
IEEE RELIABILITY SOCIETY SECTION

Received 26 March 2024, accepted 7 April 2024, date of publication 15 April 2024, date of current version 24 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3389104

Performance Analysis of a Self-Organized
Network Dynamics Model for Public
Opinion Information
ZHUO YANG1, YAN GUO 2, HONGYU PANG2, AND FULIAN YIN 2, (Member, IEEE)
1School of Public Security Information Technology and Intelligence, Criminal Investigation Police University of China, Shenyang 110854, China
2School of Information and Communication Engineering, Communication University of China, Beijing 100024, China

Corresponding author: Yan Guo (guoyangy@cuc.edu.cn)

This work was supported in part by Fundamental Research Funds for the Universities in Liaoning Province under Grant JYTMS20231417,
and in part by the Fundamental Research Funds for the Central Universities under Grant C2023011.

ABSTRACT With the rise of social networks, various types of information have emerged in the vision
field in a complex manner, making it crucial to analyze the propagation patters of online public opinion to
effectively guide information dissemination. To elucidate the dynamics of information dissemination, this
paper proposes a directed network information based on self-organized network information dissemination
scenario. This model takes into account the influence of networks formed by users spontaneously and
distinguishes the dissemination population based on the in- and out-degree of user nodes in the network.
To assess the model’s performance, it is evaluated using real retweets from Chinese Sina Weibo, considering
the impact of user interactions on information dissemination. Comparing real data with model-fitted data,
the proposed model-based evaluation and numerical analysis demonstrate that the forwarding and transfer
probabilities align with actual information dissemination. Furthermore, the evaluation sensitivity analyses
describe the key factors influencing information dissemination, aiding decision-making in formulating
strategies to guide public opinion. To quantify the importance of these factors, assessment metrics are
introduced, such as the propagation regeneration number.

INDEX TERMS Information propagation, self-organized network, dynamic model, directed network,
performance analysis.

I. INTRODUCTION
With the advent of the mobile self-media era, online public
opinion information spreads globally at astonishing speed,
giving rise to rapidly changing topics on the Internet. This
constant stream profoundly affects all aspects of people’s
lives and society. Therefore, building a healthy network envi-
ronment necessitates to study the law of network public
opinion dissemination. Meanwhile, focusing on the analysis
and evaluation of the direction of public opinion and mak-
ing the information dissemination model conform to reality
by assessing the performance of the established model is
required.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yun Lin .

On social media, typical scenarios of self-organizing
networks emerge from user-generated content, sharing, com-
menting, and forwarding behaviors. Information spreads
rapidly through interconnections and interactions between
users, giving rise to hot topics, trends, and network effects.
This spontaneous mode of information dissemination holds
particular significant on social media platforms, where user
behavior and feedback directly shape the path of information
dissemination and influence. When users engage in inter-
active behaviors, their actions form propagation paths that
spreads from one user to another, resulting in a directed
propagation network. Within directed networks, node inter-
actions are asymmetric, indicating that users can exert a
reverse influence on each other. Self-organizing networks
illustrate the spontaneous structure and interaction patterns
of information dissemination. Together, these elements shape
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FIGURE 1. Directed network information dissemination map where the
green dots represent the users who published the information, the black
dots denotes the users who forwarded the information, and the blue
arrows indicate for the direction of information dissemination.

the behavior of information dissemination in networks.
Moreover, Figure 1 depicts information dissemination in
directed networks. Notably, there is no major opinion leader
during the dissemination process; instead, the network incor-
porates the influence of mutual discussion among ordinary
users. Individual users can influence one another not only by
browsing, reading, and forwarding others’ Weibo posts but
also by posting their own Weibo content on various topics.
Subsequently, users may be influenced by others in turn,
aligning with the principle of directed online public opinion
dissemination.

Being an important research field, theoretical and applied
significance of complex networks has garnered continu-
ously recognition and expansion. Many real-world practical
problems find abstraction into complex network models for
research purposed, including the spread of infectious diseases
and the dissemination of public opinion information. Self-
organizing networks represent a kind of complex network
structure formed through self-organization. They are char-
acterized by spontaneous behaviors among nodes and hold
great importance understanding network characteristics and
optimizing performance, especially concerning the law of
information dissemination within such networks.

Self-organizing networks typically exhibit dynamic evolu-
tion, with changes in network topology and node properties
over time, adding complexity to the research process. One
of the key challenges lies in constructing accurate dynamic
models that capture the dynamics of the information dis-
semination process. This entails considering factors such as
interactions between nodes, information dissemination rules,
and environmental context.

