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ABSTRACT Human Action Recognition (HAR) based on skeleton sequences has attracted much attention
due to the robustness and background insensitivity of skeletal data. The convolutional neural network
(CNN) for spatio-temporal representation learning has been widely utilized for skeleton-based HAR.
However, the long-term spatio-temporal modeling and action category-specific feature attention have not
been fully exploited. In order to explore the current potential of CNNs for skeleton-based HAR, a novel
CNN architecture with temporal-channel attention and convolution fusion is proposed. Specially, the
network architecture is composed of two novel modules, the Temporal-Channels Attention Module (TCA)
and Multiscale Temporal Convolution Fusion module (MTCF). TCA module is designed to generate a
temporal-channel attention matrix for different visual channels and temporal features, motivating the CNN to
focus on the critical category-associated feature representation learning. Along the channels, MTCF module
adapts the grouped residual connections to flexibly extend the convolutional temporal receptive field, without
introducing additional parameters. By reverse stacking, MTCF module creates a bidirectional information
interaction among inter-channels, compensating for the receptive field and information imbalance between
subgroups from different branches. The proposed method was evaluated on three benchmark datasets,
including NTU RGB-D, NTU RGB-D120 and FineGYM. The results show that the proposed TCA-MTCF
method improves the CNNs’ ability to model long-term temporal features of skeleton sequences, achieving
the state-of-the-art performance for HAR.

INDEX TERMS Skeleton-based, action recognition, attention mechanism, convolutional neural network,
multi-scale convolution.

I. INTRODUCTION
Human action recognition, i.e., recognizing and classify
human action categories, is one of the most fundamental and
challenging tasks in computer vision, and has a wide range of
applications in areas such as intelligent surveillance, human-
computer interaction, game control and robotics [10], [23],
[24], [41]. Compared to the action recognition methods based
on the popular modality RGB or gray-scale videos, other
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data modalities such as depth or skeleton-basedmethods have
received increasing attention in recent years [14], [31], [37].
As an abstract representation of motion, the human skeleton
sequences is robust, informative, and has the characteristics
of being light and background immunity, which makes it
possible to design lightweight and hardware-friendly network
models.

Graph Convolutional Networks (GCNs) [18], [37],
[47] have become one of the most popular methods
for skeleton-based action recognition due to their ability
to construct irregular topological information of the

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 64937

https://orcid.org/0000-0001-6291-5212
https://orcid.org/0009-0004-0153-7026
https://orcid.org/0009-0005-7853-3522
https://orcid.org/0009-0005-5704-4885
https://orcid.org/0009-0007-7672-3589
https://orcid.org/0000-0002-2803-8532


C. Liang et al.: Temporal-Channel Attention and Convolution Fusion for Skeleton-Based HAR

FIGURE 1. Skeleton nodes of different body parts contribute differently to the classification of action. Take skeleton action–‘‘punch’’ for
example, marker red is used to emphasize key skeletal joints, and color shade changes in the temporal dimension indicate the
contribution to action recognition.

skeleton. Specifically, the GCN approach has the ability
to topologically model non-Euclidean human skeleton
data, aggregating spatio-temporal topological dynamic
information of the neighbouring skeleton nodes through the
design of adjacency matrices. Among the GCN methods
and their evolving algorithms, spatial temporal GCNs
(ST-GCN) [47] is the classical algorithm for skeleton
action recognition, mainly using spatial graph convolution
and temporal convolution to model spatial and temporal
information. However, on the one hand, GCNs are not easy
to model correlation and dynamic changing information
between distant and unnaturally connected nodes. Moreover,
GCN-based methods are not flexible enough and require
complex neural network structure design to achieve fusion
with other modal information [7], [49].

Compared to GCN-based methods, CNNs have powerful
long-term modelling capabilities and flexible cross-modal
fusion, allowing more effective extraction of spatio-temporal
feature information and easier fusion with other modal
data [7], [25]. Hence, several researchers have started to focus
on using CNN methods to process skeleton data [1], [2], [7],
[20]. Caetano et al. [2] convert skeleton coordinates into a
three-channel pseudo-image and then classify the features
extracted from the image. Li et al. [20] convert the skeleton
sequence directly into a skeleton matrix and extracted
features using a hierarchical aggregated 2D convolutional
network. However, these well-designed methods still do not
preserve the spatio-temporal information of the skeleton data
well and perform slightly worse than GCN methods on
mainstream benchmark datasets.

