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ABSTRACT Existing time-domain fractional model simulations of batteries are either limited to short time
sequences, frequently less than 100 s, if truly fractional or use low order RC-ladder fractional approximations
to reduce computational burden. Here we present an entirely-passive, truly fractional, equivalent-circuit
model of a battery. We rely on a Reimann-Louiville fractional order differintegral to account for long
time-scales out to 12 days. An analytical solution is provided for the differintegral, subject to the constraint
of piecewise constant current. We validate our model fitting against a multi-day sequence of measured time
domain data and EIS measured to 10 µHz. The spectral content of the current waveform is identified as a
crucial factor. The full evaluation of fractional elements leads to residual error of voltage waveforms that is
amongst the best in the literature despite the model having only five parameters. In the time-domain, a root-
mean-square error (RMSE) as low as 2.8mV is achieved while maintaining a frequency-domain RMSE of
14% from measured impedance values over a span of 6 decades. The use of time-weighted regression is
shown to be important to the time-domain fit.

INDEX TERMS Characterization, electrochemical impedance spectroscopy, equivalent-circuit model,
fractional derivatives, rechargeable batteries.

I. INTRODUCTION
In this manuscript we introduce an entirely passive battery
model of exceptional accuracy. By passive, we mean that the
model does not contain either a dependent or an independent
source that can contribute energy to the system. Energy is
stored in a fractional capacitor, also known as a constant
phase element (CPE) [1]. By this means non-physical addi-
tion or removal of energy is completely impossible. Owing
to the use of fractional-derivative elements, non-integer
differintegrals are required to transfer between frequency and
time domains [2]. We introduce this technique using the
left-sided Riemann-Liouville definition [3], along with an
original analytical solution to expedite computation subject to
piecewise-constant stimulus current, see Appendix VII. The

The associate editor coordinating the review of this manuscript and

approving it for publication was Bo Pu .

model is validated by comparing electrochemical impedance
spectroscopy (EIS) data in the frequency domain, and voltage
waveform prediction in the time domain. The model can
become the heart of a digital twin implementing Self-Tuning
Control to track battery State-of-Charge (SoC) and State-of-
Health (SoH).

For a battery equivalent circuit model (ECM) to be
accepted for use in a digital-twin system, it must be possible
to predict terminal voltage given the current with reasonable
accuracy. This is not a trivial calculation in the case of
an ECM containing CPEs. It is desirable to carry out this
calculation analytically for some special cases, even if the
general situation demands a numerical solution.

Our approach contributes to knowledge by using a passive
fractional ECM that is fit to the measured voltage on
a battery due to a piecewise-constant current stimulus.
While a seeming limitation, the use of piecewise constant
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stimuli not only enables efficient analytical calculation of
the Riemann-Liouville differintegrals, but also enables one to
draw insightful conclusions about the impedance of batteries,
the conditions under which reliable fittingmust be performed,
and the appearance of non-linearity even in the so-called
linear region of battery operation.

In addition, the fit is performed both in the frequency and
time domain and each is tested not only back on its signal
(which is likely to be favourably biased) but also is used to
make predictions in the conjugate domain thereby giving an
independent test of the quality of fit. It is this that enables one
to make further inferences about the impedance of the battery
and necessary conditions when fitting in the time domain.

In this manuscript we restrict to a linear model. This model
is satisfactory provided the battery remains above approxi-
mately 20% State-of-Charge (SoC). A later manuscript will
address the nonlinear case, but is out of scope for this
manuscript.

II. THE STATE OF THE ART
A. EQUIVALENT-CIRCUIT MODELS
The modern battery model traces its roots to early electro-
chemical literature. The introduction of the Warburg element
in 1899 to model impedance was extended to arbitrary order
fractional elements in 1932 [4] and famously employed
by Randles in 1947 [5], thus the literatures [6], [7], and
[8] has suggested for some time that battery ECMs should
be composed of resistors, capacitors, fractional-derivative
capacitors and Warburg elements. Batteries are a complex
electrochemical system and models that attempt to contain all
of the underlying intricacies become impenetrably complex.
Westerhoff’s model [7], for example, contains nine resistors,
two capacitors, three CPEs and two Warburg elements. More
contemporary authors have decried the excessive parameters
present in many of the more complex battery models in
the literature and the lack of focus on accurate parameter
identification [9].