Regarding information dissemination guided by self-
organizing networks, Gen et al. [1] considered individual
self-organizing behavior and developed a network-based
knowledge infection model that integrates static resources
and information dissemination into individual interactions of
knowledge infection. They conceptualized information dis-
semination as a mediator for individual behavior influenced

by the social environment, and theoretically analyzed funda-
mental aspects of the model such as the basic reproduction
number, equilibrium point, and global stability rules. More-
over, Huang et al. [2] defined attitude update rules for nodes
based on non-Bayesian social learning rules from an indi-
vidual perspective, establishing an inter-node game matrix
based on attitude values. Numerical analysis and simulation
experiments confirmed the validity of the proposed model,
highlighting the significant role of different attitudes among
nodes in information dissemination.

In addition, Deng et al. [3] investigated the role of user
self-organization in accordance with the characteristics of the
pervasive Internet, emphasizing the importance of allowing
people to freely express themselves while effectively man-
aging speech on the network. Furthermore, Du et al. [4]
analyzed the network structure of network media based on
self-organizing networks and chaotic fractal theory. They
underscored that network media information transmission
network is self-organized, requiring four necessary condi-
tions and certain driving forces for its realization. At the same
time, scholars use self-organization charts to study the spread
of disease [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
being very similar to the spread of information. In summary,
user self-organized network information dissemination is
prevalent across various social platforms, and understanding
self-organized network characteristics and user attributes is
crucial for studying dissemination and guiding information
governance.

To enhance the understanding of network structure and
dynamic behavior, the study of self-organized networks is
complemented by directed networks. A directed network is
a topological structure wherein edges connecting nodes in
the network possess directionality, divided into in-degree
and out-degree connections. In the propagation process of
directed network, node interactions are asymmetric, allowing
for reverse influence among users.

In the dissemination of public opinion information, the
connections between nodes in self-organizing networks
formed through spontaneous user organization are based on
social relations. Therefore, the node establishment of such
self-organizing networks is characterized by being a directed
network. In such networks, the connections between nodes
are no longer bidirectional; however, there is still a directional
flow of information between nodes, resulting in an increased
complexity of the analysis. Moreover, the node’s influence
may depend on its position in the network and the nature of
its directional connections; therefore, themodeling process of
dynamic evolution considers different changes in inter-node
relationships over time.

Recent years have witnessed significant research results in
propagation dynamicswithin directed networks. For instance,
Karsai et al. [15] investigated the weakening phenomenon
of strong connections in directed networks, shedding light
on the influence of time variation on connection strength.
Moreover, Huang et al. [16] studied the problem of dis-
tributed constrained nonlinear Least Squares (LS) estimation
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in directed networks, devising a novel projected LS estima-
tion algorithm and validating it through numerical examples.
In addition, Liu et al. [17] studied behavior propagation in
the online social network experiment and found the interac-
tion between network structure and propagation dynamics.
Moreover, Wei et al. [18] proposed an improved Susceptible-
Infected-Recovered (SIR) model based on the traditional
SIR, focusingmainly on infectious disease dynamics wherein
some of the ignorant users are directly replaced by immune
ones, designed a directed network combined with Weibo
network topology, constructing aWeibo network public opin-
ion propagation model and analyzing factors influencing
public opinion propagation. Consequently, the application
of directed networks in information dissemination models
has spurred scholars interest in elucidating the penetration
and influence of social media, summarizing the form and
interactive role of information exchange [19], [20], [21], [22],
[23], [24], [25], [26].

Introducing dynamic modeling into the information dis-
semination process allows for a more nuanced understanding
of changes and evolution within the dissemination process.
By incorporating analysis of self-organized networks and
directed networks into dynamic model construction, param-
eters become more comprehensive, covering more factors
influencing information dissemination, thus improving fitting
and prediction ability of the model.