In order to preserve the spatio-temporal structure of
the skeleton data, a new approach for skeleton-based
action recognition called PoseC3D [7] converts the skeleton
sequence into Euclidean data by 3D CNNs, exploiting the
spatial information of the skeleton data without fully dis-
covering the temporal dynamic of human motions. However,
most 3D CNNs take the RGB video as input and utilize sparse
sampling strategy by 8 to 16 spaced frames [3], [9], [42], [43].

In contrast, most publicly available skeleton-based action
recognition datasets have a large number of input frames and
temporal spans. It is believed that inter-frame interaction and
spatio-temporal feature extraction of long time is crucial for
HAR. How to effectively improve the long-term modeling
capability of CNN models is one motivation for this paper.
Hereby we adopt a multi-scale convolutional fusion strategy,
inspired by [11], extending the spatial sense field of the
2D convolution to the temporal dimension and transforming
it into a 3 × 1 × 1 temporal convolution. Specifically,
we divide the input feature maps into several groups. A group
of temporal convolution kernels first extracts features from
one group of input feature maps. Then output features of
the previous group are sent to the next group of temporal
convolution kernels along with another group of input feature
maps. This process is repeated several times until all input
feature maps are processed.

In addition, it is true that the channel dimension of the
heatmap generated by the PoseC3D [7] method corresponds
to the joints dimension of the skeleton data. Studies have
shown [12], [13] that skeleton nodes of different body
parts contribute differently to the action classification. For
example, as shown in Figure 2, in ‘‘punching’’ action,
the arm skeleton node is much more important to the
classifications result than the other skeleton nodes of the
body. And the contributions of key skeleton frames to
action recognition varies from different moments. However,
the existing CNN-based methods are limited in focusing
on important skeleton joints. Therefore, how to effectively
improve the CNNs model’s ability to mine and model the
features of key frames and important nodes is another
research motivation of this paper.

With the aforementioned two motivations, we propose
a novel CNN architecture, called TCA-MTCF, which con-
sists of Temporal-Channels Attention module (TCA) and
Multiscale Temporal convolution Fusion (MTCF) module.
TCA is a attention enhancement module, which equiva-
lently pays differential attention to each node at different
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temporal stages. Actually, TCA constructs the temporal
and channel attention weight coefficient matrices by end-
to-end learning, and guides the network to focus on the
category-specific feature representation learning. On the
other hand, the proposed MTCF module adopts the temporal
convolution layer approach of stacking two layered residuals
to flexibly extract multi-grain temporal feature information.
The MTCF module utilizes temporal convolution with
diverse receptive field sizes in different group equivalents
through a grouped convolution structure, and then fuses the
information from each group to obtain multi-scale temporal
information, including long time span information important
for skeleton-based action recognition.

The proposed method is evaluated and validated on three
benchmark datasets for skeleton-based HAR, NTU RGB-D
[32], NTU RGB-D 120 [26] and FineGYM [33]. The
results show that the method achieves the state-of-the-art
performance for skeleton-based HAR.

The remainder of this paper is organized as follows.
Section II gives a review of related work, including skeleton
modality, GCN-based HAR and CNN-based HAR methods.
Section III provides the details of our proposed TCA-MTCF
method. In Section IV, we present the experimental setup,
ablation study, attention map visualization, results and
comparisons. In Section V, we conclude our paper.

II. RELATED WORK
A. SKELETON MODALITY
Due to the development of affordable depth sensors, pose
estimation algorithms on RGB videos, vision motion capture
systems and wearable suits with makers, skeleton data or
skeleton sequence could acquired and utilized for HAR
[38], [41]. The human skeleton data encodes the trajec-
tories of human body joints, dynamic action pose and
motion structure evolution, characterizing informative human
motions. Therefore, based on skeleton data modality, HAR
research community has witnessed anemergence of methods
[44].

Generally, the affordable skeleton data estimated from
depth maps or RGB videos has noise and varies with
vision views. In contrast, the costly accurate skeleton data
sensed by motion capture systems or wearable makers is
robust for illumination and viewpoint variations. However,
skeleton data has less information of human appearance and
local detailed texture. In any case, the simple and easily
accessible skeleton data has attractedmuch attention and been
popular for computer vision community, especially for HAR
researchers.

B. GCN METHOD FOR SKELETON-BASED ACTION
RECOGNITION
Skeleton sequences involve with body structure and is
naturally represented by graph models. Therefore, GCN
takes skeleton sequences as input by joint dependency and
structure dynamic learning for skeleton-based HAR [21],

[30], [47]. Generally, GCN accomplishes the extraction of
spatio-temporal information by modeling the topological
relationships of the human skeleton with end-to-end fashion.

