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ABSTRACT With the increasing prevalence of multi-user, multi-service, and heterogeneous multi-device
environments, there is a need to address the imperative for efficient resource allocation in contemporary
wireless networks, such as those involving unmanned aerial vehicles (UAVs) or drones. In this regard, this
work addresses the challenges within a five-dimensional heterogeneous wireless network model, focusing
on diverse services such as Big Data Analytics, Video Rendering, and Computer-Aided Design, and the
allocation of resources among heterogeneous devices, including UAVs, tethered balloons, and multi-rotors.
The resource allocation is facilitated through multiple interfaces like LTE, Wifi, LoRa, and Sigfox, catering
to the diverse needs of users operating in aerial Networks. Additionally, this work introduces a novel
Intelligent Relaxation using the Penalty Function (IRPF) approach for resource allocation, treating it as an
integer programming problem to balance user needs while ensuring affordability. A comparative analysis is
conducted between the proposed approach and the traditional branch-and-bound algorithm. In scenarios
requiring resource allocation for numerous services based on user demand and device capabilities, the
proposed work presents a penalty-based integrality gap solution adept at managing fractional values. The
resulting optimization framework is meticulously designed to minimize activation and operating costs while
optimizing utility. Additionally, the computing efficiency of the proposed approach is demonstrated by
extensive simulations that prove its superiority over the traditional algorithm. Consequently, this research
emphasizes the essential role of the proposed model in navigating the intricate challenges of resource
allocation in modern drone-centric wireless networks.

INDEX TERMS Resource allocation, aerial networks, multi-user environments, heterogeneous devices,
intelligent relaxation, penalty function, utility minimization, service diversity.

I. INTRODUCTION
Heterogeneous network (HetNet) [1] is a term used for
modern mobile communication networks that incorporate
diverse and varied elements, such as network nodes,
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technologies, protocols, and components, to provide effective
and efficient connectivity. Unlike traditional homogeneous
networks, which typically use uniform infrastructure and
technology, HetNets are designed to integrate various types of
base stations, frequency bands, and communication protocols
to enhance the performance and efficiency of wireless
communication networks. HetNet deployment is common
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in modern wireless systems, particularly in 4G LTE (Long-
Term Evolution) and 5G networks, enhancing performance,
boosting capacity, and improving service quality [2] in
different scenarios, including urban and rural environments.
These networks exhibit characteristics of multi-tiered [3],
or multi-dimensional [4] architectures, ensuring seamless
communication across a variety of interconnected devices.

The evolution of new technologies, responding to the
diversity of HetNets, results in a growing number of users
engaging in flexible services such as video streaming [5],
augmented reality (AR) [6], virtual reality (VR), and
e-gaming [7]. To support these trends, robust computing
devices are necessary. These computing devices can be strate-
gically placed on aerial platforms, such as multi-rotors [8]
and tethered balloons [9], as well as fixed infrastructure,
like base stations [10]. The goal is to enhance connectivity
and communication in diverse environments, following
the demand for the applications. However, satisfying the
demands of different users and applications in HetNets simul-
taneously is challenging, which emphasizes the necessity
for effective resource management. Therefore, an effective
method is required to optimize resource utilization to improve
network performance by considering several criteria and
the combination of different communication protocols and
technologies. Effective techniques for multi-criteria decision-
making in [11] and compute-intensive application placement
strategies in [12], may provide valuable insights to tackle
challenges related to efficient resource management for
applications that require high computation.

The contemporary computing paradigm in wireless net-
works [13] integrates cloud, fog, edge, and mist computing
models to create a versatile architecture, optimize resource
allocation (the process of allocating resources efficiently),
and provide scalable, real-time solutions for diverse appli-
cations. Nevertheless, compute-intensive applications [14]
may not always perform optimally in the cloud, partic-
ularly for time-sensitive tasks. Exploring fog and edge
computing offers an alternative to managing substantial
data bandwidth for end devices [15]. However, offloading
tasks to devices integrating cloud, fog, and edge computing
introduces challenges such as latency, resource constraints,
and interoperability issues, which arise when application
and user demands are overlooked. Resource allocation in
these environments, involving tasks like load balancing,
provisioning, and scheduling, becomes a critical considera-
tion. Addressing these concerns is vital for optimizing task
offloading and system performance within modern wireless
networks. Effective resource allocation to satisfy varied user
needs and the computing capacities of different devices is
made more challenging by the dynamically changing nature
of multi-user, multi-service, and heterogeneous multi-device
platforms.