The recognition of similarities between the process of
network information diffusion and the one of disease trans-
mission, as noted by Daley and Kendall [27], led to the devel-
opment of the Daley-Kendall (DK) rumor propagationmodel.
Since then, many information propagation dynamics models
have emerged from biomathematics, leveraging insights from
disease transmission dynamics. Moreover, Wang et al. [28]
constructed a spatio-temporal evolution model, analyzing
influencing factors. Based on the optimal segmentation, spa-
tial autocorrelation analysis, and text analysis methods, the
evolution of online public opinion was analyzed over time.
Furthermore, Cooper et al. [29] used the SIR model to simu-
late COVID-19 transmission, exploring the impact of changes
in susceptible individuals. In addition, Chen et al. [30] pro-
posed a time-varying SIR model, capable of tracking the
propagation rate and recovery rate at an given time. Added
to that, Wang et al. [31]studied a Spreader1-Spreader2-
Ignorant-Hesitant-Stifler1-Stifler2 (2SIH2R) rumor propa-
gation model, incorporating a confrontation mechanism to
quantify the competition between rumors and truth, revealing
its influence on propagation dynamics. Finally, Zhu et al. [32]
introduced a saturation treatment function to model the spe-
cific influence of rumor propagation control on regulators.
Researchers have developed a variety of dynamic models
to describe how information spreads in social networks.
These models help to understand the underlying mechanisms
of information dissemination and to predict dissemination
trends. The effects of network topology on the efficiency
of information dissemination have been revealed by analyz-
ing the properties of network structure, and these studies

provide a theoretical basis for designing efficient dissemina-
tion strategies.

Based on our current understanding, there appears to
be a gap between a suitable modeling framework using
directed network dynamics to analyze the impact of interac-
tions among forwarding users on information dissemination
dynamics and emerging public opinion. Additionally, most
of the existing information dissemination models tend to
overlook the crucial role of ordinary users in the dissem-
ination process. This prompts us to consider how to more
accurately capture the dissemination path of information in
networks. In response to these challenges and referring to
the self-organized network information propagation scenario,
we propose a directed network information propagation
dynamics model for the self-organized network propagation
spontaneously formed by users. To assess the performance of
the model, the main objectives consist of:

1. analyzing the topology structure of a directed network
and its impact on information propagation;

2. predicting the development trend of public opinion;
3. formulating intervention policies.
To validate the effectiveness of the mode, we plan to ana-

lyze the propagation of public opinion topics on the Weibo
platform, utilizing it as a typical case for data fitting to
determine the trend of information dissemination in directed
networks.

The organizational structure of this paper is as follows: In
Section II, based on the scenario of self-organized network
propagation, building the information propagation dynamics
model of directed networks, meanwhile defining the infor-
mation propagation evaluation indexes. In Section III, the
numerical simulation experiments and parametric sensitivity
analysis were performed to verify the effects of different
conditions on information spread. Finally, the content of this
article is summarized in Section IV.

II. MODELING THE DYNAMICS OF INFORMATION
PROPAGATION IN A DIRECTED NETWORK
Based on the scenarios of self-organizing network propa-
gation, the information dissemination dynamics model of
directed networks is proposed in this work. As shown in
Figure 2, nodes represent users in different states whereas
edges indicate the dissemination paths of the information
between users. In the directed network, the edge pointing to
the user node highlight that the user is affected other users,
and whereas the edge emanating from the user node indicates
users’ ability to spread information outward.

Moreover, we assume that the multi-information topic
spreads in a closed and stable environment and only users
that can be reached in the topic’s spread process are con-
sidered. The total number of people (N ) remains unchanged
throughout the study. For each information part, we focus on
the diffusion of information generated by users’ forwarding
behavior, assuming that the same user can choose whether
to forward the information after reading it; moreover, a user
can forward each piece of information once. At the same
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FIGURE 2. Dynamic model of a directed network.

TABLE 1. Description of each state.

time, any individual in the crowd can be categorized in one
of the following three states: Susceptible (S), Forwarding
(F), or Immune (I ). In this paper, the in-degree of network
nodes k and the out-degree of network nodes l are introduced.
Therefore, categorizing the population in each state based
on the in-degree and out-degree of the different nodes in the
network, is displayed in Table 1.

It is worth noting that subscript (k, l) represents the state
with an in-degree k and an out-degree l at time t .

A. MODEL CONSTRUCTION
Our model takes the form in Equation (1)-(5), and the defini-
tion for parameters is listed in Table 2.

S(k,l)(t) + F(k,l)(t) + I(k,l)(t) = N(k,l)(t) (1)

dS(k,l)(t)/dt = −kS(k,l)(t)
∑K

i

∑L

j
p((i, j)|(k, l))

F(i,j)(t)/N(i,j)(t) (2)

dF(k,l)(t)/dt = mkS(k,l)(t)
∑K

i

∑L

j
p((i, j)|(k, l))

TABLE 2. Interpretation of directed network model parameters.

