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ABSTRACT Anomaly detection research focuses on identifying rare patterns derived from daily
occurrences. This study introduces an innovative anomaly–object control system that utilizes adaptive
policies through anomaly detection algorithms. Effectively blocking anomalous objects in real–world
scenarios poses significant challenges. Therefore, we empirically validate the proposed anomaly object
control methodology using the traffic history associated with malicious cyber–attacks in vulnerable
network environments. We propose an anomaly object control methodology based on DeepSARSA that
utilizes unsupervised anomaly detection deep learning models trained on historical data collected from an
environment in which the anomaly object control system operates. Through this approach, we confirmed
the adaptive policies for optimal anomaly object control. By employing the out–of–distribution detection
and DeepSVDD algorithms as reward functions and comparing the results, we verified the stability of
the proposed anomaly object control system. Our experimental results highlight the practical limitations
of single–class anomaly detection algorithms and propose new research directions for anomaly detection.

INDEX TERMS Anomaly detection, deepSARSA, deepSVDD, network intrusion detection, network
intrusion response, ODIN.

I. INTRODUCTION
Anomaly detection is a critical area of research aimed
at discerning abnormal patterns, including faults, fraud,
diseases, and intrusions. Despite the infrequent occurrence
of abnormal patterns, their impact on regular operation
is substantial. Imbalanced datasets, in which most of the
collected data are normal, pose a significant challenge for
anomaly detection. Various algorithms such as Isolation
Forest [1], one–class support vector machine (OCSVM) [2],
support vector data description (SVDD) [3], autoencoder [4],
[5], and deepSVDD [6] have been employed for anomaly
detection. These algorithms learn common patterns from the
training data, enabling them to identify abnormal patterns
based on deviations from the learned norms.
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Research on anomaly detection has primarily focused
on enhancing the accuracy of the detection algorithms.
This study goes a step further by proposing the practical
application of a learned anomaly detection algorithm to
trigger alerts and as a criterion for real–time anomaly control.
Experiments were conducted in a network communication
environment to assess the feasibility of using the anomaly
detection algorithm as an objective function for anomaly
control systems.

Network communication environments are particularly
susceptible to anomalies, with distributed denial of service
(DDoS) attacks representing a prominent example. Ongoing
research is focused on creating DDoS attack response
systems that utilize reinforcement learning. DDoS attacks
involve the transmission of an overwhelming volume of
abnormal traffic from a botnet to a specific destination,
depleting the computing resources necessary for network
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communication at the targeted destination [7], [8]. DDoS
attacks exhibit significant diversity, contingent upon the
attacker’s design, encompassing variations in the consump-
tion of computing resources and attack scales. DDoS attacks
manifest in various forms, depending on the type of com-
puting resources they deplete, such as UDP, TCP, and ICMP
flooding attacks. However, the scale and methodologies of
these attacks vary significantly depending on the attacker’s
design [9], [10].

In response to DDoS attacks, the objective is to block
abnormal traffic as much as possible during anomalous
situations while maximizing the allowance of legitimate
traffic during typical circumstances. References [11], [12],
[13], [14], [15], [16], and [17] have directed efforts towards
mitigating DDoS attacks by controlling the volume of
traffic packets exceeding the bandwidth entering the network
servers. Reference [18] proposed a reward function based on
temporal changes in legitimate and abnormal traffic volumes.

To effectively mitigate the anomaly of DDoS attacks,
it is imperative to establish patterns that define the nor-
mal network communication states. However, even among
identical IoT devices, the spectrum of normal network
communication patterns can exhibit significant variability,
depending on contextual factors. Moreover, the heterogeneity
of IoT introduces further complexity, potentially leading to
shifts in pre–trained normal patterns. Numerous studies have
addressed this heterogeneity in network environments.

Representative methodologies include the development of
efficient strategies for controlling malicious traffic, which
incorporates feature selection tailored for dynamic environ-
ments and formulates mitigation rules derived from selected
features [19]. Additionally, adaptive approaches are grounded
in multilayer forwarding frameworks, leveraging various
classification models such as support vector machines, naive
Bayes, random forests, k-nearest neighbors, and logistic
regression. Ensemble techniques have also been employed
to bolster the accuracy of DDoS attack detection while
simultaneously reducing false alarm rates [20]. Furthermore,
methods have been developed to detect and respond to DDoS
attacks in IoT environments by integrating Long Short–Term
Memory (LSTM) networks with adaptive labeling and
diagnostic insights [21].