Addressing the escalating demand for services like big data
analytics, video rendering, and computer-aided design, this
paper focuses on resource allocation across diverse devices
such as unmanned aerial vehicles, tethered balloons, and

multi-rotors. It makes notable contributions by tackling chal-
lenges in a five-dimensional heterogeneous wireless network
model, organizing users to services, and linking services
to computing devices for efficient resource accommodation.
Introducing Intelligent Relaxation using the Penalty Function
(IRPF) Method, this research treats resource allocation
as an intricate integer programming problem. Through a
comparative analysis with the traditional branch and bound
algorithm, the study evaluates the efficacy of the novel
approach. IRPF serves as an integrality gap penalty-based
approach, demonstrating flexibility for fractional values in
resource distribution for various services based on user
demand and device capabilities. The resulting multi-tiered
framework is meticulously designed to minimize activation
and operating costs while optimizing utility. The major
contributions of this paper are outlined as follows:

• Proposed a specialized network model for efficient
resource allocation in diverse wireless environments
to address the optimization problem associated with
activation and operational costs.

• Emphasized relevance tomodern networks in addressing
challenges of resource allocation in contemporary
wireless networks with multi-user, multi-service, and
heterogeneous environments.

• Implemented advanced optimization technique for pre-
cise resource allocation in the complex five-dimensional
heterogeneous wireless network model.

• Conducted comparative analysis with the traditional
branch-and-bound algorithm, showcasing the efficiency
of the proposed IRPF approach in diverse resource
allocation scenarios.

The remainder of the paper includes Section II, which
provides a concise literature review. Section III introduces the
systemmodel proposed in this paper. Section IV presents sim-
ulation results and discussions. Finally, Section V concludes
the paper and outlines directions for future research.

II. LITERATURE REVIEW
Next-generation heterogeneous aerial networks have experi-
enced incredible growth in recent years, as a result of the
rapid growth of wireless networks and the increasing demand
for seamless connectivity. Efficient resource allocation is
crucial in the multi-tiered heterogeneous wireless network,
with various users demanding flexible services [5]. High
computational services require computing devices [8] with
high processing power. Each computing device has its
interfaces [16], and each interface has its heterogeneous
resources [17]. Challenges include efficient spectrum utiliza-
tion, interference management, and latency reduction [18].
To address these challenges more effectively, researchers

have investigated multi-dimensional, multi-criterion utility
optimization techniques in HetNets. Specifically, the authors
in [19] have addressed optimized resource allocation to
achieve optimal power management and tier assignment
within a multi-tier HetNet. This optimization aims to
maximize user association and increase the average number
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of connected users and devices in a specific tier. However,
aggressively maximizing user association might lead to
higher power consumption, potentially causing challenges
in achieving optimal power management goals. The author
of [20] addressed resource allocation and financial challenges
in Mobile Edge Computing (MEC), emphasizing user satis-
faction in Quality of Service (QoS). Formulating the Edge
Resource Allocation Problem (ERAP) as a Mixed-Integer
Linear Program (MILP) was innovative, but scalability
concerns arose due to its NP-hard nature. However, the poten-
tial challenge with this technique lies in its computational
complexity, particularly in large-scale MEC systems.

To provide a comprehensive overview of the various
methodologies and algorithms discussed in the literature
review, we present Table 1. This table summarizes key
aspects such as Resource Management, Objective Function,
Challenges, and Limitations associated with each approach.
In [26], the authors introduced a hybrid algorithm that
combined gray wolf and genetic algorithms to tackle
heterogeneous resource allocation problems. The algorithm
aimed to mitigate local optimization issues, leading to
reduced energy consumption and latency. However, potential
challenges emerged concerning algorithm scalability and
adaptability to dynamic environments. In [3], the authors
introduced an optimization framework for fog nodes, oper-
ators, and subscribers. They utilized the Stackelberg game
algorithm for DSS resource allocation analysis. However,
the challenge with this algorithm include computational
complexity and potential suboptimality. The investigation
in [33] optimized RAN for energy efficiency, reducing
interference, and addressing power, bandwidth, and cache
concerns.