F(i,j)(t)/N(i,j)(t)

− αF(k,l)(t) (3)

dI(k,l)(t)/dt = (1 − m)kS(k,l)(t)
∑K

i

∑L

j
p((i, j)|(k, l))

F(i,j)(t)/N(i,j)(t)

+ αF(k,l)(t) (4)

We assumed that the total number of users in each state
remained constant, as indicated in Equation (5):∑K

k=1

∑L

l=1
S(k,l)(t) +

∑K

k=1

∑L

l=1
F(k,l)(t)

+

∑K

k=1

∑L

l=1
I(k,l)(t) = N (5)

The initial value of each state is defined as: S(k,l)(0) =

N(k,l)(0),F(k,l)(0) = Ck (0), I(k,l)(0) = 0.
Moreover, through Equations (2)-(4), p((i, j)|(k, l))

denotes the conditional probability that any edge in
the network is emitted by a node with a degree (i, j)
and points to a node with a degree (k , l). Therefore,∑K

i
∑L

j p((i, j)|(k, l))F(i,j)(t)/N(i,j)(t) represents the proba-
bility that a node user with degree (k, l) is connected to a user

55524 VOLUME 12, 2024



Z. Yang et al.: Performance Analysis of a Self-Organized Network Dynamics Model

in a forwarding state at time t . Thus, the amount of change
in the susceptible population S(k,l) (t) can be expressed using
Equation (2). Similarly, Equation (3) represents the amount of
change in the population of F(k,l) (t) states, consisting of two
components (e.g., S(k,l) (t) that knows the information and
forwards it to become the F(k,l) (t) and F(k,l) (t) that loses
interest in the information over time to become the I(k,l) (t)).
Finally, Equation (4) denotes the amount of change in the
population of I(k,l) (t) state, also consisting of two parts (e.g.,
S(k,l) (t) state knows the information but is not interested in it,
so it shifts directly into the I(k,l) (t) state, and F(k,l) (t) state
loses interest in the information over time and shifts into the
I(k,l) (t) state).

p((i, j)|(k, l)) = jp(i, j)/⟨l⟩ (6)

Assuming that the directed network is an unrelated
directed network, the conditional probability is only related
to the degree of the upstream node (i, j). As indicated in
Equation (6), p (k, l) represents the joint probability distri-
bution of nodes (k , l) in the network, denoting the probability
of randomly selecting a node with an in-degree k and an out-
degree l in the network. It is also equivalent to the ratio of the
total number of nodes Nkl . Therefore, the degree distribution
of any point in the network with degree (k , l) is shown in
Equation (7).

p(k, l) = Nkl/N (7)

where, referring to Equation (6), the ⟨l⟩ symbol represents
the average degree of a directed network. This can be
explained by the fact that, in any directed network, each edge
leaves one node and enters another. Therefore, the average
in-degree is equal to the average out-degree, as represented
in Equation (8).

⟨k⟩ = ⟨l⟩ =

∑K

i

∑L

j
kp(k, l) =

∑K

i

∑L

j
lp(k, l) (8)

Thus, θ (t) represents the probability that a node user with
degree (k , l) is connected to the forwarding user per unit time,
as highlighted in Equation (9).

θ (t) =

∑K

i

∑L

j
jp(i, j)F(i,j)(t)/(⟨l⟩N(k,l)(t)) (9)

In the dynamics of directed network propagation, a user
susceptible to information is affected by an average of k
individuals per unit of time. Since the conditional proba-
bility that a user of degree (k , l) is connected to another
user of degree (i, j) in a degree-uncorrelated network is
p((i, j)|(k, l)), the probability that a user in a susceptible state
with degree (k , l) contacts a user in a forwarding state per unit
time is defined as k

∑K
i

∑L
j p((i, j)|(k, l))F(i,j)(t)/N(i,j)(t).