Nevertheless, authors since the 1980s have acknowledged
that a small subset of this full ECM is expected to be adequate
for all practical purposes [6]. Choosing a representative
model is a challenge in its own right as models with differing
elements and topologies can behave in a similar manner
and in practical measurements, with the additional noise
and measurement error, become difficult to distinguish [10].
Nevertheless, it has recently been shown that a model
containing one resistor and two CPEs in series is sufficient
in a wide range of cases [11], and is the model used in this
manuscript.

B. FRACTIONAL CALCULUS
The mathematics of fractional-order calculus has a long
history with many of the most famous names in mathematics
and science making contributions. This long history also
brings with it many options to choose from when deciding
on how to model fractional order behavior [12]. The

most commonly seen forms in the literature are Grünwald-
Letnikov, popular for being intrinsically discrete in nature,
easing the implementation of a practical system [13]; Caputo,
which allows for traditional initial and boundary conditions to
be used when solving problems [14]; and Riemann-Liouville,
allowing for arbitrary functions which need not be continuous
at the origin or differentiable [14]. In this paper, we use the
Riemann-Liouville form.

C. MODELING CPES
Modeling time-domain fractional order behavior has been the
focus of many notable works in the field of filter design.
Whether through a more abstract approach of manipulating
poles and zeros [15] or through the careful selection of
discrete components [16] it becomes clear that a deliberate
arrangement is required to properly form a model of
fractional-order behavior from simple R-C circuits, leading
to large arrays of components but with a very small number
of defining parameters. This constraint is not routinely
enforced when papers claim fractional inspiration of their
battery models by including an R-C ladder circuit, greatly
diminishing the interpretability of the fitted model and its
underlying fractional parameters.

These fractional parameters have been shown to correlate
with battery health [17], [18], [19] and may prove key to the
successful implementation of an accurate battery modeling
tool. In this manuscript we use the analytical solution of the
Riemann-Liouville differintegral presented in the Appendix,
thus avoid any need for R-C ECMs.

D. FITTING AND VALIDATION
There aremany papers presenting ECMs for lithium batteries.
In this and the following subsection we review recent
manuscripts to see how the performance of models is
assessed, and the voltage prediction accuracy that is achieved.

A challenge to the success and applicability of common
methods is that most, [17], [18] for example, fit entirely to
time domain data, and many ‘‘validate’’ model parameters by
recreating the same data to which they were fitted in the first
place. Conversely, Farrow [19] relied entirely on frequency
domain measurements, extracting model parameters from
a regression to impedance measurements to very low
frequencies. These two approaches result in contradictory
results as to whether the fractional order has a positive
or negative correlation with SoH. The authors of time
domain fitting claim that order increases with SoH, yet this
implies a corresponding increase in battery efficiency as
the fractional-order system comes to more closely resemble
an ideal capacitor—a behavior simply not observed in real
batteries. In contrast, Farrow [19] claims that fractional
order decreases with SoH, close to the observed behavior
of real battery systems whereby efficiency decreases with
age and wear. Unfortunately, that work lacked the validation
of time domain simulations and produced relatively sparse
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FIGURE 1. Summary of achieved voltage prediction accuracy in recent
literature. The horizontal line indicates the position of the work in this
manuscript.

measurements of impedance due to the complications of
making such measurements [19].

Impedance measurements, while time consuming and
difficult to make, are considered reliable, yet unsuitable for
implementation in practical systems. Time domain fitting of
model parameters could solve these issues but has yet to be
shown to produce equivalent results in a practical scenario.
In this paper we evaluate the convergence between the
parameters derived from time domain battery usage data and
from frequency-domain battery impedance measurements
(EIS) to determine if time domain fitting is a suitable
replacement for frequency domain impedance analysis for the
extraction of fractional order ECM parameters.

E. MODEL ACCURACY
A number of relevant papers have been published in the
last decade attempting to model battery behavior [13],
[18], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40],
[41], [42], [43], [44], [45], [46], [47], [48], [49]. Of these
34 manuscripts, 14 report the magnitude error in battery
predicted voltage as a function of time as their measure of
success. Some 19 present root-mean-square error between
expected and predicted voltage. Some 11 present relative
error, that is scaled to a fraction or percent, between expected
and predicted voltage to evaluate performance. Only two
present mean-absolute-error and a further three give mean-
relative-error with many authors choosing to provide a
combination of measures. Figure 1 summarises the spread for
24 examples with clear numerical statements.

