
Received 24 March 2024, accepted 8 April 2024, date of publication 16 April 2024, date of current version 23 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3389551

Formal Verification of Justification and
Finalization in Beacon Chain
HAMRA AFZAAL 1,2, NAZIR AHMAD ZAFAR2, AQSA TEHSEEN1, SHAHEEN KOUSAR 1,
AND MUHAMMAD IMRAN 3, (Member, IEEE)
1Department of Computer Science, Information Technology University, Lahore 54000, Pakistan
2Department of Computer Science, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan
3Center for Smart Analytics, Institute of Innovation, Science and Sustainability, Federation University Australia, Beriwick, VIC 3806, Australia

Corresponding author: Hamra Afzaal (hamraafzaal@hotmail.com)

This work was supported by the Ethereum Foundation under Grant FY22-0695.

ABSTRACT In recent years, Beacon Chain known as the core of Ethereum 2.0, has gained considerable
attention since its launch. Many validators have staked billions of Ether in the Proof of Stake (PoS) network.
It is a mission critical system and its security and stability rely on the justification and finalization of
checkpoints. These are essential elements of the Casper FFG consensus algorithm utilized by the Beacon
Chain. This process is critical for establishing a trustworthy foundation and finalizing proposed blocks by
confirming agreed upon checkpoints. Hence, ensuring the correctness of checkpoints in the Beacon Chain
has significant importance because any bug in it can cause serious implications. To address this challenge,
we employ formal methods, a popular mathematical approach used for verifying the correctness of such
critical systems. In this work, we have done formal verification of the processes of Beacon Chain state
initialization, justification and finalization of checkpoints using the Process Analysis Toolkit (PAT) model
checker. The adoption of model checking through the PATmodel checker presents a novel contribution of our
work, as this approach is not previously utilized in the formal verification of Beacon Chain. The presented
work is specified through the Communicating Sequential Programs, formal specification language, and the
properties are described through Linear Temporal Logic. The PAT model checker takes the specified formal
model and properties as input to assess whether the properties are satisfied. The properties are analyzed with
respect to the verification time, visited states, total transitions, and memory used. Through this research,
we aim to increase confidence in the correctness and reliability of the Beacon Chain.

INDEX TERMS Ethereum 2.0, beacon chain, justification and finalization, model checking, PAT.

I. INTRODUCTION
Blockchain is an emerging technology that has received
the attention from academia and industry due to its several
features, such as transparency, immutability, decentralized
and distributed nature, better security and privacy. It differs
from traditional systems in storing data. In blockchain, the
information is stored in blocks that are linked together
in a chain using cryptographic techniques. Blockchain
technology is considered as secure due to its immutable
nature; once a transaction or record is officially approved
in the chain, it cannot be altered. Because of the impressive
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features of blockchain, it is widely used in various safety and
security systems, including, finance, healthcare, retail, real
estate, supply chain, and Internet of Things (IoT) [1].

It was officially introduced in 2009 by the launch of
its inaugural application, i.e., Bitcoin, that was based on
Proof of Work (PoW) consensus protocol. However, PoW is
quite energy-intensive and require sufficient computational
resources. Nowadays, Ethereum blockchain is becoming
more popular due to its transition from PoW to Proof of
Stake (PoS) consensus protocol and improved scalability.
It includes several other important features, such as smart
contracts and decentralized applications (DApps). The evo-
lution of Ethereum 1.0 (PoW based) to Ethereum 2.0 has
brought forth a new component known as the Beacon Chain.
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Ethereum 2.0 is referred as Eth2 or Serenity, that includes a
PoS consensus mechanism, shard chains, and various other
enhancements. It plays a significant role in resolving the
scalability challenges faced by traditional blockchains and
coordinating validator activities. The primary responsibilities
of Beacon Chain include monitoring information regarding
validators, their staked assets, and attestations called votes.
It implements penalties such as slashing the validators found
to engage in dishonest behavior, resulting in the reduction of
their staked assets.

In Beacon Chain, the concept of Epoch is quite important.
An epoch is a unit of time that is divided into a fixed
number of slots during which various activities are processed,
for example, block proposals, attestations, and justification
and finalization of checkpoints. The duration of an epoch is
determined by the total number of slots it encompasses, and in
Beacon Chain each epoch consists of 32 slots. Each slot has
a designated proposer responsible for creating a block, and
a validators committee who has the opportunity to perform
other consensus related activities, as shown in Figure 1. The
epoch processing function in the Beacon Chain is responsible
formanaging various aspects of the network. The justification
and finalization of checkpoints are integral steps that ensure
the security, efficiency, and stability of the Ethereum network.

A checkpoint is a block positioned at the initial slot
of an epoch. In the cases where such a block is not
present, the checkpoint is set as the most recent preceding
block by default. Each epoch is associated with exactly
one checkpoint block, which may serve as the check-
point for multiple epochs [2]. When a validator casts an
LMD GHOST (Latest Message Driven Greediest Heaviest
Observed SubTree) vote [3], it simultaneously casts a vote
for the checkpoint within its ongoing epoch, known as the
target. This voting action is referred to as a Casper FFG (the
Friendly Finality Gadget) vote [4], encompassing not only the
current checkpoint (target) but also a preceding checkpoint
referred to as the source. At the end of an epoch, if its
checkpoint secures 2/3 attestation votes from the validators,
the checkpoint becomes justified and later finalized. The
concepts of justification and finalization are illustrated in the
Figure 2. A block (B′) can be justified under two conditions:
(i) genesis block is justified, (ii) if B0 is already justified, and
has a supermajority link fromB0 toB′, i.e., the attestations are
equivalent to at least 2/3 of the validators stake. Similarly, the
block B′ achieves finalization if at least the next checkpoint
block, i.e., C′ is justified and all its preceding blocks are also
justified.

As Beacon Chain is the main element of Ethereum
2.0, that controls the network of stakers and their critical
activities, hence its correctness is important for the integrity
of the entire network. Any inaccuracies or vulnerabilities in
its operation could lead to severe consequences, including
financial losses and compromised trust. Formal methods are
important mathematical techniques to ensure the correctness
of such mission-critical systems. Unlike traditional testing
techniques, formal methods employ mathematical evidence

FIGURE 1. A scenario of epoch in the beacon chain.

FIGURE 2. The checkpoint scenario of beacon chain.

to ensure the correctness of safety and security-critical
systems. It plays a crucial role in identifying errors that might
remain unnoticed or unverified otherwise.

Model checking is the most popular formal methods-
based technique that is widely used for formal verification.
One of the notable advantages of model checking is its
ability to provide a systematic and automated way to verify
the correctness of complex systems. When a system fails
to meet a desired property, the model checker generates
a counter-example illustrating the incorrect behavior. This
offers insights to comprehend the specific cause of the
failure and provides important clues for addressing the issue.
In the context of blockchain and Beacon Chain technologies,
it is important to employ the model checking technique to
assure the correctness and security of decentralized systems.
It enables the researchers to systematically analyze and
validate critical aspects, such as consensus algorithms and
cryptographic implementations. It contributes to the overall
robustness and reliability of these technologies.

Because of the importance of formal methods, Ethereum
Foundation has supported various projects related to applying
formal methods to analyze Beacon Chain. For example,
in 2019, a foundational project was undertaken by the
Runtime Verification Inc. that provide a executable and
formal semantics to the reference implementation in the K
framework [5]. The use of K framework for the formal
verification of Beacon Chain encounters challenges due to
its complexity, particularly in modeling Python language
features. The underlying Gasper and Casper FFG proto-
cols [3], [4] were formally specified and verified by the
Runtime Verification Inc. in Coq [6], [7]. Coq is a powerful
formal verification tool but requires substantial learning for
users which demands expertise in dependent type theory and
functional programming paradigms to effectively utilize its
capabilities. A verification friendly programming language,
Dafny, was used to introduce a formally verified model for
the Beacon Chain reference implementation [8]. However,
it faces limitations in terms of scalability when applied
to large-scale systems. It does not offer comprehensive
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TABLE 1. Methodology of the proposed work.

solutions for all verification challenges, necessitating careful
consideration of its applicability to specific projects.

Unlike the previous projects, the originality and innovation
of our project lies in the use of model checking technique for
the formal verification of Beacon Chain that is not employed
in the previous projects of formal verification of Beacon
Chain. It is renowned for its automated nature that offers a
systematic and thorough approach to uncover design errors
effectively ensuring the correctness of complex systems.
Furthermore, it provides several advantages over traditional
verification methods. For example, its automated nature
significantly reduces the likelihood of human error, ensuring
a more robust and reliable verification process. It offers
comprehensive coverage like systematically exploring all
possible system states and transitions to identify potential
issues that might otherwise go unnoticed.

Some preliminarywork on the justification and finalization
processes of Beacon Chain is done using SPIN model
checker [9]. The process of validator’s voluntary exit is
formally analyzed in our prior work using the SPIN model
checker [10]. This work is specifically focused on the formal
specification and verification of the justification and finaliza-
tion of checkpoints in the Beacon Chain. The Communicating
Sequential Programs (CSP#) is used to formally specify the
state initialization, justification, and finalization processes
because it quite expressive to model various systems. The
properties of safe initialization, justification, and finalization
are described using Linear Temporal Logic (LTL). The
Process Analysis Toolkit (PAT)model checker is employed to
formally verify the defined properties against the developed
formal model. The PAT model checker is used because it is a
versatile tool designed formodeling and analyzing distributed
systems.

The methodology that we have adopted in this work
is improved as described in Table 1. Our contribution is
significant because the previous projects on the formal
verification of Beacon Chain [5], [6], [7], [8] do not provide
such a detailed analysis, for example, algorithms, description
of formal model and properties. We have done it critically to
analyze each aspect of the Python reference implementation
of Beacon Chain to ensure its correctness.

The major contributions of this work are listed below.
1) We have described the algorithms for the state

initialization, justification and finalization based on
the provided Python reference implementation of the
Beacon Chain [11].

2) We have employed a formal methods-based spec-
ification language, i.e., Communicating Sequential
Programs (CSP#) to formally specify the state initial-
ization, justification, and finalization processes.

3) Linear Temporal Logic (LTL) is used to define
the properties of safe initialization, justification, and
finalization.

4) The Process Analysis Toolkit (PAT) is utilized for
the verification of the properties against the specified
formal model.

The scientific depth of our work is evident in our
thorough examination of a specific aspect of Beacon Chain
technology. Through the utilization of advanced formal
verification techniques, we ensure a rigorous analysis of
the Beacon Chain processes. The importance of verifying
the correctness of the Beacon Chain due to its critical role
in the Ethereum 2.0 network emphasizes the significance
of our research in enhancing the reliability and security of
the Beacon Chain. The novelty of our work is the use of
model checking technique through the PAT model checker
that is not previously applied for the formal verification
within the Beacon Chain domain. The previous projects
are based on theorem proving technique that has evident
limitations. Hence, it signifies the innovation of our work
from conventional approaches in verifying the Beacon Chain
protocols. The details of our methodology as presented in
Table 1 and findings can be seen in Section III, IV, V, and VI.

The rest of the paper is organized as follows: the back-
ground of blockchain, Ethereum, Beacon Chain and formal
verification is provided in Section II; the literature review is
discussed in Section III; the system model and algorithms
of the state initialization, justification, and finalization are
presented in Section IV; Section V describes the formal
specification of the defined algorithms; the results are
analyzed in Section VI; the paper is concluded in Section VII.

