
Received 18 March 2024, accepted 3 April 2024, date of publication 16 April 2024, date of current version 1 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3389096

A Comparative Study of Using Deep Learning
Algorithms in Network Intrusion Detection
SALWA ELSAYED , KHALIL MOHAMED, AND MOHAMED ASHRAF MADKOUR
Systems and Computers Engineering Department, Faculty of Engineering, Al-Azhar University, Nasr City, Cairo 11765, Egypt

Corresponding author: Salwa Elsayed (salwa.elsayed.stu.4@azhar.edu.eg)

ABSTRACT This study introduces a deep learning approach for network intrusion detection (NIDS),
which excels in both binary and multi-classification tasks. This approach combines the strengths of six
distinct deep learning algorithms: DNN, CNN, RNN, LSTM, GRU, and a Hybrid CNN-LSTM architecture.
The NSL-KDD dataset, a widely recognized benchmark for intrusion detection research, was utilized for
implementation and evaluation. In binary classification, the approach demonstrates exceptional capabilities,
with the GRU approach outperforming others. Similarly, the DNN, LSTM, CNN, and RNN approaches
exhibit robust performance, showcasing their efficacy in detecting anomalies within network data. In the
multi-classification setting, the DNN approach stands out with outstanding performance. While other
approaches, including RNN, CNN, LSTM, GRU, and the Hybrid CNN-LSTM approach, also maintain
commendable results, the DNN approach proves to be the most effective in handling complex network
patterns. This research provides valuable insights into the application of deep learning approaches using
the NSL-KDD dataset for network anomaly detection, emphasizing their versatility and reliability across
different classification scenarios. The findings lay the groundwork for further exploration and utilization of
deep learning methodologies in enhancing network security.

INDEX TERMS Network security, anomaly detection, NIDS, deep learning algorithms, NSL-KDD dataset,
binary classification, multi-classification.

I. INTRODUCTION
With the increasing reliance on computer networks for
business, communication, and information sharing, network
security has emerged as a critical concern [1]. The escalating
number and sophistication of cyber-attacks have underscored
the importance of intrusion detection systems (IDS) as
essential security measures for safeguarding computer net-
works [2].
IDS systems play a crucial role in protecting networks from

malicious activities by continuously monitoring network
traffic and system logs, either independently or in conjunction
with firewalls [3]. These systems utilize three primary
deployment methods: host-based (HIDS), network-based
(NIDS), and hybrid IDS, which combines HIDS and NIDS
for comprehensive protection [4].
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Despite the prevalence of signature-based techniques in
existing Network Intrusion Detection System (NIDS) solu-
tions, their limitations necessitate a shift towards anomaly
detection techniques. Signature-based systems exhibit a low
false error rate but can only detect known intrusions, and
there is a significant delay in incorporating newly identified
intrusion attacks into the signature base [5]. Relying solely
on these techniques eventually leads to ineffective and
inaccurate detection.

In contrast, anomaly detection systems have the ability
to detect zero-day attacks by analyzing attack behavior.
However, they often suffer from a high false error rate, which
translates to increased costs. Additionally, acquiring reliable
training data poses challenges, and capturing the behavioral
dynamics of the system requires extensive data [6].

The challenge is to develop an anomaly detection tech-
nique that can effectively address the limitations arising
from the evolving landscapes of modern networks [7]. These
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limitations contribute to the complexity and difficulty of
distinguishing between normal and abnormal behavior, and
three key factors play a role [7].

The exponential growth in network data volume, driven by
the widespread adoption of the Internet of Things and cloud-
based services, poses a significant challenge. Analyzing such
vast amounts of data necessitates techniques that are rapid,
efficient, and effective.

Achieving in-depth monitoring and granularity is crucial
for enhancing the effectiveness and accuracy of NIDS
analysis. The ability to attribute behavioral changes to
specific network elements, such as individual users, operating
system versions, or protocols, is essential.

The multitude of different protocols and the diverse nature
of data traversing modern networks amplify the difficulty
in establishing a reliable NIDS. This situation widens
the scope for potential exploitation and zero-day attacks,
further underscoring the need for an accurate detection
system.

An NIDS encompasses the analysis, identification, and
response to malicious activities in a computer network,
with the objective of improving the accuracy of classifiers
for intrusive behavior [8], [9]. Machine learning and deep
learning techniques are being increasingly employed in NIDS
systems to enhance their accuracy and effectiveness [8],
[9]. While traditional machine learning methods such as
Artificial Neural Networks (ANN), Support Vector Machines
(SVM), and Random Forest (RF) have demonstrated success
in improving detection accuracy, the emergence of deep
learning has introduced a new and promising approach to
NIDS [10].

Deep learning, a subset of machine learning, utilizes
artificial neural networks to capture the intricate relationships
between inputs and outputs. In the context of Network Intru-
sion Detection Systems (NIDS), Deep learning offers notable
advantages over traditional machine learning methods. in the
context of NIDS. First, deep learning models can have the
capability to autonomously learn complex features from raw
data, eliminating the need for manual feature engineering [8].
This characteristic proves especially beneficial for NIDS
applications, as they often deal with high-dimensional data.
Secondly, deep learning models exhibit enhanced robustness
to noise and outliers in the data, which is crucial for NIDS
systems that frequently encounter noisy and incomplete data.
Lastly, deep learning enables the development of novel NIDS
techniques, including anomaly detection and hybrid NIDS
systems [8].
While deep learning-based models demonstrate promis-

ing results, certain challenges necessitate attention. These
challenges encompass the scarcity of labeled data required
for training deep learning models and the interpretability
of such models. The collection of labeled data for network
intrusion detection is a complex undertaking that demands
expertise and resources. Additionally, interpretability plays
a pivotal role in comprehending the reasoning behind the
detection outcomes produced by deep learning models.

Nevertheless, the integration of deep learning techniques in
network intrusion detection exhibits significant potential in
enhancing network security [11], [12].

This paper presents a deep learning-based approach for
network intrusion detection (NID) that integrates various
architectures, including Deep Neural Network (DNN),
Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), and a Hybrid model combining CNN
and LSTM (Hybrid CNN-LSTM), to address both Binary
and Multi classification tasks. The model’s evaluation on
the NSL-KDD dataset demonstrates its remarkable accu-
racy, precision, recall, and F1-score. This approach excels
in capturing spatial and temporal features from network
traffic data, enabling a comprehensive understanding of
network behavior and detection of intricate intrusion patterns.
Comparative analysis reveals its superiority over traditional
machine learning methods and other deep learning-based
NIDS approaches. The proposed deep learning approach for
NIDS brings forth significant contributions:

Enhanced NIDS Performance: By leveraging six distinct
deep learning algorithms, the approach achieves superior
accuracy, precision, recall, and F1-score compared to existing
NID methods.

Comprehensive Feature Extraction: The approach effec-
tively captures spatial and temporal features from network
traffic data, providing a holistic representation of network
behavior.

Adaptability to Binary and Multi-Classification Tasks:
The approach can be applied to both binary (normal
vs. anomalous) and multi-classification (Probe, Denial of
Service (DoS), User to Root (U2R), Remote to Local (R2L),
and Normal) scenarios.

The paper is structured as follows: Section II compre-
hensively reviews related research in intrusion detection,
focusing on the role of deep learning methods. Section III
provides an overview of the present study. Section IV
explores the NSL-KDD Dataset and details the data
preprocessing techniques employed. Section V introduces
various Deep Learning Models. Section VI presents the
experimental results, including the environment, evaluation
metrics, performance of tuned NIDS Models for both binary
and multi-classification tasks, and a comparative study
with previous approaches. Finally, Section VII discusses
the conclusions drawn from the study. Additionally, two
appendices are included: Appendix A details the features
of the NSL-KDD Dataset and its attack categories, and
Appendix B provides the architectural details of deep learning
models for both binary and multi-classification.

