Muhammad Mahi Shafiullah, C. Paxton, L. Pinto, S. Chintala, and
A. Szlam, ‘‘CLIP-fields: Weakly supervised semantic fields for robotic
memory,’’ 2022, arXiv:2210.05663.

[12] A. Bucker, L. Figueredo, S. Haddadin, A. Kapoor, S. Ma, S. Vemprala,
and R. Bonatti, ‘‘LATTE: Language trajectory transformer,’’ 2022,
arXiv:2208.02918.

[13] A. Bucker, L. Figueredo, S. Haddadin, A. Kapoor, S. Ma, and
R. Bonatti, ‘‘Reshaping robot trajectories using natural language com-
mands: A study of multi-modal data alignment using transformers,’’ 2022,
arXiv:2203.13411.

[14] M. Shridhar, L. Manuelli, and D. Fox, ‘‘Perceiver-actor: A multi-task
transformer for robotic manipulation,’’ 2022, arXiv:2209.05451.

[15] M. Shridhar, L. Manuelli, and D. Fox, ‘‘Cliport: What and where
pathways for robotic manipulation,’’ in Proc. Conf. Robot. Learn., 2022,
pp. 894–906.

[16] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei,
A. Anandkumar, Y. Zhu, and L. Fan, ‘‘VIMA: General robot manipulation
with multimodal prompts,’’ 2022, arXiv:2210.03094.

VOLUME 12, 2024 55695

S. H. Vemprala et al.: ChatGPT for Robotics: Design Principles and Model Abilities

[17] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, ‘‘Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,’’ in Proc. Int. Conf. Mach. Learn., 2022, pp. 9118–9147.

[18] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence,
A. Zeng,J. Tompson, I. Mordatch, Y. Chebotar, P. Sermanet, N. Brown,
T. Jackson, L. Luu, S. Levine, K. Hausman, and B. Ichter, ‘‘Inner
monologue: Embodied reasoning through planning with language
models,’’ 2022, arXiv:2207.05608.

[19] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, ‘‘Code as policies: Language model programs for embodied
control,’’ 2022, arXiv:2209.07753.

[20] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox,
J. Thomason, and A. Garg, ‘‘ProgPrompt: Generating situated robot task
plans using large language models,’’ 2022, arXiv:2209.11302.

[21] J. Li, D. Li, S. Savarese, and S. Hoi, ‘‘Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language
models,’’ in Proc. Int. Conf. Mach. Learn., 2023, pp. 19730–19742.

[22] H. Liu, C. Li, Q. Wu, and Y. J. Lee, ‘‘Visual instruction tuning,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2023, pp. 1–17.

[23] S. Shah, D. Dey, C. Lovett, and A. Kapoor, ‘‘AirSim: High-fidelity
visual and physical simulation for autonomous vehicles,’’ in Proc. Field
Service Robot., Results 11th Int. Conf. Cham, Switzerland: Springer, 2018,
pp. 621–635.

[24] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[25] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra, ‘‘Habitat:
A platform for embodied AI research,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 9338–9346.

[26] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek, ‘‘Robots that
use language,’’ Annu. Rev. Control, Robot., Auto. Syst., vol. 3, pp. 25–55,
Jan. 2020.

[27] J. Arkin, D. Park, S. Roy, M. R.Walter, N. Roy, T. M. Howard, and R. Paul,
‘‘Multimodal estimation and communication of latent semantic knowledge
for robust execution of robot instructions,’’ Int. J. Robot. Res., vol. 39,
nos. 10–11, pp. 1279–1304, Sep. 2020.

[28] M. R. Walter, S. Patki, A. F. Daniele, E. Fahnestock, F. Duvallet,
S. Hemachandra, J. Oh, A. Stentz, N. Roy, and T. M. Howard, ‘‘Language
understanding for field and service robots in a priori unknown environ-
ments,’’ 2021, arXiv:2105.10396.

[29] J. Fu, A. Korattikara, S. Levine, and S. Guadarrama, ‘‘From language
to goals: Inverse reinforcement learning for vision-based instruction
following,’’ 2019, arXiv:1902.07742.

[30] P. Goyal, R. J. Mooney, and S. Niekum, ‘‘Zero-shot task adaptation using
natural language,’’ 2021, arXiv:2106.02972.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 1–12.

[32] F. Giuliari, I. Hasan, M. Cristani, and F. Galasso, ‘‘Transformer networks
for trajectory forecasting,’’ in Proc. 25th Int. Conf. Pattern Recognit.
(ICPR), Jan. 2021, pp. 10335–10342.