II. BACKGROUND
This section provides the background of blockchain technol-
ogy including its consensus protocols, Ethereum and Beacon
Chain, along with a discussion of formal verification through
model checking approach.

A. BLOCKCHAIN
Blockchain technology is typically linked with cryptocur-
rencies such as Bitcoin and Ethereum. The inception of
blockchain can be traced back to Nakamoto’s Bitcoin white
paper [12], which introduced a novel decentralized cryptocur-
rency. Blockchain serves as a decentralized and distributed
ledger technology designed for secure and transparent
transaction record-keeping across a network of computers.
Generally centralized networks operate under a singular
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FIGURE 3. An example of centralized vs. decentralized network.

authority, while decentralized networks distribute authority
across multiple nodes. The decentralized approach enhances
transparency and reduces the risk of failures by eliminating a
central point of control. The generic illustration of centralized
and decentralized networks is shown in Figure 3. Blockchain
functions as a decentralized network, eliminates the need for
a central authority by distributing a shared ledger across a
network of nodes.When a node wants to initiate a transaction,
it generates a transaction that remains in the transaction pool.
Before adding to the blockchain, it requires approval from the
majority of nodes. Other nodes then retrieve the transaction
from the pool, validates it, and includes it in a block,
which is subsequently broadcast throughout the network.
The participants in the blockchain network are referred to
as miners and are responsible for verifying, organizing, and
sequencing transactions into a block. The interlinked blocks
form a chain, and the decentralized nature of the network
ensures that no single entity has control over the entire
network. It promotes security and trust in digital transactions.

Each block contains the hash of the preceding block,
creating a chronological link that forms a blockchain.
Figure 4 provides an overview of the blockchain structure,
the blocks with their hash, the hash of the previous block,
timestamp, nonce, and transaction records. The utilization of
the hash from the previous block acts as a barrier to prevent
unauthorized modifications to the block and the insertion
of new blocks between existing ones. The decentralized
blockchain consensus mechanisms, such as PoW or PoS,
ensure agreement on the validity of transactions without
centralized control. This architectural design guarantees that
altering the contents of a particular block, such as transactions
within it, would require modifications to the hash values of
subsequent blocks in the chain [13].

FIGURE 4. A generic architecture of blockchain.

B. BLOCKCHAIN-BASED CONSENSUS PROTOCOLS
A consensus mechanism refers to an approach used in
blockchain networks to achieve agreement among nodes on
the validity of transactions and the state of the distributed
ledger. Two of the most used consensus techniques in
the context of blockchain and cryptocurrencies are PoW
and PoS. Achieving a flawless consensus protocol remains
challenging due to the delicate trade-off between consistency,
availability, and security [14]. PoW is the foundational
blockchain protocol that requires a substantial amount of
computational effort from nodes where each node has to be
consistently active. In PoW,miners compete to solve complex
mathematical puzzles. The participant who successfully
solves the puzzle is granted the privilege to append a new
block to the blockchain and is rewarded accordingly. PoWhas
been implemented in many cryptocurrencies such as Bitcoin,
Litecoin, and Ethereum [15].

PoS is an alternative consensus mechanism where valida-
tors create new blocks and validate transactions based on
the amount of cryptocurrency they have and are willing to
stake as collateral. PoS differs from PoW as it selects nodes
to create new blocks based on held stakes rather than com-
putational power. PoS is regarded as more energy-efficient
than PoW, as it doesn’t require a high level computational
power. Similar to PoW, PoS exhibits probabilistic finality.
PoS has been employed in various cryptocurrencies, such
as Nxt [16] and Ouroboros [17]. PPcoin introduced coin
age as a factor in solving PoS puzzles [18]. Ethereum is
strategically shifting from PoW to PoS. This shift is driven
by the pursuit of enhanced scalability and environmental
sustainability [19]. In the Practical Byzantine Fault Tolerance
(PBFT) protocol, all participating nodes engage in a voting
process to append the next block to the existing blockchain.
When the majority of nodes reach an agreement to add a
block to the chain, the selected block is incorporated into
the chain. PBFT considers the majority as 2/3 of the total
participating nodes, enabling it to function properly even in
the presence of up to 1/3 malicious nodes. PBFT achieves
consensus more swiftly and economically compared to PoW,
making it particularly suitable for private blockchains like
Hyperledger projects [20]. However, it is less recommended
for public blockchains due to scalability limitations [21].
A comprehensive survey of blockchain based consensus
protocols is presented in [22] and [23].

C. ETHEREUM
Ethereumwas launched in 2015 by Buterin [24] and stands as
a pioneering blockchain platform to expand the capabilities
of blockchain technology beyond simple transactions [25].
The robustness and security of cryptocurrencies are based
on the implementation of strong consensus algorithms [26].
Ethereum has emerged as a significant evolution, introducing
features that set it apart. Ethereum is established on the
decentralization principles and it differentiates itself from
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Bitcoin by offering programmable and self-executing smart
contracts, fostering a vibrant ecosystem.

The Ethereum 2.0 is introduced to address the scalability
and energy efficiency challenges by transitioning from PoW
to PoS. The Ethereum’s evolution is illustrated in Figure 5.
Ethereum 2.0 unfolds in a phased approach, with each
stage strategically addressing key aspects of the network’s
evolution. Phase 0 is marked as a significant shift with the
launch of the PoS Beacon Chain. The validators contribute
to the network by staking Ethereum cryptocurrency in the
PoS consensus mechanism. Phase 1 introduces the concept
of sharding, by partitioning the Ethereum network into
smaller and independent parts to improve the scalability and
transaction processing capacity. Phase 1.5 is the subsequent
step in Ethereum’s evolution, often known as the merge. This
involves eliminating the PoW mechanism and transitioning
the Ethereum network to rely entirely on PoS for transaction
validation and block creation. The final Phase 2.0 aims
to empower existing shards with the ability to execute
transactions natively, enhancing efficiency and functionality
across the Ethereum network.

FIGURE 5. The evolutionary stages of ethereum.

D. BEACON CHAIN
The Beacon Chain is a key component within the Ethereum
2.0, that is designed to address the scalability, security,
and decentralization issues of Ethereum’s original PoW
consensus. During Ethereum’s shift from PoW to PoS
consensus mechanism, Beacon Chain serves as a separate
blockchain for coordinating and managing the PoS protocol.
Validators can participate in the network by staking a
certain amount of cryptocurrency as collateral. The Beacon
Chain employs a unique consensus mechanism, using the
collective staked assets of validators to secure the network
and reach an agreement on the state of the system. The
validators on the Beacon Chain play a crucial role in
proposing and attesting the blocks contributing to the
decentralization and security of the network. It introduces
the innovative concept of sharding, splitting the Ethereum
network into smaller, more manageable parts called shards.
Each shard independently stores its data and is responsible
for handling transactions independently. Sharding facilitates
parallel transaction processing, optimizing the Ethereum
network’s capacity. Through the implementation of sharding

and PoS, Beacon Chain strives to enhance Ethereum’s overall
scalability, efficiency, and sustainability.

Ethereum’s consensus protocol is a composite of two
distinct consensus protocols, namely LMD GHOST and
Casper FFG [4]. The combination of these two proto-
cols is referred as Gasper [3]. This integration aims to
achieve a balance between liveness and safety. The LMD
GHOST ensures slot-by-slot liveness, sustaining the chain’s
continuous operation, while Casper FFG contributes safety
measures protecting against extended reversions. The Casper
FFG was introduced by Buterin and Griffith as a tool that
defines the concepts of justification and finalization for the
blockchain protocols. The Casper FFG serves as an extension
to the LMD GHOST consensus protocol, adjusting its fork
choice rule. The protocol defines block height, checkpoint
blocks and attestations which are signed messages serving
as votes to move from one checkpoint block to another.
Casper introduces justification and finalization, analogous to
PBFT’s prepare and commits phases [27]. Casper being a
finality gadget rather than a complete protocol, relies on the
assumption that the underlying protocol has its fork-choice
rule. In each epoch, all validators engage in running the fork-
choice rule at some point to produce an attestation.

The LMD GHOST is a fork-choice rule derived from
the Greediest Heaviest Observed SubTree (GHOST) [28].
When working with a tree of blocks and a set of votes,
LMD GHOST determines the optimal block to be considered
as the leading head of the chain. LMD GHOST serves as
a fork choice rule, guiding nodes in selecting the most
promising blockchain among competing branches. It relies
on the latest messages from validators to determine the
preferred chain. The algorithm also incorporates a weighted
branch assignment, assigning weights to branches based on
votes from active validators. It helps the nodes to prioritize
branches with greater support and fosters consensus within
the network. Fostering consensus involves the process of
nodes achieving consensus on the validity of transactions
and the overall state of the network. When more than 50%
of nodes construct blocks on the pattern of the fork choice
rule, the blockchain grows and the probability of reverting
older blocks decreases exponentially. LMD GHOST doesn’t
provide finality, it supports a confirmation rule. This allows
nodes to confirm the most promising chain based on the
consensus of active validators, contributing to a more secure
and reliable blockchain. The underlying concept is that honest
validators construct their blocks on what they perceive as the
best head, aligning their votes accordingly.

The Gasper protocol integrates the concepts of GHOST
and Casper FFG. It introduces epoch boundary pairs repre-
sented as (B, E) serving as checkpoints in a chain where
B denotes a block and E an epoch. Committees are formed
in each epoch, assigning validators to specific slots, where
each validator proposes one block per slot. Then every
committee member will confirm what they observe as the
leading block in the chain (ideally the recently proposed
block) utilizing the fork-choice rule HLMDGHOST (a slight
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modification of LMD GHOST). The protocol employs the
familiar concepts of justification and finalization fromCasper
FFG with the distinction that pairs are justified and finalized
instead of individual checkpoint blocks. Justification is a
process in the consensus protocol where a block is considered
to be accepted or approved by the network. In Casper FFG,
justification occurs when a supermajority (more than 2/3) of
validators attest to the validity of a particular block. This
collective agreement provides a level of confidence in the
correctness of the block. Finalization goes a step further
than justification. In the context of Casper FFG, a block
is considered finalized when it is justified and there is a
subsequent block that is also justified. Finalization implies
a more robust level of agreement indicating that not only the
current block but also its succession has received widespread
approval from the network. Both justification and finalization
are crucial for ensuring the security and integrity of the
blockchain. These processes provide a mechanism for the
network to collectively agree on the validity of blocks which
helps to prevent the risk of malicious activities or long
rollbacks.

E. FORMAL VERIFICATION
This section includes a brief explanation of the formal
modeling and verification techniques. Formal methods are
mathematical techniques for the specification, design, verifi-
cation and analysis of software and hardware systems. These
techniques aim to ensure the reliability and correctness of
critical software systems through the mathematical modeling
of their behavior and properties [29]. These techniques are
distinguished by their precisely defined syntax and semantics.
The application of formal methods is important to model,
verify, and analyze mission-critical systems [30], [31]. Model
checking stands out as a powerful formal methods-based
technique, that systematically explores all possible states of
a system to make sure that the specified properties are met.
It enhances the software design reliability, plays a crucial
role in preventing errors, and ensures correctness from the
early stages of development. It is an automated technique
that is valuable for uncovering design errors and it examines
whether a given formal property holds for a finite state system
model or not [32].