ST-GCN [47] is a well-known baseline work, which
combines spatial graph convolution and interleaved temporal
convolution for action spatio-temporal modeling. The spe-
cific GCN is as follows, Xin ∈ Rn×din denotes the input
features of all joints ( number is assumed as n) in a frame,
din is the input feature dimension;Xout ∈ Rn×dout denotes the
GCN output features, dout is the output feature dimension.

Xout =

Ka∑
k

(XinAk )Wk (1)

Ak = Dk
−

1
2 (Ãk + I)Dk

−
1
2 (2)

where Ka is the kernel size in spatial dimension, Ak is the
adjacency matrix representing the human joint connections,
Wk is the trainable weight matrix, and I is the unit matrix.
Dk represents the degree matrix, normalized to the weights
of each skeleton point.

Inspired by ST-GCN, AS-GCN [21] proposed a joint
encoder-decoder structure to capture the potential dependen-
cies contained in action sequences. Shi et al. [37] leveraged
a multibranch architecture to build a two-stream adaptive
graph convolutional network 2s-AGCN, which considers
both joint information and bone information, and represents
the bone information between joint points by calculating
the vector difference of coordinates of adjacent joint points.
Despite the great success of GCN for skeleton-based action
recognition, its robustness and scalability are also limited
since the disadvantages of noisy skeleton information and
sparse modeling. Moreover, for GCN-based methods, fusing
features from the skeleton and other modalities requires
complex designs.

C. CNN METHOD FOR SKELETON-BASED ACTION
RECOGNITION
In addition to the GCN methods, researchers have made
efforts to leverage CNNs as main models for skeleton-based
HAR work [1], [2], [7], [16], [20], [25], [50]. CNNs are
proficient in processing data with spatial regularity such as
images and RGB videos. However, CNNs are helpless to
irregular skeleton sequences so that the skeleton data need
further processing before taking as inputs.

In the 2D CNN-based approaches, the skeleton sequence
is firstly converted into a pseudo image on the basis of
a manually designed transformation. Banerjee et al. [1]
encoded spatio-temporal features of skeleton sequences using
four single-channel greyscale images, including skeleton
distance and angle vectors, in order to classify them using
four 2D CNNs. Zhang et al. [50] proposed VA-RNN and
VA-CNN in order to improve the robustness of skeleton data
in viewpoint change, which can self-adjust the observation
viewpoint to improve the recognition accuracy. While other
work [16], [20] directly converts the skeleton coordinates
into a 2D matrix as a pseudo-image, usually generating a 2D
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FIGURE 2. The proposed network architecture. This CNN architecture has two novel modules: temporal-channel attention (TCA) and multiscale temporal
convolution fusion modules (MTCF).

input of shape K × T, where K is the number of joints and
T is the length of time. Such inputs do not take advantage
of the localization of convolutional networks, resulting in
the inability to preserve the complete spatial structure when
convolution aggregates the information.

Despite careful design, the aforementioned methods
struggle to address the shortcoming of information loss in
processing skeleton data, which results in lower performance
than GCNs on mainstream datasets. In this paper, skeleton
sequences are leveraged to generate 3D heatmap groups
containing spatio-temporal information, which can solve the
aforementioned deficiencies.

However, the current CNN methods for skeleton action
recognition do not take into account the difference in the
spatio-temporal dimension between the heatmap (generated
by the skeleton) and the RGB video. Most of them
directly use existing 3D-CNNs as backbone to process
heat maps, without adapting the model to be more suit-
able for skeleton action recognition tasks. Therefore we
incorporate Temporal-Channel attention mechanisms and
multi-scale convolution to improve the ability of CNN
models to extract features over long time spans. We therefore
incorporate Temporal-Channel attention mechanisms and
multi-scale convolution to improve the CNN model’s ability
to extract long time-span features. This can make CNNs
more adaptable to the challenge of modelling global features
over long temporal distances brought about by skeleton
sequences.

III. PROPOSED METHOD
In this paper, a novel CNN-based network model
with temporal-channels attention and multiscale temporal

FIGURE 3. 3D heatmap generation. (1)Generation of single-channel
heatmaps from individual skeleton coordinates. (2)Generation of a
(C × T × H × W ) 3D heatmap group from the entire skeleton sequence.

convolution fusion modules, is proposed for the task of
skeleton-based action recognition. Generally, due to its
spatial irregularity, transformation of the input skeleton
sequence is required since the skeleton modal data is
struggling to be effectively modeled by general CNN-based
methods.