According to the user’s interest in the information, when
kS(k,l)(t)

∑K
i

∑L
j p((i, j)|(k, l))F(i,j)(t)/N(i,j)(t) users are

exposed, mkS(k,l)(t)
∑K

i
∑L

j p((i, j)|(k, l))F(i,j)(t)/N(i,j)(t)
represents a portion who will choose to forward the informa-
tion. They switch from S(k,l) state to F(k,l) state as presented
previously. Moreover, (1−m)kS(k,l)(t)

∑K
i

∑L
j p((i, j)|(k, l))

F(i,j)(t)/N(i,j)(t) individuals will not forward the information.
They will move from S(k,l) state to I(k,l) state.When the group
that has forwarded the message has exceeded the message
exposure period (1

/
α), it will no longer be able of influencing

other users to be exposed to the content of this message;
therefore, the user changes from state F(k,l) to state I(k,l) at
an average immunization rate α.

dC(k,l)(t)/dt = mkS(k,l)(t)θ (t) (10)

C(t) =

∑K

k=1

∑L

l=1

∫ t

0
mkS(k,l)(t)θ (t)dt (11)

The forwarding cumulative amount can be directly
obtained from Sina Weibo. In the proposed model, the rate
of change of the cumulative amount of users’ forwarding over
time with degree (k , l) is represented in Equation (10). There-
fore, it is possible to obtain the forwarding accumulationC (t)
for a single message, as indicated in Equation (11).

B. ASSESSMENT OF INDICATORS
In a typical information dissemination process, the total
number of forwarding groups varies over time following a
bell-shaped curve, whereas the cumulative amount of for-
warding follows the S-shaped incremental curve form, which
eventually stabilizes. Based on these laws, a series of infor-
mation dissemination indicators is determined, as depicted in
Figure 3.

FIGURE 3. Index map for the relevance of information dissemination
based on forwarding.

1) PEAK INFORMATION DISSEMINATION
Fmax represents the maximum value of the instantaneous
total number of current forwarding groups per unit of time.
It reflects the maximum number of active users in the infor-
mation dissemination process; moreover, these users can
influence other individuals to access the information and
forward it [33].

2) FINAL SCALE OF INFORMATION DISSEMINATION
The final Scale of Information Dissemination (Cs) denotes
the final stabilized value of the cumulative forwarding curve
C . It is used to measure the extent to which information
dissemination can eventually spread [33].

3) INFORMATION DISSEMINATION TIME
Four key indicators are mainly defined. They include:
(1) information dissemination outbreak time tb, representing
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the time when public opinion starts to break out and sat-
isfying the condition F(tb) = F∗, where F∗ denotes the
threshold value, usually F∗

= 0.1 × Fmax; (2) information
dissemination end time te, representing the time when public
opinion tends to die out, satisfying the condition F(te) = F∗;
(3) information dissemination duration time ti = te − tb,
defined as the time from the beginning of the outbreak of
public opinion to the tendency to die out; and (4) information
dissemination climax time tmax , defined as the time when
public opinion breaks out reaching the highest point and
satisfying the condition F(tmax) = F [34]

max .

4) RATE OF INFORMATION DISSEMINATION
Similarly, three metrics representing the rate of information
dissemination are defined. They include: (1) the average
outbreak rate of information dissemination Vo = (Fmax −

F∗)/(tmax − tb), representing the average speed between
the beginning of the outbreak of public opinion and the
spread of public opinion until reaching the highest point; (2)
the average decay rate of information dissemination Vd =

(Fmax − F∗)/(te − tmax), defined as being the average speed
of public opinion between getting to its highest point and its
tendency to die out; and (3) the average rate of information
dissemination Va = (Fmax − F∗)/(te − tb), defined as the
average speed of public opinion between the beginning of its
outburst and its tendency to die out [33].

5) PROPAGATION REPRODUCTION NUMBER
In the network dynamics model of information dissemination
in directed networks, determining whether information bursts
depends on the magnitude of the instantaneous forwarding
user’s rate of change over time dF(t)/dt is represented in
Equation (12). If dF(t)/dt ≺ 0, the information will not burst
as the number of susceptible users decreases [35].

dF(t)/dt = d
∑K

k=1

∑L

l=1
F(k,l)(t)/dt (12)

θ (t) =

∑K

k=1

∑L

l=1
jp(i, j)F(i,j)(t)/(⟨l⟩N(k,l)(t)) (13)

When a network is determined, the average in- and
out-degree of the network are respectively ⟨k⟩ and ⟨l⟩. More-
over, the total number of nodes N(k,l)(t) are fixed. Thus
Equation (9) can be rewritten as shown in Equation (13).
At the same time, both sides of Equation (3) are

simultaneously multiplied by lp(k, l)/(⟨l⟩N(k,l)(t)) to obtain
Equation (14).

dF(k,l)(t)lp(k, l)/(⟨l⟩N(k,l)(t))dt

= mkS(k,l)(t)θ (t)lp(k, l)/(⟨l⟩N(k,l)(t))