The model checking technique involves three phases:
modeling, running and analysis that are graphically presented
in Figure 6. In the modeling phase, the system is modeled
unambiguously and accurately using the formal specification
language of the model checker. In this work, we have used
CSP# to describe the formal model. LTL is utilized to
formalize the properties because it analyzes the individual
paths. The running phase involves executing the model
checker to validate the specified properties. The PAT model
checker is used in this work. The analysis phase assesses
the satisfaction or violation of the properties. If a violation
occurs, the model checker generates a counter-example that

FIGURE 6. Model checking approach via PAT model checker.

can be analyzed through simulation, leading to the refinement
of the model or properties.

Variousmodel checkers, including PAT [33], NuSMV [34],
SPIN [35], and UPPAAL [36], are used for formal verifica-
tion. In this study, the PAT model checker is used due to its
efficiency in modeling, reasoning and simulating concurrent
systems. CSP# is an enriched formal modeling language that
is used in the PAT model checker. It integrates high-level
modeling operators such as interleaving, parallel/sequential
composition, and interrupts with low-level programming
constructs in C# including arrays, variables, if-then-else
statements, etc. The syntax of CSP# utilized in this context
is defined below:

X1 ::= SKIP(termination)
| e→ X1(event prefixing)
| e{program} → X1(operation prefixing)
| [ g] X1(state guard)
| if g then X1 else X2(boolean statement)
| c?a→ X1(a)(channel input)
| c!a→ X1(channel output)
| X1; X2(sequential composition)
| X1 || X2(parallel composition)
| X1 2 X2(external choice)

here, X1 and X2 represent processes, g denotes a guard
condition, e represents an event, program is a sequence
of code statements executed atomically and c describes a
synchronized communication channel.

The assertions are defined in the PAT model checker to
query the system behavior e.g., deadlock-freeness, LTL and
reachability. In this work, the deadlock-freeness and LTL
assertions are used and are explained as follows:
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Deadlock-freeness: The following assertion checks for the
existence of deadlock in a process P.

#assert P() deadlockfree;
Linear Temporal Logic (LTL): This assertion verifies

whether a process P satisfies an LTL formula φ.
#assert P() |= φ;
The syntax of an LTL formula is expressed as:
φ = e | p | φ1 ∧ φ2 | ¬ φ | □φ | 3φ | ⃝φ | φ1 ∪ φ2

here, e stands for an event, and p represents an atomic
proposition. The symbols □, 3,⃝, and ∪ are interpreted as
always, eventually, next, and until respectively.

LTL is used in this work because it is well-suited for
specifying properties about sequences of states in a system
along a single path. In contrast, Computation Tree Logic
(CTL) is specifically designed for reasoning about branching
time properties, where the system’s behavior may branch
into multiple possible future states at each step. It allows the
specification of properties along different paths. The LTL
formulas are often more intuitive and easier to understand
as compared to CTL formulas, especially for users who are
not familiar with formal logic or model checking techniques.
By using LTL, it is ensured that specifications are clear and
comprehensible to a wider audience. Many model checking
tools provide robust support for LTL, offering features such
as automatic translation of LTL formulas into the appropriate
model checking algorithms.

III. LITERATURE REVIEW
This section provides a comprehensive overview of the
blockchain research domain, including key areas, such as
generic blockchain consensus protocols, Ethereum consensus
protocols, and formal verification of consensus protocols and
Beacon Chain.

A. POW AND POS CONSENSUS PROTOCOLS
The PoW consensus protocol implemented in the Bitcoin
network has drawn much attention from the research
community [12]. In the PoW consensus protocol, the network
nodes have to solve a mathematical puzzle to produce
a valid block. The consensus is achieved through the
computational work performed by network nodes which are
known as miners. The PoW consensus mechanism provides
security and decentralization to blockchain networks, as it
requires participants to invest computational resources and
energy [37]. Despite its merits, it faces challenges including,
tremendous energy consumption and limited scalability. It is
prone to security attacks, such as selfish mining, 51%, and
eclipse attacks. It follows the long chain rule for block
finalization.

The Bitcoin backbone protocol is based on PoW and
it is characterized by the common prefix and chain qual-
ity properties [38]. It relies on novel assumptions about
the adversary’s hashing power and network synchronicity.
It ensures transaction liveness and persistence, facilitating the
analysis of Bitcoin and a more complex Byzantine agree-
ment protocol. Its security is maintained even under high

network synchronicity and adversary hashing power of less
than 1/2.

In contrast to PoW, PoS has emerged as a more energy
efficient alternative, because the block creation process relies
on possessing a sufficient stake in the system [16]. Ouroboros
is based on PoS with robust security assurances [17]. It is
based on secure coin flipping for randomness in leader
selection. The protocol boasts security to protect against
desynchronization attacks. The block finalization occurs at
the end of each epoch. It incentivizes participants through
a resilient Nash Equilibrium based reward mechanism.
It mitigates potential attacks like selfish mining.

The PoS mechanism based on coin age, is presented in
[18]. It is resistant against nothing-at-stake problem and
blockchain forks. However, it is susceptible to vulnerabilities
such as grinding and long-range attacks. Delegated Proof of
Stake (DPoS) [39] is proposed to enhance the efficiency and
security of blockchain. It introduces a downgrade mechanism
to address the malicious behaviors among witnesses. It uses
random voting to enhance fairness and decentralization in
block generation/finalization. It implements a downgrade
mechanism to swiftly handle malicious nodes, ensuring that
the overall system operates effectively and securely.

B. HYBRID CONSENSUS PROTOCOLS
To address the limitations of the above-discussed consensus
protocols, hybrid approaches were designed to unify the
advantages and mitigate potential attacks. For instance, Proof
of Elapsed Time (PoET) is introduced to tackle the energy
consumption issue [40]. For a fair and efficient leader
election process, it employs a trusted execution environment
(TEE) and Intel Software Guard Extensions (SGX). Through
TEE and SGX, a random timer value is generated and
assigned to each node. The verifying nodes then sleep for
a randomly generated waiting time, and the first node to
complete this waiting time earns the right to create the next
block. It is vulnerable to hijacking, even when a minority
of nodes are compromised. The block finalization is proba-
bilistic, and the incentive mechanism involves rewards and
slashing.

Addressing the limitations of PoW, a novel consensus
mechanism called Proof of Luck is proposed in [41], aiming
to reduce the computational power required for transactions
and to enhance throughput. Based on TEE, the algorithm
is comprised of two key functions: pollround and pollmine.
Each mined block is assigned a luck value, a random number
between 0 and 1, with a cumulative luck value calculated
through the summation of luck values within each block of
the chain. Miners are prioritized with the highest luck value
can append their blocks to the chain. A hybrid PoW-PoS
cryptocurrency protocol to thwart 51% attacks, using a single
thread system with strict time spacing for block generation
is designed in [42]. This ensures a resilient consensus, fair
profit distribution and prevents domination by a single user
or a group.
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C. BFT CONSENSUS PROTOCOL
Byzantine fault tolerance involves achieving consensus
among nodes even in the presence of malicious nodes in
a distributed network. Practical Byzantine fault tolerance
(PBFT) is an example of BFT, which operates as a replication
algorithm capable of withstanding Byzantine faults [43].
PBFT anticipates the presence of dishonest or faulty nodes
and it is designed to be a high-performance consensus
algorithm that relies on a set of trusted nodes within the
network. In PBFT, nodes are arranged sequentially, with one
designated as the leader and the remaining nodes acting as
backups. PBFT offers a higher transaction throughput than
PoW. It works better on a private network rather than on a
public one as a result of the overhead communication. The
PBFT networks are more vulnerable to Sybil attacks and are
less decentralized due to the presence of central authority.

The NEO cryptocurrency platform introduces Delegated
Byzantine Fault Tolerance (DBFT) as a solution to central-
ization challenges in PBFT [44]. In DBFT, the nodes are
elected through a voting process. Among these nodes, one
node is designated as a leader, and rest of the nodes act
as backup nodes also called delegates. The participants in
the network participate in the voting process, based on the
cryptocurrency they hold. However, a potential drawback
arises if all the participants vote for themselves, leading to
the risk of communication problems. Despite resolving the
centralization issues, DBFT still faces issues related to high
communication overhead and susceptibility to sybil attacks.
The idea of PoS and PBFT consensus methods serve as the
foundation for the Tendermint protocol [45]. The validators
are selected according to their stake, and a leader is chosen
from a group of validators in a round-robin fashion. The
consensus is reached with 2/3 of the network nodes, similar
to PBFT. To mitigate communication overhead and uphold
blockchain decentralization, the Ripple network incorporates
the federated byzantine agreement protocol [46]. Unlike
PBFT, FBA eliminates the need for a central authority to
maintain a node list for transaction processing and validation,
allowing any node to participate in consensus. The agreement
of 80% of the nodes is necessary for transaction addition.

In our previous works, to address the issues of trustworthy
leader and validators selection, we have proposed formally
verified consensus protocols, i.e., secure and trustwor-
thy blockchain-based crowdsourcing (STBC), trust-based
blockchain crowdsourcing (TBC), and trust and transactions
chain (TTC) consensus protocols [47], [48], [49]. These
consensus protocols are designed based on various trust
factors to increase their reliability.

D. ETHEREUM CONSENSUS PROTOCOLS
The recent Casper FFG protocol [4] is introduced as a hybrid
of PoW and PoS, that aims to penalize malicious validators.
In this model, PoW is used to propose blocks, while PoS
is employed for finality, ensuring irreversible consensus.
It achieves consensus through a staking mechanism where

validators commit deposits, and finality is reached through
a BFT like process. It exhibits energy efficiency and 33%
fault tolerance but lacks full resistance against 51% attack.
It includes security properties that penalize validators unable
to finalize blocks. Block finalization occurs at the end of
each epoch, and the incentive mechanism involves deposit
rewards, block proposal and finalization rewards. In Casper,
stakeholders operate as peer nodes who broadcast vote
messages. For block finalization, it offers plausible liveness
and accountable safety with tolerance up to 1/3 of the total
voting power controlled by the Byzantine nodes.

The Gasper protocol [3], combines the LMD GHOST and
Casper FFG to create a comprehensive PoS-based blockchain
design. In Gasper, validators propose and attest to blocks
based on their staked ether. This staking mechanism provides
economic security and incentivizes validators to act honestly,
as their stakes are at risk. Gasper eliminates the need for
resource intensive PoW, making the consensus process more
energy efficient and scalable in the Ethereum network. The
design emphasizes a balance between simplicity, understand-
ability, and practicality while considering safety and liveness.

Some preliminary work is done on the justification and
finalization and validator’s voluntary exit processes in the
python reference implementation of Ethereum 2.0 Beacon
Chain [9], [10]. In this work, we present a detailed analysis
of the state initialization, justification and finalization of
checkpoints in the Beacon Chain. We have verified these
processes against specified properties including deadlock-
free, safe initialization, justification, and finalization. For a
comprehensive overview, we present the major properties of
the consensus protocols discussed in Table 2.