Most models are evaluated through comparison of a
predicted andmeasured variable, usually voltage, on a sample
that resembles the data originally used to train the model.
This leads to concerns of overfitting and the generality

of their proposed models and methods. There are many
existing works using fractional order elements for circuit
modeling, however due to the nature of the time-domain
fractional-order behavior most incorporate either a truncation
or an approximation to truly fractional order behavior in
favor of drastically reduced computational complexity.While
some papers show extensive simulation over long periods,
the truncation of the fractional order behavior to a period
significantly shorter than this effectively limits the frequency
bandwidth which they are able to utilise. In this manuscript
we examine the model by comparing predictions across both
frequency (EIS) and time (I/V) domains over both a very long
period and very low frequencies as seen in Table 1.

III. MODEL FITTING
We use the R-CPE-CPE linear circuit model of Poi-
hipi et al. [11], shown in the inset of Fig. 2. A linear model
is considered satisfactory for good reason: our EIS data is
obtained using a multitone stimulus, and Fourier analysis of
the measured voltage waveform shows no intermodulation
products.

This model has five parameters, namely the series resis-
tance Rs, the constant of proportionality C1 and order α1 of
the first CPE, and likewise C2 and α2 for the second CPE.
The inclusion of the series resistance and first CPE are easily
justified by the presence of the two dominant asymptotic lines
of the EIS (see Fig. 2). The second CPE often provides a
useful improvement of the fit, particularly in the shape of the
curve between the two asymptotes.

First EIS [50], [51] is performed on the test battery cell
and the model fitted with the methodology of Poihipi et al.
[11] applied in the frequency domain to obtain initial
approximations for the parameters of the model (see ‘EIS
values’ row in Table 2).

To fit the model in the time-domain, we choose a suitable
current waveform, deliver that current to the battery, and
measure the terminal voltage that results. The parameters
of the model are estimated by minimising the squared-error
between the voltage predicted by the model and that
measured. To efficiently and confidently predict the resultant
terminal voltage from the current waveform in the time
domain, we limit ourselves to piecewise-constant current
waveforms so that the resultant voltage can be calculated
analytically. Even so, as the number of constant piecewise
sections increase, the calculation can quickly become burden-
some!

The fitting task is then to choose the five parameter
values to obtain the best possible agreement between
the predicted and measured terminal voltage waveforms.
Amulti-parameter gradient descent is used (the nlinfit routine
of Matlab which uses a Levenberg-Marquardt algorithm) to
adjust the model parameters to minimize the squared error
in predicted voltage as seen in Fig. 3. This fitting in the time
domain is distinct from the model fitting of the EIS which fits
the model parameters in the frequency domain.
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TABLE 1. A sample of existing fractional order modeling papers. These papers were selected for their performance and diversity of approaches to
implementing fractional order elements into battery models for parameter extraction. The papers are ordered by increasing computational complexity of
their approximations for fractional order behavior.

FIGURE 2. Electro-Impedance Spectrocopy (EIS) magnitude (filled
symbols) and phase (open symbols) data measured on the INR 18650 cell
(cyan, dots), presented in Bode format, overlayed with the model
prediction (red, triangles). The Equivalent-Circuit Model (ECM) is shown
as an inset. The straight lines show the impedance of the three elements
of the ECM separately.

Two example constant piecewise current waveforms are
used in this work. The first is a periodic shallow cyclingwave-
form (see Fig. 4) which consists of few constant sections,
thus the time-domain model fitting can be performed very
efficiently. This shallow cycling waveform was chosen as a
simple proof of concept. As presented below, it was found
that fitting to this current stimulus lead to less than desireable
results (see ‘Time-domain (cycle)’ of Table 2 of the Results
section) with the series resistance eliminated and the second
CPE order reduced almost to that of a resistor, leading to
an underestimation of the impedance at higher frequencies
(particularly above 100mHz).

We formulate two plausible explanations for this:
1) the cycling current waveform lacks frequency con-

tent, particularly that in the mid-frequency range
(0.1–1mHz) necessary to identify the second CPE;

2) the failure of the model to cope with transient non-
linearity evident at large step changes in current, which
are dominant in the periodic cycling stimulus but are
absent from the multitone stimulus used in EIS.

FIGURE 3. A multi-parameter gradient descent is used to minimise the
error between the battery model and the measured voltage to optimise
the parameters.