As shown in Figure 2, the novel network architecture
proposed in this paper consists of three key components:
heatmap transformation by Gaussian mapping and stacking,
early feature extraction by 3D CNN and the proposed TCA
module, and global feature fusion by the proposed MTCF
module. Specially, the method of generating heatmaps is
to transform the skeleton sequences into regular Euclidean
data for CNN models. The TCA module is composed of
channel and temporal attention branches. The MTCF module
is composed of two group 3D convolutional layers for
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FIGURE 4. The proposed Temporal-channels Attention module (TCA). The TCA module consists of two branches, temporal-wise attention and
channel-wise attention branches, each of which includes feature embedding (global covariance matrix and row convolution) and excitation mapping.

multiscale spatial-temporal fusion. Below is the detailed
introduction to the methods proposed in this article.

A. HEATMAP TRANSFORMATION
CNN models is stumblingly directly extract the topological
relationship of the skeleton sequence.To overcome the
shortcoming of CNNs, the method of heatmap mapping
are adopted to transform the skeleton node coordinates
of each frame to a heatmap X of size 56×56 through
Gaussian mapping. Through the heatmap generated by
the skeleton node coordinates, the spatial relationship and
natural structure between the skeleton nodes can be clearly
constructed, and the general CNN network can also extract
spatial features from it. The specific formula is as follows:

Xci,j = e−
(i−xc)2+(j−yc)2

2∗σ2
∗Vc (3)

where σ is used to control the variance of Gaussian mapping,
with i and j representing the pixel positions in the heat map
space, and xc,yc,Vc are the positions and confidence scores
of the c-th joint, respectively. Actually, C is the number of
channels in a single frame representing the total number of
nodes. In different channels of the heatmap coming from
different node mappings, Vc represents the node confidence
score. Eq.3 indicates that the c th node is used as the centre
of the mapping to generate the heatmap of the corresponding
channel. Then the generated heatmaps of each frame along
the time dimension T are stacked to obtain a 3D heatmap
group of shape [C × T × H ×W ].

As shown in Figure 3, takes the 2D pose obtained
by the modern pose estimator as input. The 2D pose is
represented by the heatmap stack of bone joints, rather than
the coordinates operated on the human skeleton map. The 3D
heatmap group is completely preserved as a pseudo video.
The spatio-temporal information of the skeleton sequence
converts the irregular skeleton sequence into Euclidean data
that can be processed by the CNN network, which can be
further sent to the backbone networks for feature extraction
and then actions identification.

B. TEMPORAL-CHANNELS ATTENTION MODULE (TCA)
As shown in Figure 4, the TCA module is proposed to
improve the representation learning of important skeleton
joints. 3D heatmap sets are first fed into 3D convolutional
layers to obtain middle-level features X ∈ RC×T×H×W , and
then fed into the TCAmodule for attention enhancement. The
TCF module proposed comprises of three stages, including
feature embedding, excitation mapping, and attention matrix
generation. The two stages of feature embedding and excita-
tion mapping employ a two-branch structure of the temporal
and channel dimensions, and finally aggregate to generate
the attention weight matrix. In the feature embedding stage,
we derive feature vectors through the summation of features
along the temporal and channel dimensions, covariance pool-
ing, and row-wise convolution, respectively. Then, we pro-
duce the attention weight vector through 1D convolution and
MLP linear mapping using temporal or channel branching.
Subsequently, the weight vectors of the two branches are
multiplied through matrix broadcast and activation function
to obtain the attention matrix.The specific steps are as
follows:

• Step 1: The input feature X ∈ RC×T×H×W is accu-
mulated and summed along the temporal (T dimension)
and the channel (C dimension) respectively. Thus, the
input features X are aggregated into Xc ∈ RC×H×W

and Xt ∈ RT×H×W , then sent to different branches for
processing.