E. FORMAL VERIFICATION OF PROTOCOLS
In the ever-evolving landscape of software engineering,
formal verification is essential for ensuring the reliability
and correctness of complex systems. Formal verification is a
rigorous mathematical process for validating the correctness
of a complex decentralized system’s design. This section
explores the recent progress of formal verification techniques
utilized in blockchain consensus protocols. The formal
modeling for the adversary scenarios on PoW blockchains by
utilizing the BIP (Behavior, Interaction, Priority) framework
is presented in [50]. By employing the statistical model
checker SBIP, this approach examines diverse attacks, includ-
ing DNS (Denial of Network services), double spending, and
consensus delay attacks. It accounts for both stochastic and
temporal interactions within blockchain systems.

The RedBelly blockchain’s BFT consensus mecha-
nism [51], is defined in threshold automata and validated by
usingByMC. This approach highlights the gravity of the issue
by identifying vulnerabilities in blockchain consensus along
with counter-examples. The emphasis is on analyzing various
properties like justification, consistency, and termination.
The PBFT protocol is validated by the PRISMmodel checker
and formalized using the Continuous-Time Markov Chain
(CTMC) model to simulate its temporal response [52]. The
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TABLE 2. The comparative analysis of blockchain consensus protocols.

analysis considers factors like the delay of primary and
replica nodes; however, it neglects to include a discussion on
potential node failures. The likelihood of the entire process
is influenced by internet speed, while replica nodes have
a minimum effect. The streamlined version of HotStuff is
formalized using TLA+, and its safety is established through

the TLAProof System (TLAPS) [53]. Furthermore, the safety
properties of HotStuff undergo verification using the Ivy
tool that reveal the complexity of verification through both
TLAPS and Ivy. The analysis demonstrate that the protocol
diverges from the conventional view instance model, opting
instead for a tree model to address a fundamental issue.
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TABLE 3. A comparison of various properties of formally verified blockchain based consensus protocols.

The formal definition of the Tendermint consensus
protocol is defined using CSP# and its verification is
conducted through the PAT model checker [54]. The
results indicate that the protocol is free from deadlocks
and can achieve consensus with the agreement of 2/3
of the network nodes. Moreover, the verification reveals
that if minority nodes surpass 1/3 of the network nodes,
the network can be disrupted. However, the Tendermint
protocol prioritizes consistency over liveness. The formal
specification of Tendermint is conducted using TLA+,
and its verification is carried out through TLAPS [55].
The Apalache model checker is employed to assess safety
properties, specifically termination and synchronization.
The formalization process enhances the comprehension of
liveness properties, uncovering various issues that can arise
from the unexpected behavior of faulty peers. The analysis
emphasizes the correlation between timeout duration, end-
to-end delays of messages, and block generation rate. The
CBC Casper constitutes a partial specification for a family of
consensus protocols. It relies on five framework parameters
to define specific protocols, including participating nodes,
validator weights, fault tolerance threshold, consensus values,

and an estimator function. These parameters shape protocol
states andmessages. CBCCasper protocols exhibit Byzantine
fault tolerance, specifically concerning equivocation, where
nodes cannot send conflicting messages. The Ethereum
consensus protocol CBC Casper is formalized using Coq
proof assistant [6]. It proves the safety and non-triviality
properties and uses Coq’s type classes for abstraction, reveal
protocol assumptions, and express these in mathematical
terms.

The Coq formalization of the Gasper protocol is pre-
sented in [7]. It aligns closely with the Gasper protocol’s
abstraction level. This Coq formalization offers a rigorous
representation, explicitly specifying assumptions crucial for
plausible liveness. The key assumptions include the non-
emptiness of the supermajority quorums, proper justification
links, consideration of votes from the validator set of the
target block, and the production of honest votes by the
validators of a supermajority set. The Ethereum 2.0 secu-
rity assessment investigates the deposit smart contract,
provides critical insights into bytecode correctness, and
reveals potential vulnerabilities [56]. The subtle bugs are
identified originating from the compiler, emphasizing the
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importance of addressing these issues for the broader research
community. The verification process focuses on a complex
incremental Merkle tree algorithm, uncovering challenges
such as algorithm complexity, bytecode size, and security
concerns. The noteworthy findings include, critical bugs
in both the contract and compiler. The trust relies on
bytecode specification correctness and the KEVM verifier,
supported by a partially mechanized proof of algorithm
correctness.

The refinement of the CBC Casper is investigated in [57].
It emphasizes on the PoS protocol security and aims
to achieve correctness particularly addressing safety and
liveness in the presence of Byzantine behavior. It extensively
investigates an instance called Casper, The Friendly GHOST
(TFG), which is systematically formalized, and the verifica-
tion process utilizes the Isabelle/HOL proof assistant. The
significant contributions include, the establishment and proof
of blockchain safety, adjustments to properties like governing
messages and state transitions, and the proposal of an
improved clique oracle for effective decision making among
validators. The formal model of Stellar Consensus Protocol
(SCP) for federated Byzantine agreement is presented in [58].
It highlights the significance of configuring quorums to
ensure the liveness and safety of SCP, employing timed
automata for modeling and the UPPAAL model checker for
verification. This approach enables pre-execution verification
of quorum configurations to ascertain consensus assurance
before deployment on real networks. However, due to
the large state space, the model undergoes abstraction,
resulting in processing delays and packet overheads as
validators broadcast and analyze quorum information for
each blockchain block.

The Algorand blockchain employs a secure PoS consensus
protocol, ensuring a single certified block per round to
prevent forks. Its formal verification is done using Coq
addressing the timing complexities and adversarial actions
to enhance realism [59].The achieved asynchronous safety
proof demonstrates that even with full control of message
delivery, two different blocks cannot be certified in the same
round. The model is deemed general, with the potential
for extending verification to other critical properties like
liveness for the Algorand protocol. In our previous works,
we have proposed and formally verified the STBC, TBC, and
TTC consensus protocols using the PAT model checker [47],
[48], [49]. The STBC protocol verifies the safety and
fault-tolerance properties, the TBC protocol verifies the
persistence and liveness properties, and the TTC protocol
verifies the fraud-resilience properties. In this work, our focus
is on the formal verification of Ethereum 2.0 Beacon Chain
by employing the model checking technique.

F. FORMAL VERIFICATION OF BEACON CHAIN
Beacon Chain serves as the backbone of Ethereum 2.0 and
consists of crucial elements such as the state transition
function, validator’s related functions, justification and final-
ization of checkpoints, and various others. There are some

fundamental projects that are supported by the Ethereum
Foundation on the formal verification of Beacon Chain.

The first project was undertaken by the Runtime Verifica-
tion Inc. to provide executable and formal semantics to the
reference implementation in the K framework [5]. The model
presents executable interpretations of the state transition
of the Beacon Chain, facilitating direct testing against
standard test suites. The use of K framework for the formal
verification of Beacon Chain encounters challenges due to
its complexity, particularly in modeling Python language
features. The Runtime Verification Inc. also works on the
formal verification of the Casper FFG and Gasper protocol
using Coq [6], [7]. The work presented in [6] involves only
conceptual exploration of the processes guided by specific
assumptions and lacks thorough modeling of these processes.
The work described in [7] utilizes the Coq proof assistant to
model and verify the Gasper’s finality mechanism ensuring
properties at an abstract level. The findings are validated
using an abstract model of quorums on a message set without
explicitly specifying honest behavior and communication.
The state transition function of the Beacon Chain is
verified using deductive verification technique of theorem
proving. All its processes are formally specified in Dafny
specification language and verified through the SMT solver
Z3 model checker [8]. The verification results encountered
several issues including runtime errors, division by zero,
underflow/overflow, and array out of range. However, it faces
limitations in terms of scalability when applied to large-
scale systems. Further, it is difficult to interpret the verifier
feedback in case of verification failure.

All the previous projects of formal verification of
Ethereum 2.0 Beacon Chain that are described above were
based on theorem proving technique. This project employs
the model checking technique that offers a more compre-
hensive and automated verification process as compared to
theorem proving. Theorem proving requires significant man-
ual effort to construct the proofs, particularly when dealing
with the complexities of large-scale systems. Therefore in this
research, we use model checking due to its automated nature
which allows the thorough analyses of system states, ensuring
that no critical property is overlooked. Some introductory
work is done on the justification and finalization and the
validator’s voluntary exit processes using the SPIN model
checker [9], [10]. In both of the works, the specifications
are written in PROMELA specification language. The safety
properties are defined using LTL formulas that are evaluated
through the SPIN model checker. The preliminary study
offers limited depth and lacks comprehensive modeling of the
described processes.

This work is specifically focused on the formal verification
of state initialization, justification, and finalization of the
Beacon Chain in detail using the PAT model checker.
To achieve this, CSP# is utilized to formally specify
these processes and the properties are described using LTL
formulas and are verified through the PATmodel checker. The
PAT model checker is used in this research work to automate
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TABLE 4. A comparison of formal verification of beacon chain.

the aspects of the verification process including model
generation, property specification, and verification which
reduce the need of human intervention. It provides a unique
combination of user-friendliness and automation in formal
verification which makes it a valuable tool for analyzing
and verifying concurrent systems. It provides visualization
capabilities that helps to understand and analyze the behavior
of the systems, facilitating the interpretation of verification
results. Table 4 presents a comparative analysis of the work
on formal verification of Beacon Chain, highlighting the
properties, languages, tools, and limitations.

IV. SYSTEM MODEL OF JUSTIFICATION AND
FINALIZATION
This section provides the basic definitions, system model,
and algorithms of initialization of beacon state from Eth1,
justification and finalization.

A. DEFINITIONS
At the first, some terminologies to understand the system are
defined.

In a view Vi, J(Vi) represents the set of justified check-
points, and F(Vi) represents the set of finalized checkpoints.
Here E represents the current epoch and E′ denotes the
previous epoch.

Definition 1 (Supermajority Link): A supermajority link
refers to a connection between two pairs (B1, E′) and (B2, E).
The link is established when attestations with the checkpoint
edge (B1, E′) ∨−→ (B2, E) are more than 2

3 of the total
validator stake.

We can write this as (B1, E′) J−→ (B2, E)
Definition 2 Justification: In the view Vi, the set J(Vi) of

justified pairs is defined using the following criteria:

• (Bgenesis, 0) ∈ J(Vi);
• If (B1, E′) ∈ J(Vi) and (B1, E′) J−→ (B2, E), then

(B2, E) ∈ J(Vi) as well.

If (B2, E) ∈ J(Vi), it means that the checkpoint B2 is
considered as justified in Vi during an epoch E.
Definition 3 (Finalization): In the view Vi, the block

(B0, E) is finalized (particularly k-finalized) if (B0, E) =
(Bgenesis, 0) or there is an integer k ≥ 1 and blocks
(B1, . . . , Bk) ∈ view(Vi) in such a way that the following
criteria are met.

• (B0, 0), (B1, 1), . . . , (Bk, k) are consecutive epoch
boundary pairs in chain(Bk);

• (B0, 0), (B1, 1), . . . , (Bk−1, k + 1) belongs to J(Vi).

We say that a block B is finalized for an epoch E if (B, E) ∈
F(Vi) for some epoch E.
Now we describe the model of Beacon state initialization,

justification, and finalization.
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B. INITIALIZATION OF BEACON STATE FROM ETH1
Initializing the beacon state from Ethereum 1.0 (Eth1) is a
crucial step in the launch of the next evolution Ethereum 2.0.
The beacon state represents the current state of the Ethereum
2.0 Beacon Chain which coordinates and manages the overall
network. The initialization process ensures that the Beacon
Chain begins with a secure and valid state incorporating
information from the Eth1 chain, and setting up the necessary
structures for the Ethereum 2.0 consensus mechanism and
validator system. This transition from Eth1 to Ethereum
2.0 marks a significant milestone in the evolution of the
Ethereum network.