II. LITERATURE REVIEW
The past decade has witnessed a surge in research aimed
at tackling the complex challenge of network intrusion
detection. Various approaches have emerged, with some
studies leveraging established machine learning algorithms,
while others pioneering the adoption of deep learningmodels.
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Extensive exploration has shed light on the techniques and
challenges inherent in applying traditional machine learning
to intrusion detection systems. Consequently, the existing
body of work relevant to our investigation in network
anomaly detection can be categorized into three distinct areas:

A. STATISTICAL-BASED DETECTION
Statistical-based detection methods for NIDS have laid
the groundwork for anomaly identification by establishing
baselines of ‘‘normal’’ network behavior. These methods
analyze traffic features like packet size, protocol distribution,
and connection frequency, using statistical models like
univariate and multivariate analysis to build profiles and flag
deviations as potential intrusions.

PAYL (Wang and Stolfo [13]) detects network traffic
anomalies by modeling normal application payloads (byte
frequency & std. dev.) & comparing new data (Mahalanobis
distance). Effective on DARPA IDS’99 & Columbia CS
data. Kruegel et al. [14] proposed a statistical intrusion
detection scheme based on Bayesian networks that signifi-
cantly reduces the false alarm rate by incorporating model
confidence and dependencies between models.

While statistical methods provide interpretable results and
low processing overhead, their effectiveness can be limited
by: (i) The static nature of their models, struggling to
adapt to evolving attack patterns, and (ii) Their inability to
capture complex relationships between features, potentially
missing sophisticated attacks. Although these methods are
still valuable for initial filtering and anomaly detection,
machine learning architectures offer a more dynamic and
adaptable approach to NIDS.

B. MACHINE LEARNING-BASED DETECTION
While traditional statistical methods laid the groundwork
for anomaly detection, machine learning (ML) methods for
network intrusion detection (NIDS) offer a significant leap
forward. It uses machine learning algorithms to learn the
normal behavior of network traffic and identify anomalies.
The system is typically trained on a large dataset of historical
network traffic data. Once the system is trained, it can be used
to detect anomalies in real time. Wang et al. [15] surveys ML
models (supervised, unsupervised, etc.) for network anomaly
detection, highlighting challenges and potential.

Dang and Quang-Vinh. [16] XGBoost shines in intrusion
detection, even with limited data, but simpler options like
Naive Bayes hold untapped potential. Random Forest tops
anomaly detection on key datasets (CICIDS-2017, UNSW-
NB15, ICS) while Naive Bayes lags [17].

According to [18], Open issues in anomaly detection
persist, but promising pathways exist. Systematic technique
evaluation and standardized datasets key for future progress.

Gadal et al. [19], propose a new anomaly detection method
based on K-Mean Array and SMO algorithms. It is designed
to handle high traffic volumes without affecting performance.

It was evaluated on theNSL-KDDdataset and achieved a high
accuracy of 97.4%.

Compared to statistical methods, ML boasts advantages
like adaptability to evolving threats and the ability to identify
complex attack signatures. However, their effectiveness
hinges on accurate and comprehensive training data, and their
interpretability can be limited, leaving a gap for advanced,
non-linear attack detection. This gap paves the way for
the exploration of deep learning architectures in this paper,
promising improved accuracy, adaptability, and the potential
for anomaly detection beyond known attack patterns.

C. DEEP LEARNING-BASED DETECTION
Deep learning architectures are revolutionizing network
intrusion detection (NIDS) by tackling limitations inherent in
traditional methods. These powerful models, driven by artifi-
cial neural networks, automatically extract intricate features
from raw network traffic, capturing complex relationships
and nuances beyond the reach of statistical or rule-based
approaches. This enables deep learning to detect not just
known attack signatures, but also subtle anomalies and
even zero-day threats before they wreak havoc. Therefore,
several recent studies have explored innovative approaches
for network intrusion detection using deep learning tech-
niques. Studies like [20], Network IDS: Detects unauthorized
network usage to secure systems. Attacks can be monitored
on network traffic or individual hosts. Network-based IDS
focuses on traffic, not host behavior. Using six features from
the NSL KDD dataset, Kamili [21] achieved a 76% detection
rate with a DNN model for SDN intrusion detection.

Utilizing a mutual information-based feature selection,
[22] tested optimal features on an LSSVM-IDS over NSL-
KDD, achieving good results (DR =98.76%, FAR =0.28%)
with only 18 features. Reference [23] proposed an IDS for
network anomalies using recursive feature elimination with
random forest on CICIDS2017, followed by a DMLP model,
achieving 91% accuracy.

Ludwig [24] built an ensemble model with AE, DBN,
DNN, and ELM, achieving 97.95% DR and 14.72% FAR on
the NSL-KDD dataset.

Menon and Radhika [25] focused on maximizing detection
rate (DR) by introducing a combined DBN-SVM model for
intrusion detection. Reference [26] demonstrate the potential
of DL for accurate anomaly detection. Wang and Stolfo
NSL-KDD-based DL model [13] highlights the need for
real-time applicability and integration with more diverse DL
techniques. Additionally, class imbalance in datasets can
skew results.

Promisingly, [27] explores multiclass classification with
DNN, RNN, and DBN models, achieving promising results
while also comparing traditional methods like decision
forests. Employing an optimization algorithm for hyperpa-
rameter selection further empowers NIDS performance.

Ieracitano et al. [28] combined statistical analysis with
an autoencoder (AE) to extract optimal features from the
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NSL-KDD dataset, achieving improved system performance.
Similarly, [29] proposed a two-stage deep learning frame-
work using GRU and DAE models, combined with super-
vised and semi-supervised anomaly detection approaches.
Furthermore, [30] and [31] provide comprehensive reviews of
intrusion detection research, analyzing progress, bottlenecks,
and evaluation methods, while [4] and [32] specifically
focus on NIDS classification using ML and DL models,
comparing their accuracy and complexity. These studies
showcase the potential of deep learning for intrusion
detection while highlighting the need for further research and
optimization.

Deep learning continues to revolutionize network intrusion
detection. D-PACK [33] leverages a CNN and Autoencoder
combo for early anomaly detection, exhibiting impressive
results in identifying malicious traffic. Similarly, a 1-D
CNN architecture proves effective in [34], splitting the
UNSW-NB15 dataset by protocol for targeted analysis.
DOC-IDS [35] tackles obstacles like feature engineering
and labeling by adopting anomaly detection, achieving
outstanding performance with an AUC of 0.996 and 0.889.
Finally, a dynamic anomaly detection system using LSTM+

Attention [36] boasts a 96.2% overall accuracy and 98%
recall rate for various anomaly categories, showcasing the
growing sophistication of deep learning-powered defenses.

Xu et al. [37] propose a 5-layer Autoencoder for NSL-
KDD data, achieving impressive accuracy (90.61%) and
F1-score (92.26%) in anomaly detection. This highlights the
effectiveness of autoencoders in extracting crucial features
for accurate threat identification.

Reference [38] explores a two-phase deep learning method
using Bi-directional LSTMs on the UNSW-NB15 dataset.
Their findings reveal that BLSTMs excel at predicting flow-
based data but struggle with packet-based data, suggesting the
need for tailored approaches for different data types.

References [39] and [40] showcase the potential of hybrid
deep learning architectures. They combine CNNs and LSTMs
on NSL-KDD and TEST datasets, respectively, demonstrat-
ing improved accuracy in anomaly packet recognition. This
highlights the synergy between CNNs’ ability to capture
spatial patterns and LSTMs’ prowess in handling sequential
data.

Cao et al. [41] address the issue of imbalanced datasets
in intrusion detection. They propose a hybrid sampling
algorithm combining ADASYN and RENN, achieving
remarkable accuracy and precision on NSL-KDD, UNSW-
NB15, and CIC-IDS2017 datasets. This paves the way
for robust detection even when dealing with skewed data
distributions.