The authors of [34] introduced a cloud and edge
computing-based framework incorporating collaborative
computation offloading and resource allocation to optimize
system profit while adhering to response time limits.
Challenges include potential issues in the resource allocation
technique for virtual machines, impacting processing times.
To address the resource allocation problem in cloud
computing, [29] proposed a genetic algorithm. However,
unequal resource allocation for virtual machines could
lead to extended processing times. In [35], rising resource
prices complicate infrastructure-as-a-service (IaaS) network
management. The problem here is that users striving to
maximize utility during cloud resource acquisition may face
complexities due to budget and resource needs.

To address resource allocation challenges, [11] explored
multi-criteria methods for cost-based drone selection, focus-
ing on optimizing selection criteria based on cost. In [12], the
emphasis shifted to deploying fog applications for optimizing
the quality of experience (QoE), utilizing a multi-criteria
approach that considered both time and cost. Proposing
BEHAVE in [30], the authors targeted efficient utility
optimization in multi-tier wireless networks, specifically
allocating edge resources to heterogeneous IoT devices.
Meanwhile, in [36], innovative scheduling algorithms were

introduced to optimize resource allocation within the fre-
quency domain, addressing challenges in wireless networks.
The challenges in Next Generation Wireless Networks
(NGWN), such as limited radio resources and unreliable
terminals, were thoroughly discussed in [37].

In [38], a two-phase task offloading technique was
introduced to limit job outages, addressing challenges in
service continuity. Simultaneously, [31] proposed algorithms
to minimize energy consumption during task allocation,
focusing on efficient resource use. However, challenges in
the execution efficiency of the proposed binary computation
offloading technique were encountered. Magnetic RAM
(MRAM), discussed in [4], aimed to free up IoT device
resources but faced challenges in ensuring efficient fog-based
services, posing potential hurdles in service optimization.
Moreover, fog computing, proposed for low-latency data
services in [4], faced challenges in service efficiency.
In [25], a genetic algorithm addressed challenges in efficient
resource allocation for HetNets, striving to optimize resource
utilization despite inherent complexities.

Efficient access to the spectrum poses multiple challenges,
complicating wireless network setups [18]. Optimizing the
spread spectrum within cognitive spaces is crucial for
realizing cognitive radio benefits. However, challenges in
interference minimization and data rate maximization persist.
Cloud computing offers advantages, but network conges-
tion can increase latency. To address this, fog computing
deploys resources at end-user edges. The Enhanced Dynamic
Resource Allocation Method (EDRAM) proposed by [32]
addresses load balancing using particle swarm optimization
(PSO). EDRAM minimizes task waiting time, latency, and
network bandwidth consumption, enhancing QoE. Video
streaming, a high-computation application, targets user
satisfaction and utility improvement.

Given the challenges identified in the literature review,
addressing the increasing demand for services like big
data analytics, video rendering, and computer-aided design
necessitates an efficient resource allocation strategy within
a five-dimensional heterogeneous wireless network model.
There is a need for a model that organizes users into
services and establishes connections between services and
computing devices for optimal resource accommodation. The
effectiveness of this resource allocation relies on the seamless
integration of computing devices with high processing power,
considering their interfaces and heterogeneous resources to
meet diverse requirements.

III. PROPOSED INTELLIGENT RELAXATION METHOD
USING THE PENALTY FUNCTION
In this section, we present the system model and correspond-
ing problem formulation for optimizing multi-dimensional,
multi-criterion utility in next-generation heterogeneous aerial
networks based on the proposed intelligent relaxation using
the penalty function (IRPF). Users in the system, requesting
various services such as video streaming, podcasting, and
augmented reality, drive the demand for computing resources.
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TABLE 1. Summary of key aspects in reviewed algorithms for efficient resource management in multi-user, multi-service, and heterogeneous multi-device
networks.

To address these user and application demands, diverse
computing devices are employed. Each computing device is
equipped with interfaces such as Wi-Fi, Zigbee, Bluetooth,
and Cellular, each possessing specific properties like data
rate, bandwidth, and speed. These interfaces act as conduits
connecting users to computing devices. Importantly, each
computing device is linked to distinct hardware resources,
such as RAM and CPU, ensuring efficient processing and
storage capabilities. Cloud-based resources are also leveraged
to enhance the functionality of the network.