The visual representation of the initialization process for
the state of Beacon Chain from Eth1 data is provided in
the Figure 7. The flow diagram emphasizes the sequential
execution of steps and the dependencies.

FIGURE 7. Initialization process of beacon state.

The process starts with the initialization of the fork object
and the creation of a new beacon state instance. The state
is configured with parameters such as genesis time and
eth1 data. The function then processes deposits, iteratively
updating the state’s deposit-related information and invoking
the process deposit function. Subsequently, activations are
processed by iterating over validators and updating their
effective balances. If the effective balance of the validator
is maximum then its activation epoch is set as genesis.
The process concludes with the setting of validators root as
genesis validators root in the state for domain separation and
chain versioning.

The purpose of initializing the state is to set up the
blockchain securely, consistently, and in a well defined
manner. It establishes the foundation for network operation
and ensures a smooth transition from the genesis state to
the ongoing state of the Beacon Chain. The decisions made
during initialization, such as the activation of validators
and the determination of effective balances, have a lasting
impact on the ongoing security and finality of the blockchain.
In summary, the initialization of the state establishes the
starting point for the Beacon Chain.

C. JUSTIFICATION AND FINALIZATION
In various contexts, justification and finalization can have
different meanings. However, within distributed systems,
particularly in the Beacon Chain Eth2 consensus algorithm,
the terms are often used as follows:

In the Beacon Chain, justification is the process of
providing evidence and valid reasons for accepting a specific

block into the chain. It demonstrates the correct and valid
addition of the block according to established consensus
rules. This integral aspect of the consensus algorithm
safeguards the integrity and validity of the entire Beacon
Chain. Epoch justification extends this principle to a specific
epoch, requiring evidence that attestations and blocks within
that time frame comply with Casper FFG rules. A justified
checkpoint typically occurs at the start of an epoch. The
justification process is explained through the Figure 8.
It illustrates that when a node observes a 2/3 supermajority
of votes for attestation from the justified checkpoint CN+1 to
checkpoint CN+2, then CN+2 is also marked as justified.

FIGURE 8. An illustration of justification process.

The process of finalization is represented as an important
point in the Beacon Chain consensus. It denotes that a
block or specific epoch’s content becomes irreversible and
is permanently added to the chain. It represents a collective
agreement within the network, signifying that altering the
affirmed state would require a substantial portion of the
network’s resources. This process improves Beacon Chain
security and immutability by establishing an unchangeable
transaction history. Epoch checkpoint finalization ensures
the irreversibility of blocks and attestations within an
epoch. A finalized checkpoint further strengthens this by
confirming the status of a justified checkpoint, requiring
strong agreement among validators.

FIGURE 9. Process of finalization of checkpoints.

In Figure 9, it is clarified that a checkpoint at block A
is considered finalized if it is justified and the next block
B′ is also justified. For this purpose, it is verified that if
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FIGURE 10. Flow diagram for the process of justification and finalization in the Ethereum 2.0 Beacon Chain.

the block B′ of epoch 2 has received attestations from 2/3
of the validators. If this condition is met, the block B′ at
slot 64, along with the preceding blocks in epoch 1, attains
justification. Once the block at slot 64 is justified, all blocks
that were previously justified at slot 32, become finalized.
The process continues throughout the chain whenever a
block gets enough attestations it gets justified and then later
finalized. The genesis block is always considered as finalized
according to the network’s rules. Overall, these processes
contribute to the security and stability of the Beacon
Chain, and the associated state transitions are considered
permanent.

The core components of Beacon Chain specification are
its state and the state transition function. Each node within
the network upholds a state reflecting its perspective on the
current state of the world. The processing of the state is
carried out by the Beacon Chain state transition function.
When the new beacon block is given for processing, this
function updates the older state to a newer state. It includes
epoch-transition processing and subsequently handling the

blocks’ contents. The state transition function of the beacon
chain consists of three components. The slot processing is
executed for every slot irrespective of concurrent activities.
The epoch processing is conducted at every start slot of the
epoch regardless of the ongoing tasks. The block processing
exclusively takes place during slots when a beacon block has
been received.

The epoch processing occurs at the beginning slot of the
subsequent epoch during the slot processing. The concept of
epochs helps to organize the progression of time and activities
within a Beacon chain, making it easier to coordinate and
manage consensus processes. The process epoch function is
called from the process slots function whenever the state slot
is the start slot of each epoch. This is the main function in
which all the other functions are called while processing an
epoch. The initial step in epoch processing involves justifying
and finalizing checkpoints. The justification and finalization
ensure that the chosen checkpoints are accepted by the
network, promoting a robust and trustworthy consensus
mechanism.
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The overview of the justification and finalization function
is described in Figure 10. The process begins by cautiously
checking whether the current epoch is genesis or if the
current epoch is within the first two epochs after the genesis,
the process exits early to avoid potential issues. After this
initial check, the next step is to fetch the attestations for
both the previous and current epochs from the state through
get matching target attestations which retrieves attesta-
tions relevant to a specified epoch. It selectively retrieves
attestations from the get matching source attestations, and
it checks whether the specified epoch is the previous or
current epoch. Based on this, it returns the corresponding
attestations, but only those whose target root matches with
the block root of the given epoch. These functions essentially
filter out the attestations that are pertinent to the specified
epoch, target, and source, providing a more refined set of
information for further processing. These attestations serve as
critical pieces of information for the subsequent steps. After
collecting this historical data, it calculates the total active
balance of validators in the system, a sum of all the staked
balances of active validators. Then, get the precise balances
associated with attestations from the previous and current
epochs.

The function passes the gathered data; the total active bal-
ance, the balances from the previous and current epochs, and
the current state, to the weigh justification and finalization
function which is responsible for justifying and finalizing
checkpoints. It carefully determines the previous epoch and
current epoch based on the current state. The previous and
current justified checkpoints are stored as old previous and
old current justified checkpoints respectively. The justifica-
tion bits are shifted to compute new justified checkpoints. The
target balances are calculated from the previous and current
epochs, evaluating whether they met the threshold criteria.
If a balance exceeds three times the total active balance, then
update the state with a new justified checkpoint with its epoch
and root. The corresponding bit in the justification bits is set
to 1.

For the process of finalization, the justification bits are
examined. If the specified bits are all set as 1 and the required
epoch distance is met, then set the finalized checkpoint to the
relevant justified checkpoint, otherwise return without any
update. This process ensures that the state is appropriately
justified and finalized based on the calculated balances,
epochs, and justification bits.

D. ALGORITHMS
This section provides a description of algorithms specifically
designed for the state initialization and the process of
justification and finalization.

The process of initializing the state is described in
Algorithm 1. It begins with obtaining information from the
Ethereum 1.0 chain, such as the hash of the latest block,
the timestamp of that block, and the deposits list (line 1-2).
A Fork object is created, specifying the initial and current
versions of the Ethereum 2.0 protocol. This object helps

manage protocol upgrades and changes. A beacon state
object is created and initialized with various genesis values
(lines 3-4). The deposits made by the validators on the
Ethereum 1.0 chain are processed. The deposit data is
collected, and a merkle tree structure is created to represent
the deposits. The merkle root is stored in the eth1 data field
of the beacon state and calls the process deposit to further
update the state based on the deposit information (lines
6-8). After processing deposits, validators are processed
for activation and their effective balances are calculated
based on the provided balance and the effective balance
increment constant. If a validator’s effective balance is equal
to the maximum effective balance, they become eligible for
activation. Then the activation eligibility epoch and activation
epoch are set to the genesis epoch. (lines 10-14). The root
of the validators list is calculated by the hash tree root
function and the state’s genesis validators root is updated
(line 15). This root is crucial for domain separation and
chain versioning. The initialized beacon state is returned,
representing the genesis state of the Ethereum 2.0 beacon
chain (line 16).

Algorithm 1 Pseudocode of Initialization of Beacon
State.
1 InitializeBeaconState(State, BlockHasheth1,
2 Timestampeth1, Listdeposits)
3 Fork← Forkobject with initial values
4 State← Stateobject with genesis values

5 // Process deposits
6 Leaves← []
7 for deposit ∈ Listdeposits do
8 leaves.append(deposit.data)

Listdepositdata ← List[DepositData](∗leaves)
State.deprooteth1data ← Roothashtree(Listdepositdata)
ProcessDeposit(State, deposit)

9 // Process activations
10 foreach i, validator ∈ State.listvalidators do
11 Listbalance ← State.balances[i]

Effectivebalvalidator ← min(bal−
12 bal%EFFECTIVE BALANCE INCREMENT,

MAXEFFECTIVE BALANCE)
13 if Effectivebalvalidator = MAXEFFECTIVE BALANCE

then
14 ActivElgEpochvalidator ← Egenesis

15 ActiveEpochvalidator ← Egenesis

16 State.rootgenesis validators ← Roothashtree
(State.listvalidators)

17 return State

The process of deposit is explained in Algorithm 2, it takes
the current state and deposit containing information about
deposits in Eth1 as input (line 1). The merkle branch is
verified for the deposit data of Eth1 to ensure that it is not
possible to fake a deposit (lines 2-3). If the merkle branch
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is valid, it calls the ApplyDeposit function to update the
state with the information from the deposit (lines 4-6). If the
merkle branch check fails then an AssertionError is raised
indicating that the entire block is invalid (lines 7-8).

Algorithm 2 Pseudocode of Process Deposit.

1 ProcessDeposit(State, deposit)
2 merklebranch ← isValidMerkleBranch(leaf , branch,
3 depth, index, root)
4 if merklebranch = True then
5 ApplyDeposit(State, keypublic, withdrawcredentials,
6 amount, sign)
7 else
8 raiseError
9 endif

The ApplyDeposit process is defined in the Algorithm 3,
it updates the state based on the provided deposit information.
It takes five parameters: current state, validator’s public key,
withdrawal credentials, the amount of the deposit, and the
signature (lines 1-2). Firstly, it extracts a list of public keys
of all the existing validators in the current state (line 3). Then
it is checked that if the provided public key does not belong to
the list of existing validators then aDepositMessage is created
using the provided public key, withdrawal credentials, and
amount for depositing validator in the network (lines 4-6).
The domain and the signing root are calculated for the deposit
message (lines 7-8). Then it is verified that if the deposit
message is valid against the validator’s signature. If the
verification fails, then an assertion error is raised indicating
that the deposit is not valid. If the condition is true, then the
deposit is considered valid and the validator is added to the
registry (lines 9-14). Otherwise, if the public key is already in
the list of existing validators, then increase the balance of the
corresponding validator by the deposit amount (lines 15-17).

Algorithm 3 Pseudocode of Apply Deposit.