These studies underscore the vast potential of deep
learning in fortifying network security, emphasizing the
continuous development and refinement of these method-
ologies. However, a critical gap in NIDS research is
identified, characterized by a limited focus on multiclass
classification—a notably more challenging task than binary
classification. Additionally, another significant gap pertains

to the optimization of hyperparameters, playing a pivotal role
in empowering NIDS performance.

To address these research gaps, our study proposes a
dual approach encompassing both binary and multiclass
classification for NIDS. Furthermore, we commit to the
investigation of advanced optimization algorithms for hyper-
parameter selection. This comprehensive effort is crucial
to meticulously fine-tune deep learning models, ultimately
aiming for optimal performance in the intricate task of
intrusion detection. By bridging these identified gaps, our
research endeavors to contribute to the holistic understanding
and advancement of deep learningmethodologies in the realm
of network intrusion detection.

III. OVERVIEW OF THE PRESENT STUDY
The present study compares six distinct deep learning archi-
tectures, to achieve enhanced intrusion detection through both
binary and multi-classification tasks. As shown in Fig. 1, the
compared architectures are: DNN, CNN, RNN, LSTM, GRU,
and a Hybrid CNN-LSTM.

This selection aims to stress on the individual strengths
of each architecture. DNNs provide a robust framework
for learning high-level patterns, while CNNs extract local
dependencies within traffic sequences. RNNs, LSTM, and
GRU handle temporal dynamics and long-term relationships,
enabling the model to recognize evolving patterns and
complex intrusion signatures. The Hybrid CNN-LSTM
architecture further enhances feature extraction by combining
the strengths of CNNs and LSTMs.

The effectiveness of our approach is rigorously evaluated
using the widely used NSL-KDD dataset, a benchmark for
NIDS research.We leverage robust performance metrics such
as accuracy, precision, recall, and F1-score to assess the
models’ ability to distinguish between normal and anomalous
network traffic, paving the way for further development and
potential real-world deployment.

IV. THE NSL_KDD DATASET
This section encompasses the NSL-KDD dataset introduction
and preprocessing procedures.

A. NSL-KDD INTRODUCTION
The NSL-KDD dataset is a widely used publicly available’’
benchmark dataset for intrusion detection research [42].
It was refined from the KDD’99 dataset to address its
shortcomings, such as redundant and duplicate records [43].
This makes the number of records in the training and testing
sets more reasonable, and it also prevents the classifier from
favoring more frequent records. Although the NSL-KDD
dataset still has the limitations discussed in [43], it is still
widely used by intrusion detection researchers. According
to [4],most current research uses KDD99 and NSL-KDD
as datasets for evaluating performance, with NSL-KDD
accounting for the majority of research. NSL-KDD is often
regarded as the most widely used latest network intrusion
dataset, and it can be applied as an effective benchmark to
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FIGURE 1. The overall NIDS development approach using six DL models.

compare different intrusion detection methods. Therefore,
this paper uses the NSL-KDD dataset as the benchmark
dataset.

The NSL KDD dataset consists of the KDDTrain+ dataset
as the training set and the KDDTest+ and KDDTest-21
datasets as the testing set. It contains normal traffic and
four different attack types: denial-of-service (DoS), root to
local (R2L), user to root (U2R), and probing attacks(Probe),
as shown in Table 1.

There are 41 features, including 38 numeric (e.g., int64 or
float64) and 3 categorical values (e.g., object), and 1 class
label for every traffic record. These features are divided
into four categories: basic, content, time-based traffic, and
connection-based traffic, as shown in Table 10 [Appendix A].
According to the characteristics of attacks in the dataset,
there are around 20 attack types in both the training and
testing sets, 2 attack types in the training set only, and
17 attack types in the testing set only that are not present in
the training set. This allows the dataset to provide a more
realistic theoretical basis for intrusion detection, as shown
in Table 11 [Appendix A].

B. NSL_KDD PREPROCESSING
To effectively utilize the NSL-KDD dataset for intrusion
detection, a comprehensive data preprocessing stage is
proposed. This stage encompasses three critical sub-stages:

1) STANDARDIZATION
Numerical features in the dataset, such as ‘duration’,
‘Src_bytes’, and ‘Dst_bytes’, are identified and standard-
ized using the StandardScaler. Standardization transforms
numerical features to have zero mean and unit variance,
ensuring that all features are on a similar scale. This
transformation improves the performance and convergence

TABLE 1. The number of records in each subset of the NSL-KDD.

of various analytical and modeling techniques by preventing
any single feature from dominating the analysis process. The
formula for standardization is:

Z = (x − µ)/σ (1)

where Z is the standardized value, x is the original value, µ

is the mean of the data.

2) ONE HOT ENCODING
As shown in Table 10 [Appendix A], the NSL-KDD
dataset contains three categorical features: ‘Protocol_type’,
‘Service’, and ‘Flag’. These features were transformed into
numerical representations using one-hot encoding, a tech-
nique that assigns a unique binary vector to each distinct value
within a categorical feature. For instance, the ‘Protocol_type’
feature, with its three distinct values (‘‘tcp’’, ‘‘udp’’, and
‘‘icmp’’), was expanded into three separate features. Each of
these features is represented by a three-dimensional binary
vector: [1,0,0], [0,1,0], and [0,0,1], respectively. Similarly,
the ‘Service’ and ‘Flag’ features, with 70 and 11 unique

VOLUME 12, 2024 58855



S. Elsayed et al.: Comparative Study of Using Deep Learning Algorithms in NIDS

attributes, respectively, were expanded into corresponding
sets of binary vectors.

This transformation introduced a total of 84 new features,
increasing the dataset’s dimensionality from 41 to 122.
The resulting 122-dimensional representation comprises
38 original continuous features and 84 newly introduced
features obtained through one-hot encoding.

3) DATA SPLITTING
The preprocessed dataset is split into training and test sets
using the train_test_split function. The dataset is divided
such that 80% of the data is allocated for training, with the
remaining 20% allocated for testing. The split is performed
randomly, and a fixed random state is set for reproducibility.
Then, of the training data, 20% is further set aside as a
validation set to monitor the model’s performance on unseen
data during training, helping to detect overfitting or other
issues.

V. DEEP LEARNING MODELS
Deep learning algorithms have emerged as powerful tools for
detecting anomalies in network traffic, offering a promising
avenue for enhancing network security measures. In this
paper, we employ six deep learning models (DNN, RNN,
LSTM, GRU, CNN, Hybrid CNN-LSTM) for both binary
and multi-classification detection. The optimal number of
filters, kernel size, and hidden units were selected through
a meticulous hyperparameter tuning process, where various
configurations were evaluated to identify the optimal balance
between model complexity and generalization performance.
The following discussion explains the reasons behind explor-
ing the use of deep learning algorithms in NIDSs.

The deep learning approach showed exceptional perfor-
mance in capturing temporal and special features from the
training data in many artificial intelligence applications, such
as computer vision [44] and natural language understand-
ing [45]. However, deep learning algorithms suffer from
the vanishing gradient problem which is a phenomenon that
occurs during the training of deep neural networks, where
the gradients that are used to update the network become
extremely small as they are backpropagated from the output
layers to the earlier layers. Regarding network intrusion
detection, the problem is to identify the anomalous behavior
of the attacking entities. The analysis of typical network
traffic data reveals that it contains both sequential and spatial
information. Consequently, deep learning algorithms are
well-suited for capturing temporal and special dependencies
in network traffic patterns.

The RNN model and its variants LSTM and GRU are
designed to handle sequential data including text, speech, and
time series. Their internal memorymechanisms allow them to
effectively capture temporal patterns in network traffic data.
LSTM has a better performance than RNN because of its
ability to overcome the vanishing gradient problem. GRU
shares the LSTM’s ability to handle long-term dependencies
with greater computational efficiency. In essence, GRU

reduces the computational overhead of LSTM but maintains
the effective learning of long-term dependencies in network
traffic data.