Within the domain of reinforcement–learning–based
DDoS attack control, there exist methodologies such as
distributed DDoS response systems that leverage adaptive
rewards, such as coordinated team learning, to reflect the
inherent structural characteristics of networks [22].

We propose that our research address this problem
from a new perspective, diverging from existing studies.
In practical network environments, the traffic observed on
network devices is directed toward different destinations.
Consequently, controlling traffic at routers based on the total
packet volume directed to a specific server, as employed
in traditional DDoS attack–mitigation methodologies, poses
significant challenges. In addition, when there are changes

in the network structure, retraining the policies of all agents
responsible for traffic control becomes necessary.

Traditional anomaly detection research involves training
algorithms with patterns from normal data and subse-
quently detecting anomalies. However, deviations from
learned normal patterns often result in low accuracy. The
detection of anomalies is aimed at their effective control.
We structured the following organization to demonstrate
the capability of controlling anomalies in real world envi-
ronments using algorithms trained for anomaly detection.
In Section II, we introduce anomaly detection algorithms and
reinforcement learning algorithms for DDoS attack control
systems(i.e., anomaly object control systems). Section III
presents the methodology for anomaly control using data–
based reward functions. Section IV covers the experiments
and results, while Sections V and VI summarize the
conclusions and limitations, and outline future research
directions.

II. RELATED RESEARCH
A. DEEP SVDD
Anomaly detection involves identifying abnormal data by
learning the characteristics of the normal data. One classical
anomaly detection algorithm is SVDD. In SVDD, normal
data in the feature space Fk are trained to lie within a
boundary defined by a center c ∈ Fk and radius R > 0 to
minimize R, where k is the kernel function. In (1), ν is a
regularization parameter and ξ is a slack variable.

min
R,c,ξ

1
νn

∑
i

ξi

s.t. ∥φk (xi)−c∥2Fk ≤ R
2
+ ξi, ξi ≥ 0, ∀i (1)

FIGURE 1. Training process of deep SVDD.

In the case of Deep SVDD [23] (see Fig.1), instead of the
kernel space in SVDD, a deep learning model was employed
to output the representation of the data. Simultaneously,
the goal is to determine the smallest enclosing sphere in
the representation space. The objective function for the
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soft–boundary Deep SVDD is as follows:

min
R,w

R2 +
1
νn

n∑
i=1

max{0, ∥φ(xi;w)− c∥2 + R2}

+
λ

2

L∑
l=1

∥Wl∥
2
F (2)

When expressing the existing data in a new representation
F using the deep learning weights w, the learning process
is conducted by connecting w to minimize the center c and
radius R while encompassing the normal data. The anomaly
score s(x) is defined by. Eq(3).

s(x) =

{
1 if ∥φ(xi;w∗)− c∥2 ≤ R2

−1 if ∥φ(xi;w∗)− c∥2 > R2
(3)

B. ODIN
Out–of–distribution is a subfield of anomaly detection aimed
at methodologies for detecting heterogeneous data from vari-
ous classes of normal distributions. The most popular method
for out–of–distribution detection is the out–of–distribution
detector for neural networks (ODIN) [24]. ODIN can detect
out–of–distribution by adding ‘‘temperature scaling’’ (see
Fig.2) and ‘‘perturbation addition’’ (see Fig.3) processes to a
pre–trained classification model without additional training.
Equation (4) is the formula for the temperature–scaling
process, where Si(x;T ) indicates the softmax score of class
i for input x. Given x, the classification model outputs the
classeswith the highest softmax function values. Temperature
scaling reflects the scaling parameter T in the softmax
function, where T ∈ R+, and reduces the overconfidence of
the model [25].

Si(x;T ) =
e

(
fi(x)
T

)
∑C

c=1 e

(
fc(x)
T

) (4)

FIGURE 2. Process of temperature scaling.

Equation (5) expresses the perturbation calculation pro-
cess, where ϵ indicates perturbation magnitude. The addition
of perturbation increases the softmax score for a given input
by subtracting a small amount of perturbation from the input.
This process strengthens the predictions for in–distribution
samples and helps them be better separated from out–of–
distribution samples [26].

x̃ = x − εsign
(
∇x log Sŷ(x;T )

)
(5)

FIGURE 3. Process of perturbation addition in ODIN.