1 ApplyDeposit(State, keypublic, withdrawcredentials,
2 amount, sign)
3 pubkeyslistvalidators ← State.validators
4 if keypublic /∈ pubkeyslistvalidators then
5 msgdeposit ← DepositMessage(keypublic,
6 withdrawcredentials, amount)
7 domain← ComputeDomain(DOMAIN DEPOSIT)
8 rootsigning← ComputeSigningRoot(msgdeposit,

domain)
9 if Verify(keypublic, rootsigning, sign) = False then
10 raiseError
11 else
12 AddValidatorToRegistry(State, keypublic,
13 withdrawcredentials, amount)
14 endif
15 else
16 IncreaseBalance(state, index, amount)
17 endif

The process of justification and finalization is described
in Algorithm 4 (line 1). It is checked that if the epoch is
genesis or within the first two epochs after the genesis then
it returns (lines 2-3). If the condition is false it means that
the epoch is not genesis, then it gets the list of previous and
current attestations for the same target from MatchTarAttest
Algorithm 5 (lines 4-6). The balance of the active validators is
calculated from the function getTotalActiveBalance, it takes
the state as input and returns the total balance (line 7). The
getAttestingBalance is called here which takes the state and
previous attestations as input and returns the total amount of
those validators who made these previous target attestations
(line 8). Similarly, the total balance is calculated for the
current attestations and is stored as the current target balance
(line 9). Then WeiJustAndFin is called to perform further
processing related to justification and finalization (line 10
Algorithm 7).

Algorithm 4 Pseudocode of Justification and Final-
ization.
1 JustAndFin(State)
2 if (Ecur <= Egenesis + 1) then
3 exit
4 else
5 ListPreAttest ←MatchTarAttest(State, Epre)
6 ListCurAttest ←MatchTarAttest(State, Ecur)
7 Totalactivebal← getTotalActiveBalance(state)
8 Pretargetbal← getAttestingBalance(state, ListPreAttest)
9 Curtargetbal← getAttestingBalance(state, ListCurAttest)
10

WeiJustAndFin(State,Totalactivebal,Pretargetbal,ListCurAttest)

The Algorithm 5 named MatchTarAttest is designed to
get the matching target attestations based on the state
and epoch (line 1). To obtain the source attestations list,
it calls the function MatchSourceAttest with parameters state
and epoch. It likely retrieves attestations relevant to the
specified epoch (line 2). An empty list named TargetAttest
is initialized to store the pending attestations of matching
target. A loop is initiated that iterates through each attestation
a in the SourceAttest list. Within the loop, there is a
conditional statement that checks whether the target.root of
the attestation matches the block root at the specified epoch.
If the condition is true, it means that the target matches,
the attestation a is added to the TargetAttest list (lines 3-
6). After the loop completes, the algorithm returns the list
of matching target attestations (line 7). This algorithm is
designed to selectively retrieve pending attestations based on
the matching condition. It aims to ensure that only relevant
target attestations are included in the final result.

The Algorithm 6 describes MatchSourceAttest process that
returns match source attestations based on the given state
and epoch (line 1). At first, it checks that the epoch is
within the range of previous and current epoch. This is
asserted to ensure that the correct epoch is provided (line 2).
An empty list called SourceAttest is initialized to store the
matched source attestations (line 3). If the epoch E is equal
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Algorithm 5 Pseudocode of Matching Target Attes-
tations.
1 MatchTarAttest(State, E)
2 SourceAttest←MatchSourceAttest(State, E)
3 TargetAttest← []
4 foreach a ∈ SourceAttest do
5 if a.data.target.root ==

GetBlockRoot(State, E)
6 TargetAttest.Add(a)

7 return TargetAttest

to current epoch, it adds the current epoch’s attestations
to the SourceAttest list (lines 4-5). Otherwise, it adds the
previous epoch’s attestations to the SourceAttest list (lines 6-
7). It returns the SourceAttest list, which contains the relevant
source attestations based on the provided epoch (line 8).

Algorithm 6 Pseudocode of Matching Source Attes-
tations.
1 MatchSourceAttest(State, E)
2 assert E ∈ Epre andEcur
3 SourceAttest← []
4 if E = Ecur then
5 SourceAttest.Add← State.current epoch attest
6 else
7 SourceAttest.Add← State.previous epoch attest
8 return SourceAttest

This Algorithm 7 defines an overview for weighing
justification and finalization. It calls the WeiJustification
Algorithm 8 with parameters state, total active balance,
previous and current epoch target balances to obtain a set
of justified checkpoints. Then it calls the WeiFinalization
Algorithm 9 with the outputs of WeiJustification, including
the state, old previous and current justified checkpoints, and
the current epoch as input to obtain finalized checkpoints.

Algorithm 7 Pseudocode of Weigh Justification and
Finalization.
1 WeiJustAndFin(State, Totalactivebal, Pretargetbal,

Curtargetbal)
2 justifiedcheckpoints←WeiJustification(State, Totalactivebal,
3 Pretargetbal, Curtargetbal)
4 finalizedcheckpoints←WeiFinalization(State,

OldPJcheckpoint,
5 OldCJcheckpoint, Ecur)

Theweigh justification process is explained in Algorithm 8
(line 1). It gets the previous and current epoch values and
stores in the variables (lines 2-3). It accesses the previous
justified checkpoint from the state and store it as an old
previous justified checkpoint (line 4). Similarly, it accesses
the current justified checkpoint from the state and stores it
as the old current justified checkpoint (line 5). It updates the
current justified checkpoint as previous justified checkpoint

in the state (line 6). The justification bits represents the string
of bits that are used for justification. The method used here
shifts the bits in the state’s justification bits array to the
right. There is an array slicing operation that extracts the
first JUSTIFICATION BITS LENGTH - 1 element from the
justification bits array, then sets the first bit to 0 (lines 7-9).
The process of justification starts with a condition, it checks if
the total balance of the validators targeted during the previous
epoch is at least 2/3 times of the total active balance. If this
condition is true, it implies that a sufficient proportion of the
active validators supported some specific target during the
previous epoch (line 10). Then it updates the current justified
checkpoint in the state with the new checkpoint object having
previous epoch and block root. It sets the second bit in
the justification bits to 1, this indicates that the previous
epoch is justified as current checkpoint (lines 11-12). In the
next condition, it again checks if the total balance of the
validators targeted during the current epoch is at least 2/3 of
the total active balance then the current justified checkpoint is
updated in the state. It sets the first bit of the justification bits
to 1, which indicates that the current epoch is justified (lines
14-16). This conditional justification scenario is explained
through Figure 11.

Algorithm 8 Pseudocode of Weigh Justification.
1 WeiJustification(State, Totalactivebal, Pretargetbal,

Curtargetbal)
2 Epre← getPreviousEpoch(State)
3 Ecur ← getCurrentEpoch(State)
4 OldPJcheckpoint ← State.PJcheckpoint
5 OldCJcheckpoint ← State.CJcheckpoint

6 State.PJcheckpoint ← State.CJcheckpoint
7 for i← 1 to JUSTIFICATION BITS LENGTH − 1 do
8 State.bitsjustification[i]← State.bitsjustification[i− 1]

9 State.bitsjustification[0]← 0

10 if Pretargetbal
∗ 3 ≥ Totalactivebal

∗ 2 then
11 State.CJcheckpoint ← Checkpoint(Epre, rootblock)
12 State.bitsjustification[1]← 1

13 else if Curtargetbal
∗ 3 ≥ Totalactivebal

∗ 2 then
14 State.CJcheckpoint ← Checkpoint(Ecur, rootblock)
15 State.bitsjustification[0]← 1
16 end if

After justification, the process of finalization starts, which
is described in Algorithm 9. It takes the state, previous and
current justified checkpoints, and epoch as input and updates
the finalized checkpoint in the state (line 1). A local variable
named bits is created and the value of the justification bits
is assigned to it (line 2). It represents the status of recently
justified checkpoints. A condition checks if all the bits from
index 1 to index 3 are set to 1, indicating that the 2nd,
3rd, and 4th most recent epochs are justified, and if the
epoch of the old previous justified checkpoint incremented
by 3 equals the current epoch then the old previous justified
checkpoint in the state is updated as finalized checkpoint
(lines 3-4). The next condition checks for justification in the
2nd and 3rd most recent epochs. It also checks if the epoch
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FIGURE 11. The scenario of justification of checkpoints. (a) the
checkpoint at epoch 2 is previously justified and 3 is currently justified
(b) the epoch 4 checkpoint is justified when justification bits are: 0111
(c) the epoch 5 is justified when justification bits are: 1111.

of the old previous justified checkpoint adding 3 becomes the
current epoch then the old previous justified checkpoint is set
as finalized (lines 5-6). Similar to the previous conditions,
it checks for justification in the 1st, 2nd, and 3rd most recent
epochs. If the epoch of the old current justified checkpoint
plus 2 becomes the current epoch then the old current
justified checkpoint becomes finalized (lines 7-8). Similarly,
the following conditional block checks specific patterns of
justified epochs and their relative epochs to determine if
a finalization condition is met. If a condition is true, the
finalized checkpoint in the state is updated accordingly
(lines 9-10). The scenario explaining the finalization of the
checkpoint is described in Figure 12.

Algorithm 9 Pseudocode of Weigh Finalization.
1 WeiFinalization(State, OldPJcheckpoint, OldCJcheckpoint,

Ecur)

2 bits← State.bitsjustification

3 if all(bits[1 : 4] = 1) andOldPJcheckpoint.E + 3 = Ecur
then

4 State.finalizedcheckpoint ← OldPJcheckpoint

5 else if all(bits[1 : 3] = 1) textbf and OldPJcheckpoint.E + 2
= Ecur then

6 State.finalizedcheckpoint ← OldPJcheckpoint

7 else if all(bits[0 : 3] = 1) andOldCJcheckpoint.E + 2 =
Ecur then

8 State.finalizedcheckpoint ← OldCJcheckpoint

9 else if all(bits[0 : 2] = 1) andOldCJcheckpoint.E + 1 =
Ecur then

10 State.finalizedcheckpoint ← OldCJcheckpoint
11 endif

V. FORMAL SPECIFICATION OF JUSTIFICATION AND
FINALIZATION IN BEACON CHAIN
This section describes the formal model of the python
reference implementation of the state initialization and jus-

FIGURE 12. Conditional scenario of finalizing checkpoints. (a) the
checkpoint at epoch 2 is finalized using the justified checkpoint at
epoch 4 (b) the epoch 2 checkpoint is finalized using the justified
checkpoint at epoch 3 (c) the epoch 3 checkpoint is finalized using the
justified checkpoint at epoch 5 (d) the checkpoint at epoch 3 is finalized
using the justified checkpoint at epoch 4.

tification and finalization process using CSP#. The functions
of the reference implementation are described as processes.
To ensure the correctness of the specified processes, the prop-
erties of the safe initialization, justification and finalization
are described using LTL that are verified through the PAT
model checker.

A. INITIALIZATION OF BEACON STATE
The formal specification of the beacon state initialization
involves creating fork, state initialization, process deposits,
process activations, and setting of genesis validators root
(line 1).

1. initialize beacon state from eth1() = CreateFork();
StateIni(); ProcessDeposits(); ProcessActivations();
GenesisValRoot();

The fork creation is described as a process CreateFork
(line 2). The first and second parameters represent previous
version and current version that are set to genesis fork
version with null bytes (line 2.1). The epoch is specified as
GENESIS EPOCH that is set to zero.