The system model, depicted in Figure 1, encapsulates the
complex interactions of users, services, computing devices,
interfaces, and resources within the system. It illustrates
the dynamics of a network with diverse users seeking

high-computational services such as video streaming, online
gaming, AR, and VR. To address these computationally
demanding services, high computation is necessary, facil-
itated by computing devices such as multi-rotors, base
stations, and tethered balloons. These devices are equipped
with interfaces and essential resources required for efficient
processing. So, multi-dimensional multi-criterion utility
optimization can help achieve this by considering multiple
criteria simultaneously and optimizing them based on their
relative importance.

In the proposed system model, variables are strategically
defined to capture the intricacies of the heterogeneous
wireless network. These variables include K for users, S for
services,M for devices, I for interfaces, and R for resources.
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FIGURE 1. Framework for multi-dimensional multi-criterion utility optimization in heterogeneous aerial
network.

The multi-dimensional nature of the network is reflected in
the product of these dimensions, shaping its diverse charac-
teristics. Additionally, the formulation involves user-specific
parameters such as operational costs, activation costs, and
user priorities. The representation of these variables within
the system model establishes a foundation for effective
optimization, enabling the network to dynamically adapt to
user demands and operational requirements. In the following
equation, yk,sm is a binary variable indicating whether the
kth user’s sth service is fulfilled by the mth computing
device. It takes the value 1 if the service is fulfilled and

0 otherwise.

yk,sm =


1 : if kth user, sth service is fulfilled

by the mth computing device/machine
0 : otherwise

The binary variable xk,mi,r,s represents whether the kth user
requests the computation of the sth service on themthmachine
of the ith interface using the rth resource. When xk,mi,r,s = 1,
it indicates an active computation request; otherwise, it is
0, signifying no such request. This variable is crucial for
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TABLE 2. Notations and descriptions.

optimizing resource allocation in the heterogeneous wireless
network.

xk,mi,r,s =


1 : If the kth user requests the computation of the

sth service on the mth machine of the
ith interface utilizing the rth resource.

0 : otherwise

The problem formulation for multi-dimensional multi-
criterion utility optimization in next-generation heteroge-
neous wireless networks is given below. Table 2 shows
the notations and their descriptions used in the problem
formulation.

A. PROBLEM FORMULATION
Optimizing resource allocation in the dynamic nature of
wireless networks becomes particularly challenging within
the intricate framework of five-dimensional hierarchical
multi-tier structures. The intricate interactions among diverse
users, services, computing devices, interfaces, and resources
contribute to these challenges. Balancing activation costs,
operational costs, and user priority, while addressing the
complex nature of resource allocation through a penalty term,
becomes a critical focus requiring effective solutions. The
objective is to minimize the total cost in (1), composed of
operational cost, activation cost, user priority, and a penalty
term. Operational cost represents resource usage expenses;
activation cost accounts for device activation costs; and
user priority is subtracted to prioritize user preferences.
Additionally, the penalty term, introduced with a coefficient
γ , addresses the optimization challenges by penalizing
infeasible solutions. The goal is to find an efficient resource
allocation strategy that minimizes total costs, considering the
dynamic and complex nature of the heterogeneous wireless
network.

Minimize: Total Cost = Operational Cost + Activation Cost

− User Priority + Penalty Term (1)

The objective is to minimize the total cost represented
in (2), including operational and activation costs, user
priority, as well as a penalty term, while meeting constraints
ranging from C1 to C10. The penalty coefficient (γ ) is
added to the objective function to enforce a penalty when
xk,sm,i,r deviates from being binary. Adjusting the γ allows
controlling the trade-off between optimizing the objective
and penalizing non-binary values. Here, the objective is to
find values for the decision variables that jointly minimize
the total cost, considering operational, activation, and priority
costs, while adhering to the penalty term to encourage binary
decisions.