To address the first, we created a second waveform which
is a crude approximation to that which a single cell in a
pack might see during usage of an electric vehicle. Fig. 5
presents the stimulus current component of the waveform.
The waveform duration is 12 days with stimulus periods
randomly spaced but approximately daily, giving frequency
content down to 11µHz. The current has been set to be
constant for durations that are multiples of one minute so that
the methods described in Appendix VII can be used to speed
up the calculation of the Riemann-Liouville differintegral.
The simplified driving waveform is designed to provide
a more realistic waveform than the cycle waveform, with
increased spectral content at mid and lower frequencies.

To address the possibility that non-linearity may explain
the failure to reliably fit the second CPE, a weight function
is used in the fitting to de-emphasize the measured voltage
points that follow a sudden change in current. The argument
is that non-linearity in the battery is most evident immediately
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TABLE 2. Model parameter values.

TABLE 3. Impedance values.

following a large current change. The battery falls out
of its usual quasi-static equilibrium, and requires a short
period of time to settle back. If measurements immediately
following such a change are given less weight when fitting,
the non-linearity will not upset the convergence. The weight
function is created using a scaled convolution of a one-sided
gaussian and the derivative of the current. This ensures the
weight function affects only datapoints following a step and
the magnitude of the current steps controls the weighting
given.

IV. EXPERIMENTAL METHODOLOGY
All testing was performed on a single lithium-cobalt-oxide
(INR) 18650 cell with a rated capacity of 2.5Ah, with all
measurements made at a fixed ambient temperature of 22◦

C. Tests were carried out using an Agilent 66332A supply
controlled through a GPIB interface using custom software
running on Raspberry Pi model 4 computers [51].

Fig. 2 shows the EIS data. The impedance measurement
was performed using the ‘‘bzdcp66’’ method of [51]. From
this, the initial model parameters are obtained. These
parameters are used as initial values for the time-domain
fitting procedure. Time-domain fitting was carried out in
MATLAB running on a 32-core Linux server with 128Gbytes
of RAM.

Fitting was then performed in the time-domain using
1) the shallow cycling dataset of Fig. 4 (‘cycle’),
2) the more realistic second waveform of Fig. 5 (‘drive’),

and
3) the more realistic second waveform, incorporating the

weight function to de-emphasizemeasurements subject
to non-linearity (‘weighted drive’).

The fitted model parameters from all fits are then used
to predict the resultant voltage in the time-domain and to
predict the resultant impedance in the frequency domain.
In this way the EIS-derived model is tested for its ability to

FIGURE 4. Cycling of the INR 18650 battery. The driving current consists
of a series of constant-current pulses and rests, the voltage response is a
complex series of transients.

predict in the time-domain on the two current sources, and
the time-domain derived models are tested for their ability
to predict impedance in the frequency domain, thereby better
validating the model.

V. RESULTS
The EIS data measured on the INR 18650 battery cell is
shown in Fig. 2 with the model parameters resulting from the
fit in the frequency domain listed as ‘EIS values’ of Table 2.
Straight line asymptotes in Fig. 2 represent the impedances
of the individual elements in the equivalent circuit. Time-
domain fitting results appear in figures 6, 7, 8, and 9.
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FIGURE 5. Plot of the stimulus current representing a simplified version
of vehicle current over a 12-day period. The upper two boxes zoom in to
expose the details of the waveform.

FIGURE 6. Measured (red dots) battery terminal voltage is compared with
that simulated by the model fitted to EIS data (green dashed line) and to
cycle waveforms in the time domain (blue line).

The model parameters resulting from the time-domain fits
to the cycle and drive current stimuli on the battery, along
with the parameters resulting from the fit to the drive current
stimuli with the weight function to de-emphasize regions
affected by non-linearity of the battery are also listed in
Table 2.

Having derived the model parameters from fitting in
the time-domain, it is possible to predict the impedance
of the battery in the frequency domain. Plots of the EIS
(impedance magnitude spectrum) can include not only the
measured data and the prediction from the ECM fitted
to the measured EIS data, but can potentially include the
prediction from the ECM fitted to the ‘cycle’ waveform,
the prediction from the ECM fitted to the ‘drive’ waveform,
and the prediction from the ECM fitted to the ‘weighted

drive’ waveformwith de-emphasized step tails. This provides
the additional mechanism for evaluating or validating a
parameter set.