2. CreateFork() = cfork {
nullbytes4 = new Bytes4(null4);
GENESIS FORK VERSION =
new Version(nullbytes4);

2.1. fork = new Fork(GENESIS FORK VERSION,
GENESIS FORK VERSION, GENESIS EPOCH);
} → Skip;
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TABLE 5. Description of notations.

The beacon state initialization is specified as a pro-
cess StateIni that includes five parameters (line 3). The
first parameter is genesis time, calculated as the sum
of Ethereum 1.0 timestamp and the GENESIS DELAY .
The second parameter Fork is described earlier. The
third parameter eth1 data includes information about the
Ethereum 1.0 chain and the number of deposits. The fourth
parameter describes the header of the latest block on the
Beacon Chain. The fifth parameter randao mixes initializes
the list of random seeds with the Ethereum 1.0 block
hash.

3. StateIni() = sinit {
genesis time = eth1 timestamp + GENESIS DELAY;

eth1 block hash =

new Hash32(new Bytes32(thirtytwobytes));
eth1 data =

new Eth1Data(eth1 block hash, deposits.GetCount());
latest block header = new BeaconBlockHeader(
new Root(new Bytes32(sszObject.HashTreeRoot(
new BeaconBlockBody()))));
randao mixes = new RandaoMixes(eth1 block hash.
Get(), EPOCHS PER HISTORICAL VECTOR);

3.1. beaconState = new BeaconState(genesis time, fork,
eth1 data, latest block header, randao mixes);

The third part of the beacon state initialization includes the
processing of deposits specified as ProcessDeposits (line 4).
Firstly, the list of deposit data leaves is created by extracting
the data attribute from each Deposit in the deposits list and it
is stored in the leaves variable (line 4.1). A sub-list of leaves
is created by iterating through the deposits list (line 4.2). The
deposit root of the eth1 data in the state is updated by taking
the hash tree root of the deposit data list.

4. ProcessDeposits() = procdeposits {

//Process deposits
4.1 leaves = beaconState.GetLeaves(deposits);

var index = 0;
4.2 while (index < deposits.GetCount()){
4.2.1 deposit data list.Set(leaves.Get(index), index);

eth1 data = beaconState.GetEth1Data();
4.2.2 eth1 data.SetDepositRoot(new Root(new Bytes32(
4.2.3 sszObject.HashTreeRoot(deposit data list))));

It is verified if the merkle branch is valid for the deposit
data then the eth1 deposit index is incremented in the state,
indicating that the deposit has been processed (line 4.3).

// process deposit
leaf = new Bytes32(sszObject.HashTreeRoot(
deposit.GetDepositData()));

proofs = deposit.GetProofs();
branch = proofs.Get();
branch = new SeqBytes32();
beaconState.GetEth1DepositIndex();
root = eth1 data.GetDepositRoot();
root.Set(new Bytes32(rootvalue));

4.3. if (beaconState.is valid merkle branch(leaf ,
branch, DEPOSIT CONTRACT TREE DEPTH
+1, beaconState.GetEth1DepositIndex(), root) ==
true){
beaconState.IncEth1DepositIndex();

The list of public keys of all the existing validators in the
current state is then extracted (line 4.4).

// apply deposit
var index1 = 0;
statevalidators = beaconState.GetValidators();

4.4 while (index1 < statevalidators.GetCount()){
validator = statevalidators.Get(index1);
listpubkeys.Set(validator.GetPubKey(), index1);
index1 = index1 + 1; }

VOLUME 12, 2024 55095



H. Afzaal et al.: Formal Verification of Justification and Finalization in Beacon Chain

If a public key does not exist in the computed list,
then certain verification for the deposit is performed before
adding it in the existing validators list (line 4.5). It computes
the signing root for the deposit message and the domain
(line 4.5.1). After performing verification of the deposit, the
validator is added in the validators’ registry. If the public key
already exists in the computed public key list, then the balance
of the corresponding validator is increased (line 4.6).

var data = deposit.GetDepositData();
pubkey = data.GetBLSPubkey();
var withdrawal credentials =
data.GetWithdrawalCredentials();
var amount = data.GetAmount();
var signature = data.GetBLSSignature();

4.5 if (listpubkeys.Contains(pubkey) == false){

deposit message = new DepositMessage(pubkey,

withdrawal credentials, amount);

var DOMAIN DEPOSIT = new DomainType(
new Bytes4(Domain Deposit Values));
var domain = beaconState.compute domain(
DOMAIN DEPOSIT, fork.GetCurVer(),

forkData.GetGenValRoot());

4.5.1 var signing root =
beaconState.compute signing root(
new Root(new Bytes32(sszObject.HashTreeRoot(
deposit message))), domain);

// add validator to registry
// get validator from deposit
var effective balance = helper.Min(amount−
amount % EFFECTIVE BALANCE INCREMENT,
MAX EFFECTIVE BALANCE);
var activation eligibility epoch =
FAR FUTURE EPOCH;
var activation epoch = FAR FUTURE EPOCH;
var exit epoch = FAR FUTURE EPOCH;
var withdrawable epoch =
FAR FUTURE EPOCH;

validator = new Validator(pubkey, withdrawal
credentials, activation eligibility epoch,
activation epoch, exit epoch, withdrawable
epoch, new Gwei(effective balance));

4.5.2 statevalidators.Add(validator);
balances = beaconState.GetBalances();
balances.Add(new Gwei(amount)); }

4.6 else {
var indexp = listpubkeys.GetIndex(pubkey);

beaconState.increase balance(beaconState,
indexp, new Gwei(amount));
}; }

index = index + 1;
} } → Skip;

The fourth step in initializing the beacon state is the
processing of activations described as ProcessActivations
(line 5). The effective balance for each validator is calculated
and it is ensured that it is within the allowed range (line 5.1.1).
If it is equal to MAX EFFECTIVE BALANCE, then the
validator activation eligibility and activation epochs are set
to GENESIS EPOCH (line 5.1.2).

5. ProcessActivations() = procactiv {
//Process activations
var index1 = 0;

5.1 while (index1 < statevalidators.GetCount()){
balances = beaconState.GetBalances();
balance = balances.Get(index1);

validator = validators.Get(index1);
5.1.1 validator.SetEffectiveBalance(new Gwei(helper.Min(

balance.Get() − balance.Get() %
EFFECTIVE BALANCE INCREMENT,
MAX EFFECTIVE BALANCE)));

5.1.2 if (validator.GetEffectiveBalance() ==
MAX EFFECTIVE BALANCE){
validator.SetActEligEpoch(GENESIS EPOCH);
validator.SetActEpoch(GENESIS EPOCH);
}
index1 = index1 + 1;
}
} → Skip;

In the end of the beacon state inialization, the process
GenesisValRoot is specified (line 6). In this process, the
genesis validators root in the state is set by taking hash tree
root of the state validators.

6. GenesisValRoot() = {
beaconState.SetGenesisValidatorsRoot(new Root(
sszObject.HashTreeRoot(beaconState.
GetValidators()))); } → Skip;

B. JUSTIFICATION AND FINALIZATION
This section is focused on the formal specification of
justification and finalization that is one of the process in
processing of epoch (line 6). At this level, we have specified
the processes of genesis epoch, justification and finalization
and then the next epoch is called.

6. process epoch() = Genesis epoch();
process justification and finalization();
call next epoch();

In the process Genesis epoch, the beacon state slot is set
as one which means the current epoch is zero.

7. Genesis epoch() = {beaconState.SetSlot(1); } → Skip;

The formal specification of justification and finalization is
described by the process justification and finalization. For
the first three epochs, the process genesis one two justifica-
tion and finalization process is specified and for the other
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epochs, the process weigh justification and finalization is
described.

8. process justification and finalization() =
[beaconState.get current epoch(beaconState) <=
GENESIS EPOCH + 2]

genesis one two justification and finalization() 2

[beaconState.get current epoch(beaconState) >
GENESIS EPOCH + 2]

weigh justification and finalization( beaconState,
beaconState.get total active balance(beaconState),
beaconState.get attesting balance(beaconState,
beaconState.get matching target attestations(
beaconState, beaconState.get previous epoch(
beaconState))), beaconState.get attesting balance(

beaconState, beaconState.get matching target
attestations(beaconState, beaconState.get current
epoch(beaconState))));

The process genesis one two justification and
finalization (at line 9) describes the justification of genesis,
first, and second epoch, and the finalization of genesis and
first epoch (lines 9.1-9.3). The state slot is set to update the
current epoch as three. The checkpoint one is set as previous
justified checkpoint and the checkpoint two is set as current
justified checkpoint.

9. genesis one two justification and finalization() =
gontjustfin.stateslot {

9.1 genesis = new Checkpoint(0);
justified.Add(genesis, −1);
finalized.Add(genesis, −1);

9.2 c1 = new Checkpoint(1);
justified.Add(c1, 0);
finalized.Add(c1, 0);

9.3 c2 = new Checkpoint(2);
justified.Add(c1, 1);

9.4 beaconState.SetSlot(129);
9.5 previous justified checkpoint = new Checkpoint();

previous justified checkpoint.SetEpoch(1);
beaconState.SetPreviousJustifiedCheckpoint(
previous justified checkpoint);

9.6 current justified checkpoint = new Checkpoint();
current justified checkpoint.SetEpoch(2);
beaconState.SetCurrentJustifiedCheckpoint(
current justified checkpoint);
} → Skip;

The process weigh justification and finalization is
defined for the epochs greater than two to update the
checkpoints (line 10). It takes the state, total active balance,
previous epoch target balance, and current epoch target
balance as input and justify and finalize the checkpoints
accordingly. The previous justified checkpoint is made as
current justified checkpoint (line 10.1). The justification bits
represent the string of bits (total four) that are used for
justification. The justification bits are shift right and zero

is pad to the right of bits to justify the current checkpoint
(line 10.2).

10. weigh justification and finalization(state, total
active balance, previous epoch target balance,
current epoch target balance) = wjustfin.stateslot {
var previous epoch =

beaconState.get previous epoch(state);
var current epoch =

beaconState.get current epoch(state);
var old previous justified checkpoint =

beaconState.GetPreviousJustifiedCheckpoint();
old current justified checkpoint =

beaconState.GetCurrentJustifiedCheckpoint();
// Process justifications
10.1 beaconState.SetPreviousJustifiedCheckpoint(

beaconState.GetCurrentJustifiedCheckpoint());
10.2 beaconState.RShiftJustifBitsPad0(beaconState.

GetJustificationBits(), 1);

If the previous checkpoint is not justified then to justify
it, it is checked that if its attestations have total weight
more than 2/3 of the total validator stake, then it is set
as current justified checkpoint (line 10.3). The justification
bit at index 1 is set as one to represent that the previous
epoch checkpoint is justified and it is added in the list of
justified checkpoints. Here, we have made improvement in
the reference implementation by the addition of justified list
to record justified checkpoints. It is ensured that if a justified
checkpoint already exists in the list then it will not be added
in that list. Further, this list is added to verify the justified
checkpoints. The same procedure is repeated to justify a
current checkpoint (line 10.4). Here the justification bit at
index zero is set as one.