− αF(k,l)(t)lp(k, l)/(⟨l⟩N(k,l)(t)) (14)

Summing both sides of Equation (14) over (k, l) yields
Equation (15):

dθ(t)dt

=

∑K

k=1

∑L

l=1

[
mkS(k,l)(t)θ (t)lp(k, l)/(⟨l⟩N(k,l)(t))

−αF(k,l)(t)lp(k, l)/(⟨l⟩N(k,l)(t))
]

= θ (t){
∑K

k=1

∑L

l=1
[mkS(k,l)(t)lp(k, l)/(⟨l⟩N(k,l)(t))] − α}

= θ (t){m
∑K

k=1

∑L

l=1
[kS(k,l)(t)lp(k, l)/(⟨l⟩N(k,l)(t))]−α}

(15)

As lp(k, l)/(⟨l⟩N(k,l)(t)) is always positive, we can let
dF(t)/dt ≺ 0 be equivalent to dθ (t)/dt ≻ 0. For t = 0,
S(k,l)(0) = N(k,l)(0). Based on the numerical characterization
of the joint probability distribution of directed networks, one
can be obtained Equation (16) as follows:∑K

k=1

∑L

l=1
klp(k, l) = ⟨kl⟩ (16)

ℜ0 = m⟨kl⟩/α⟨l⟩ (17)

Based on the above, the propagation reproduction number
ℜ0 is expressed using Equation (17). Moreover, if ℜ0 ≺ 1,
the public opinion does not erupt, whereas, if ℜ0 ≻ 1, the
public opinion is bound to eruption. When the average for-
warding probabilitym as well as ⟨kl⟩ increase, the value ofℜ0
increases as well, and the public opinion eruption is acceler-
ated. When the average immunization rate α and the average
degree of the directed network increase, ℜ0 decreases, result-
ing in slowing down the public opinion eruption.

III. CASE ASSESSMENT ANALYSIS
In this paper, we consider the self-organized network commu-
nication topic #Should we get COVID-19 vaccine boosters?#
related to the COVID-19 vaccine on Weibo serving as a typi-
cal case to validate the effectiveness of the dynamic model
of directed network information dissemination. The topic
has no official opinion leaders participants, and it is related
to people’s interests. With strong discussion, more ordinary
users post on the topic data and they interact with each other,
forming an information dissemination network for directed
network. Therefore, this topic is used to obtain real data to
estimate the parameters of the directed networkmodel and the
initial susceptible population, used to carry out the validity
verification of the model.

A. NUMERICAL FITTING
Concerning a specific message, relevant data is collected
through Weibo API interface, including the content of the
message text and the forwarding time of each user. As the
topic contains multiple messages, all required message data
is collected. Firstly, the forwarding data of all messages is
sorted according to the forwarding time, followed by data
pre-processing. Similarly, the start time of all forwarding data
for this topic’s multiple messages is set to zero and the sam-
pling frequency is set to one hour. Finally, the multi-message
spreading forwarding is generated to accumulate volume over
the whole time. The specific data is displayed in Table 3,
where T represents the sampling time and C denotes the
Cumulative forwarded quantity.

To fit the proposed model with real data from the
Chinese Sina microblog, the LS (Least Squares) method
is applied to estimate the model parameters and the ini-
tial susceptible population. The parameter vector is set as
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TABLE 3. Topics # should we get COVID-19 vaccine boosters ?#
multi-message spreading forwarding to accumulate volume.

FIGURE 4. Topics # Should we get COVID-19 vaccine boosters ?#
numerical fitting results.

θ = (α,m, S0,N ,K ,L). Thus, the LS error function is
displayed in Equation (18).

LS =

∑T

w=0
|fc(w, θ) − IDw|

2 (18)

where fC (w, 2) represents the numerical result of C (t)
of the topic under the condition of parameter vector 2,
IDw denotes the actual forwarding accumulation amount of
directed network information dissemination, and w indicates
the sampling time, w = 0, 1, 2, . . .T .
Referring to Figure 4, data fitting is performed on real

data. The real forwarding accumulation of the topic as well
as the estimated forwarding accumulation drawn from the
parameters estimation of the directed network information
propagation dynamics model are displayed. It is evident that,
for the cumulative forwarding, the trend of the predicted data
is similar to that of the real observations, and the predicted
trend for the instantaneous forwarding is aligned with the
bell-shaped trend of the instantaneous forwarding of common
information.