In addition to temporal information, deep learning models
can also capture spatial features from network traffic data.
The CNN model, for instance, is particularly adept at
extracting local patterns and spatial relationships. By apply-
ing convolutional operations, CNNs can effectively identify
spatial anomalies within the network traffic data. This ability
to capture spatial features provides valuable insights into the
nature of network intrusions.

The Hybrid CNN-LSTM model combines the strengths
of both CNNs and LSTMs, allowing it to capture both
spatial and temporal information simultaneously. This hybrid
architecture enables the model to detect anomalies based on
both local patterns and temporal dependencies in network
traffic data, providing a comprehensive approach to network
intrusion detection.

A. DNN
Deep neural networks (DNNs) are a class of artificial neural
networks (ANNs) with multiple layers of neurons, enabling
them to learn complex nonlinear relationships in data. In the
context of network anomaly detection, DNNs can effectively
extract and analyze features from raw network traffic data to
identify anomalies. Their ability to model intricate patterns
and relationships makes them well-suited for detecting subtle
anomalies that might go unnoticed by simpler models.

B. RNN
Recurrent neural networks (RNNs) are a type of neural
network designed to handle sequential data, such as network
traffic data that unfolds over time. RNNs have internal
memory cells that allow them to retain information from pre-
vious inputs, enabling them to capture temporal dependencies
in network traffic patterns. This makes RNNs particularly
effective at detecting anomalies that span multiple time steps,
such as traffic spikes or unusual sequences of network events.

C. CNN
Convolutional neural networks (CNNs) are a type of neural
network particularly adept at processing image and time
series data. In the context of network anomaly detection,
CNNs can effectively extract local patterns and sequential
features from network traffic data, making them suitable for
detecting anomalies based on specific data patterns. Their
ability to identify local anomalies within the broader context
of network traffic provides valuable insights into the nature
of these anomalies.

D. LSTM
Long short-term memory (LSTM) networks are a variant
of RNNs specifically designed to overcome the vanishing
gradient problem, which can hinder the ability of RNNs
to learn long-term dependencies. LSTMs incorporate gating
mechanisms that allow them to selectively retain and update
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information over extended periods, making them well-
suited for detecting anomalies that occur over long-time
frames.

E. GRU
Gated recurrent units (GRUs) are another variant of RNNs
that share LSTM’s ability to handle long-term depen-
dencies but offer greater computational efficiency. GRUs
employ a simpler gating mechanism compared to LSTMs,
reducing the computational overhead while maintaining
effective learning of long-range dependencies in network
traffic data.

F. HYBRID CNN_LSTM
Hybrid CNN-LSTM networks combine the strengths of
CNNs and LSTMs to create a powerful architecture for
network anomaly detection. This hybrid approach leverages
CNNs’ ability to extract local patterns and LSTMs’ ability
to capture long-range dependencies, enabling the model
to detect anomalies based on both local and temporal
characteristics of network traffic data. This hybrid archi-
tecture provides a comprehensive approach to anomaly
detection, capturing both spatial and temporal information
from network traffic.

VI. ARCHITECTURE DETAILS AND
EXPERIMENTAL RESULTS
The experimental work involved utilizing a Tensor Process-
ing Unit (TPU) for model training on the Google Colabo-
ratory platform, with Python 3.10.12 as the programming
language. TensorFlow and Keras 2.14.0 were employed for
model development, while NumPy, Pandas, and Scikit-Learn
were used for data preprocessing. The computer hardware
configuration included an Intel (R) Core (TM) i7-8650UCPU
@ 1.90GHz (2.11 GHz), 16 GB of RAM, Intel (R) UHD
Graphics 620, a 512 GB SSD, and theWindows 10 Pro 64-bit
operating system (Version: 19045.3693).

The used evaluation metrics are explained in this section
followed by the algorithms and the architectural details
of the considered six deep learning architectures. The six
NIDS models are thoroughly tuned, and their performance is
presented with a comparative analysis of the obtained results
against other relevant studies.

A. EVALUATION METRICS
The efficacy of Network Intrusion Detection Systems (NIDS)
is evaluated using a variety of metrics, with Accuracy (AC),
Precision (P), Recall (R), and F1-score (F) being among
the most significant. These metrics should ideally attain
high values, particularly Accuracy, as it is the foundation
upon which NIDS dependability is built. Another crucial
evaluation tool is the confusion matrix, which provides a
detailed breakdown of various parameters, including True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN).

1) ACCURACY: A MEASURE OF OVERALL CORRECTNESS
Accuracy represents the proportion of network activities that
are correctly classified, encompassing both intrusions and
normal traffic. A high Accuracy value indicates that the NIDS
is effectively distinguishing between malicious and benign
network activity, minimizing the occurrence of false alarms.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (2)

2) PRECISION: ENSURING THE RELEVANCE OF INTRUSION
DETECTION
Precision measures the proportion of detected intrusions that
are actually true intrusions. A high Precision value indicates
that the NIDS is not generating a large number of false
alarms, ensuring that security resources are not unnecessarily
allocated to investigate non-threatening events.

Precision = TP/(TP + FP) (3)

3) RECALL: CAPTURING THE FULL SPECTRUM OF ATTACKS
Recall measures the proportion of actual intrusions that are
correctly detected. A high Recall value indicates that the
NIDS is not missing a significant number of intrusions,
ensuring that potential security threats are identified and
addressed promptly.

Recall = TP/(TP + FN) (4)

4) F1-SCORE: STRIKING A BALANCE BETWEEN PRECISION
AND RECALL
F1-score is a harmonic mean of precision and recall,
providing a balanced measure of the NIDS’s effectiveness in
both identifying and classifying intrusions. A high F1-score
indicates that the NIDS is achieving a good balance between
precision and recall, ensuring that it is effectively detecting
and classifying intrusions without causing excessive false
alarms or missing genuine intrusions.

F1 = 2 ∗ (Precision ∗ Recall)/(Precision + Recall) (5)

5) CONFUSION MATRIX: A DETAILED BREAKDOWN OF
PERFORMANCE
The confusion matrix provides a more granular view of the
NIDS’s performance by categorizing the TP, FP, TN, and FN
values. This breakdown can help identify areas where the
NIDS is making mistakes and can guide the development of
better intrusion detection rules and algorithms.

B. PERFORMANCE OF TUNED NDS MODELS
In our study, we systematically fine-tuned DNN, RNN,
LSTM, GRU, CNN, and Hybrid CNN-LSTM models using
Keras Tuner [46], [47] to optimize their performance beyond
default settings. The best-performing models were then
uniformly trained on the NSL-KDD dataset and rigorously
evaluated for both binary and multi-class classification tasks
using dedicated testing sets. We applied a standardized
training protocol with 100 epochs and a batch size of 5000 to
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FIGURE 2. The results for all binary classification models.

FIGURE 3. The plot of Accuracy vs. epoch for train and test dataset, for all binary classification models (a) DNN, (b) RNN, (c) CNN, (d) LSTM, (e) GRU,
(f) Hybrid CNN-LSTM.

ensure consistent conditions for comprehensive performance
assessment. Evaluation metrics, including accuracy, recall,
F1 score, and precision, were meticulously considered to
gauge the models’ generalization performance on unseen
testing sets. Furthermore, accuracy and loss plots were
generated to visually represent the learning progress over
epochs. Rigorous checks were implemented to verify the
models’ generalization to unseen data, thus fortifying the
reliability of our anomaly detection system. Graphical
analyses of accuracy and loss metrics further affirmed the
absence of overfitting, contributing to the robustness of
ourapproach as shown in Fig. 3, for binary and Fig. 5, for
multi-classification models.