10.3 if (previous epoch target balance.Get() ∗ 3 >=
total active balance.Get() ∗ 2){
beaconState.SetCurrentJustifiedCheckpoint(
new Checkpoint(previous epoch, beaconState.
get block root(state, previous epoch)));
beaconState.ChangeJustificationBit(beaconState.
GetJustificationBits(), 1, 1);
justified.Add((new Checkpoint(previous epoch,
beaconState.get block root(beaconState,
previous epoch))), old current justified
checkpoint. GetEpoch()); }

10.4 if (current epoch target balance.Get() ∗ 3 >=
total active balance.Get() ∗ 2){
beaconState.SetCurrentJustifiedCheckpoint(new
Checkpoint(current epoch, beaconState.
get block root(state, current epoch)));
beaconState.ChangeJustificationBit(beaconState.
GetJustificationBits(), 0, 1);
justified.Add((new Checkpoint(current epoch,
beaconState.get block root(beaconState,
current epoch))), old current justified
checkpoint. GetEpoch()); }
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After justification, the process of finalization is explained.
If the justification bits from index one to index three are one,
i.e., second, third, and fourth most recent epochs are justified,
second most epoch is justified using the fourth epoch as
source, and old previous justified checkpoint plus three
equals the current epoch then the finalized checkpoint in the
state is updated as old previous justified checkpoint. Here,
we have made improvement in the reference implementation
by the addition of finalized list to record finalized check-
points. It is assured that if a finalized checkpoint already
exists in the list then it will not be added in that list. Further,
this list is added to verify the finalized checkpoints.

// Process finalizations
if (beaconState.CheckBits(beaconState.

GetJustificationBits(), 1, 3, 111)&&

(old previous justified checkpoint.GetEpoch() + 3
== current epoch)){
beaconState.SetFinalizedCheckpoint(
old previous justified checkpoint);
var FP = finalized.Get(finalized.GetCount()− 1);
finalized.Add(old previous justified checkpoint,
FP.GetEpoch()); }

If the justification bits from index one to index two are one,
i.e., second and third most recent epochs are justified, second
most recent epoch is justified using the third epoch as source,
and old previous justified checkpoint plus two equals the
current epoch then the finalized checkpoint in the state is set
as old previous justified checkpoint.

if (beaconState.CheckBits(beaconState.GetJustification
Bits(), 1, 2, 11)&& (old previous justified
checkpoint.GetEpoch() + 2 == current epoch)){
beaconState.SetFinalizedCheckpoint(
old previous justified checkpoint);
var FP = finalized.Get(finalized.GetCount()− 1);
finalized.Add(old previous justified checkpoint,
FP.GetEpoch()); }

If the justification bits from index zero to index two are
one, i.e., first, second, and third most recent epochs are
justified, first most recent epoch is justified using the third
epoch as source, and old current justified checkpoint plus
two equals the current epoch then old current justified
checkpoint is set as the finalized checkpoint in the state.

if (beaconState.CheckBits(beaconState.
GetJustificationBits(), 0, 3, 111)&& (
old current justified checkpoint.GetEpoch() + 2
== current epoch)){
beaconState.SetFinalizedCheckpoint(
old current justified checkpoint);
var FP = finalized.Get(finalized.GetCount()− 1);
finalized.Add(old current justified checkpoint,
FP.GetEpoch()); }

If the justification bits from index zero to index
one are one, i.e., first and second most recent epochs
are justified, first most recent epoch is justified using

the second epoch as source, and old current justified
checkpoint plus one equals the current epoch then
old current justified checkpoint is updated as the finalized
checkpoint in the state.

if (beaconState.CheckBits(beaconState.
GetJustificationBits(), 0, 2, 11)&&
(old current justified checkpoint.GetEpoch() + 1
== current epoch)){
beaconState.SetFinalizedCheckpoint(
old current justified checkpoint);
var FP = finalized.Get(finalized.GetCount()− 1);
finalized.Add(old current justified checkpoint,

FP.GetEpoch()); }
var LFP = finalized.Get(finalized.GetCount()− 1);
k = LFP.GetEpoch(); } → Skip;

The process call next epoch is defined to execute the next
epoch. The procedure explained above is repeated in every
epoch. The state slot is adjusted to move to the next epoch.

11. call next epoch() =
process justification and finalization(); NextEpoch();
call next epoch();

12. NextEpoch() = [stateslot < 129] nepoch.stateslot {
beaconState.SetSlot(stateslot + 32);
stateslot = stateslot + 32;
} → call next epoch();

VI. RESULTS AND ANALYSIS
The formal specification of the state initialization and the
process of justification and finalization is verified through
the PAT model checker. The specification is analyzed to
be deadlock-free and safe initialization is ensured. Further,
the properties of justification and finalization are speci-
fied using LTL that are verified through the PAT model
checker.

A. DEADLOCK-FREE
A deadlock-free formal model is described as at any moment,
no process should wait for another process to proceed. The
formal model presented in this work is deadlock-free. The
Table 6 shows that the developed formal model is deadlock-
free. The assertions Q1 and Q2 specified below for the
state initialization and processing epoch are verified to be
deadlock-free.

Q1. #assert initialize beacon state from eth1()
deadlockfree;

Q2. #assert process epoch() deadlockfree;

B. SAFE INITIALIZATION
In the initialization of beacon state, the safe initializa-
tion is ensured when the genesis time becomes equal to
eth1 timestamp and GENESIS DELAY , the fork is created
successfully, the balances and state validators count become
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FIGURE 13. Analysis of number of epochs versus verification time, visited states, total transitions, and memory used for justification and
finalization properties.

greater than zero, and the validators are activated. The
LTL formula Q3 is specified to verify safe initialization.
It can be seen in Table 6 that the state initialization
is safe.

#define safeInitialization ((beaconState.GetGenesisTime()
== eth1 timestamp + GENESIS DELAY) &&
(beaconState.GetFork() == fork) &&
(balances.GetCount() > 0) &&
(statevalidators.GetCount() > 0) &&
(statevalidators.areActivated() == true));

Q3. #assert initialize beacon state from eth1()
|= ♢ safeInitialization;

C. JUSTIFICATION
The justification property is divided into four parts. In the
first part, it is defined that the genesis epoch checkpoint is
justified. In the second part, the previous justified checkpoint
is defined to be the previous epoch checkpoint or the
checkpoint before the previous epoch. The third part is the
super majority link, i.e., if a checkpoint is not justified then
to justify it, it is verified that if its attestations have total
weightmore than 2

3 of the total validator stake. The fourth part
describes that either the previous epoch or the current epoch

checkpoint is justified. The LTL formula Q4 for justification
specifies that eventually always will be the case that the
genesis epoch checkpoint is justified and if there is a previous
justified checkpoint and there is a super majority link then the
current checkpoint is justified. In Table 6, it can be seen that
the assertion Q4 is verified as true.

#define GenesisJustified justified.GetIndex(genesis) == 0;
#define PrevJustifiedCP ((justified.GetIndex(

old current justified checkpoint) ==
beaconState.get previous epoch(beaconState)) ∥
(justified.GetIndex(old current justified checkpoint)
== beaconState.get previous epoch(beaconState))− 1);

#define SuperMajLink ((previousEpochTargetBalance.Get()
∗ 3 >= totalActiveBalance.Get() ∗ 2) ∥
(currentEpochTargetBalance.Get() ∗ 3 >= total
ActiveBalance.Get() ∗ 2));

#define CurJustified ((justified.GetIndex(beaconState.
GetCurrentJustifiedCheckpoint()) ==
beaconState.get previous epoch(beaconState)) ∥
(justified.GetIndex(beaconState.GetCurrentJustified
Checkpoint()) == (beaconState.get current epoch(
beaconState))));

Q4. #assert process epoch() |= ♢2 (((GenesisJustified)
&& (PrevJustifiedCP && SuperMajLink)) →
CurJustified);
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TABLE 6. Results for verification of properties against the formal model.

D. FINALIZATION
The finalization property for checkpoint K consists of three
parts. The first part describes that K + 1 checkpoints should
be justified. The second part defines that K + 1 justified
checkpoints should be adjacent. The third part specifies that
the finalized checkpoint list should include Kth finalized
checkpoint. The finalization property is specified by an LTL
formula Q5 as eventually always there will be the case that
if there are K + 1 justified checkpoints that are also adjacent
then Kth checkpoint can be finalized. The Table 6, represents
that the assertion Q5 is verified as true in our formal model.

#define Kp1Justified (justified.GetCount() >= k + 1);
#define Kp1JAdjacent (justified.Adjacent(k + 1));
#define Kfinalized (finalized.Contains(finalized.Get(k))

== true);
Q5. #assert process epoch() |=

♢2 ((Kp1Justified && Kp1JAdjacent) → Kfinalized);

E. ANALYSIS OF THE PROPERTIES
We have carried out the formal verification on an Intel i7-
87000 3.20 GHz CPU with 40 GB of memory, running
Windows 10 and PAT version 3.5.1. The analysis of
the justification and finalization properties is shown in
Figure 13 (a–d). The horizontal axis denotes the number
of epochs and the vertical axis represents the verification
time in seconds, visited states, total transitions, and memory
used for the justification and finalization properties. The
verification time of both the properties increases drastically
when the number of epochs become sufficiently large.
This is because the time complexity of the automata-based
model checking algorithm for LTL is linear in the size of
the transition system and exponential in the length of the
formula [32]. We have to verify each property/LTL formula
for every epoch. As the time complexity of the model
checking increases exponentially with the length of formula,
therefore, with the increase of number of epochs, the length
of formula also increases, and hence the verification time
increases exponentially. Further, the state explosion problem
is detected at the epoch 2500 in both the justification and
finalization properties. The linear growth of visited states,
total transitions, and estimated memory used is observed for
both the properties.

VII. CONCLUSION AND FUTURE WORK
The revolutionary advent of blockchain technology has
brought a new era of decentralized and transparent systems.
Blockchain’s immutable nature and distributed ledger capa-

bilities have transformed industries, offering unprecedented
security and trust in the digital transactions. Beacon Chain is
the backbone of Ethereum 2.0 that introduces a PoS consen-
sus mechanism, addressing scalability concerns associated
with other blockchains. This innovation not only improves
the sustainability of blockchain networks but also paves the
way for enhanced security.

Because of the importance and critical nature of Beacon
Chain, it is important to ensure its correctness. Formal
methods are the most effective mathematical techniques to
ensure the correctness of safety and mission-critical systems.
Model checking stands out as the most important and
effective formal verification technique. Therefore, it is used in
this work, to formally verify the justification and finalization
of checkpoints in the Ethereum 2.0 Beacon Chain. The
justification and finalization are the significant aspects of
Beacon Chain that needs to be verified to increase the
reliability of Beacon Chain.

Hence, the processes of state initialization, justification,
and finalization are specified using a formal specification
language, i.e., CSP#. The properties of safe initialization,
justification, and finalization are described through LTL. The
formal model and the specified properties are provided as
input to the PAT model checker to perform their verification.
In the experiments, it is analyzed that the verification
time increases drastically as the number of epochs become
sufficiently large while linear growth is observed for visited
states, total transitions, and estimated memory.

In future, we aim to formally model and verify further
processes involved in epoch processing, as well as the entire
state transition function in the Beacon Chain. Our research
will also involve the formal modeling and verification of
the fork choice rule and the behavior of honest validators,
contributing to a deeper understanding of the system’s
resilience and reliability. Additionally, we will consider
the formalization of the safety and liveness properties in
the Beacon Chain protocol, ensuring both the absence of
undesirable states and facilitating the timely progression of
the system.
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