Measured and predicted voltage in the time-domain
for the cycle current source is shown in Fig. 6, along with
the prediction from model parameters derived purely from
the fit to EIS data. The model parameters from the time-
domain fit on the cycle waveform produces a fit that is
remarkably close, despite the fact that the time-domain input
contains relatively little information in the lower-frequency
range compared with the EIS data. The figure reveals
more discrepancy for the EIS fit, something like 20mV,
or 5%. The ‘cycle’ time-domain fit appears excellent in
this instance, but if the results are viewed in the frequency
domain a different story appears. Figure 8 presents the EIS
results; note that the EIS fit appears superior to the ‘cycle’
time-domain fit!

Predicted voltage in the time-domain for the case of the
‘drive’ current source for themodel parameters obtained from
EIS and from the drive time-domain fits with and without
weighting are shown in Fig. 7, again with the measured
data. The fits to the time-domain are superior to that derived
from EIS. The waveform is more challenging, and the traces
do exhibit some minor deviations from the measured data
with differences up to 35mV and an RMSE of 2.8mV.
Looking at the associated EIS plot in figure 9, it can be
seen that the weighted fit is superior in both domains. The
RMS percent deviation in the impedance calculated from the
weighted drive parameters is 14%, improving on the 32%
of the unweighted drive and 75% of the shallow cycling
parameters.

VI. DISCUSSION
Figure 6 clearly shows that the time-domain fitted parameters
predict the terminal voltage more accurately than the EIS-
based parameters. Conversely, figure 8 shows the reverse
outcome in the frequency domain, where the time-domain
fitted parameters do a poor job of predicting measured data.
As discussed previously, the shallow cycle waveform lacks
spectral content. This leads to the divergence of the trace
approaching 1Hz.

Figure 7 presents the time-domain results from the
more nuanced waveform, and includes results with reduced
weighting immediately after step changes. Both time-domain
fits improve upon the EIS-based fit. The weighted and
unweighted traces disagree only slightly, with the unweighted
fit being less accurate after a step change. Consulting
the associated EIS data in figure 9 it is clear that the
unweighted model parameters deviate significantly at higher
frequencies. The inescapable conclusion is that non-linearity,
attributed to loss of quasi-static equilibrium, is interfering
with the convergence of model parameters. Moving to a
waveform with better spectral content alone is not sufficient
to cause a dramatic improvement. Accounting for the
disturbance with the weighting function yields a significant
improvement.
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FIGURE 7. Zoomed-in view from a section of the drive waveform voltage after model fitting. Measured battery terminal
voltage (red dash-dotted line) is compared with prediction from EIS-based model parameters (green dashed line) and
time-domain based model parameters with unweighted samples (blue line with dots) and weighted samples (purple line
with circles). The latter two lie on top of each other except after step changes, where they can be briefly distinguished.

FIGURE 8. EIS plot associated with Figure 6. Measured impedance (red
symbols), is compared with the impedance from the model fitted to the
measured impedance data (green dashed line) and the impedance
predicted from the model using parameters obtained from the
time-domain fit to the cycle current source (blue line).

Overall, the predictive power is excellent, leading to the
low RMSE shown in figure 1. It is worth noting that the
RMSE is essentially the same in this case of the time-domain
waveform for weighted and unweighted fits; it is only when
the EIS fit is taken into account that the overfitting of the
unweighted method is exposed.

FIGURE 9. EIS plot associated with Figure 7. Measured impedance (red
crosses) is compared with prediction from EIS-based model parameters
(green dashed line) and time-domain based model parameters with
unweighted samples (blue line with dots) and weighted samples (purple
line with circles).

VII. CONCLUSION AND REFLECTION
In this manuscript we have

1) introduced a passive model, requiring no dependent or
independent, current or voltage source, thus guarantee-
ing charge and energy conservation;

2) dealt with fractional branches using a full differintegral
with no assumption of periodicity;
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3) presented an analytical solution for the differintegral in
the case of piecewise-constant functions;

4) shown this model to provide voltage prediction accu-
racy amongst the best available in the literature;

5) verified the performance of the model in the frequency
domain as well as the time domain;

6) specifically relied upon the extra-low frequency region
stretching down to microhertz.

It is interesting to note that 1 above says the impedance
model of a battery is equivalent to the complete equivalent-
circuit model. This knowledge is essentially implicit in much
of the electrochemical literature yet completely alien to
authors in the electrical engineering literature. Many authors
seem to feel bound to include some source, typically a voltage
source reminiscent of a Thévenin circuit. This is inelegant,
and proves to be unnecessary. We believe this manuscript is
the first formal statement of this.