1) BINARY CLASSIFICATION
All models underwent training using binary cross-entropy
loss, Adam optimizer, and a sigmoid activation function in
the output layer.

a: DNN BINARY CLASSIFICATION MODEL
TheDNNmodel architecture as shown in Fig 6 [Appendix B],
is meticulously designed within a hyperparameter tuning
framework, representing a sophisticated approach to optimiz-
ing neural network design. The model structure consists of an

FIGURE 4. The results for all multi-classification models.

input layer, two hyperparameter-tuned hidden layers utilizing
rectified linear units (ReLU) activation functions, and an
output layer. The hyperparameters include the number of
neurons in each hidden layer (units_1 and units_2), selected
from the predefined set [8, 16, 25, 32, 50, 64, 128] as shown
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FIGURE 5. The plot of accuracy vs. epoch for train and test dataset, for all multi-classification models (a) DNN, (b) RNN, (c) CNN, (d) LSTM, (e) GRU, (f)
Hybrid CNN-LSTM.

LISTING 1. DNN algorithm for binary classification.

in Listing 1 for a DNN pseudo-implementation. Through an
exhaustive tuning process, the optimal hyperparameter values
of 32 for both units_1 and units_2 are identified.

Subsequently, the best model, manually instantiated with
the previously determined optimal hyperparameter values,
is systematically trained and evaluated. This refined model
achieves a remarkable accuracy of 99.39%, along with
high recall (0.994), F1 score (0.9943), and precision score
(0.9945).

TABLE 2. The confusion matrix for all binary classification models.

The confusion matrix shown in Table 2, further demon-
strates the model’s robustness, indicating minimal mis-
classifications with only 74 false positives and 80 false
negatives. These outcomes underscore the effectiveness of
the hyperparameter-tuned neural network architecture in
capturing intricate patterns, resulting in an exceptionally
accurate and reliable model for binary classification tasks.

b: RNN BINARY CLASSIFICATION MODEL
The RNNmodel architecture as shown in Fig 7 [Appendix B],
is meticulously designed within a hyperparameter tuning
framework, with a primary focus on identifying optimal
configurations for key parameters. The model structure
consists of three SimpleRNN layers, each featuring a variable
number of units and a strategically placed dropout layer
to mitigate overfitting and preserve temporal dependencies.
Notably, the first two SimpleRNN layers are configured to
return sequences, allowing the model to capture temporal
information inherent in network behavior. The output from
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these sequential layers is then flattened and passed through
a dense layer with a tunable number of units. The final layer
of the model utilizes a sigmoid activation function, aligning
seamlessly with the binary classification task.

The hyperparameter tuning process employs a random
search strategy, systematically exploring diverse configura-
tions for critical hyperparameters. These include the number
of units in each SimpleRNN layer (units_1, units_2, and
units_3), dropout rates (dropout_1 and dropout_2), and the
number of units in the Dense layer (dense_units). The
choices for units and dense_units range across [8, 16, 25,
32, 50, 64, 128], providing a comprehensive search space.
Similarly, the dropout rates are selected from the set [0.1: 0.5],
offering flexibility in fine-tuning the model’s regularization
strategy, through an exhaustive tuning process, the optimal
hyperparameter values are identified as 50 for units_1 with a
dropout rate of 0.3, 32 for units_2 with a dropout rate of 0.1,
8 for units_3, and 16 for dense_units, as shown in Listing 2.

LISTING 2. RNN algorithm for binary classification.

Subsequently, the best model, manually instantiated with
the previously determined optimal hyperparameter values,
underwent systematic training and evaluation. This refined
model achieved an impressive accuracy of 99.095%, affirm-
ing its adeptness in discerning intricate patterns indicative of
anomalies within network data. Notably, the model exhibited

high recall (0.9921), F1 score (0.9915), and precision score
(0.9909), indicating its robust generalization to unseen
data and underscore its capability to effectively identify
anomalous network behavior.

The confusion matrix shown in Table 2, further validated
the model’s resilience, revealing minimal misclassifications
with only 122 false positives and 106 false negatives. These
outcomes emphasize the model’s effectiveness in capturing
subtle deviations in network patterns, establishing it as a
reliable tool for network anomaly detection, even in the face
of dynamic and evolving network conditions.

c: CNN BINARY CLASSIFICATION MODEL
The Convolutional Neural Network (CNN) model for net-
work anomaly detection as shown in Fig 8 [Appendix B],
is meticulously designed within a hyperparameter tuning
framework to optimize its performance in capturing complex
patterns inherent in network data. The architecture comprises
two convolutional layers, each characterized by a variable
number of filters and kernel sizes, strategically applied
dropout layers to mitigate overfitting, and max-pooling
layers for spatial down-sampling. The choice of filters and
kernel sizes, including [8, 16, 32, 64, 128] and [3], [5],
[7], [9] respectively, reflects a comprehensive exploration
of potential feature extraction configurations. The first
convolutional layer is followed by a max-pooling layer
with a pooling size of 4, enhancing the model’s ability to
capture salient features. Dropout regularization, with rates
chosen from [0.1: 0.5], is strategically introduced after each
convolutional-max-pooling block to prevent overfitting. The
final layer of the model includes a flattening operation,
followed by a Dense layer with a tunable number of units,
chosen from [8, 16, 25, 32, 50, 64, 128]. The output layer
utilizes a sigmoid activation function, aligningwith the binary
classification task. Through an exhaustive tuning process,
the optimal hyperparameter values are identified as 64 for
filters_1, 7 for kernel_size_1 with a dropout rate of 0.1, 32 for
filters_2, 7 for kernel_size_2 with a dropout rate of 0.1, and
50 for dense_units, as shown in Listing 3.
Subsequently, the best model, manually instantiated

with previously determined optimal hyperparameter values,
underwent systematic training and evaluation for net-
work anomaly detection. This refined model demonstrated
outstanding performance with an accuracy of 99.376%,
showcasing its proficiency in discerning intricate patterns
indicative of anomalies within network data. Remarkably,
the model exhibited exceptional recall (0.9949), F1 score
(0.9942), and precision score (0.9934), underlining its robust
generalization to unseen data and reinforcing its capacity to
effectively identify anomalous network behavior.

The confusion matrix shown in Table 2, provided further
validation of the model’s resilience, revealing minimal
misclassifications with only 89 false positives and 68 false
negatives. These outcomes highlight the model’s effective-
ness in capturing subtle deviations in network patterns,
establishing it as a highly reliable and accurate tool for
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LISTING 3. CNN algorithm for binary classification.

network anomaly detection. Even in the face of dynamic and
evolving network conditions, the CNN model consistently
demonstrated its ability to discern anomalies, making it a
valuable asset in safeguarding network integrity.

d: LSTM BINARY CLASSIFICATION MODEL
The LSTM model for network anomaly detection as shown
in Fig 9 [Appendix B], is intricately designed within a
hyperparameter tuning framework to optimize its perfor-
mance in capturing intricate temporal patterns within network
data. The architecture comprises three LSTM layers, each
featuring a variable number of units and strategically placed
dropout layers to mitigate overfitting. The first two LSTM
layers are configured to return sequences, allowing the
model to capture and retain temporal dependencies present
in network behavior. The third LSTM layer operates without
returning sequences, serving as a feature aggregator.

The model incorporates dropout regularization after each
LSTM layer, with dropout rates systematically chosen from
the set [0.1: 0.5]. A Flatten operation is introduced after
the third LSTM layer, followed by a Dense layer with a
tunable number of units, chosen from the set [8, 16, 25, 32,

50, 64, 128]. The output layer utilizes a sigmoid activation
function, aligningwith the binary classification task. Through
an exhaustive tuning process, the optimal hyperparameter
values are identified as 50 for units_1 with a dropout rate of
0.2, 16 for units_2 with a dropout rate of 0.1, 16 for units_3
and 32 for dense_units, as shown in Listing 4.