In (6), given parameters δ, T , and ϵ, if the highest
probability that input x̃ belongs to class i is higher than δ,
it is classified as an in–distribution.

g(x; δ,T , ε) =

{
1 if maxip(x̃;T ) ≤ δ

0 if maxip(x̃;T ) > δ
(6)

C. REINFORCEMENT LEARNING
Reinforcement learning optimizes an agent’s decision–
making based on rewards for repeated interactions in a
dynamic environment. Reinforcement learning consists of
state s, action a, and reward r . First, which refer to the
environment observed by the agent; second, the action
relates to the agent’s movement based on the observed
environment; the reward refers to the evaluation result of the
action performed. Agents must select the appropriate action
to obtain the maximum reward according to the observed
environment. This decision–making is called policy π . Note
that reinforcement learning aims to determine the optimal
policy [27].

If the agent can define all observable environments,
model–based reinforcement learning is used; however,
because the number of observed environments cannot be
described in a real environment, a model–free reinforcement
learning method is used to infer the state. The method of
improving the policy based on the reward obtained in the
final state of the episode reached by the agent is called the
Monte Carlo learning method. By contrast, the method of
improving the policy with the reward of the new state at
each moment of the episode is called the temporal–difference
learning method. The on–policy method is used for cases
in which the behavior policy used for decision–making and
the target policy for improvement during the scenario are
the same. By contrast, the off–policy method is employed
for cases in which the behavior and target policies differ.
When an agent optimizes a policy for selecting actions using
a neural network, this is called deep reinforcement learning
(see Fig.4).

State–action–reward–state–action (SARSA) and
Q–learning are traditional reinforcement learning methods.
Both are model–free reinforcement learning methods that
are based on the temporal difference learning method.
However, unlike Q–learning, SARSA uses on–policy based
reinforcement learning to improve the behavior policy before
performing actions in each state. The update function for
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SARSA is as follows:

Qnew(s, a)← Q(s, a)+ α
[
r + γQ(s′, a′)− Q(s, a)

]
(7)

FIGURE 4. Deep reinforcement learning.

whereQ(s, a) refers to the current Q–value; s, a, and r are the
current state, action, and reward, respectively; s′ and a′ refer
to the next state and action, respectively; α is the learning
rate (0 ≤ α ≤ 1); and γ is the discount factor (0 ≤ γ ≤

1). Deep SARSA is a deep reinforcement learning method
based on SARSA that uses a neural network as a Q–function
approximatorQ(s, a; θ ) [27], [28], [29], [30]. The input of the
neural network is state s, the output is the Q–value of each
action, and θ is a parameter of the neural network. The neural
network was trained to optimize the loss function L as in (8)
for a more accurate Q–value prediction.

Li (θi) = (yi−Q (s, a; θi))2 (8)

At the i–th iteration, yi = r + γQ(s′, a′; θi−1). Similar to the
DQN [31], the agent selects an action using ε–greedy in the
current state.

D. DDoS DETECTION
DDoS attack detection is typically based on anomaly detec-
tion, which uses statistical or machine learning techniques.
Because the amount of network traffic that constitutes a
DDoS attack is large, all traffic accessed simultaneously is
formed into one cluster, and the attack is detected based
on the cluster pattern. Various patterns can be used to
determine whether a cluster is normal or if a DDoS attack
has occurred. The simplest method involves checking the
total number of packets in the cluster. During a DDoS attack,
the total number of packets transmitted to the target server
increases compared with normal times. However, additional
information is required because increasing the number of
packets is not necessarily a pattern that occurs only in DDoS
attacks.

H (X ) = −
n∑
i=1

P(xi) log2 P(xi) (9)

The entropy, expressed in (9), measures the impurity (or
randomness) present in a dataset. X is traffic variable and
has n values. P(xi) is the ratio of xi in the traffic, forming
a cluster that satisfies

∑n
i=1 P(xi) = 1. If the impurity

of the dataset also increases, the entropy value increases.
Network equipment can monitor information, such as the
source IP address, source port number, destination IP address,
destination port number, protocol, and packet type of traffic
passing through the device. The features of a cluster are
the entropy values of piece of information on all traffic
constituting the cluster.