Based on the results of parameter estimation in Table 4,
it is clear that the average forwarding probability parameter
m = 0.91 is large, highlighting that the topic # Should we
get COVID-19 vaccine boosters # is significantly attracting
users, and most of them participate in forwarding, exploding
quickly the information. Moreover, the average probability of

TABLE 4. Topics # should we get COVID-19 vaccine boosters ?#
parameter estimation results.

immunization α = 0.3407 represents the average user active
time during three hours. Meanwhile, the network maximum
access degree (K = 40, and L = 2) is relative to the overall
number of users; therefore, it is small. On behalf of the infor-
mation publisher, the participants do not have a high fan base,
and relative to the opinion leaders, their ability to contact
and influence other users is relatively small. This implies that
ordinary users are forwarding information to participate in the
discussion of each other and to promote the dissemination of
information in line with the law of information dissemination
in the directed network.

Referring to the fitting curves and parameter estimation
results, the proposed directed network information dynamics
model can well estimate parameters for these events based on
multi-information, and both the feasibility and reliability of
the model are improved.

B. SENSITIVITY ANALYSIS
Partial Rank Correlation Coefficients (PRCCs) were used to
better discern the different parameters responsible for the
model. The simulationwas based on 1000 samples for various
input parameters against the threshold condition to evaluate
the model’s sensitivity. When the value PRCC > 0, there is a
positive correlation effect between the index and the parame-
ter. However, when the value PRCC < 0, the parameter plays
a negative role. The p-value was deployed as the probability
of observing the current PRCC value in the absence of a
correlation among parameters. A lower p-value implies that
the observed PRCCvalue is unlikely to occur; therefore, a sig-
nificant correlation between the parameters can be inferred.
Typically, the significance level p-value is set to 0.01 and
it is considered as the criterion for determining whether a
parameter is significant or not. In more detail, if the p-value is
less than 0.01, the correlation is considered significant and the
results of the parameter’s sensitivity analysis are statistically
significant. When using real-world data, we set the initial
value of each state to S0 = 4.300×103, F0 = C0 = 501,
and I0 = 0. Moreover, Figures 5-7 generate the PRCC results
along with histograms and scatter plot, showing the effect of
six parameters (α,m, S0,N ,K ,L) on the model indices ℜ0,
Cs, Fmax , tb, ti, tmax , Vo, Vd , and Va, respectively.
In more detail, Figure 5 represents how the values of ℜ0,

Cs, andFmax are affected by parameters. There is data to show
that ℜ0, Cs, and Fmax are strongly and positively affected by
the average probability of forwarding message m, the initial
value S0, and the maximum value of the in-degree node K .
The average rate of message immunization α, the total num-
ber of peopleN , and themaximumvalue of out-degree node L
have a negative effect on ℜ0, Cs, and Fmax , indicating that
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FIGURE 5. PRCC results with indices ℜo, Cs, and Fmax of different
parameters.

FIGURE 6. PRCC results with indices tb, ti , and tmax of different
parameters.

prolonged exposure time of information and increase the
ability of users to receive information conducive to the infor-
mation outbreak. Meanwhile, to increase the final scale of
information dissemination as well as the peak of information
outbursts, we can reduce the number of users influencing
others.

Moreover, Figure 6 illustrates how the values of tb, ti, and
tmax are affected by parameters. For the information dissem-
ination outbreak time tb, all parameters have no significant
influence on it. In addition, the start time of information
dissemination is largely subjective to the user’s discretion.
Regarding the information dissemination duration time ti
and the information dissemination climax time tmax , param-
eters N ,K , and L have no significant influence on it, while
m and S0 have a positive influence; however, α have a nega-
tive effect on ti and tmax . This suggests that if a message needs
to ferment quickly in the short term, it is required to increase
the probability of forwarding by users so that more people are
exposed to the message.

Finally, Figure 7 shows how the values of Vo, Vd , and Va
are affected by parameters. It is evident that parameters α, m,
and S0 play a significant role in influencing Vo, among which
α has a significant positive effect on it, whereas m and S0
significantly affect it negatively. In addition, each parameter

FIGURE 7. PRCC results with indices Vo, Vd , and Va of different
parameters.

FIGURE 8. Influence on directed network dissemination with the change
of a single parameter where: (a) only α changes; (b) only m changes;
(c) only s0 changes; (d) only N changes; (e) only K changes; (f) only L
changes.

has almost the same effect on Vd and Va, where parameters
α, m, S0, and K have positive effects on both, contrarily to
parameters N and L. Moreover, high population density and
increased frequency of contact between people augment the
rate of information dissemination.