LISTING 4. LSTM algorithm for binary classification.

Subsequently, the best-performing LSTMmodel, manually
instantiated with previously determined optimal hyperparam-
eter values, underwent systematic training and evaluation
for network anomaly detection. This refined LSTM model
demonstrated exceptional performance, achieving an accu-
racy of 99.4086%. This outcome underscores its proficiency
in discerning intricate patterns indicative of anomalies
within network data. Notably, the LSTM model exhibited
outstanding recall (0.9943), F1 score (0.9944), and precision
score (0.9946), highlighting its robust generalization to
unseen data and emphasizing its effectiveness in accurately
identifying anomalous network behavior.

The confusion matrix shown in Table 2, provided further
validation of the LSTMmodel’s resilience, revealingminimal
misclassifications with only 72 false positives and 77 false
negatives. These outcomes underscore the LSTM model’s
efficacy in capturing subtle deviations in network patterns,
establishing it as a highly reliable and accurate tool for
network anomaly detection. Even in the face of dynamic and
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evolving network conditions, the LSTM model consistently
demonstrated its ability to discern anomalies, making it a
valuable asset in safeguarding network integrity.

e: GRU BINARY CLASSIFICATION MODEL
The GRU model for network anomaly detection as shown in
Fig 10 [Appendix B], is intricately designed within a hyper-
parameter tuning framework to optimize its performance in
capturing complex temporal patterns within network data.
The architecture consists of three GRU layers, each featuring
a variable number of units and strategically placed dropout
layers to mitigate overfitting. The first two GRU layers
are configured to return sequences, enabling the model to
capture and retain temporal dependencies present in network
behavior. The third GRU layer operates without returning
sequences, serving as a feature aggregator.

The model incorporates dropout regularization after each
GRU layer, with dropout rates systematically chosen from
the set [0.1: 0.5]. A Flatten operation is introduced after the
third GRU layer, followed by a Dense layer with a tunable
number of units, chosen from the set [8, 16, 25, 32, 50,
64, 128] (also applicable to units_1, units_2, units_3, and
dense_units). The output layer utilizes a sigmoid activation
function, aligningwith the binary classification task. Through
an exhaustive tuning process, the optimal hyperparameter
values are identified as 128 for units_1 with a dropout rate of
0.2, 128 for units_2 with a dropout rate of 0.4, 16 for units_3
and 25 for dense_units, as shown in Listing 5.
Subsequently, the best-performing GRU model, manually

instantiated with previously determined optimal hyperparam-
eter values, underwent systematic training and evaluation
for network anomaly detection. This refined GRU model
demonstrated exceptional performance, achieving an accu-
racy of 99.54%. This outcome underscores its proficiency in
discerning intricate patterns indicative of anomalies within
network data. Notably, the GRUmodel exhibited outstanding
recall (0.9967), F1 score (0.9956), and precision score
(0.9946), highlighting its robust generalization to unseen data
and emphasizing its effectiveness in accurately identifying
anomalous network behavior.

The confusion matrix shown in Table 2, provided further
validation of the GRU model’s resilience, revealing minimal
misclassifications with only 73 false positives and 44 false
negatives. These outcomes underscore the GRU model’s
efficacy in capturing subtle deviations in network patterns,
establishing it as a highly reliable and accurate tool for
network anomaly detection. Even in the face of dynamic and
evolving network conditions, the GRU model consistently
demonstrated its ability to discern anomalies, making it a
valuable asset in safeguarding network integrity.

f: HYBRID CNN_LSTM BINARY CLASSIFICATION MODEL
The Hybrid model for NIDS is designed as a combination
of CNN and LSTM architectures as shown in Fig 11
[Appendix B], aiming to leverage the strengths of both
in capturing spatial and temporal patterns within network

LISTING 5. GRU algorithm for binary classification.

data. The model begins with a convolutional layer featuring
a variable number of filters and kernel size, chosen from
the sets [8, 16, 32, 64] and [3], [5], [7], [9], respectively.
This layer employs the Rectified Linear Unit (ReLU)
activation function and is followed by a max-pooling layer
to downsample the spatial dimensions.

Subsequently, a LSTM layer is incorporated with a
tunable number of units selected from [8, 16, 32, 64,
128], accompanied by a dropout layer with a dropout rate
chosen from [0.1: 0.5]. The return_sequences parameter is
set to False, indicating that the LSTM layer does not return
sequences, facilitating the extraction of higher-level features.
The model concludes with a dense layer utilizing a sigmoid
activation function, aligning with the binary classification
task, as shown in Listing 6. Through an exhaustive tuning
process, the optimal hyperparameter values are identified as
64 for filters, 7 for kernel size, 128 for units with a dropout
rate of 0.2.

Subsequently, the hybrid CNN-LSTM model, manually
instantiated with previously determined optimal hyperparam-
eter values, underwent systematic training and evaluation
for network anomaly detection. This refined hybrid model
demonstrated notable performance, achieving an accuracy of
98.944%. This outcome highlights its capability in discerning
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LISTING 6. Hybrid CNN-LSTM algorithm for binary classification.

intricate patterns indicative of anomalies within network data.
The hybrid model exhibited commendable recall (0.9908),
F1 score (0.9901), and precision score (0.9894), showcasing
its robust generalization to unseen data and emphasizing its
effectiveness in accurately identifying anomalous network
behavior.

The confusion matrix shown in Table 2, provided further
validation of the hybrid model’s resilience, revealing minimal
misclassifications with only 143 false positives and 123 false
negatives. These outcomes underscore the hybrid model’s
efficacy in capturing subtle deviations in network patterns,
establishing it as a reliable and accurate tool for network
anomaly detection. Even in the face of dynamic and
evolving network conditions, the hybrid CNN-LSTM model
consistently demonstrated its ability to discern anomalies,
making it a valuable asset in safeguarding network integrity.

The results underscore the effectiveness of various neural
network architectures in binary classification for detecting
anomalies within network data shown in Fig. 2, The GRU
model emerges as the top performer, achieving superior
accuracy, recall, F1 score, and precision. Specifically, the
GRU model demonstrated outstanding binary classification
performance with a remarkable accuracy of 99.54%, recall
of 99.67%, F1 score of 99.56%, and precision of 99.46%.
Additionally, the LSTM, CNN, and DNN models showcased
robust binary classification performance, exhibiting high

accuracy, recall, F1 score, and precision values. The LSTM
model, for instance, achieved 99.41% accuracy, 99.43%
recall, 99.44% F1 score, and 99.46% precision. While the
hybrid CNN-LSTM model proved effective, it exhibited a
slightly lower performance in binary classification compared
to other architectures. The hybridmodel achieved an accuracy
of 98.94%, a recall of 99.08%, an F1 score of 99.01%, and a
precision of 98.93%.

In summary, these findings highlight the binary classifica-
tion capabilities of these neural network architectures, with
each model demonstrating distinct strengths in effectively
detecting anomalies within network behavior.

2) MULTI-CLASSIFICATION
All models are trained using categorical cross-entropy loss,
Adam optimizer, and a softmax activation function in the
output layer.

a: DNN MULTI-CLASSIFICATION MODEL
The DNN model architecture as shown in Fig 12
[Appendix B], is meticulously designed within a hyper-
parameter tuning framework, representing a sophisticated
approach to optimizing neural network design. The model
structure consists of an input layer, two hyperparameter-tuned
hidden layers utilizing rectified linear units (ReLU) activation
functions, and an output layer. The hyperparameters include
the number of neurons in each hidden layer (units_1 and
units_2), selected from the predefined set [8, 16, 25, 32, 50,
64, 128]. Through an exhaustive tuning process, the optimal
hyperparameter values were identified as 64 for units_1 and
8 for units_2, as shown in Listing 7.