During a DDoS attack, the distribution of traffic features
changes in various directions [32]. For example, when a
DDoS attack occurs, the amount of network traffic connected
to the attack target server increases more than usual; thus,
the entropy for the traffic source IP address during a specific
time period increases. In addition, because DDoS attacks
are aimed at a single target, the entropy value for the
destination IP address of the traffic observed from network
equipment decreases. Therefore, the entropy information of
each variable is the most commonly used cluster pattern for
identifying DDoS attacks [33], [34], [35].

The entropy–based DDoS attack detection method is
simple and advantageous in terms of high sensitivity and low
false positive rate. However, detection using single–attribute
entropy has the disadvantage of a high false positive rate for
forged attacks. Therefore, a DDoS attack detection method
was proposed, that utilizes conditional entropy to accurately
analyze the N–to–1 relationship for each feature, representing
a typical pattern of DDoS attacks [36], [37], [38]. The
conditional entropy of variable Y to variable X can be
defined as

H (Y |X ) = −
n∑
i=1

P(xi)
m∑
j=1

P(yj|xi) log2 P(yj|xi) (10)

where Y is a variable different from X ; yj is the variable value
of Y ; and the number of types is m. Fig.5 shows how the
entropy calculation is used in DDoS attack detection.

FIGURE 5. Entropy–based vector processing for DDoS detection.

III. METHODOLOGY
Fig.6 shows the entire structure of the anomaly object
control system. The methodology is designed to monitor
the comprehensive state of traffic at each point, assess the
anomaly status of the action results using a pre–trained
reward algorithm (anomaly detection algorithm), and then
select the action that returns the optimal normal state
(Anomaly Object Control).
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FIGURE 6. Architecture of anomaly object control system.

A. ANOMALY OBJECT CONTROL
The anomaly object control was constructed based on a
Deep SARSA network. At time t , the state of the observed
incoming traffic instances it at the router is denoted as
st , and the state of the allowed traffic instances pt after
throttling to a specific proportion by the selected action a
is represented as sat . Both st and sat are vectors composed
of entropy–based features for DDoS detection and serve
as inputs to the anomaly detection algorithm. The action
employed in DDoS control research is predominantly based
on utilizing max–min fairness. The anomaly detection model

evaluates whether the input sat is normal (in distribution).
In network traffic environments, the class for normal
(in–distribution) is defined as 1, and the class for anoma-
lies is defined as −1. The reward r is formulated by
multiplying the class value with

∑
pt∑
it

aiming to allow
the maximum amount of traffic to pass through in nor-
mal scenarios, while minimizing the passage of traffic in
abnormal situations. Anomaly detection algorithms for the
reward function in anomaly control systems are constructed
based on historical data, leveraging pre–trained normal
patterns.
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FIGURE 7. Process of multiclass labeling and training ODIN.

B. ANOMALY DETECTION
The anomaly detection algorithm considers the patterns in the
training data to be normal. However, in real–world scenarios,
the observed traffic states at the router can exhibited much
greater diversity than that is captured in the training data.
Consequently, errors may occur when identifying a class as
abnormal, even if it is genuinely normal but differs from
learned patterns. Therefore, ODINwas utilized as an anomaly
detection algorithm to address this issue, and was designed to
classify the possible traffic states in the actual environment
into multiple classes. This approach allows the algorithm
to learn a wide range of normal patterns, accommodating
potential variations in the observed traffic states in real–world
scenarios. As network bandwidth ratio values can define
all conceivable cases of traffic observed at the router, each
momentary sat of observed traffic, categorized as normal,
is trained as in–distribution by the algorithm (see Fig.7).

IV. EXPERIMENTS
A. DATASETS
The experiment was conducted using three distinct datasets.
The first dataset comprises the ‘‘CIC–IDS 2018’’ dataset [39],

encompassing network traffic data generated between Febu-
rary 20, 2018, 00:00:00, and Feburary 20, 2018, 12:59:59.
This dataset includes 7,372,557 instances of legitimate
network traffic originating from 31,281 source IPs and trans-
mitted to 27,076 destination IPs. Additionally, it encompasses
a malicious traffic history consisting of 576,191 instances
initiated from 10 source IPs and directed toward a single
destination IP during the same time frame.