• Step 2: Calculate the cross-channel and cross-temporal
covariance matrices Xcov−c ∈ RC×C and Xcov−c ∈

RT×T for Xc and Xt . Specifically, max pooling or
average pooling only utilizes the first-order information
of the features, whereas global covariance pooling is
done by calculating the covariance matrix (second-order
information) of the feature map to select this value that
is representative of the distribution of the data in the
feature map. Inspired by [25], we use cross-channel and
cross-time covariance pooling. For the channel attention
branch, first transform the features Xc ∈ RC×H×W into
X′
c ∈ RC×N . Then the featuresX′

c are grouped along the
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channel dimension C to get fi ∈ R1×N , (i = 1, 2, .., c).
Xcov−c is defined as follows:

Xcov−c =


cov (f1, f1) cov (f1, f2) · · · cov (f1, fc)
cov (f2, f1) · · · · · · cov (f2, fc)

...
. . .

. . .
...

cov (fc, f1) · · · · · · cov (fc, fc)


(4)

cov
(
fi, fj

)
=

1
N − 1

N∑
k=1

[fi(k) − E (fi)]
[
fj(k)

−E
(
fj
)]

(5)

where E(fi) represents the feature average of the i-th
channel. cov(fi, fj) calculates the covariance between
the features of channels i and j to represent the inter-
channel correlation. The same is true for the cross-time
covariance matrix Xcov−c of the temporal branch. The
process of obtaining Xcov−t from Xt is consistent with
the aforementioned process of Xc to Xcov−c. Therefore,
Xcov−t is defined as follows:

Xcov−t = Covtemporal(reshape(Xt )) (6)

where Covtemporal represents the function of generating
covariance matrix in the temporal dimension, and
reshape(.) operation transforms Xt ∈ RT×H×W to X′

t ∈

RT×N .
• Step 3: The next step is the attention excitation process.
In the channel-wise attention branch, this paper adopts
row-wise convolution, cross-channel 1D convolution
and Relu activation function to map the channel
embedding covariance matrix into a low-dimensional
weight vector. In the temporal attention branch, the work
of this paper adopts the method of row-wise convolution
and 3-layers MLP for embedding mapping, in order to
obtain more accurate prediction of weight coefficients.
Then, we perform matrix multiplication and sigma
activation functions on the two sets of weight coefficient
vectors for the temporal and channel dimensions to
obtain the temporal channel attentionmatrix. Finally, the
temporal channel attention matrix was used to multiply
the elements with the original features for attentional
activation.

XAtten = σ
(
Conv 1D1

(
Conv-rw

(
Xcov−c

))
∗ MLP

(
Conv-rw

(
Xcov−t

)))
⊗ X (7)

where Conv-rw(. ) represents row-wise convolution,
X,XAtten ∈ RC×T×H×W are the input and output of the
module respectively, Conv1D(.) is a 1D convolutional
layer, and σ (.) is an activation function employed to
generate attention weights.

C. MULTI-SCALE TEMPORAL CONVOLUTION FUSION
MODULE (MTCF)
The architecture of proposed MTCF module is shown in
Figure 5. The input feature, obtained by previouslymentioned

TCA module, is divided into four subsets along the channel
dimension [X1,X2,X3,X4], where Xi ∈ RC/4×T×H×W .
This module designs a four-grouped 3D convolutional
structure with two segments. In the first hierarchical residual
convolutional layer, the branch uses a 3D convolution with a
convolution kernel size of 1 to output Y1, and the temporal
receptive field is 1. The grouped features in the X2 branch
are convolved with a kernel size of 3 × 1 × 1 resulted in Y2,
and then fusedwith the 3th group ofX3 branch to continue the
convolution operation with kernel size 3×1×1. This process
is equivalent to deepening the number of convolutional layers
and expanding the size of the receptive field. The 4th group
of X4 branches is the same to X3. The receptive field of the
X4 branch is 7, which means that features modelled over the
time span of 7 frames are obtained.

The detailed multi-scale convolution equivalent process
of Y4 branch features is demonstrated in Figure 6. The
X4 is fused with the previous two groups of features.
This process further deepens the convolution to obtain the
informative features of three distinctive receptive fields
with different temporal scales. This processing enhances
the multi-granularity representation ability and long-term
construction of the convolution model. Yi represents output
subset feature of the i-th branch. Specifically we can obtain
Yi from X according to the following equation:

Yi =

{
Conv 3D (Xi) i = 1, 2
Conv 3D

(
Xi + α1,i−2 · Yi−1

)
i > 2

(8)

where the trainable parameter α1,i−2 is to control the fusion
scale coefficient of other branch.
The receptive fields of the output features of branches 1 to

4 are progressively larger, which leads to an imbalance in
the temporal modelling of the individual grouped channels
(the first branch only interacts with itself). In addition, the
convolutional fusion strategy we used only the latter branch
can fuse the feature information from the former branch
(the last Y4 branch fuses the feature information from X1
to X4), which leads to the lack of bidirectional transfer of
information resulting in an imbalance in the amount of feature
information of each subgroup. Therefore the second segment
of hierarchical residual convolution is added, as shown in
Figure 5. Taking the output feature Y in the first section as
input, we perform hierarchical residual convolution from Y4
to Y1 feature subsets in the reverse order in the first section.
Subsequently, the feature subsets X′

i ∈ RC/4×T×H×W are
concatenated by channel-wise and then residually concate-
nated with the original feature X to obtain the final output
Xout ∈ RC×T×H×W .