Subsequently, the best model, manually instantiated with
the previously determined optimal hyperparameter values,
is systematically trained and evaluated. This refined model
achieves a remarkable accuracy of 99.34%, along with
high recall (0.993), F1 score (0.9934), and precision score
(0.9936).

b: RNN MULTI-CLASSIFICATION MODEL
The RNN model architecture as shown in Fig 13
[Appendix B], is meticulously designed within a hyper-
parameter tuning framework, with a primary focus on
identifying optimal configurations for key parameters. The
model structure consists of three SimpleRNN layers, each
featuring a variable number of units and a strategically
placed dropout layer to mitigate overfitting and preserve
temporal dependencies. Notably, the first two SimpleRNN
layers are configured to return sequences, allowing the model
to capture temporal information inherent in network behavior.
The output from these sequential layers is then flattened and
passed through a dense layer with a tunable number of units.
The final layer of the model utilizes a softmax activation
function, aligning seamlessly with the multi-classification
task.

The hyperparameter tuning process employs a random
search strategy, systematically exploring diverse configura-
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LISTING 7. DNN algorithm multi-classification.

tions for critical hyperparameters. These include the number
of units in each SimpleRNN layer (units_1, units_2, and
units_3), dropout rates (dropout_1 and dropout_2), and the
number of units in the Dense layer (dense_units). The
choices for units and dense_units range across [8, 16, 25,
32, 50, 64, 128], providing a comprehensive search space.
Similarly, the dropout rates are selected from the set [0.1: 0.5],
offering flexibility in fine-tuning the model’s regularization
strategy, through an exhaustive tuning process, the optimal
hyperparameter values are identified as 64 for units_1 with a
dropout rate of 0.1, 32 for units_2 with a dropout rate of 0.2,
64 for units_3, and 25 for dense_units, as shown in Listing 8.

Subsequently, the best model, manually instantiated with
the previously determined optimal hyperparameter values,
underwent systematic training and evaluation. This refined
model achieved an impressive accuracy of 99.253%, affirm-
ing its adeptness in discerning intricate patterns indicative of
anomalies within network data. Notably, the model exhibited
high recall (0.9924), F1 score (0.9925), and precision score
(0.9925), indicating its robust generalization to unseen
data and underscore its capability to effectively identify
anomalous network behavior.

LISTING 8. RNN algorithm multi-classification.

c: CNN MULTI-CLASSIFICATION MODEL
The Convolutional Neural Network (CNN) model for net-
work anomaly detection as shown in Fig 14 [Appendix B],
is meticulously designed within a hyperparameter tuning
framework to optimize its performance in capturing complex
patterns inherent in network data. The architecture comprises
two convolutional layers, each characterized by a variable
number of filters and kernel sizes, strategically applied
dropout layers to mitigate overfitting, and max-pooling
layers for spatial down-sampling. The choice of filters and
kernel sizes, including [8, 16, 32, 64, 128] and [3, 5,
7, 9] respectively, reflects a comprehensive exploration of
potential feature extraction configurations.

The first convolutional layer is followed by a max-pooling
layer with a pooling size of 4, enhancing the model’s ability
to capture salient features. Dropout regularization, with rates
chosen from [0.1: 0.5], is strategically introduced after each
convolutional-max-pooling block to prevent overfitting. The
final layer of the model includes a flattening operation,
followed by a Dense layer with a tunable number of units,
chosen from [8, 16, 25, 32, 50, 64, 128]. The output layer
utilizes a softmax activation function, aligning with the multi-
classification task. Through an exhaustive tuning process,
the optimal hyperparameter values are identified as 64 for
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LISTING 9. CNN algorithm multi-classification.

filters_1, 7 for kernel_size_1 with a dropout rate of 0.1, 32 for
filters_2, 7 for kernel_size_2 with a dropout rate of 0.1, and
50 for dense_units, as shown in Listing 9.

Subsequently, the best model, manually instantiated
with previously determined optimal hyperparameter values,
underwent systematic training and evaluation for net-
work anomaly detection. This refined model demonstrated
outstanding performance with an accuracy of 99.385%,
showcasing its proficiency in discerning intricate patterns
indicative of anomalies within network data. Remarkably,
the model exhibited exceptional recall (0.9937), F1 score
(0.9939), and precision score (0.994), underlining its robust
generalization to unseen data and reinforcing its capacity to
effectively identify anomalous network behavior.

d: LSTM MULTI-CLASSIFICATION MODEL
The LSTM model for network anomaly detection as shown
in Fig 15 [Appendix B], is intricately designed within
a hyperparameter tuning framework to optimize its per-
formance in capturing intricate temporal patterns within
network data. The architecture comprises three LSTM layers,
each featuring a variable number of units and strategically
placed dropout layers to mitigate overfitting. The first two
LSTM layers are configured to return sequences, allowing
the model to capture and retain temporal dependencies

present in network behavior. The third LSTM layer oper-
ates without returning sequences, serving as a feature
aggregator.

The model incorporates dropout regularization after each
LSTM layer, with dropout rates systematically chosen from
the set [0.1: 0.5]. A Flatten operation is introduced after
the third LSTM layer, followed by a Dense layer with a
tunable number of units, chosen from the set [8, 16, 25, 32,
50, 64, 128]. The output layer utilizes a softmax activation
function, aligning with the multi-classification task. Through
an exhaustive tuning process, the optimal hyperparameter
values are identified as 64 for units_1 with a dropout rate of
0.1, 32 for units_2 with a dropout rate of 0.5, 50 for units_3
and 64 for dense_units, as shown in Listing 10. Subsequently,
the best-performing LSTM model, manually instantiated
with previously determined optimal hyperparameter values,
underwent systematic training and evaluation for network
anomaly detection. This refined LSTM model demonstrated
exceptional performance, achieving an accuracy of 99.39%.
This outcome underscores its proficiency in discerning
intricate patterns indicative of anomalies within network
data. Notably, the LSTM model exhibited outstanding
recall (0.9939), F1 score (0.994), and precision score
(0.9941), highlighting its robust generalization to unseen data
and emphasizing its effectiveness in accurately identifying
anomalous network behavior.

LISTING 10. LSTM algorithm multi-classification.
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e: GRU MULTI-CLASSIFICATION MODEL
The GRU model for network anomaly detection as shown in
Fig 16 [Appendix B], is intricately designed within a hyper-
parameter tuning framework to optimize its performance in
capturing complex temporal patterns within network data.
The architecture consists of three GRU layers, each featuring
a variable number of units and strategically placed dropout
layers to mitigate overfitting. The first two GRU layers
are configured to return sequences, enabling the model to
capture and retain temporal dependencies present in network
behavior. The third GRU layer operates without returning
sequences, serving as a feature aggregator.

The model incorporates dropout regularization after each
GRU layer, with dropout rates systematically chosen from
the set [0.1: 0.5]. A Flatten operation is introduced after
the third GRU layer, followed by a Dense layer with
a tunable number of units, chosen from the set [8, 16,
25, 32, 50, 64, 128] (also applicable to units_1, units_2,
units_3, and dense_units). The output layer utilizes a softmax
activation function, aligning with the multi-classification
task. Through an exhaustive tuning process, the optimal
hyperparameter values are identified as 128 for units_1 with
a dropout rate of 0.2, 50 for units_2 with a dropout rate
of 0.1, 25 for units_3 and 16 for dense_units, as shown
in Listing 11.

LISTING 11. GRU algorithm multi-classification.