OP : min
xk,sm,i,r

( Operational Cost︷ ︸︸ ︷∑
k

∑
s

∑
m

∑
i

∑
r

Costk,sm,i,r︸ ︷︷ ︸
Per Unit Cost

· xk,sm,i,r︸ ︷︷ ︸
integer

+

Activation Cost︷ ︸︸ ︷∑
m

∑
i

∑
r

ActCostm,i,r · yk,sm

−

User Priority︷ ︸︸ ︷∑
k

∑
s

∑
m

Pk · yk,sm

+

Penalty Term︷ ︸︸ ︷
γ

∑
m

∑
i

∑
r

xk,sm,i,r · (1 − xk,sm,i,r )
)

subject to

Resource allocation constraint:

C1 :

∑
m

∑
i

xk,sm,i,r ≤ 1∀k, s, r

Interface allocation constraint:

C2 :

∑
m

yk,sm ≤ 1 ∀k, s

Resource and interface compatibility constraints:

C3 : xk,sm,i,r ≤ yk,sm ∀k, s,m, i, r

C4 :

∑
k

∑
s

xk,sm,i,rd
k,s
m,i,r ≤ Cm,i,r , ∀m, i, r

Service capacity constraint:

C5 :

∑
m

∑
s

yk,sm ≤ Ck
s , ∀k

User-service pair and machine allocation constraint:

C6 :

∑
m

xk,sm,i,r ≤ 1∀k, s, i, r

Interface allocation constraint:

C7 :

∑
i

xk,sm,i,r ≤ 1∀k, s,m, r

Resource Capacity Constraint:

C8 :

∑
r

xk,sm,i,r ≤ Cr∀k, s,m, i
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Resource allocation and demand constraint:

C9 :

∑
r

xk,sm,i,r · dk,sm,i,r ≤ Cr
rem∀k, s,m, I

Resource Allocation and Service Assignment

Constraint:

C10 :

∑
r

∑
i

xk,sm,i,r = yk,sm ∀k,m, s (2)

The constraints from C1 to C10 restrict how resources
are allocated, how services are assigned, and how interfaces
are used in the framework of an optimization problem.
They are essential for preserving an appropriate balance
between the use of resources and meeting compatibility and
capacity requirements. Each constraint plays a specific role
in governing resource allocation and service assignment. The
following is an exploration of these constraints to understand
their contributions to the entire system.

Here, C1 ensures exclusive resource allocation by enforc-
ing that each user-service pair (k, s) and resource (r) can be
assigned to at most one machine (m) through a designated
interface (i). This constraint establishes a one-to-one rela-
tionship between resources and machine-interface pairs for
each user-service pair. In contrast,C2 focuses on the interface
allocation constraint, limiting the assignment of services to a
single interface on a machine for each user-service pair (k, s).
It ensures that the kth user demanding the sth service can only
be admitted by one machine, guaranteeing exclusive use of
a particular interface on the same machine simultaneously.
This constraint is crucial for efficient interface utilization.
On the other hand, C3 represents the resource and interface
compatibility constraint, maintaining compatibility between
resource allocation (x) and service assignment (y) decisions.
It stipulates that a resource can only be allocated if the
corresponding service is assigned to the machine interface,
ensuring that allocated resources correspond to service
assignments for each user-service pair on a machine.

Addressing both resource and interface capacity, C4
imposes restrictions on resource allocation to prevent exceed-
ing defined capacity limits for a machine’s interface, ensuring
adherence to capacity restrictions. Specifically, it prevents
user (k) from exceeding available resources on interface (i)
of machine (m) while utilizing service (s), which requires
resource (r). Simultaneously, C5 introduces the service
capacity constraint, setting an upper limit on total services
assignable to a machine for each user (k) as a safeguard
against overloading services on a machine, ensuring that
the assignment does not surpass the designated service
capacity (Ck

s ) for each user-service combination. Transi-
tioning to C6, the user-service pair and machine allocation
constraint, enforces exclusivity in resource allocation for each
user-service pair on a machine through a specific interface,
preventing simultaneous allocation to multiple pairs and
avoiding duplication. Concurrently, C7 maintains exclusivity
at the interface level, restricting resource allocation to one
user-service pair on a machine through a specific interface,

ensuring that each interface is used by a single pair at any
given time.