X′
i =

{
Conv 3D (Yi) i = 3, 4
Conv 3D

(
Yi + α2,i+2 · X′

i+1
)

i < 2
(9)

Xout = concat(X′

1,X
′

2,X
′

3,X
′

4) + X (10)

It should be noted that compared with the general
3D convolutional layer, our proposed module not only
flexibly improves the temporal receptive field and enhances
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FIGURE 5. Illustration of the porposed Multiscale Temporal convolution Fusion module (MTCF).

FIGURE 6. Illustration of the multiscale convolution equivalent process of
Y4 branch features generation.

cross-channel feature interaction, but also reduces the amount
of parameters to a certain extent. For a convolution with
channel numberC , after dividingN groups along the channel,
the number of channels in each grouped convolution layer is
C/N , and the parameter amount of each grouped convolution
becomes 1/N 2 of the original number. Consequently, the
overall parameter amount of the proposed convolution layer
consisting of n grouped convolutions is reduced to 1/N . As a
result, the MTCF module saves more parametric counts than
the fashionmanner of adding normal 3D convolutional layers.

IV. EXPERIMENTS
A. DATASETS AND IMPLEMENTATION DETAILS
1) DATASETS
The experiments and performance evaluation of the
proposed method is conducted on public datasets includ-
ing NTU RGB-D [32], NTU RGB-D 120 [26] and
FineGYM [33].
NTU RGB-D [32] is a large-scale available human action

recognition datasets. It contains over 56K video samples
of 60 human action classes performed by 40 different

human subjects. Following the authors of this dataset rec-
ommendation, we process this dataset into two benchmarks:
cross-subject(X-sub) and cross-view(X-view). In the cross-
subject setting, sequences of 20 subjects are for training, and
the sequences of the rest 20 subjects are for validation. In the
cross-view setting,skeleton sequences are split by camera
views. Samples from two camera views are used for training,
and the rest are used for evaluation.

NTU RGB-D 120 [26] is an extension of NTU RGB-D
datasets, and it is currently the largest datasets by adding 57k
video samples of 60 action classes, containing 113k samples
of 120 human action classes performed by 106 human
subjects. The authors offered the cross-subject(X-sub) and
cross-setup(X-set) as two benchmark evaluations. In the
cross-subject setting, sequences from 53 subjects are for
training, and sequences from the other 53 subjects are for
testing. In the cross-setup setting, skeleton sequences are split
by setup ID. Samples from even set-up IDs are used for
training, and the odd setup IDs are used for evaluation.

FineGYM [33] is a fine-grained action recognition dataset.
It contains 29K videos of 99 fine motor categories collected
from 300 professional gymnastics competitions. As shown
in Figure 7, the FineGYM dataset is extracted using the
HRNet [40] pose estimation algorithm to obtain 2D skeleton
data and perform heatmap transformation. The FineGYM
dataset differs from existing action recognition datasets in
several ways, including high-quality and action-centric data,
semantically and temporally consistent annotations across
multiple granularities, and diverse and informative rich action
examples.

We choose Mean Top-1 accuracy for FineGYM and Top-1
accuracy for NTU RGB-D and NTU RGB-D 120 datasets.
In order to compare the fairness of the experiments, we used
only skeleton points as a single modal input in all the
experiments and not skeleton bone, velocity as supplements.
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FIGURE 7. Illustration of skeleton joints and corresponding human body
parts. (a) The order of the joint points corresponds to the human body
parts. (b) FineGYM dataset skeleton extraction and heatmap
transformation.

2) IMPLEMENTATION DETAILS
Our proposed method is implemented on Pytorch, using
NVIDIA RTX 3090 GPUs for training and testing, with
the BatchSize of 32. The model is trained for 30 epochs
with the SGD optimizer and the decays using the cosine
annealing optimizer. The initial learning rate is set to 0.15 and
the momentum of the SGD optimizer is set to 0.9. Weight
decay is set to 0.0003. Skeleton joint points are estimated
by HRNet [40] to obtain 2D coordinates, in which 17 joint
points are selected, and the corresponding human body parts
are shown in Figure 7(a).