The second dataset, denoted as ‘‘CIC–DDoS 2019’’
[40], is a multi–dataset comprising attack histories such
as DrDoS DNS, DrDoS LDAP, DrDoS MSSQL, DrDoS
NetBIOS, DrDoS NTP, DrDoS SNMP, DrDoS SSDP, and
DrDoS UDP. Four specific attack types were employed for
the experimentation: DrDoS LDAP, DrDoS UDP, DrDoS
MSSQL, and DrDoSNetBIOS. For DrDoS LDAP, the dataset
comprises 6,736 instances of legitimate network traffic and
4,288,040 instances of malicious traffic. The DrDoS UDP
includes 5,291 instances of legitimate network traffic and
6,913,717 instances of malicious traffic. The DrDoSMSSQL
and DrDoS NetBIOS datasets each contain 4,800 instances
of legitimate network traffic and 10,295,484 instances of
malicious traffic, as well as 3,028 instances of legitimate
network traffic and 7,547,857 instances of malicious traffic,
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respectively. In this study, the traffic history from November
03, 2018, was utilized for training and validating anomaly
detection algorithms, while the traffic history fromDecember
11, 2018, was employed to generate reinforcement learning
scenarios.

Finally, real–world data provided by a corporate entity are
employed in this study to confirm applicability of method-
ology. The dataset was collected between January 19, 2022,
00:00:00, and 11:00:00, and comprised 7,764,896 instances
of legitimate traffic originating from 905,585 source IPs and
transmitted to 2,011 destination IPs. Additionally, the dataset
included 17,327 instances of malicious traffic initiated from
6,483 source IPs and directed toward a single destination IP
during the same time frame.

B. ANOMALY DETECTION
The input vector for the anomaly detection algorithm
comprised features aimed at identifying the presence of a
DDoS attack. The classes associated with the input vector
were configured to be 20 and aligned with the action range
of the reinforcement learning model. The input vector is
constructed based on temporal variations, encompassing the
‘‘entropy of source IP address,’’ ‘‘entropy of source port
number,’’ ‘‘entropy of destination IP address,’’ ‘‘entropy of
destination port number,’’ ‘‘entropy of packets,’’ ‘‘conditional
entropy of source IP address given destination IP address,’’
‘‘conditional entropy of source IP address given source port
number’’ and ‘‘conditional entropy of destination IP address
given destination port number.’’ We conducted experiments
by dividing each entropy dataset into training, validation, and
test sets at a ratio of 6:2:2.

TABLE 1. Performance of multiclass–based anomaly detection.

The ODIN algorithm was formulated as a fully connected
neural network comprising three hidden layers with a softmax
function integrated into the output layer. To accommodate
the variation in the number of classes, the training of the
loss function was executed using weighted cross entropy. The
temperature scaling parameter was set to 1,000, perturbation
magnitude to 0.001, and threshold for in–distribution to 0.9.
In [24], the temperature scaling and perturbation magnitude
parameters were selected based on the point where the
True Positive Rate (TPR) reached 95%. We initially naively
set these parameters for the CIC–IDS dataset during the
experimental phase. However, the initial parameter settings
yielded a high TPR and low false positive rate (FPR) for
the test set, as shown in Table 1, obviating the need for
further parameter optimization. Conversely, when dealing
with a real–world dataset, we set the temperature scaling
parameter to 1,000, and conducted a grid search to determine
the perturbation magnitude parameter that resulted in a TPR

of 86.7%,which is the highest of our training set. This process
guided us to set the perturbation magnitude parameter to
0.0014. The datasets for DrDoS DNS, DrDoS LDAP, DrDoS
SNMP, and DrDoS SSDP were not utilized in ODIN training
because of the minimal variability in the observed number of
legitimate traffic instances across different time points.

TABLE 2. Performance of single–class–based anomaly detection.

To assess the performance of the out–of–distribution
detection algorithm as a data–driven reward function of
reinforcement learning, we conducted tests using the Deep
SVDD algorithm, which is a single–class anomaly detection
algorithm. In the Deep SVDD algorithm, the input vectors
were categorized as normal or abnormal. The anomaly
detection performance of the Deep SVDD algorithm is
presented in Table 2.

TABLE 3. Average throttling performance of each reward function in
normal scenarios.