The resource capacity constraint is introduced in C8 that
limits the total allocation of resources for a user-service
pair on a machine through various interfaces. This con-
straint ensures that resource allocation does not exceed the
capacity limits (Cr ) defined for each resource, controlling
resource utilization within their capacity constraints. C9 is
the resource allocation and demand constraint, managing
resource allocation while considering resource demand
(d). It enforces that resource allocations do not exceed
the remaining capacity (Cr

rem) for each resource, ensuring
alignment between resource allocation, demand, and capacity
constraints. Lastly, C10 guarantees consistency between
resource allocation (x) and service assignment (y). It requires
that resource allocations match service assignments for each
user (k) and service (s) on a machine (m), fostering a
close integration between these critical components of the
optimization problem.

The iterative optimization process considers convergence
criteria based on changes in the objective function and
constraint violations. The dynamic adjustment of the penalty
factor is a key feature, contributing to the adaptability of
the optimization approach. The overall performance of this
approach is evaluated in terms of total cost minimization,
convergence speed, and the feasibility of solutions. Com-
parative analyses with alternative optimization approaches
provide insights into the effectiveness of this methodology
for resource allocation in a heterogeneous wireless network.
Sensitivity analysis explores the trade-off between penalty
strength and solution quality, shedding light on the impact
of penalty factor variations. The interpretation of results
involves identifying the strengths and limitations of the
approach and providing valuable insights for practical
implementation in real-world scenarios.

B. PROPOSED METHODOLOGY
In addressing the dynamic resource allocation challenges
within wireless networks, particularly in the context of
five-dimensional hierarchical multi-tier structures, the first
step involves a comprehensive problem formulation. This
involves identifying and articulating the complexities asso-
ciated with balancing activation costs, operational costs, and
user priority. The subsequent phase focuses on formulat-
ing constraints to guide the optimization process. These
constraints encompass considerations like computational
capacity (Cm

i,r ), user demands (dk,sm,i,r ), resource capacity (Cr ),
and remaining capacity (Crem). The optimization objective is
then developed to minimize the total cost, with operational
costs, activation costs, and user priority. A penalty term,
represented by γ

∑
m

∑
i
∑

r x
k,s
m,i,r · (1− xk,sm,i,r ), is integrated

to address the inherent complexities of resource allocation.
Efficiently allocating network resources and bandwidth to
various devices and applications is difficult for optimal
network utilization and QoS provision. However, effectively
managing heterogeneity in multi-tiered or multi-dimensional
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FIGURE 2. Intelligent relaxation using penalty function (IRPF)
optimization process.

wireless networks is essential and still challenging for
seamless connectivity, access, fair distribution of resources,
and an improved user experience. The problem of inefficient
and unfair resource allocation can lead to a decline in network
performance in terms of utility.

Figure 2, shows the methodological structure as flowchart
for the proposed IRPF to generate optimized results tailored
for resource allocation in a heterogeneous drone network.
The initialization phase begins with setting an initial feasible
solution, denoted as x(0), and defining important parameters
such as the penalty factor γ . Following this, the objective
function f (x) and constraints are formulated to encapsulate
resource allocation requirements. The objective function is
expressed in (2). The quadratic approximation phase involves
developing a quadratic approximation Qk (x))of the objective
function and constraints around the current solution x(k),
utilizing the gradient and Hessian matrix. The subsequent
step encompasses solving quadratic programming subprob-
lems with the inclusion of a penalty term. A line search
is then conducted to determine the optimal step size α

for the current iteration. The updated solution x(k+1) is
obtained by incorporating the results of the line search.
The process iterates through the quadratic approximation,
quadratic programming, line search, and update steps until
convergence is achieved. The convergence check involves
evaluating specific criteria to ascertain the proximity to an
optimal solution. This iterative methodology continues until
the convergence criteria are met, leading to the final resource
allocation solution.