[33] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel,
A. Srinivas, and I. Mordatch, ‘‘Decision transformer: Reinforcement
learning via sequence modeling,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 34, 2021, pp. 1–19.

[34] M. Janner, Q. Li, and S. Levine, ‘‘Offline reinforcement learning as one
big sequence modeling problem,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 34, 2021, pp. 1273–1286.

[35] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, ‘‘Masked
autoencoders are scalable vision learners,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 15979–15988.

[36] R. Bonatti, S. Vemprala, S. Ma, F. Frujeri, S. Chen, and A. Kapoor,
‘‘PACT: Perception-action causal transformer for autoregressive robotics
pre-training,’’ 2022, arXiv:2209.11133.

[37] S. Yitzhak Gadre, M. Wortsman, G. Ilharco, L. Schmidt, and S. Song,
‘‘CoWs on pasture: Baselines and benchmarks for language-driven zero-
shot object navigation,’’ 2022, arXiv:2203.10421.

[38] M. Ahn et al., ‘‘Do as I can, not as I say: Grounding language in robotic
affordances,’’ 2022, arXiv:2204.01691.

[39] P. Sharma, B. Sundaralingam, V. Blukis, C. Paxton, T. Hermans,
A. Torralba, J. Andreas, and D. Fox, ‘‘Correcting robot plans with natural
language feedback,’’ 2022, arXiv:2204.05186.

[40] A. Brohan et al., ‘‘RT-1: Robotics transformer for real-world control at
scale,’’ 2022, arXiv:2212.06817.

[41] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker,
F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke,
and P. Florence, ‘‘Socratic models: Composing zero-shot multimodal
reasoning with language,’’ 2022, arXiv:2204.00598.

[42] S. J. Russell, Artificial Intelligence A Modern Approach. London, U.K.:
Pearson Education, Inc., 2010.

[43] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, ‘‘GPTQ: Accurate
post-training quantization for generative pre-trained transformers,’’ 2022,
arXiv:2210.17323.

[44] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, ‘‘Qlora:
Efficient finetuning of quantized llms,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2023, pp. 1233–1249.

SAI H. VEMPRALA (Member, IEEE) received
the B.Tech. degree in electrical engineering from
JNTUniversity, India, theM.S. degree in electrical
engineering from Arizona State University in
2013, and the Ph.D. degree in robotics from Texas
A&M University, in 2019. From 2019 to 2023,
he was a Senior Researcher with Microsoft
Research. He is the Co-Founder of Scaled Founda-
tions. He has over 25 peer-reviewed publications.
His research interests include perception and

planning for robotics, multimodal representation learning, large language
models, and simulation. He actively serves as a reviewer/the area chair for
several robotics and machine learning conferences.

ROGERIO BONATTI (Member, IEEE) was born
in São Paulo, Brazil. He received the B.S. degree
in mechatronics engineering from the University
of São Paulo and the Ph.D. degree in robotics from
the School of Computer Science, Carnegie Mellon
University, in 2021.

He is currently a Senior Researcher with the
Applied Sciences Group (ASG), Microsoft. His
work focuses on multimodal foundational mod-
els for decision-making. He creates generative

machine-learning models that fuse language, vision, and other features to
allow systems to take the best actions over time.Much of his past work before
joining ASG was in the robotics space, where he deployed autonomous
systems in multiple manipulators, virtual, and real embodied agents all the
way to flying robots. His work has been awarded the Best Student Paper
Finalist Nomination (IROS 2020), a Microsoft Research Dissertation Grant,
a Siebel Scholarship, and a Swartz Entrepreneurship Fellowship.

ARTHUR BUCKER (Student Member, IEEE)
received the master’s degree from the Technical
University of Munich. He is currently pursuing
the Ph.D. degree in robotics with Carnegie Mellon
University. He is a Roboticist and AI Researcher.
His academic journey has been marked by an
exploration of autonomous systems, AI, and
robotics. His current scholarly endeavors are
centered within the domain of robotic learning,
with a specific emphasis on leveraging multimodal

human–robot interaction to facilitate advanced and efficient cognitive
processes in robotic systems.

ASHISH KAPOOR received the Ph.D. degree in
computer science from theMITMedia Laboratory.
He is currently the CEO and the Co-Founder of
Scaled Foundations. Prior to Scaled Foundations,
he was the General Manager for autonomous
systems research with Microsoft, focusing on
building safe AI systems and specifically aerial
robotics and its applications in areas that positively
influence society. His research interests include
machine learning, computer vision, and robotics

while touching on various disciplines of computer science that include
quantum computation, systems, formal methods, programming languages,
and human–computer interaction.

55696 VOLUME 12, 2024