Furthermore, Figure 8 highlights the effect of changes
in the single-parameter average immunization rate α,
the average forwarding probability m, the initial value of
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the total number of susceptible groups S0, the total number
of users N , the maximum value of node ingress in the net-
work K , and the maximum value of the out-degree node L
regarding the instantaneous number of forwarding users F(t)
and the cumulative number of forwarding users C(t). When
parameters α and N decrease, F(t) becomes steeper, peaks
higher, and reaches its peak more quickly. Similarly,C(t) will
stabilize earlier and reach a larger final size. On the contrary,
as the m, S0,K , and L increases, the burst of information
becomes faster, F(t) peak becomes higher, and C(t) also
increases.

C. DECISION-MAKING SUPPORT
Aiming at the self-organized network communication sce-
nario formed spontaneously by users, a directed network
information dissemination dynamics model is proposed. The
process of generating, developing, and influencing pub-
lic opinion is efficiently analyzed, revealing the changing
rules and paths of public opinion information dissemination
through self-organized networks. Based on our proposed
model, the government and related departments can better
understand the reasons of public opinion events, predict the
evolution trend based on the existing data, and consequently
formulate corresponding policies and measures to quickly
assess the advantages and disadvantages of decision-making.

Combined with multi-parameter sensitivity analysis car-
ried out by PRCCs, it is evident that, in the directed network
model, changes in parameters, such as the average forward-
ing probability m and initial value of the total number of
susceptible groups S0, have different degrees of influence
on the indicators of online public opinion dissemination,
such as ℜ0,Cs, and Fmax . Specifically, to expedite the rapid
expansion and engagement of spontaneously formed topics,
leading to more forwarding and discussions, we can make
the content of the topic entries richer and more interesting
to attract more users to browse, read, and participate in the
discussion to increase the initial value of the total number of
susceptible groups S0. Moreover, as the rapid increase in topic
popularity moves on, it will keep users active for a long time,
leading to increase the average forwarding probability m and
decrease the average immunization rateα resulting in a higher
peak dissemination and a larger final size of the message.
Similarly, if the objective consists of making the discussion
of a negative impacts topic decrease rapidly, opinion leaders’
interventions can be deployed, leading to increase the average
immunization rate α and the maximum value of node inci-
dence in the network K to render the duration of information
dissemination ti decrease sharply and stop the spread of the
negative public opinion.

IV. CONCLUSION
To sum up, our research explores the intricate dynamics of
information dissemination within directed networks, consid-
ering the unique behavior patterns inherent in user-generated
networks and the varying information contact rates that arise
from these directed structures. We meticulously analyzed

the directional flow of communication between network
nodes, distinguishing dissemination pathways through edges.
Additionally, we categorize users based on their connections,
such as in-degree and out-degree, which reflect their
influence and reach within the network.

We present a dynamics model of information dissemi-
nation in directed networks. Through performance analysis
of the model, we utilize typical topic information from
Sina Weibo, characterized by spontaneously dissemination
and discussion nature, to verify its adherence to actual
information propagation law and proves the influence of
directed network characteristics on information propagation.
According to results analysis, we found that the in-degree and
out-degree of directed networks and other parameters have
different impact degrees on the information dissemination
stability value, peak value, time, and rate.

By enhancing topic content, increasing the size of the
initial susceptible population, and engaging in discussions to
augment the average probability of forwarding, rapid topic
explosion will be facilitated and more attention and discus-
sion could be generated. In summary, our research provides
important theoretical and practical guidance for information
dissemination in mixed scenarios.

In the realm of online information dissemination, users’
dissemination behavior is subject to a variety of factors,
including personal characteristics, social environment, and
cultural background, leading to the diversity and uncer-
tainty of behavior. Therefore, it is difficult to achieve
a comprehensive range of factors considered during the
modeling process, leading to a lack of understanding of
the whole picture of information dissemination. Mean-
while, the application of the model to real-world scenarios
and guidance in policy formulation is not consistent, and
there is a lack in the prediction trends after information
interventions.

Therefore, future research can consider more factors that
can influence information dissemination into the model, add
intervention strategies, and construct an information dis-
semination dynamics model based on complex behaviors.
This will help in describing, more accurately, the trend of
information dissemination.
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