In a diverse urban setting, a mixed wireless network
supports various user needs. Individuals seeking services like
video streaming, podcasting, augmented reality (AR), and
high-performance gaming connect to this network, which
includes base stations, drones, and balloons. These devices
host different interfaces such as Zigbee, Bluetooth, WiFi,
and cellular, each with its own resources like CPU, RAM,
and storage. Users access these resources based on their
preferences and requirements, with a system pre-checker

containing the optimal resource allocation that is assigned by
the solver. For instance, a user looking for video streaming
might connect throughWiFi, enabling the network to allocate
cloud-based resources for smooth streaming. Similarly,
someone engaging in AR activities might connect via Blue-
tooth to a nearby drone, utilizing its fog layer processors for
real-time processing and an enhanced user experience. This
dynamic allocation of resources ensures efficient and tailored
support for diverse user demands. The optimization aims
to minimize the total cost, encompassing operational costs,
activation costs, and user priority. Constraints are formulated
based on the systemmodel, incorporating considerations such
as resource capacity and demand fulfillment. Additionally,
a penalty term is introduced to handle binary decision
variables and ensure the exploration of feasible solution
spaces.

The incorporation of a penalty function becomes crucial
in guiding the optimization process. This penalty function
penalizes infeasible solutions and promotes the exploration
of feasible regions. A regularization parameter is introduced
to control the impact of the penalty term. This ensures a
balance between exploring the solution space and penalizing
constraint violations. An intelligent relaxation strategy is
employed by dynamically adjusting the penalty factor during
optimization. Starting with a relatively low penalty factor
encourages exploration, and the factor is adaptively increased
based on optimization progress. This strategy helps prevent
premature convergence to suboptimal solutions, promoting a
more thorough solution for space exploration.

IV. SIMULATION RESULTS AND DISCUSSION
A comparative analysis is carried out to evaluate the
performance of Branch and Bound (an optimized algorithm)
with the proposed IRPF for resource allocation in a hetero-
geneous wireless network. To address the complexities of
resource allocation further, the proposed IRPF that utilizes the
Sequential Quadratic Programming (SQP) algorithm is used,
which incorporates a penalty term into the optimization. This
penalty term introduces a regularization factor, enhancing
the solution’s adaptability to intricate resource allocation
scenarios. The comparative analysis involves evaluating the
efficiency and computational performance of Branch &
Bound and proposed IRPF algorithms. Keymetrics, including
total cost and computational time, are assessed to determine
the most effective resource allocation strategy in the context
of a heterogeneous wireless network. This methodology
assists in determining an optimal resource allocation strategy
for practical applications as a five-dimensional heteroge-
neous wireless network model, organizing users to services,
and linking services to computing devices for efficient
resource accommodation.

In Figure 3, Utility vs. Number of Users has been analyzed,
and the consistent outperformance of IRPF is attributed
to its exceptional adaptability to an increasing number
of users. The algorithm dynamically adjusts operational
costs, activation costs, user priorities, and penalty terms,
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FIGURE 3. Utility vs. Users: Analyzing resource allocation for four services
on three machines with a single interface.

FIGURE 4. Utility vs. Users: Evaluating resource allocation for four
services on five machines with three interfaces and three resources.

effectively managing the complexities associated with a
growing user base. This adaptability ensures optimal resource
allocation to meet evolving demands efficiently. IRPF excels
at simultaneously minimizing operational and activation
costs, as shown in Figure 4. Its exceptional performance
is largely due to its ability to manage cost factors while
considering user priorities and penalty modifications. The
IRPF achieves a more efficient resource allocation strat-
egy, lowering overall costs. Similarly, the impact of the
penalty term on utility is represented in Figure 5. This
figure highlights the adaptability of IRPF through penalty
adjustments. The ability of the algorithm to dynamically
modify the penalty term and optimize resource allocation
through efficient fractional value management is crucial in
scenarios with changing services, user demands, and device
capabilities. This adaptability provides a competitive edge
over the branch-and-bound approach. The effectiveness of the
proposed IRPF technique in resource allocation is showcased
in various scenarios:

Scenario 1 is depicted in Figure 3, which shows the
comparison between utility and users for four services on

FIGURE 5. Utility vs. Users: Assessing resource allocation for four services
on nine machines with two interfaces.

three machines with a single interface. Similarly, Scenario
2 depicted in Figure 4 addresses the resource allocation for
four services on five machines with three interfaces and three
resources, and Scenario 3 depicted in Figure 5 reflects the
resource allocation for four services on nine machines with
two interfaces. In a case with two users, three machines, and
two services, the IRPF technique successfully acknowledges
all four requests, demonstrating its ability to handle relatively
smaller problem instances efficiently. The outcomes indicate
how effective IRPF is at obtaining near-optimal solutions
for certain configurations compared to the optimal solution
found by the branch-and-bound algorithm.