3) MODEL DESIGN
As shown in Figure 8, we instantiated 3D-CNN using
slow-only as the backbone and inserted three TCA andMTCF
modules. Where the TCA is inserted into Conv1, ResNet
layer2 and ResNet3 of the backbone respectively following
setting the size of the Temporal-Channel Attention Maps
of the TCA as (C=32, T=48), (C=128, T=48), (C=256,
T=24) separately. For the MTCF module, we divide it into
a two-stage, four-group structure, with a 3 × 1 × 1 temporal
convolution for each sub-convolution kernel.

B. ABLATION EXPERIMENT
Table 1 and Table 2 show the performance improvement
brought by the TCA and MTCF modules on FineGYM
dataset. The performance evaluations are tested with different
backbone networks to verify the generalization of the pro-
posed method. We evaluated the mean Top-1 accuracy index
using baselinemodels with Slow-Only [9] and C3D-light [42]
as backbones, to which TCA and MTCF modules are added.

1) TCA MODULE ABLATION EXPERIMENT
As shown in Table 1, compared with the basedline methods,
the mean Top1 recognition accuracy of two different back-
bone networks are improved by 0.5% and 0.9% respectively.
The experimental results validate that TCA is effectiveness.
During heatmap generation, the point dimension of skeleton

TABLE 1. TCA module ablation experiments on FineGYM datasets.

FIGURE 8. TCA-MTCF model design.

sequences corresponds to the heatmap channel-dimension.
And it is generally believed that focusing on the features of
the key skeleton points is necessary for skeleton-based HAR.
Experimental results also demonstrate that temporal-channel
attention can effectively improve recognition accuracy,
corroborating the aforementioned viewpoints.

In order to verify the performance improvement by the
global covariance of TCAmodule, consequent experiments in
which average pooling is utilized directly (instead of global
covariance ) to compress feature information. As shown in
the Table 1, the performance of TCA decreases from 91.8%
to 91.4%, and 93.7% to 93.4% respectively. It shows that
the global covariance matrix (instead of average pooling)
effectively preserves the global statistical information across
channels and temporal dimensions, and better reflects the data
distribution of the input features. Furthermore, the overall
amount of parameters of the proposed method is increased
into 3.55M, which is comparable to the C3D-light baseline
model (3.40M).

2) MTCF MODULE ABLATION EXPERIMENT
Table 2 records the ablation experiments of the MTCF
module. In order to verify that the MTCF performance
improvement is not simply by deepening the number of
network layers, we set up the ‘‘Baseline+1layer’’ experi-
ment. ‘‘Baseline+1layer’’ indicates the experimental results
of adding a layer of 3D convolution(the convolution kernel
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TABLE 2. MTCF module ablation experiments on FineGYM datasets.

is 3 × 3 × 3 and the number of channels is 256) at
the end of the backbone, compared with MTCF. The
experimental results show that mean top1 only changes from
90.9% to 91.1% and from 93.2% to 93.0% at different
backbone(C3D-light and slow-only) respectively. Compared
with ‘‘Baseline+1layer’’, the experiment results demonstrate
that the MTCF module adopts the convolutional fusion
strategy to obtain performance improvement by improving
the long time modelling capability and the inter-channel
feature information interaction.

Also the large number of convolutional kernels in the added
3D convolutional layer leads to a significant increase in the
overall parameter count, boosting more than 1M parameters.
As shown in Table 2, in the case of ‘‘Baseline(+1layer)’’
experiment, the number of parameters with C3D-light and
slow-only as the backbone increases from 3.04M to 5.17M,
and 2.04M to 3.81M, respectively. In contrast MTCF
as a novel 3D convolutional layer, just increases 0.75M
and 0.39M additional parameters, respect to two different
backbones.

In addition, the influence of using convolution kernels of
different sizes (3 × 3 × 3 and 3 × 1 × 1) in the MTCF
module is also evaluated. It is worth noting that MTCF with
3×1×1 convolutional kernel achieves 0.5% and 0.4% higher
performance than MTCF with 3× 3× 3 convolutional kernel
on different backbone, respectively. Moreover MTCF with
3× 1× 1 convolutional kernels has higher fewer parameters
than 3×3×3. The reason is thatMTCFmodule is at the end of
the backbone, and the input data are high-level features with
very small spatial dimensions, so there is no need to expand
the spatial receptive field.