C. ANOMALY OBJECT CONTROL
To evaluate the performance of the reinforcement learning
based anomaly detection algorithm, we conducted compara-
tive experiments using the reward function proposed in [18].
The temporal traffic variation 1T in (11) is calculated
using (12), which represents the change in traffic volume at
each time point. Here, N denotes the volume of legitimate
traffic each time, and M represents the volume of malicious
traffic each time.

r =

{
((1+1Tinit )2 − 1)|1+1Tstep|, 1Tinit > 0,
(−(1−1Tinit )2 − 1)|1−1Tstep|, 1Tinit ≤ 0.

(11)

1Ninit =
Ni − N0

N0
, 1Nstep =

Ni − Ni−1
Ni−1

,

1Minit =
Mi −M0

M0
, 1Mstep =

Mi −Mi−1

Mi−1
. (12)

VOLUME 12, 2024 55287



W. Sakong, W. Kim: Adaptive Policy-Based Anomaly Object Control System

TABLE 4. Average throttling performance of each reward function in DDoS scenarios.

FIGURE 8. Example of control results based on the ODIN reward function in supplementary scenarios.

The reinforcement learning reward function R is defined
by (13), where δ serves as a trade–off parameter between
maximizing the passage of legitimate traffic and throttling
malicious traffic. In this study, δ is set to 0.5.

R = δrM + (1− δ)rN (13)

In the real world, a broader range of patterns is observed
than those encompassed by the training dataset. To verify the
robustness of an algorithm trained on specific data as a reward
function, the scenario data underwent several manipulations.
These manipulations include the following:

1) Scenarios were constructed to represent both normal
situations and instances of DDoS attacks.

2) The initiation of each scenario occurred at a randomly
chosen time point within the entire dataset, and the
length of each scenario was set to 300–time steps.

3) Within each scenario, 10 to 20 destination IP addresses
were randomly selected from all destination IPs
associated with the traffic. Only traffic attempting to

connect to these chosen destination IPs was included
in the scenario.

4) For each scenario selected above, a random proportion
of traffic, ranging from 10% to 20%, is removed from
the total traffic to introduce variability in the dataset.

5) The normal and DDoS attack scenarios were con-
structed in two variations: scenarios where a certain
amount of traffic was maintained from the start to the
end and scenarios where the traffic gradually increased
from the start to the end.

The simulation scenarios were divided into two sets:
100 with only legitimate traffic inflow and 100 with a
combination of legitimate and malicious traffic. Training
iterations were conducted for 10,000 cycles. Tables 3 and 4
list the traffic control outcomes for each reward function in
the legitimate and DDoS attack scenarios, respectively. For
the baseline reward function from [18], in the case of all
legitimate scenarios, the majority of legitimate traffic was
permitted at a 90% rate. In contrast, for Deep SVDD, unlike
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FIGURE 9. Examples of control results based on the DeepSVDD reward function in supplementary scenarios.

scenarios utilizing DNS, LDAP, SNMP, and SSDP, lower
traffic acceptance rates were observed in legitimate scenarios
using the CIC–IDS2018 and the Real–world datasets. This
shows that Deep SVDD, when trained on normal patterns of a
single class, has a limited detection performance for different
normal patterns learned in real–world environments. For the
reward functions utilizing ODIN, the average acceptance
rate for various normal patterns across each scenario was
approximately 90%, demonstrating a control performance
similar to that of related studies. In scenarios involving
anomalies, the baseline reward exhibited exceptionally
high acceptance rates for legitimate and anomalous traffic.
In DDoS scenarios created based on a real–world dataset, the
average acceptance rate for legitimate traffic was the highest
at 85.12%, whereas in DDoS scenarios based on CIC–IDS
2018, the average acceptance rate for legitimate traffic was
the lowest at 61.50%. However, in scenarios based on
CIC–DDoS 2019 SNMP and SSDP, the average acceptance
rate of malicious traffic was higher than that of legitimate
traffic. In all anomalous scenarios, reward functions based
on ODIN exhibited the lowest average acceptance rates for
legitimate and anomalous traffic.

D. SUPPLEMENTARY PERFORMANCES
To verify the stability of the anomaly detection algorithm as
a reward function for reinforcement learning, we conducted
additional experiments based on new scenarios using the
CIC–IDS 2018. The scenarios were designed to gradu-
ally decrease the volume of malicious traffic, eventually
resulting in legitimate traffic observations. In this scenario,

we examined changes in the traffic allowance capacity of the
algorithm.