For a more extensive scenario with 16 users, 2 services,
and 9 machines (each having one interface), the IRPF
technique continues to perform well. It acknowledges 22 out
of 32 possible services, showcasing its ability to scale
effectively to larger problem instances, as shown in Figure 6.
Importantly, the proposed technique achieves results compa-
rable to those of the optimized branch-and-bound algorithm
but with significantly less computational complexity. This
is a notable advantage, especially in scenarios where the
exponential complexity of branch-and-bound becomes a
limiting factor. Therefore, the proposed IRPF technique
demonstrates effectiveness in diverse scenarios.

In Figure 7, a visual representation is provided to compare
the user accommodation of the proposed IRPF and the
optimal Branch and Bound algorithm. The focus is on demon-
strating how well the IRPF performs in accommodating
users compared to the theoretically optimal solution provided
by the Branch and Bound algorithm. The red-highlighted
section in the figure draws attention to the convergence
point, indicating that the IRPF is capable of accommodating
several users equivalent to those of the optimal solution.
This suggests that, under certain conditions or scenarios,
the IRPF can match the performance of the theoretically
optimal algorithm. However, as the complexity of the
network configuration increases, which is characterized by
a higher number of users, services, machines, interfaces,
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FIGURE 6. Performance evaluation of IRPF and branch and bound in diverse network configurations.

FIGURE 7. Users and services accommodation scenario in heterogeneous environment.

and resources, a corresponding rise in overall complexity
is observed. This heightened complexity has a notable

impact on the search space, which refers to the range of
possible solutions that the algorithm explores. The trade-off
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FIGURE 8. Percentage increase of user service pair acknowledgment in diverse network configurations.

introduced is between computational efficiency and accuracy
in the resource allocation process with the consideration of a
five-dimensional heterogeneous aerial network.

Essentially, the more intricate the network becomes, the
more challenging it becomes to balance computational effi-
ciency and accuracy, which means providing a solution that
closely aligns with the optimal allocation of resources. This
dynamic nature of the system underscores the importance of
understanding the implications of network complexity on the
performance of resource allocation algorithms like IRPF and
Branch and Bound. It also emphasizes the need to consider
trade-offs and make informed decisions based on the specific
requirements and constraints of the given scenario.

Figure 8 presents an analysis of user accommodation, com-
paring the performance of the Implicit Resource Provisioning
Framework (IRPF) and the optimal Branch and Bound
algorithm. The IRPF significantly outperforms the Branch
and Bound algorithm in accommodating user-service pairs,
as indicated by the highlighted red area showing a percentage
increase for both algorithms. This suggests that the IRPF can
handle a larger number of user-service pairs compared to
the optimal Branch and Bound algorithm. The unnoted area
signifies a common set of users acknowledged by both tech-
niques, indicating some overlap in their performance. The
increasing percentage in the red area reflects a growing search

space due to escalating network configuration complexity
with additional devices, users, services, and interfaces. The
IRPF’s notable improvement implies a more efficient strategy
for navigating this expanded search space, which is crucial as
the network configuration becomes more intricate, requiring
the exploration of a larger solution space for optimal resource
allocation.

V. CONCLUSION
In the multi-user, multi-service, heterogeneous multi-device
scenarios that characterize modern aerial networks, the main
goal of this research was to address an essential requirement
for efficient resource allocation. The exploration focused on
a five-dimensional heterogeneous wireless network model,
incorporating diverse services and heterogeneous devices,
each with multiple interfaces to cater to varied user needs.
In this regard, a novel Intelligent Relaxation using the Penalty
Function (IRPF) approach was proposed, treating resource
allocation as an integer programming problem to balance
between user demands and affordability. In scenarios where
resource allocation for multiple services is required based
on user demand and device capabilities, the effectiveness
of the proposed IRPF approach was demonstrated through
a comparative study with the conventional branch-and-
bound algorithm. The optimization framework, designed to
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minimize activation and operating costs while optimizing
utility, demonstrated superior computing efficiency through
extensive simulations. The findings highlight the important
role of the proposed framework in effectively addressing
the challenges associated with resource allocation in aerial
networks.
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