Subsequently, the best-performing GRU model, manually
instantiated with previously determined optimal hyperparam-
eter values, underwent systematic training and evaluation
for network anomaly detection. This refined GRU model
demonstrated exceptional performance, achieving an accu-
racy of 99.38%. This outcome underscores its proficiency in
discerning intricate patterns indicative of anomalies within
network data. Notably, the GRUmodel exhibited outstanding
recall (0.9937), F1 score (0.9938), and precision score
(0.9939), highlighting its robust generalization to unseen data
and emphasizing its effectiveness in accurately identifying
anomalous network behavior.

f: HYBRID CNN_LSTM MULTI-CLASSIFICATION MODEL
The Hybrid model for NIDS as shown in Fig 17
[Appendix B], is designed as a combination of CNN and
LSTM architectures, aiming to leverage the strengths of both
in capturing spatial and temporal patterns within network
data. The model begins with a convolutional layer featuring
a variable number of filters and kernel size, chosen from the
sets [8, 16, 32, 64] and [3, 5, 7, 9], respectively. This layer
employs the Rectified Linear Unit (ReLU) activation function
and is followed by a max-pooling layer to downsample the
spatial dimensions.

Subsequently, a LSTM layer is incorporated with a
tunable number of units selected from [8, 16, 32, 64,
128], accompanied by a dropout layer with a dropout rate
chosen from [0.1: 0.5]. The return_sequences parameter is
set to False, indicating that the LSTM layer does not return
sequences, facilitating the extraction of higher-level features.
The model concludes with a dense layer utilizing a softmax
activation function, aligning with the multi-classification
task, as shown in Listing 12. Through an exhaustive tuning
process, the optimal hyperparameter values are identified as
8 for filters, 5 for kernel size, 64 for units with a dropout rate
of 0.2.

Subsequently, the hybrid CNN-LSTM model, manually
instantiated with previously determined optimal hyperparam-
eter values, underwent systematic training and evaluation
for network anomaly detection. This refined hybrid model
demonstrated notable performance, achieving an accuracy of
97.96%. This outcome highlights its capability in discerning
intricate patterns indicative of anomalies within network data.
The hybrid model exhibited commendable recall (0.9779),
F1 score (0.9790), and precision score (0.9801), showcasing
its robust generalization to unseen data and emphasizing its
effectiveness in accurately identifying anomalous network
behavior.

In the realm of multi-classification for network anomaly
detection, our experimental results shed light on the per-
formance of various neural network architectures shown in
Fig. 4, The DNN model demonstrated notable accuracy,
recall, F1 score, and precision, achieving scores of 99.34%,
99.33%, 99.34%, and 99.36%, respectively. Similarly, the
RNN, CNN, LSTM, and GRUmodels exhibited strong multi-
classification capabilities, with accuracy hovering around the
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LISTING 12. Hybrid CNN-LSTM algorithm multi-classification.

TABLE 3. DNN evaluation results for multi-class classification.

99.25% mark and consistently high recall, F1 score, and
precision values.

The LSTM model, in particular, showcased a commend-
able accuracy of 99.39%, coupled with a recall of 99.39%,
F1 score of 99.41%, and precision of 99.42%.Meanwhile, the
GRU model closely trailed, attaining an accuracy of 99.38%
alongside robust recall, F1 score, and precision metrics.
While these models excelled in multi-classification, the
hybrid CNN-LSTM model demonstrated slightly diminished
performance with an accuracy of 97.96%. Nevertheless,
it maintained respectable recall (97.79%), F1 score (97.01%),
and precision (98.01%) values. It is crucial to note that
the hybrid model, despite a lower accuracy, still exhibited
proficiency in identifying anomalies across multiple classes.

In summary, our experimental findings highlight the
efficacy of diverse neural network architectures in multi-
classification for network anomaly detection. Each model

TABLE 4. RNN evaluation results for multi-class classification.

TABLE 5. CNN evaluation results for multi-class classification.

TABLE 6. LSTM evaluation results for multi-class classification.

TABLE 7. GRU evaluation results for multi-class classification.

TABLE 8. Hybrid CNN-LSTM evaluation results for multi-class
classification.

showcased strong performance, with the LSTMmodel stand-
ing out for its well-rounded capabilities. The hybrid CNN-
LSTM model, although exhibiting a marginally reduced
accuracy, maintained competitive performance, emphasizing
the adaptability of these architectures in the challenging task
of multi-class network anomaly detection.

As illustrated in Tables 3–8, this study extensively
evaluated diverse deep learning algorithms for multi-class
classification, specifically focusing on the identification of
various attack types, including DoS, Probe, R2L, U2R, and
Normal traffic. Remarkably, all algorithms demonstrated
near-perfect precision, recall, and F1-scores for DoS, Probe,
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TABLE 9. Hybrid CNN-LSTM evaluation results for multi-class classification.

and normal traffic. Notably, DNN, RNN, and CNN emerged
as particularly robust performers in R2L detection. Despite
these successes, U2R detection remained a challenge across
all models, highlighting the need for further research in this
area. Exploring alternative architectures, feature engineering,
and data balancing strategies could potentially enhance
overall performance and improve U2R detection.

3) COMPARATIVE STUDY
In this section, we delve into a comparative analysis of
our proposed approach and its results against other relevant
studies, assessing their performance across diverse datasets.
In [48], which explores the efficacy of DNN, CNN, RNN,
LSTM, CNN + RNN, and CNN + LSTM on the CSE-
CIC-IDS2018 dataset, demonstrating high accuracies in both

multi-class (98.80% to 98.84%) and binary (98.82% to
98.85%) classifications. For the NSL-KDD dataset, in [39]
compare CNN, LSTM, and RNN with hybrid CNN-LSTM,
reporting a 10-fold cross-validation approach with higher
accuracies than compared to the training and testing from
82.4% to 91.02% with a 10-fold cross-validation approach.
Finally, [49] introduces CNN, DNN, RNN, LSTM, and GRU
models for binary classification on NSL-KDD, achieving
accuracies between 97.78% and 98.63%.

Compared with previous results and methods, our pro-
posed approach stands out with exceptional accuracies
(97.96% to 99.54%) for both binary and multi-class classi-
fications on NSL-KDD, highlighting its robust performance
in detecting network anomalies. The results underscore the
importance of model selection tailored to specific datasets,
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with our approach showcasing remarkable discriminatory
power in practical network anomaly detection scenarios.
We envision future optimization through hyperparameter
tuning and resource efficiency to pave the way for real-
world application and robust network anomaly detection.
A comparison of the studies is presented in Table 9.

VII. CONCLUSION
In conclusion, this research offers a thorough comparative
investigation of various established deep learning models for
network anomaly detection, leveraging the widely recognized
NSL-KDD dataset as a benchmark. Although the paper does
not propose a new algorithm, yet it extensively compares
the performance of six different existing models (DNN,
RNN, LSTM, GRU, CNN, and Hybrid CNN-LSTM) on
binary and multi-class classification tasks highlighting the
strengths and limitations of different architectures. The paper
identified GRU as the best model and to obtain best possible
performance it fine tunes all hyperparameters by careful
optimization.

Specifically, the GRU model demonstrates exceptional
performance in binary classification, excelling in identify-
ing normal and anomalous network behavior. Conversely,
the DNN model proves most effective in navigating the
intricacies of complex network patterns within multi-class
classification scenarios. A notable aspect of this research is
the collaborative strength derived from a diverse ensemble
of deep learning algorithms. By considering models such
as GRU and DNN, each excelling in specific scenarios,
we emphasize the importance of a multifaceted approach
to network security. This collaborative paradigm not only
enhances the accuracy of anomaly detection but also under-
scores the adaptability required to address the evolving nature
of cybersecurity threats.

The findings presented in this research serve as a guiding
beacon for future endeavors in network security research.
The exceptional performance of deep learning models,
as demonstrated on the NSL-KDD dataset, encourages
further exploration and refinement of methodologies. Future
research avenues may include studying the performance
of recent deep learning models such as the Transformer
model [50] for network intrusion detection, optimizingmodel
hyperparameters, exploring additional datasets, and adapting
these approaches to real-world network environments.
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