During DDoS attacks, ODIN and Deep SVDD–based
reward functions maintain meager acceptance rates for
legitimate andmalicious traffic. However, in legitimate traffic
intervals, the ODIN–based reward function exhibited an
increasing trend in the traffic acceptance rates (see Fig.8).
Conversely, theDeep SVDD–based reward function tended to
inaccurately assess the traffic situation as normal, even after
the conclusion of the DDoS attack period (see Fig.9).

V. CONCLUSION
This study aims to evaluate the effectiveness of an anomaly
detection algorithm in real–time changing environments
using both legitimate and malicious network traffic histories.
Anomaly detection algorithms learn normal patterns as a
single class and identify divergent patterns as anomalies.
However, the performance of these algorithms tends to
degrade significantly in real–world settings, where it is
difficult to anticipate every normal situation. This is because
divergent patterns may include actual anomalous patterns and
new normal patterns that are not included in the training of the
algorithm.

The Deep SVDD–based algorithm exhibited high accuracy
in anomaly detection during the training process. However,
in dynamic environments, its performance is significantly
diminished. The acceptance rate for normal traffic was high
in scenarios in which the traffic pattern closely resembled
the learning pattern of the Deep SVDD algorithm. However,
the acceptance rate declined in scenarios with gradually
increasing traffic volumes.
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This study enhanced the ODIN by using it as a data–driven
reward function in reinforcement learning to address this
issue. The algorithm was trained with the control outcomes
for each action as distinct normal classes, increasing its utility
as a reward function. The acceptance rate for legitimate
traffic was consistently lower than that of the baseline
reward function in all tested anomaly scenarios. However, the
acceptance rate for malicious traffic is also low. Furthermore,
in additional experiments, it was observed that the traffic
acceptance rate gradually increased in normal segments,
which had previously remained low during DDoS attack
segments.

In our methodology, calculating the observed traffic into
state vector S involves exploring the data for each k variable
to understand the distribution of variables and counting each
variable’s unique values. Therefore, the computational com-
plexity is O(n log n), and the time complexity is represented
as O(nk), iterating through each variable’s value to measure
entropy for observed traffic counts k . Moreover, both the
time and computational complexities of max–min fairness
scheduling can be expressed as O(n log n).

For theODIN algorithm, which receives state vectors throt-
tled by actions as input, we designed it with a three–hidden
layer fully connected structure, with the activation function
being ‘‘ReLU.’’ With a total of A classes in the distribution
and an input vector length of l, the computational and time
complexities are both represented as O(l × h1 + h1 × h2 +
h2 × h3 + h3 × A), where hi represents the number of nodes
in each hidden layer.

Finally, for DeepSARSA designed with a fully connected
structure with three hidden layers, the computational com-
plexity is O(l × h1 + h1 × h2 + h2 × h3 + h3 × A), and the
time complexity, with a batch size of b, is O(l × h1 + h1 ×
h2 + h2 × h3 + h3 × A+ b).

VI. LIMITATION AND FUTURE WORKS
We introduced a reinforcement learning–based anomaly
detection control system that utilizes ODIN as the reward
function to improve the stability of the control system.
However, some areas require further refinement.

First, the action process used in this study employed
max–min fairness for comparison with existing reinforce-
ment learning–basedDDoS attack control research. However,
max–min fairness allocates bandwidth based on packet size
per traffic, presents practical limitations in blocking mali-
cious traffic in scenarios where DDoS attacks occur because
malicious traffic tends to be smaller than normal traffic.
Additionally, there is the issue of increasing computational
and time complexity when blocking traffic based on traffic
content because of the large amount of traffic monitored at
each time point, making it challenging to control large traffic
volumes promptly.

Second, in network environments, the total traffic sum
defining the reinforcement learning state does not exceed
the bandwidth, allowing for the definition of normal classes
based on the ratio of the traffic control bandwidth. However,

unforeseen situations may arise in real–world environments
that require anomalous control. Therefore, there is a need to
enhance pre–trained anomaly–detection algorithms. During
the execution of the proposed anomaly control system,
anomalies identified by the anomaly detection algorithmmay
include the possibility of new types of normal that were
not pre–trained. In such situations, human administrators’
interventions can only determine the algorithm updates.
We anticipate that the practicality of data–driven anomaly
control methodologies will be enhanced by incorporating
research into continual learning or incremental learning to
continuously update anomaly detection algorithms in future
research.
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