C. ATTENTION MAP VISUALIZATION
As shown in Figures 9 and 10, we selected a sample of the
FineGYM dataset with the category ‘‘Gymnastics’’ for action
recognition, and output a visualization of the attention matrix
of the TCA module. Specifically, as shown in Figure 10,
three TCA modules are inserted in our proposed network.
TCA attention map visualizations (T = 48,C = 32) in
the first feature extraction phase are displayed in Figure 10,
where the color depth indicates the magnitude of the attention
weight coefficients. The darker the color, the more important
this channel or frame is in action. The x-axis represents the
temporal dimension of the features feeding into the TCA
module and the y-axis represents the channel dimension of
the features.

FIGURE 9. FineGYM dataset ‘‘Gymnastics’’ category sample.

FIGURE 10. TCA attention map visualization (T = 48, C = 32) in the FIRST
feature extraction phase.

It can be seen in Figure 10 that the attentionmatrix given by
TCA gives higher response at T = 16− 25 and T = 34− 38
(marked by the red box in Figure 10). Also atChannel = 5−8
and Channel = 17 − 19 (marked by the black box in
Figure 10), the TCA module gives higher attention weight
coefficients. It can be observed that for ‘‘gymnastic’’ action,
the mid-time ‘‘jumps’’ and ‘‘falls’’ are critical phases and
are of interest to the TCA. The ‘‘walking’’ process in the
beginning of the action is almost ignored.

In conclusion, the TCA module outputs the attention
weight matrix with discretization and focusing, which
highlights the important parts of the features extracted by
the enhanced CNN in the temporal and channel dimensions,
reducing the noise interference of the non-correlated features
for HAR.

D. COMPARATIVE ANALYSIS OF EXPERIMENTAL
PERFORMANCE
In this section, we evaluate the performance of the proposed
methods on three benchmark datasets: NTU RGB-D, NTU
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TABLE 3. Performance comparison on NTU RGB-D datasets.

TABLE 4. Performance comparison on NTU RGB-D 120 datasets.

RGB-D 120 and FineGYM. Many state-of-the-art methods
employ multi-stream fusion models [7], namely fusing the
information with skeleton joints and nodes. In order to
make a fair comparison, the evaluation model in this paper
is compared with the state-of-the-art methods obtained by
single-stream models on each datasets, and the results show
that the proposed methods achieve fine performance.

On NTU RGB-D dataset, the results shown in Table 3
demonstrate our model achieves 93.8%, 96.9% on the X-Sub
and X-View settings respectively, which is significantly
3.6%, 7.3%, 9.6%,7.0% better than methods [1], [20], [21],
[48]. Although the performance of the X-View benchmark is
close to saturation, the proposed model still achieves remark-
able performance, achieving an accuracy of 93.8% on the
X-Sub benchmark. Compared with other CNN-based meth-
ods, our proposed method achieves significant enhancement

TABLE 5. Performance comparison on FineGYM datasets.

and effectively improves the applicability of CNN in skeleton
action recognition.

On the challenging NTU RGB-D 120 dataset, our method
also has favorable performance indicators. As shown in
Table 4, we obtain 1.5% improvements for X-Set benchmarks
compared with the state-of-the-arts. Furthermore, as shown
in Table 5, the results evaluated on FineGYM dataset
show that our proposed method achieves the state-of-the-art
performance for skeleton-based HAR with 94.1% accuracy,
which is 1.5% higher than the state-of-the-art GCN-based
methods. It means that when addressing with large motion
deformation and fast displacement transformation, our model
has higher performance than GCN-based methods.

V. CONCLUSION
In skeleton-based HAR, long-term spatiotemporal modeling
and action category-specific feature attention mechanisms
are not fully exploited in CNN. To address the challenges,
a novel CNN network architecture consists attention and
multiscale temporal convolution fusion modules, is proposed
for skelton-based HAR. This novel CNN network, called
TCA-MTCF, composes two new modules, i.e., Temporal-
Channels Attention Module (TCA) and Multiscale Temporal
Convolution fusion Module (MTCF). The performance
evaluations on three benchmark datasets (NTU RGB-D,
NTU RGB-D120 and FineGYM), including ablation study,
attentionmap visualization and the comparisons, demonstrate
that proposed method is effective for skeleton-based HAR
with CNN fashion.
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