It has been assumed that the battery remains in the
approximately-linear region, often taken as 20%–80%
capacity. This assumption is justified by the absence of
intermodulation products in the multitone spectrum. The
model parameters obtained from the time-domain fitting
are somewhat different from the EIS measurements. The
conclusion is that the impedance of the battery is different
when subjected to the different current waveforms. Recent
work explains why this might be the case [52], and how the
effect can be minimized in EIS measurements [51].

Electrical engineers do not expect small-signal and large-
signal measurements to agree. EIS is implicitly small signal
where linearity is assumed to hold, whereas real-world
measurements tend to reach large enough current values and
charge excursions that non-linear effects begin to appear.
A nonlinear extension (Part 2) of this work is underway. It will
allow the model to function as the battery excursions take it
toward the flat state, and through step changes in current. The
non-quasi-static effect gives reason to expect the nonlinear
model to converge using data that includes step changes even
if the battery is not pulled close to zero state of charge.

APPENDIX
ANALYTICAL SOLUTION OF RIEMANN-LIOUVILLE
DIFFERINTEGRAL FOR PIECEWISE-CONSTANT CURRENT
In this manuscript we take the Riemann-Liouville (RL) left-
sided integral definition [3], [53] of order α from a to time t
of the function f (t):

Iαa {f (t)} =
1

0(α)

∫ t

a
(t − τ )α−1f (τ ) dτ (1)

This leads to the equation for the voltage across a CPE
conducting a current ic(t) at time t = T :

vCPE (T ) =
1
CF

Iαa {ic(t)} |t=T (2)

where CF is the constant of proportionality sometimes
called a ‘‘pseudo-capacitance’’, and the complete history is
accounted by allowing a → −∞.

We commence by ‘‘conditioning’’ the battery. In practice,
one might not know the immediate history of the battery, and
so we choose a plausible conditioning current that will lead
to a reasonably stable terminal voltage of V0 at time t = t0.
We choose to condition the battery by applying a constant
current at a time t = ta ≪ 0 far in the past, and for a short
period up to tb, so that the battery has been at rest for some
time at the commencement of the experiment:

i(t) = I0[U (t − ta) − U (t − tb)] (3)

where U (t) is the unit step function, zero for negative time.
Combining (3) with (2) and using (1) yields

vCPE (t)

=
I0

CF0(α)

∫ t

−∞

(t − τ )α−1[U (t − ta) − U (t − tb)] dτ

(4)

and we choose ta < tb ≪ 0 so that

vCPE (t)|t=0 ≈ V0 (5)

which is the desired outcome. The RL integral is not typically
analytically tractable for an arbitrary f (t), but we have limited
ourselves to constant-amplitude step functions, hence∫ t

−∞

(t − τ )α−1U (τ − ta) dτ = −
1
α
U (t − ta)[(t − τ )α]ttα

=
1
α
(t − ta)αU (t − ta) (6)

can be used with (4) to get

vCPE (0) =
I0

CF0(α + 1)

[
(t − ta)αU (t − ta)

− (t − tb)αU (t − tb)
]

(7)

and then

vCPE (0) =
I0

CF0(α + 1)

[
(−ta)α − (−tb)α

]
(8)

In this manuscript we need only break the evaluation of
vCPE into a sum of terms of the form in (8). As fractional
order behavior is still linear, deconstruction of the piecewise
constant current waveform into a series of unit step functions
allows a simple analytical solution to time domain simulation.

A simple scheme is to apply a current of Ich until vCPE (t)
reaches Vch and then a current of Idis until vCPE (t) reaches
Vdis.

i(t) = I0
[
U (t − ta) − U (t − tb)

]
+ U (t − t0)(Ich) + U (t − t1)(−Ich)

+ U (t − t1)Idis + U (t − t2)(−Idis) (9)

where tn < 0, time t0 and t1 define the charge period, and
t1 and t2 the discharge period, chosen to obtain the desired
voltage limits. and the terminal voltage of the battery is
straightforwardly obtained from

VB(t) = vCPE1(t) + vCPE2(t) + i(t)RS (10)
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where vCPE1 is the voltage across CPE1 evaluated using 10
and vCPE2 is likewise found for CPE2 in the equivalent circuit
model.
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